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Abstract

Current mainstream audio generation methods primarily rely on simple text
prompts, often failing to capture the nuanced details necessary for multi-style
audio generation. To address this limitation, the Sound Event Enhanced Prompt
Adapter is proposed. Unlike traditional static global style transfer, this method
extracts style embedding through cross-attention between text and reference audio
for adaptive style control. Adaptive layer normalization is then utilized to enhance
the model’s capacity to express multiple styles. Additionally, the Sound Event
Reference Style Transfer Dataset (SERST) is introduced for the proposed target
style audio generation task, enabling dual-prompt audio generation using both
text and audio references. Experimental results demonstrate the robustness of the
model, achieving state-of-the-art Fréchet Distance of 26.94 and KL Divergence of
1.82, surpassing Tango, AudioLDM, and AudioGen. Furthermore, the generated
audio shows high similarity to its corresponding audio reference. The demo, code,
and dataset are publicly available.2

1 Introduction

Target Style Audio Generation generates audio with specific styles or features, allowing for more
natural and fine-grained audio production. This approach has numerous applications, particularly in
the media industries, where it can generate background sound effects that match specific scenes. The
current mainstream method for audio generation is Text-to-Audio (TTA) [Yang et al., 2023][Kreuk
et al., 2023][Huang et al., 2023][Liu et al., 2023][Ghosal et al., 2023]. These TTA models, often
encoded by CLAP [Elizalde et al., 2022] or T5 [Raffel et al., 2019], utilize rich semantic information
in textual descriptions to produce high-quality audio outputs.

Although mainstream methods using single-text prompts have achieved promising results, several
limitations remain. Text input and audio output belong to different modalities, making alignment
between the two challenging. For instance, generating the sound of a dog barking from a single text
prompt fails to capture specific characteristics such as timbre or how the environment interacts with
the barking. This limitation restricts the ability to model audio in finer detail. To address this issue,
incorporating additional prior knowledge is essential for providing richer contextual information and
enhancing the precision of the generated output.
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Two primary approaches exist for introducing prior knowledge into audio generation. The first in-
volves control conditions manipulating the generated audio’s pitch, energy, and temporal relationships
[Guo et al., 2023][Xie et al., 2024][Liao et al., 2024]. However, no current methods specifically
address style control in audio generation. The second approach utilizes multi-modal prompts that
incorporate semantic and temporal information from other modalities, such as images [Sheffer and
Adi, 2022] and videos [Iashin and Rahtu, 2021][Luo et al., 2023][Xu et al., 2024]. Despite their
potential, cross-modal prompts often suffer from interference caused by redundant and unrelated
information, as they do not provide intuitive acoustic references for the model.

In this paper, we first propose the Sound Event Enhanced Prompt Adapter. Traditional style transfer
approaches typically extract a global style directly from the reference. However, text offers valuable
semantic information that can guide and refine the application of this global style. To leverage this,
cross-attention [Vaswani et al., 2017] is employed between sound events and text to identify which
text events are most closely correlated with the corresponding audio reference. Additionally, the style
embedding generated by the adapter is passed into the U-Net [Ronneberger et al., 2015] via adaptive
layer normalization [Peebles and Xie, 2022], which allows the normalization layer to adapt to the
data distribution from style embedding. We then construct a Sound Event Reference Style Transfer
Dataset (SERST) that integrates dual-modality prompts from event-level audio reference and text,
derived from Audioset-Strong [Hershey et al., 2021]. Experimental results demonstrate the robustness
of the proposed method across various sound event references, and significant improvements in the
accuracy of acoustic modeling. Specifically, the method achieves gains of 2.3% in Fréchet Distance
and 7.6% in KL divergence. Additionally, the generated audio exhibits a strong alignment with its
audio reference, as indicated by a score of 0.4 in CLAP-audio similarity. The key contributions of
this paper are summarized as follows:

• A new audio generation task is introduced, guided by both text and sound event references,
enabling the transfer of style from the reference and improving the accuracy and naturalness
of audio generation.

• A new dataset, SERST, is created by integrating existing datasets, consisting of audio and
sound event segments. Evaluation metrics were applied to assess performance, providing a
benchmark for future research.

• A Sound Event Enhanced Prompt Adapter is proposed that adaptively transfers the style
from reference audio through cross-attention between the text and reference audio segments,
integrated with an adaptive layer normalization within the U-Net. This approach enables
finer-grained control over the audio generation process that enhances the accuracy of acoustic
modeling and achieves target style transfer.

