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Abstract

Social media is an easy-to-access platform pro-
viding timely updates about societal trends and
events. Discussions regarding epidemic-related
events such as infections, symptoms, and lo-
cally deployed measures can be crucial for
policy making during epidemic outbreaks. In
this work, we exploit Event Detection (ED) for
extracting and capturing relevant events from
social media posts to provide better prepared-
ness for any upcoming epidemic. To facilitate
this task, we curate an epidemic event ontol-
ogy comprising seven generic event types such
as infect, symptom, prevent, etc. Using our
event ontology and human expert annotation,
we construct our epidemic preparedness Twitter
dataset SPEED comprising 1,975 tweets and
2,217 event mentions for the COVID-19 pan-
demic. Experiments reveal that existing ED
models and datasets cannot transfer well for our
task, highlighting the challenging nature of our
dataset. Finally, we provide empirical evidence
highlighting the utility and generalizability of
our dataset by showing that ED models trained
on our COVID-only dataset SPEED, can effec-
tively identify epidemic events and offer timely
warnings for three unseen epidemics of Mon-
keypox, Zika, and Dengue. This generalizabil-
ity of SPEED lays the foundations for better
preparedness against emerging epidemics.’

1 Introduction

Early epidemic warnings and effective control mea-
sures are among the most important tools for poli-
cymakers to be prepared against the threat of any
epidemic (Collier et al., 2008). World Health Or-
ganization (WHO) reports suggest that 65% of the
first reports about infectious diseases and outbreaks
originate from informal sources and the internet
(Heymann et al., 2001). Social media becomes
an important information source here, as it’s more
timely than other alternatives like news and public

'Code and data will be released upon acceptance.
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Figure 1: Number of reported Monkeypox cases and
the number of extracted events from our trained BERT-
QA model from May 11 to Nov 11, 2022. Indicated
arrows show how our system can potentially provide
early epidemic warnings almost 4-8 weeks before the
WHO declared Monkeypox as a pandemic.

health (Lamb et al., 2013), more publicly accessi-
ble than clinical notes (Lybarger et al., 2021), and
possesses a huge volume of content.” In our work,
we explore the social application of information
extraction towards building an automated system
to efficiently extract epidemic events from social
media to provide better epidemic preparedness.
The process of identifying and categorizing
significant events based on a pre-defined ontol-
ogy is a well-established task in NLP, known as
Event Detection (ED) (Sundheim, 1992; Dodding-
ton et al., 2004). However, standard ED datasets
mostly focus on general-purpose events for news or
Wikipedia domains, and can’t be transferred to the
epidemic domain (§ 5). Furthermore, most prior
epidemiological ED ontologies restrict themselves
only to certain diseases or are too fine-grained and
specific in nature; while the corresponding datasets
majorly focus on news or clinical domains (§ 8).
Thus, existing ED ontologies and datasets are not
sufficient and models trained on them cannot be
readily utilized for extracting events from social

%A daily average of 20 million tweets were posted about
COVID-19 from May 15 — May 31, 2020.



media for emerging epidemics.

To this end, we construct our own epidemic ED
ontology and dataset for social media. Our ontol-
ogy comprises seven event types - infect, spread,
symptom, prevent, cure, control, death - chosen
based on their relevance for epidemic prepared-
ness, frequency of mentions in social media, and
their applicability to various diseases. Our ontol-
ogy and event definitions are derived from clini-
cal sources (Collier et al., 2008; Babcock et al.,
2021) and its sufficiency and coverage are val-
idated by public health experts and quantitative
analyses. For our dataset, we choose Twitter as
the social media platform and focus on the recent
COVID-19 pandemic. Since our task requires do-
main expertise, we hire six expert annotators to
ensure high annotation quality for our dataset. Us-
ing our curated ontology and expert annotation, we
create our epidemic preparedness dataset SPEED
(Social Platform based Epidemic Event Detection)
comprising 1,975 tweets and 2,217 event mentions.
SPEED provides good coverage of events charac-
teristic of any disease and is granular for social
media; thus, serves as a valuable ED benchmark
for epidemic preparedness from social media.

We benchmark various existing models includ-
ing four zero-shot models (Shen et al., 2021; Lyu
et al., 2021) and two supervised models (Hsu et al.,
2022) pre-trained on existing ED datasets of ACE
(Doddington et al., 2004) and MAVEN (Wang et al.,
2020) on our SPEED benchmark. Experiments
reveal that none of the existing models perform
well on our dataset mainly owing to the domain-
shift and noise in social media as well as unseen
epidemic-based event types. Furthermore, train-
ing on limited in-domain SPEED data provides
significant gains compared to the existing mod-
els, highlighting the importance of domain-specific
training. Overall, these results reveal how SPEED
is a challenging ED dataset.

Tying back to our original motivation of epi-
demic preparedness, we evaluate the utility and
generalizability of our COVID-only dataset SPEED
to detect events for any emerging epidemics. More
specifically, we evaluate models trained only on
SPEED to detect events for three unforeseen epi-
demics of Monkeypox, Zika, and Dengue. Experi-
ments reveal that SPEED-trained models can suc-
cessfully detect events for all these epidemics while
providing improvements of 29% F1 over zero-shot
models and 10% F1 over supervised models trained
on small samples of target epidemic data. Further-
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Figure 2: Illustration for the task of Event Detection.
Event mentions: Event symptom and trigger sneezed
(1st sentence), Event infect and trigger positive (2nd
sentence), Event death and trigger died (2nd sentence).

more, by comparing the trends of our extracted
events with the actual reported cases, we show that
our model can provide early preparedness warnings
for the Monkeypox epidemic (Figure 1). These
results underscore the strong generalizability and
applicability of our dataset SPEED for general epi-
demic preparedness.

Overall, we make the following contributions:
(1) We create an ED ontology and dataset SPEED
tailored for predicting epidemic events character-
sitc of any disease from social media, (2) We show
that existing zero-shot models and datasets cannot
transfer well to our dataset, highlighting the signifi-
cance of our dataset, (3) We validate the generaliz-
ability of our framework by demonstrating how
SPEED-trained ED models using only COVID-
tweets can successfully detect events and provide
early warnings for three unforeseen epidemics.