2 Method

Figure 1: SEARST Dataset and Model Architecture: In the training stage, the latent diffusion model
(LDM) is conditioned on an audio embedding learned in a continuous space through a variational
auto-encoder (VAE). Text is fused with a randomly selected sound event reference through the Sound
Event Enhanced Prompt Adapter to generate a style embedding. This style embedding is then utilized
for adaptive layer normalization in the U-Net. In the inference stage, the LDM is conditioned on
random noise instead of the audio embedding derived from the VAE.
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2.1 Sound Event Reference Style Transfer Dataset (SERST)

Effective style transfer requires high-quality reference audio. To address this need, the Sound Event
Reference Style Transfer Dataset (SERST) is constructed, providing event-level granularity audio
to capture the full distribution of acoustic events and enabling the accurate reconstruction of their
characteristics. This dataset is created by segmenting the original audio from the Audioset-Strong
dataset [Hershey et al., 2021] based on annotated acoustic event timestamps. Statistical analysis
revealed that a 2-second audio length offers an optimal balance between segment quantity and
accuracy. Audio is segmented by event, and in cases where the segments are shorter than 2 seconds,
they are concatenated from other clips with the same sound event tag, facilitating both padding and
data augmentation. Then a Short-Time Energy detection is used to filter out Poor quality references.
As a single original audio could yield multiple trimmed segments: during training, one of these
segments is randomly selected, while during inference, all trimmed segments are utilized to examine
the variability in the generated audio. The dataset consists of 88,464 training samples, 1,384 validation
samples, and 1,180 test samples.

2.2 Sound Event Enhanced Prompt Adapter

To fully utilize the acoustic information, the global sound event style feature is extracted from a
reference encoder. A style embedding is then generated through cross-attention between the text
and reference audio, enabling adaptive style transfer and allowing the model to focus on the relevant
aspects of the reference audio’s style.

The sound event reference is first compressed into a reference embedding er, representing the global
style of the audio. Given the lack of suitable pre-trained encoders for this task, a custom reference
audio encoder was developed based on the H/ASP model [Heo et al., 2020], originally designed
for Text-to-Speech (TTS). The global style is then integrated with local information from the text
condition et. Residual cross-attention between the text embedding and the audio embedding is applied
to generate the style embedding es:

Q = etWq, K = erWk, V = erWv, (1)

es = Softmax

(
QKT√
d/h

)
· V + et (2)

d represents the embedding dimension of et, and h refers to the number of multi-heads. We then
perform mean pooling along the sequence length dimension to align dimensions and feed them into
U-Net.

2.3 Conditional Latent Diffusion Audio Generation Model

The LDM model aims to conduct the denoising process on mel-embedding (training) or standard
Gaussian noise ϵ (inference) and predict the mel-embedding x̂0. For every step t, the training objective
is to minimize the following:

LLDM = Ex,ϵ∼N (0,I) ∥ϵθ(xt, t, et, er)− ϵ∥22 . (3)
In this context, ϵθ represents the noise estimation conditioned on t, et and er. The architecture of the
LDM primarily utilizes a U-Net structure [Ronneberger et al., 2015], which consists of a series of
ResNet[He et al., 2015] and transformer blocks.

The shift parameters γ and β, derived from the concat of style embedding and time step embedding,
are applied as adaptive layer normalization-zero parameters [Peebles and Xie, 2022] throughout the
Resnet blocks in U-Net. This is because the adaptive layer norm allows the normalization layer to
adapt to data distributions in different modalities or domains, thus performing well in multimodal
learning or domain adaptation tasks.

3 Expiriments

3.1 Training Setting

All data are resampled to a 16kHz sampling rate, with each sample padded to a duration of 10.24
seconds. The VAE and text condition encoder are kept frozen and accept audio at 16kHz while we
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Table 1: Sensitivity Analysis. The results show the Clap similarity of our generated audios under
identical sound event reference (ID ref) or different sound (Diff ref) event reference.

Ours ID ref Diff ref Diff
CLAP-Audio 0.72 0.54 0.18

Table 2: Model effectiveness. The results of the model effectiveness show the accuracy of generated
audio from Our model compared to different baseline models.

Models Objective Metrics Subjective Metrics
FD ↓ FAD ↓ KL ↓ OVL ↑ REL ↑

Ground truth – – – 87.50 83.65

AudioGen [Kreuk et al., 2023] 28.52 2.47 2.12 73.25 71.90
AudioLDM [Liu et al., 2023] 28.07 2.44 2.01 72.60 69.85
Tango [Ghosal et al., 2023] 27.60 2.21 1.97 74.40 75.40

Ours 26.94 2.38 1.82 79.10 77.65

fine-tuned the latent diffusion model using pre-trained weights from Tango [Ghosal et al., 2023]. The
reference audio encoder is trained from scratch. The text encoder is based on FLAN-T5-LARGE
[Chung et al., 2022], which contains a total of 780 million parameters. HiFi-GAN [Kong et al., 2020]
is used as the vocoder. The trainable components include the U-Net, which loaded the pre-trained
weights from Tango, and the reference audio encoder, collectively comprising 1.097 billion trainable
parameters. Our model was trained for 20 epochs on four RTX 3090 GPUs with a batch size of two.