2 Task Definition

We employ the task of Event Detection (ED) (Sund-
heim, 1992; Grishman and Sundheim, 1996) for
identifying epidemic events from social media. We
define ED based on the ACE 2005 guidelines (Dod-
dington et al., 2004). An event is something that
happens or describes a change of state and is la-
beled by a specific event type. An event mention
is the sentence wherein the event is described. Each
event mention comprises an event trigger, which
is the word/phrase that most distinctly highlights
the occurrence of the event. Event Detection is the
task of identifying event triggers from sentences
and classifying them into one of the pre-defined
event types. The subtask of identifying event trig-
gers is called Trigger Identification and classifi-
cation into event types is Trigger Classification
(Ahn, 2006). The event types of interest are pre-
defined by an event ontology. Figure 2 shows
examples for three event mentions for the events
symptom, infect, and death.
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Figure 3: Overview of our dataset creation process.

3 Ontology Creation and Data Collection

We choose social media as our document source
since it provides faster and more timely worldly
information than other alternatives like news and
public health (Lamb et al., 2013) and is more pub-
licly accessible than clinical notes (Lybarger et al.,
2021). Owing to its public access and huge con-
tent volume, we consider Twitter® as the social
media platform and consider the recent COVID-19
pandemic as the primary disease for our dataset.

Previous epidemiological ontologies are typ-
ically specific to a particular disease, too fine-
grained, or cover only a few event types (§ 8 and
Table 6) and cannot be readily utilized for ED from
social media. Similarly, standard ED datasets don’t
comprise epidemiological events and are mostly
confined to news or wikipedia domains (§ 8). Ow-
ing to these reasons, we create our own event on-
tology and dataset SPEED specific to detecting
epidemics from social media. We provide a brief
overview of our data creation process in Figure 3
and discuss these steps in more detail below.

3.1 Ontology Creation

Taking inspiration from medical sources like
BCEO (Collier et al., 2008), IDO (Babcock et al.,
2021), and the ExcavatorCovid (Min et al., 2021a),
we curate a wide range of epidemic events while
ensuring that they are not biased for specific dis-
eases. We categorize these events into three abstrac-
tions of social (events involving larger populations),
personal (individual-oriented events), and medical

Shttps://www. twitter.com/

(medically focused events) types and create our ini-
tial ontology comprising 18 event types as reported
in Table 19 (§ A.1).

Social Media Relevance To adapt our curated on-
tology better for social media, we conduct a deeper
analysis of the event types based on their frequency
and relevance. Majorly, we associate each event
type with a certain set of keywords and rank them
based on the confidence and frequency of the occur-
rence of their keywords in social media posts (more
details in § A.2). Based on this relevance-based
ranking, we merge and discard some event types.
Furthermore, we conduct human studies and merge
event types to ensure better pairwise distinction.

Ontology Validation and Coverage Drawing
upon established epidemiological ontologies serves
to guarantee the medical soundness of our ontol-
ogy. In addition, we assess the sufficiency and
comprehensiveness of our ontology and definitions
through evaluation by two public health experts.
We also quantify our ontology coverage for four di-
verse diseases by evaluating the percentage of event
occurrence in disease-related tweets. We observe
a high coverage of 50% for COVID-19, 44% for
Monkeypox, 70% for Dengue and 73% for Zika
(more details in § A.3), ensuring strong disease
coverage of our ontology.

Our final SPEED ontology comprises seven ma-
jor event types that are better suited for social me-
dia and cover important aspects of an epidemic. We
present our ontology in Table 1 along with event
definitions and example event mentions.

3.2 Data Processing

To access a wide range of tweets related to COVID-
19, we utilized the Twitter COVID-19 Endpoint
released in April 2020. We used a randomized se-
lection of 331 million tweets between May 15 —
May 31 2020, as our base dataset. For preprocess-
ing tweets, we follow Pota et al. (2021): (1) we
anonymize personal information like phone num-
bers, emails, and handles, (2) we normalize any
retweets and URLs, (3) we remove emojis and split
hashtags, (4) we filter out tweets only in English.

Event-based Filtering Despite COVID-based fil-
tering, most tweets in our base dataset expressed
subjective public sentiments, while only 3% com-
prised mentions adhering to our curated event ontol-
ogy.* To reduce annotation costs, we further filter

“Based on keyword-based study conducted on 1,000 tweets
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Event Type | Event Definition | Example Event Mention

Infect \ The process of a disease/pathogen invading host(s) \ Children can also catch COVID-19 ...

Spread The process of a disease spreading/prevailing mas- | #COVID-19 CASES RISE TO 85,940 IN INDIA ...
sively at a large scale

Symptom Individuals displaying physiological features indicat- | (user) (user) Still coughing two months after being
ing the abnormality of organisms infected by this stupid virus ...

Prevent | Individuals trying to prevent the infection of a disease | ... wearing mask is the way to prevent COVID-19

Control Collective efforts trying to impede the spread of epi- | Social Distancing is our responsibility to reduce
demic spread of COVID-19 ...

Cure Stopping infection and relieving individuals from | ... recovered corona virus patients cant get it again
infections/symptoms

Death | End of life of individuals due to infectious disease. | More than 80,000 Americans have died of COVID ...

Table 1: Event ontology comprising seven event types promoting epidemic preparedness along with their definitions
and example event mentions. The trigger words are marked in bold.

these tweets based on our curated ontology using a
simple sentence embedding similarity technique.
Specifically, we associate each event type with
a seed repository of 5-10 diverse tweets. Query
tweets are filtered out based on their sentence-level
similarity (measured using the BERT sentence em-
bedding model (Reimers and Gurevych, 2019))
with this event-based seed repository. This step
filters about 95% tweets from our base dataset sig-
nificantly reducing the annotation cost.

Event-based Sampling Random sampling of
tweets would yield an uneven and COVID-biased
distribution of event types for our dataset. We in-
stead perform a uniform sampling - wherein we
over-sample tweets linked to less frequent types
(e.g. prevent) and under-sample the more frequent
ones (e.g. death). Such an uniform sampling has
proven to ensure model robustness (Parekh et al.,
2023) - as also validated by our experiments (§ B) -
and in turn, would make SPEED generalizable to a
wider range of diseases. We sample a total of 1,975
tweets which are utilized for ED annotation.

3.3 Data Annotation

For ED annotation, annotators are tasked with iden-
tifying whether a given tweet mentions any of the
events outlined in our ontology. If an event is in-
deed mentioned, annotators are required to identify
the specific event trigger. Following the standard
ACE dataset (Doddington et al., 2004), we design
our annotation guidelines and amend them through
several rounds of preliminary annotations to ensure
consistency amongst the annotators. Additional de-
tails and illustrations of the annotation guidelines
and interface are provided in Appendix C.

Annotator Details To ensure high annotation qual-
ity and enforce consistency, we choose six experts
instead of crowdsourced workers for our annota-
tion. These experts are computer science students
studying NLP and are well-versed with the task of
ED. They were further trained on our task through
multiple loops of annotations and feedback.

Inter-annotator agreement (IAA) We used Fleiss’
Kappa (Fleiss, 1971) for measuring IAA. We con-
duct two phases of IAA studies: (1) Guideline Im-
provement: Three annotators participated in three
annotation rounds with a focus on improving the
guidelines. TAA score rose from 0.44 in the first
round to 0.59 (70 samples) in the final round. (2)
Agreement Improvement: All annotators partici-
pated in three rounds of annotations. IAA score
improved from 0.56 in the first round to a strong
0.65 (50 samples) in the final round.

Quality Control Apart from extensive IAA studies,
we deploy two mechanisms to ensure the high an-
notation quality: (1) Multi-Annotation: Each tweet
is annotated by two annotators and disagreements
are resolved by a third annotator. (2) Flagging: An-
notators can “flag” ambiguous annotations, which
are then resolved and annotated by a third annotator
through collective discussion. Both these mecha-
nisms along with a good IAA score ensure that the
annotations have high quality.

4 Data Analysis

In this section we present quantitative analyses of
our dataset for comparison with other standard ED
datasets. Comparison with other epidemiological
datasets is discussed in § 8 along with an objective
comparison in Table 6.



# Event Avg. EM

Dataset Types #Sent #EM per Event Domain
ACE 33 18,927 5,055 153.2 News
ERE 38 17,108 7,284 191.7 News
MAVEN 168 49,873118,732 706.7 Wikipedia
SPEED 7 1,975 2,217  316.7 Social Media

Table 2: Data Statistics for SPEED dataset and compari-
son with other standard ED datasets. # = “number of",
Avg. = average, Sent = sentences, EM = event mentions.
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Figure 4: Distribution of number event mentions per
sentence. Here % indicates percentage.

Data Statistics Our dataset SPEED comprises
seven event types with 2,217 event mentions an-
notated over 1,975 tweets. We compare SPEED
with other standard ED datasets like ACE (Dod-
dington et al., 2004), ERE (Song et al., 2015), and
MAVEN (Wang et al., 2020) in Table 2. Despite
the lesser number of sentences and event mentions
(since we focus only on 7 event types), SPEED has
a reasonable size of 316 average event mentions
per event, which is more than the standard ACE
and ERE datasets. We also note the differences
of the domain of data sources as ACE/ERE focus
on News, MAVEN on Wikipedia, while SPEED is
based on social media, specifically Twitter data.

Event Mention Density Analysis We compare
the distribution of event mentions per sentence with
other ED datasets like ACE and MAVEN in Fig-
ure 4. We observe that the event density of our
dataset is less than MAVEN but better than ACE.
This shows that despite having just seven event
types, SPEED is a fairly dense dataset.

Trigger Word Analysis We show the diversity
of trigger words in SPEED and compare it with
other datasets in Table 3. We note that SPEED has
a strong average number of triggers per event men-
tion. This demonstrates how SPEED is a diverse
and challenging ED dataset.

#Unique Avg. Triggers
Dataset Triggers  per Mention
ACE 1,229 0.24
MAVEN 7,074 0.06
SPEED 555 0.25

Table 3: Comparison of SPEED with ACE and MAVEN
in terms of unique trigger words and average number of
triggers per event mention. Avg = Average.

5 Transfer Existing Methods

Since existing ED datasets and models are
based on general-purpose event ontologies and
news/wikipedia domains, they may not transfer
well to our social-media-based epidemic detec-
tion task. In order to verify this hypothesis, we
benchmark the transfer capabilities of these exist-
ing methods to our dataset SPEED. For this experi-
mentation, we assume no access to any annotated
social media data for epidemic events. We majorly
consider the following two families of models:
Zero-shot models do not train on any supervised
data and utilize names and definitions of the events
for ED. For this, we consider (1) TE (Lyu et al.,
2021), a pre-trained model that uses event defi-
nitions to formulate ED as a textual entailment
and question-answering task, (2) WSD (Yao et al.,
2021) which encodes the contextualized trigger
and event definitions jointly and uses a classifica-
tion head atop for event detection. (3) TABS (Li
et al., 2022), a model that utilizes two complemen-
tary embedding spaces ("mask view" and "token
view") to classify examples of new event types. (4)
ETypeClus (Shen et al., 2021), that extracts salient
predicate-object pairs and clusters the embeddings
of these pairs in a spherical latent space.

Data transfer models are supervised models pre-
trained on other standard ED datasets like ACE
(Doddington et al., 2004) and MAVEN (Wang et al.,
2020) and transfer to SPEED in a zero-shot man-
ner. For this, we consider (5) DEGREE (Hsu et al.,
2022), a generation-based model prompting using
natural language templates, (6) TagPrime (Hsu
et al., 2023), a sequence tagging approach that uti-
lizes priming words to input text to convey more
task-specific information.

5.1 Evaluation

We evaluate the above models on the 1,683 tweets
from the SPEED dataset. Following previous
works (Ahn, 2006), we report the F1-score for the
two tasks of Trigger identification (Tri-I) and trig-



Model Tri-I

DATA-TRANSFER
ACE - TagPrime 0 0

ACE - DEGREE 1.82 1.71
MAVEN - TagPrime  27.65 0
MAVEN - DEGREE  26.72 0
ZERO-SHOT
TE 9.64 5.54
WSD 17.68  3.65
TABS 3.70 1.61
ETypeClus 17.56  7.66

Table 4: Benchmarking existing zero-shot and data-
transfer models on SPEED in terms of Tri-I and Tri-C
F1 scores.

ger classification (Tri-C) respectively. The results
are shown in Table 4. We observe that models
pre-trained on the news dataset ACE absolutely
fail, while Wikipedia dataset MAVEN pre-training
helps to improve Tri-I scores, but still has a nil
Tri-C score. The zero-shot models using event
definitions perform slightly better, while the best
performance is provided by ETypeClus which is
an unsupervised clustering model. Overall, all ex-
isting zero-shot and data-transfer models fail
to detect epidemic events, mainly owing to the
domain shift of social media data and the finer
granularity of epidemic events. In turn, this
renders SPEED as a challenging ED dataset.