3.2 Evaluation Metrics

We compared our model to Tango[Ghosal et al., 2023], AudioGen [Kreuk et al., 2023] and Audi-
oLDM[Liu et al., 2023] and used four objective metrics: Fréchet Distance (FD), Fréchet Audio
Distance (FAD), KL divergence (KL), Mel-Spectrogram cosine Similarity (Mel-Sim) and CLAP-
Audio[Elizalde et al., 2022] cosine similarity (CLAP-Audio).

As for subjective evaluation, we paid twenty experienced human evaluators to assess fifty randomly
selected audio samples on a scale from 1 to 100 in the following aspects: overall audio quality (OVL)
and relevance to the input text (REL) that reflects the quality of generated audio and its relevance to
the input sound event prompt (REA) that demonstrates the ability in target style transfer.

4 Results and Analysis

4.1 Sensitivity Analysis for Sound Enhanced Prompt Adapter

Table 1 presents the CLAP-Audio similarity results of the generated audio provided with various
sound event references, while keeping the text input constant. When the same sound event reference
is provided to the model multiple times, the generated audio exhibits a CLAP similarity score of
0.72. In contrast, when different sound event references are used, the generated outputs yield a
CLAP similarity score of 0.54. This difference of 0.18 demonstrates the effectiveness of the Sound
Enhanced Prompt Adapter in utilizing prior acoustic information.

4.2 Comparison of Generated Audio Accuracy with Baseline Models

Table 2 presents the evaluation results of our model compared to TTA models using both objective
and subjective metrics. In terms of objective metrics, our model achieves an FD score of 26.94, and a
KL divergence of 1.88, which are all the lowest in all models. The FAD score of 2.38, although not
the best, is still very competitive. For subjective metrics, our model achieves an OVL score of 79.10
and a REL score of 77.65, which are both the best in these models, showing that the audio generated
by our model is very well aligned with the provided textual descriptions.
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Table 3: Ablation study. The input channel implies where the style embedding will be sent into U-net
after fusion. Fusion type means how we fuse text with reference.

Model Fusion Method Objective Metrics
Input Channel Fusion Type FD ↓ FAD ↓ KL ↓

Ours Timestep Cross Attention 26.94 2.38 1.88
Variant1 Timestep Concat 28.54 3.14 1.93

Variant2 Text Cross Attention 39.15 6.09 2.27
Variant3 Text Concat 38.50 4.35 2.30

Table 4: Audio Relevance Evaluation. The results emphasize the alignment between the generated
audio and its reference.

Models Mel-Sim ↑ CLAP-Audio↑ REA ↑
AudioGen [Kreuk et al., 2023] 0.71 0.33 63.35
AudioLDM [Liu et al., 2023] 0.70 0.32 64.00
Tango [Ghosal et al., 2023] 0.71 0.34 64.25

Variant1 0.73 0.36 69.00
Ours 0.76 0.40 76.00

4.3 Ablation Study of Text and Sound Event Prompt Fusion Methods

Table 3 presents the results of our ablation study. We experimented with four different approaches:
concatenating the reference embedding with the text embedding or applying cross-attention to obtain
the style embedding, then sending the merged style embedding into U-net either with the text input or
integrating it into the layer normalization of ResNet blocks within the U-Net, alongside the timestep
embedding. The results indicate that using cross-attention to generate the style embedding, followed
by its incorporation into the layer normalization, yields the best performance.

4.4 Style transfer performance evaluation by measuring audio similarity

Tabel 4 presents the evaluation results for the similarity of generated audio and sound event reference.
Our model achieves the highest scores in all metrics, with a Mel-Sim of 0.76, CLAP-Audio similarity
of 0.40, and an REA of 76.00, demonstrating strong relevance with the reference compared to the
other models. These results underscore the effectiveness of our approach in leveraging sound event
reference to transfer the generated audio.

5 Conclusion

This work first introduces the SERST dataset, which integrates dual-modality prompts from event-
level audio reference and text, providing a valuable resource for target audio generation. Then a
Sound Event Enhanced Prompt Adapter is proposed to achieve fine-grained style control in audio
generation. The method leverages cross-attention and adaptive layer normalization, significantly
improving the quality and controllability of generated audio, particularly in style. Compared to Tango,
the proposed approach improves FD and KL Divergence scores by 2.3% and 7.6%. The generated
audio strongly aligns with the reference audio, highlighting effective style control.
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