6 Training with Limited SPEED Data

To improve model performance for SPEED, we
conduct experiments trainined ED models using
limited amounts of in-domain SPEED training data.
Majorly, we consider two training paradigms: (1)
Few-shot (FS): Models are provided access to n
mentions per event (n-shot) for training. We ex-
plore 2-shot and 5-shot with three splits of data.
(2) Low Resource (LR): Models have access to a
limited 100-300 event mentions for training. (Data
Statistics in Table 9 in Appendix § D.1).

For training, we consider the following ED mod-
els: (1) DyGIE++ (Wadden et al., 2019), a multi-
task classification-based model utilizing local and
global context via span graph propagation, (2)
BERT-QA (Du and Cardie, 2020), a classifica-
tion model utilizing label semantics by formulat-
ing event detection as a question-answering task.
We also consider (3) DEGREE and (4) TagPrime
models (as described before in § 5). Other baselines
also include (5) Keyword (Lejeune et al., 2015),
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Figure 5: Model performances on the Few-Shot (FS)
and Low Resource (LR) test suites in terms of Tri-C F1
scores. Here, LR-XX represents low resource with XX
training event mentions and FS-Y represents few-shot
with Y training mentions per event.

a popular epidemiological model, that predicts an
event if any of the event-specific curated keywords
are present in the sentence, (6) GPT-3 (Brown et al.,
2020), a large-language model (LLM) baseline us-
ing GPT-3.5-turbo as the base model with seven
in-context examples.

6.1 Evaluation

We follow the same evaluation setup described in
§ 5.1. Figure 5 presents the model performances
for the few-shot and low-resource settings. Ma-
jorly, we observe how training on in-domain data
can yield performance gains upto 50 F1 points
compared to zero-shot and data-transfer methods.
We also note that GPT-3 and Keyword baselines
are easily outperformed by models trained with
just 30 event mentions. Furthermore, these gains
are highly consistent for the different ED models.
Overall, we note that small amounts of in-domain
training data can provide significant gains in
model performance compared to the existing
zero-shot and data-transfer models.

7 Generalization for New Epidemics

Since SPEED focuses solely on COVID-19, its
transferability for detecting events for new epi-
demics remains unknown. To effectively evaluate
this generalization, we test if models trained only
using our in-domain COVID dataset can detect
events for unseen epidemics without any further
fine-tuning on the new epidemic data. Specifically,
we consider the outbreaks of three diverse diseases



Monkeypox | Zika + Dengue
Model Tri-l Tri-C | Tri-l  Tri-C
TRANSFER FROM EXISTING DATASETS
ACE - TagPrime 4.80 0 23.64 0
ACE - DEGREE 12.15 5.14 | 14.47 0
MAVEN - TagPrime 29.16 0 33.97 0
MAVEN - DEGREE 27.94 0 32.04 0
NO TRAINING + ZERO-SHOT
TE 16.70 12.11 | 12.69 9.06
WSD 22.04 435 |2793 5.85
ETypeClus 18.31 6.78 | 13.99 5.33
Keyword 36.40 25.09 | 25.93 21.69
GPT-3* 42.23 35.33 | 53.22 14.27
TRAINED FOR TARGET EPIDEMIC
BERT-QA 59.8 54.08 |94.92 80.89
DEGREE 59.58 54.12 | 86.21 78.76
TagPrime 55.57 49.65 | 96.67 84.43
DyGIE++ 55.83 50.31|73.24 65.65
TRANSFER FROM SPEED
BERT-QA 67.38 64.17 | 96.77 81.97
DEGREE 62.95 61.45|88.52 77.69
TagPrime 64.71 61.92|95.24 75.54
DyGIE++ 62.76 59.82 | 91.8 80.34

Table 5: Benchmarking ED models trained on COVID-
only SPEED for generalizability to new epidemics of
Monkeypox, Zika and Dengue in terms of F1 scores.

of Monkeypox (2022), Zika (2017), and Dengue
(2018) as the unseen epidemics.

Experimental Setup For creating datasets, we
utilize the Twitter datasets of Thakur (2022) for
Monkeypox and Dias (2020) for Zika and Dengue.
Using expert annotation for a sample of the tweets,
our final evaluation dataset comprises 286 tweets
with 398 event mentions for Monkeypox while
300 tweets with 274 event mentions for Zika and
Dengue (statistics in § D.3 and § D.4).

For model training, we use a 80-20 split of our
COVID-only SPEED dataset to train various ED
models (TRANSFER FROM SPEED). For compar-
ison, we benchmark models trained on existing
datasets (TRANSFER FROM EXISTING DATASETS)
and models requiring no training data (NO TRAIN-
ING). As strong baselines, we also consider su-
pervised models trained on a small sample of 300
tweets for the target epidemic (TRAINED ON TAR-
GET EPIDEMIC).

Results We present our results in Table 5. None
of the existing data transfer methods or zero-shot
methods perform well. Overall, we observe that ED
models transferring from SPEED perform the best
with model performance ranging from 60-65 F1
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Figure 6: Number of reported Monkeypox cases and the
number of extracted events from four trained models
from May 11 to Nov 11, 2022.

points, thus demonstrating the generalizability
of our SPEED dataset to new epidemics. Fur-
thermore, we observe SPEED-trained models even
outperform models trained on for Monkeypox by
10 F1 points and are at par for Zika. This outcome
is particularly encouraging, as it demonstrates
the resilience of SPEED-trained models, making
them highly applicable during the early stages
of an unfamiliar epidemic, when minimal to no
epidemic-specific data is accessible.

7.1 Providing Early Epidemic Warnings

As a challenging yet practical evaluation, we eval-
uate our SPEED-trained models in their ability to
provide early warnings for an unknown epidemic.
We choose the Monkeypox as the unknown epi-
demic. We report the number of epidemic events
extracted by the BERT-QA trained on SPEED
along with the actual number of Monkeypox cases
reported in the US® from May 11 to Nov 11, 2022,
in Figure 1. As shown by the arrows in the fig-
ure, our model could potentially provide two sets
of early warnings around May 23 and June 29 be-
fore the outbreak reached its peak around July 30.
In fact, all our trained ED models are capable of
providing these early signals as shown in Figure 6
(further analysis in Appendix F). This robust out-
come underscores the real-time practicality to
provide early warnings and broad applicability
to unknown epidemics of our SPEED dataset.

8 Related Work

Event Extraction Datasets Event Extraction
(EE) is the task of detecting events (Event Detec-
tion) and extracting structured information about
specific roles linked to the event (Event Argument

’As reported by CDC at https://www.cdc.gov/
poxvirus/mpox/response/2022/mpx-trends.html
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Dataset Data Sentence Trigger Social Personal Social Media
Source Level Present Events Events Granular
SPEED (Ours) Twitter v v v v
COVIDKB (Zong et al., 2022) Twitter v X X v v
CACT (Lybarger et al., 2021) Clinical X X X ~ v
ExcavatorCovid (Min et al., 2021b) News X v Ve Ve X
BioCaster (Collier et al., 2008) News X X v v X
DANIEL (Lejeune et al., 2015) News X ~ X ~ v

Table 6: Objective comparison of various epidemiological datasets with our dataset SPEED. We objectify the source
of base data (Data Source), the level of annotation granularity (Sentence Level), the presence of trigger information
(Trigger Present), the presence of social and personal events in ontology (Social Events and Personal Events), and
the suitability of ontology for social media (Social Media Granular). ~ indicates partial presence.

Extraction) from natural text. Earliest works for
this task can be dated back to MUC (Sundheim,
1992; Grishman and Sundheim, 1996) and the more
standard ACE (Doddington et al., 2004). Over the
years, ACE was extended to various datasets like
ERE (Song et al., 2015) and TAC KBP (Ellis et al.,
2015). Recent progress has been the creation of
massive datasets and huge event ontologies with
datasets like MAVEN (Wang et al., 2020), RAMS
(Ebner et al., 2020), WikiEvents (Li et al., 2021),
DocEE (Tong et al., 2022), GENEVA (Parekh et al.,
2023) and GLEN (Zhan et al., 2023). These ontolo-
gies and datasets cater to general-purpose events
and do not comprise epidemiological event types.

Epidemiological Ontologies Earliest works
(Lindberg et al., 1993; Rector et al., 1996) defined
highly rich taxonomies for describing technical
concepts used by biomedical experts. Further de-
velopments led to the creation of SNOMED CT
(Stearns et al., 2001) and PHSkb (Doyle et al.,
2005) that define a list of reportable events used
for communication between public health experts.
BioCaster (Collier et al., 2008) and PULS (Du
et al., 2011) extended ontologies for the news do-
main. Recent works of NCBI (Dogan et al., 2014),
IDO (Babcock et al., 2021) and DO (Schriml et al.,
2022) focus on comprehensively organizing human
diseases. In light of the recent COVID-19 pan-
demic, CIDO (He et al., 2020) define a technical
taxonomy for coronavirus, while ExcavatorCovid
(Min et al., 2021b) automatically extract COVID-
19 events and relations between them. Most of
these ontologies are too fine-grained or limited to
specific events, and can’t be directly used for ED
from social media, as also shown in Table 6.

Epidemiological Information Extraction Early
works utilized search-engine queries and click-

through rates for predicting influenza trends (Ey-
senbach, 2006; Ginsberg et al., 2009). Information
extraction from Twitter has also been quite suc-
cessful for predicting influenza trends (Signorini
et al., 2011; Lamb et al., 2013; Paul et al., 2014).
Over the years, various biomedical monitoring sys-
tems have been developed like BioCaster (Collier
et al., 2008; Meng et al., 2022), HeathMap (Freifeld
et al., 2008), DANIEL (Lejeune et al., 2015), Epi-
Core (Olsen, 2017). Extensions to support multi-
lingual systems has also been explored (Lejeune
et al., 2015; Mutuvi et al., 2020; Sahnoun and Leje-
une, 2021). For the COVID-19 pandemic, several
frameworks like CACT (Lybarger et al., 2021) and
COVIDKB (Zong et al., 2022) were developed for
extracting symptoms and infection statistics respec-
tively. Most of these systems focus on the domains
of news and clinical notes and use keyword/rule-
based or simple BERT-based models, as shown in
Table 6. In our work, we explore more recent ED
models while focusing specifically on the social
media domain.

9 Conclusion and Future Work

In this work, we leverage the framework of Event
Detection (ED) to extract epidemic events from
social media to promote better epidemic prepared-
ness. To facilitate this, we create our Twitter-based
dataset SPEED comprising seven major epidemic
event types. Through experimentation, we show
how existing datasets and models fail to transfer
for our task. Contrastingly, we show how models
trained on SPEED can generalize and provide early
warnings for unseen emerging epidemics. More
broadly, our work demonstrates how event extrac-
tion and in general, information extraction can ex-
ploit social media to aid policy-making for better
epidemic preparedness.



Limitations

Our work focuses majorly on a single source of
social media - Twitter. We haven’t explored other
social media platforms and how ED would work on
those platforms in our work. We leave that for fu-
ture work, but are optimistic that our models should
be able to generalize across platforms. Secondly,
our work mainly only focuses on ED as the pri-
mary task, while its sister task Event Argument
Extraction (EAE) is not explored. We hope to ex-
tend our work for EAE as part of our future work.
Finally, we would like to show the generalization
of our models on a vast range of diseases. How-
ever owing to budget constraints and the lack of
publically available Twitter data for other diseases,
we couldn’t perform such a study. However, we
believe showing results on three diseases lays the
foundation for generalizability of our model.

Ethical Considerations

One strong assumption in our work is the avail-
ability of internet and social media for discussions
about epidemics. Since not everyone has equal ac-
cess to these platforms, our dataset, models, and
results do not represent the whole world uniformly.
Thus, our work can be biased and should be consid-
ered with other sources for better representation.

Our dataset SPEED is based on actual tweets
posted by people all over the world. We attempted
our best to anonymize any kind of private informa-
tion in the tweets, but we can never be completely
thorough, and there might be some private infor-
mation embedded still in our dataset. Furthermore,
these tweets were sentimental and may possess
stark emotional, racial, and political viewpoints
and biases. We do not attempt to clean any of such
extreme data in our work (as our focus was on
ED only) and these biases should be considered if
being used for other applications.

Since our ED models are trained on SPEED, they
may possess some of the social biases embedded
in SPEED. Since our work didn’t focus on bias
mitigation, these models should be used with due
consideration.

Lastly, we do not claim that our models can
be used off-the-shelf for epidemic prediction as
it hasn’t been thoroughly tested and can have false
positives and negatives too. We majorly throw light
to show these model capabilities and motivate fu-
ture work in this direction. The usage of these
systems for practical purposes should be appropri-

ately considered.
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A Ontology Creation - Additional Details
A.1 Complete ontology

We present our complete initial event ontology com-
prising 18 event types organized into 3 abstract cat-
egories in Table 19. We also describe each event
type by its definition and also present details about
the action taken for its role in the final event ontol-

ogy.
A.2 Initial analysis of events

Our initial ontology (§ A.1) was constructed using
previous ontologies and human knowledge. But
the suitability of each event type for social media
(specifically Twitter) remains unknown. To eval-
uate this suitability, we use frequency and confi-
dence as two guiding heuristics and use them for
final filtering/merging. We utilize the base Twitter
dataset for SPEED for conducting this analysis. We
describe each of these heuristics here:

Frequency To approximately estimate the fre-
quency of events, we curate a list of keywords for
each event type and count the number of posts con-
taining any of these keywords. Keyword curation
involves creating a seed list using human expert
knowledge and expanding that list using synonyms
from external sources like Thesaurus.® We show
the results in Figure 7. We observe that most events
under the medical abstraction occur much lesser
than others. Furthermore, the count variance is
large as the most frequent event type control is 180
times more likely to occur than the least frequent
event type variant. Since low-frequency events are
less likely to be mentioned in a smaller sample of
data, we discard or merge such events for our final
ontology.

Confidence For each keyword, we randomly
sample a small number of non-duplicate tweets
and manually rate the keyword confidence based
on the percentage of tweets wherein the semantic
meaning of the keyword matches the definition of
its event. We mainly categorize this confidence
as high, medium, or low.” Take event control
as an example, it has high confidence keywords
such as “quarantine”, “protocol”, and “distancing”;
medium confidence keywords such as “restrict”,
“postpone”, and “investigate”; low confidence key-
words such as “battle”, “limitation”, and “separa-
tion”. On the other hand, event prefigure does not

6h'ctps ://www. thesaurus.com/
"We release these keywords as part of our final code.
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have high confidence keywords, but only medium
confidence keywords such as “foreshadow” and
low confidence keywords such as “foretell”. Our
heuristic suggests that low-confidence keywords
are more likely to give false positives relative to
high-confidence ones. Thus, we filter/merge event
types that have a high number of low-confidence
keywords.

Eventually, our final ontology comprises seven
events that are distinguishable, frequent, and have
a low false-positive rate.

A.3 Coverage analysis of ontology

To quantitatively verify the coverage of our ontol-
ogy, we conduct an analysis on four diseases with
very different characteristics - COVID-19, Mon-
keypox, Dengue, and Zika. For each disease, we
randomly sample 300 tweets and then filter them
if they are related to the disease or not. Next, we
annotate the filtered disease-related tweets based
on our ontology and evaluate the proportion of
event occurrences relative to the number of disease-
related tweets. We find that our ontology has high
coverage of 50% for COVID-19, 44% for Monkey-
pox, 70% for Dengue, and 73% for Zika. This in
turn assures that our ontology can be used to de-
tect epidemic events for various different kinds of
diseases.

Event Type Distribution As part of our analysis,
we also study our ontology’s event type distribution
for each disease and its correlation with the disease
properties and outbreak stage. We show this event
distribution in Figure 8 for each of the diseases. We
note that distributions for Dengue and Monkeypox
exhibit a strong focus on spread and infect events.
This makes sense as the data for these diseases was
collected at earlier stages of the outbreak when mit-
igation measures were not being discussed yet. On
the other hand, for COVID-19, the distribution is
vastly dominated by control and death events. Our
COVID-19 data was collected in May 2020 when
the outbreak had vastly spread in America. Thus
our distribution reflects more notions of lockdowns
and control measures as well reflects the deadly
nature of the disease.

B Uniform Sampling v/s Random
Sampling for Data Selection

Previously Parekh et al. (2023) had shown how uni-
form sampling of data for events can yield more
robust model performance. To validate the same
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Figure 7: Frequency of occurrence based on keyword search for all event types in the initial complete ontology.

Figure 8: Event type distribution of the disease-related
tweets for each disease. Numbers on the axis represent
count of mentions for a given event type.

for our ontology and data, we conduct additional
experiments comparing uniform sampling with ran-
dom sampling. More specifically, we annotate 200
tweets that conform to a ‘real distribution’® based
on random sampling and compare the trained mod-
els on this data with models trained on 200 tweets
of uniform-sampling data. We further annotated
300 tweets based on the ‘real-distribution” which

8Event-based filtering was still applied before sampling.
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was used for the evaluation of these two sampling
techniques.

Model Tri-I Tri-C

TRAINED ON UNIFORM DISTRIBUTION

BERT-QA  58.19 52.30
DEGREE  55.83 52.88
TagPrime  55.48 50.51
DyGIE++ 53.22 47.64
Average 55.68 50.83
TRAINED ON RANDOM DISTRIBUTION
BERT-QA  46.11 43.76
DEGREE  46.11 45.23
TagPrime  25.03 24.15
DyGIE++ 51.10 47.35
Average 42.09 40.12
Table 7: Benchmarking ED models trained on

uniformly-sampled and randomly-sampled SPEED data
on real-distribution based test data of 300 samples.

We present our results in Table 7 averaged over
three model runs. We show that in terms of best
model performance, uniform sampling is better by
5.5 F1 points compared to random sampling. On
average, uniform-sampling trained models outper-
form the random-sampling trained models by up
to 11 points. Both these results prove how de-
spite train-test distribution differences, uniform
sampling leads to better training of downstream
models.



Generalizability to Other Diseases We also
evaluate the models trained on the uniform and
random-sampled data for generalizability to other
diseases of Monkeypox, Zika, and Dengue. We
show the results in Table 8. Clearly, we can see su-
perior generalizability of uniform-sampling trained
models as they outperform random-sampling
trained models by 37 F1 points for Monkeypox and
28 F1 points for Zika + Dengue. Overall, this result
strongly highlights the impact of uniform sampling
for robust and generalizable model training.

Monkeypox Zika + Dengue

Model  pyir Tri-C | Tri-l  Tri-C
TRAINED ON UNIFORM SAMPLED DATA
BERT-QA 56.56 49.30 | 56.35  46.19
DEGREE 5835 53.39 | 5837 5127
TagPrime 5836 53.56 | 57.05 48.53
DyGIE++ 5573 48.30 | 56.90 47.10
TRAINED ON REAL SAMPLED DATA

BERT-QA 948  7.97 | 21.68 20.43
DEGREE 1076 10.53 | 19.33  19.00
TagPrime 1037 857 | 12.78  12.28
DyGIE++ 1959 16.62 | 26.43  23.40

Table 8: Generalizability benchmarking of ED mod-
els trained on 200 samples of uniformly-sampled and
randomly-sampled COVID data on other diseases of
Monkeypox, Zika, and Dengue.

C Annotation Guidelines and Interface

C.1 Annotation Guidelines

Inspired by Doddington et al. (2004), we de-
velop an extensive set of instructions with tricky
cases and examples that have been developed
through multiple rounds of expert annotation stud-
ies. For our interface, we utilize Amazon Mechani-
cal Turk.” We present the task summary with the
major instructions in Figure 14. To reduce am-
biguity in trigger selection, we present extensive
examples and tricky cases with priority orders as
shown in Figure 15. Finally, we also provide a
wide range of annotated positive and negative ex-
amples as part of the guidelines and show those in
Figure 16.

C.2 Annotation Interface

We utilize Amazon Mechanical Turk'? as the inter-
face for quick annotation. To annotate, annotators
can select any word and label it into one of the

9https ://www.mturk. com/
Ohttps://waw. mturk. com/
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seven pre-defined event types. Event definitions
and examples are provided alongside for reference.
Each batch (also known as HIT) comprises five
tweets for flexibility in annotations. We show the
interface and various utilities in Figure 17, 18, and
19 respectively.

D Data Analysis for SPEED
D.1 Benchmarking Test Suites Statistics

We provide the statistics in terms of number of
event mentions and tweets for the various bench-
marking test suites based on SPEED in Table 9.

Test Suite # Mentions # Tweets
FS-2 14 11
FS-5 35 24.33
Train LR-100 99 67
LR-200 198 139
LR-300 306 211
Dev LR/FS 101 81
Test  All 1,810 1,683

Table 9: Data Statistics for the various benchmarking
test suites in terms of number of event mentions and
number of tweets. Here, LR-XX represents low resource
with XX training event mentions and FS-YY represents
few-shot with YY training mentions per event. For FS,
we take the average over three different splits of data.

D.2 Event Distribution Analysis

As part of data processing, we attempt to sample
tweets in a more uniform distribution between the
event types (§ 3.2). In Figure 9, we show the dis-
tribution of our dataset in terms of event types. In
contrast to tail-ending distributions of other stan-
dard datasets like ACE (Doddington et al., 2004)
and MAVEN (Wang et al., 2020) as shown in Fig-
ures 10 and 11 respectively, our distribution of
event mentions is more uniform.
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Figure 9: Distribution of event mentions per event type
for our dataset SPEED.
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Figure 11: Distribution of event mentions for the event
types in the MAVEN dataset.

D.3 Monkeypox Test Data Statistics

We share the data statistics of the evaluation dataset
used for Monkeypox in Table 10 split according to
each event type. We observe that there is a disparity
in distribution across different event types, with
spread mostly discussed and cure and death are
least discussed.

Event Type # Event Mentions
infect 78
spread 119
symptom 43
prevent 70
control 62
cure 13
death 13
Total 389

Table 10: Data Statistics for the evaluation dataset for
Monkeypox Event Detection categorized by event types.

D.4 Zika + Dengue Test Data Statistics

We share the data statistics of the evaluation dataset
used for Zika + Dengue in Table 11 split according
to each event type. We observe a more even dis-
tribution of event types with more focus on infect,
spread, and death well-discussed.

Event Type # Event Mentions
infect 57
spread 53
symptom 34
prevent 22
control 28
cure 20
death 60
Total 274

Table 11: Data Statistics for the evaluation dataset for
Zika+Dengue Event Detection categorized by event

types.

E Implementation Details for models

We present the extensive set of hyperparameters
and other implementation details about the various
ED models we benchmarked in our work.

E.1 BERT-QA

We run our experiments for BERT-QA on an
NVIDIA RTX A6000 machine with support for 8
GPUs. The major hyperparameters for this model
are listed in Table 12.

Pre-trained LM RoBERTa-Large

Training Batch Size 6
Eval Batch Size 12
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping )
Training Epochs 30
Warmup Epochs )
Max Sequence Length 175
Linear Layer Dropout 0.2

Table 12: Hyperparameter details for BERT_QA model.

E.2 DEGREE

We run our experiments for DEGREE on an
NVIDIA RTX A6000 machine with support for 8
GPUs. The major hyperparameters for this model
are listed in Table 13.

E.3 TagPrime

We run our experiments for TagPrime on an
NVIDIA RTX A6000 machine with support for 8
GPUs. The major hyperparameters for this model
are listed in Table 14.



Pre-trained LM BART-Large
Training Batch Size 32
Eval Batch Size 32
Learning Rate 0.00001
Weight Decay 0.00001
Gradient Clipping )
Training Epochs 45
Warmup Epochs )
Max Sequence Length 250
Max Output Length 20
Negative Samples 15
Beam Size 1

Table 13: Hyperparameter details for DEGREE model.

Pre-trained LM RoBERTa-Large

Training Batch Size 64
Eval Batch Size 8
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping )
Training Epochs 100
Warmup Epochs )
Max Sequence Length 175
Linear Layer Dropout 0.2

Table 14: Hyperparameter details for TagPrime model.

E4 DyGIE++

We run our experiments for DyGIE++ on an
NVIDIA RTX A6000 machine with support for 8
GPUs. The major hyperparameters for this model
are listed in Table 15.

ES5S TE

We run our experiments for TE on an NVIDIA
1080Ti machine with support for 8§ GPUs. Our
hyperparameters are as listed in the original paper
(Lyu et al., 2021).

E.6 WSD

We run our experiments for WSD on an NVIDIA
A100 machine with support for 8 GPUs. The ma-
jor hyperparameters for this model are listed in
Table 16.

E.7 TABS

TABS is an event type induction model, wherein
the goal is to discover new event types without a
pre-defined event ontology. To adapt this for ED,
we follow the end-to-end event discovery setting
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Pre-trained LM RoBERTa-Large

Training Batch Size 6
Eval Batch Size 12
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5)
Training Epochs 60
Warmup Epochs )
Max Sequence Length 200
Linear Layer Dropout 0.4

Table 15: Hyperparameter details for DyGIE++ model.

Pre-trained LM RoBERTa-Large

Training Batch Size 64
Eval Batch Size 8
Learning Rate 0.00001
Weight Decay 0.01
# Training Epochs 7
Max Sentence Length 128
Max gradient norm 1

Table 16: Hyperparameter details for WSD model.

in (Choi et al., 2022) while making the follow-
ing modifications: (1) Dataset Composition: We
utilize ACE (Doddington et al., 2004) dataset for
training and development and our SPEED dataset
for testing. Our training data comprises 26 known
event types from ACE, the validation set comprises
7 ACE event types, while our test set comprises
7 event types from SPEED. (2) Candidate Trig-
ger Extraction: To improve trigger coverage, we
extract all nouns and non-auxiliary verbs as can-
didate trigger mentions. (3) Evaluation Setup:
Trigger identification (Tri-I) F1 score is evaluated
using the extracted candidate triggers. For trigger
classification (Tri-C), we first find the best cluster
assignment of the predicted event clusters to the
gold event types and then evaluate the F1 score.

We run our experiments for TABS on an NVIDIA
RTX 2080 Ti machine with support for 8 GPUs.
The major hyperparameters for this model are listed
in Table 17.

E.8 ETypeClus

For consistency across our evaluations, we follow
the re-implementation of the ETypeClus model in
(Choi et al., 2022), which consists of the latent
space clustering stage of the ETypeClus pipeline
and uses the embeddings of trigger mentions to be



Pre-trained LM BERT-Base
Training Batch Size 8
Eval Batch Size 8
Gradient Accumulation Steps 2
Learning Rate 0.00005
Gradient Clipping 1
# Pretrain Epochs 10
# Training Epochs 30
Consistency Loss Weight 0.2
# Target Unknown Event Types 30

Table 17: Hyperparameter details for TABS model.

the input features. We utilize the contextualized em-
beddings of the candidate triggers extracted from
SPEED for unsupervised training. The candidate
trigger extraction process and the evaluation setup
are the same as described in § E.7.

We run our experiments for ETypeClus on an
NVIDIA RTX 2080 Ti machine with support for 8
GPUs. The major hyperparameters for this model
are listed in Table 18.

Pre-trained LM BERT-Base
Training Batch Size 64
Eval Batch Size 64
Learning Rate 0.0001
Gradient Clipping 1
# Pretrain Epochs 10
# Training Epochs 50
KL Loss Weight 5
Temperature 0.1
# Target Unknown Event Types 30

Table 18: Hyperparameter details for ETypeClus model.

E.9 Keyword

This baseline model basically curates a list of key-
words specific to each event and predicts a trigger
for a particular event if it matches one of the cu-
rated event keywords. Event keywords are curated
by expert annotators based on the gold triggers
appearing in the SPEED dataset and classified as
high confidence, medium confidence, and low con-
fidence based on their occurrence counts and false
positive rates (as described in § A.2.!" Although
this baseline accesses gold test data, it is meant to
be a baseline to provide the upper cap for models
of this family.

""We will release the set of keywords with our final code.
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This is an event extraction task where the goal is to extract structured events from the text. A
structured event contains an event trigger word and an event type.

Here are seven events that we are interested in:
CONTROL: A CONTROL event are collective efforts trying to impede the spread of a pandemic.
INFECT: A INFECT event is the process of a disease or pathogen invading a host or hosts.

SPREAD: A SPREAD event is the process of a disease spreading or prevailing massively at a large
scale.

Some examples:

Input: As the Covid - 19 outbreak spreads at breakneck speed , so does information about the
coronavirus . But experts say there ' s a balancing act between sharing findings quickly and taking
the time to ensure they ' re scientifically sound . (url )

Output: [{"event_type": "SPREAD", "trigger": "spreads"}]

Input: signs and symptoms of this phenomenon include fever, rash , abdominal pain , vomiting or
diarrhea , along with blood tests showing (url ) news headlines & amp ; live updates : A New COVID

- 19 Syndrome In Children (url ) (url )
Output: [{"event_type": "SYMPTOM", "trigger": "symptoms"}]

Input: We are waiting for the vaccine against the Covid - 19, when it will be ready ? we need to live
in normality .

Output: [{"event_type": "PREVENT", "trigger": "vaccine"}]

Test Sentence:

Input: My COVID19 antibodies test came back positive . Crazy . Ive had no symptoms . Please get
tested if possible . The more data we have on this the better . Test Query

Figure 12: Illustration of the prompt used for GPT-
3 model. It includes a task description, followed by
ontology details of event types and their definitions.
Next, we show some in-context examples for each event
type and finally, provide the test sentence.

E.10 GPT-3

We use the GPT-3.5 turbo model as the base GPT
model. We experiment with ChatGPT (OpenAl,
2021) for tuning our prompts that ensure output
consistency. Our final prompt (as shown in Fig-
ure 12) comprises a task definition, ontology de-
tails, 1 example for each event type, and the final
test query. We conducted a looser evaluation for
GPT and only match if the predicted trigger text
matches the gold trigger text (we didn’t check the
exact span match basically).

F Predicting Early Warnings for
Monkeypox

F.1 Event-wise Analysis

As BERT-QA yields the strongest early warning
signal (shown in Figure 6), we conduct an analy-
sis at a more granular level on the contribution of
each event type to the early warning signal based
on the trained BERT-QA output. We present the
results in Figure 13, which leads to the following
observations: (1) Strength of indication varies
among event types: As indicated in Figure 13,
event type infect and spread are strong indicators
of the incoming surge in reported cases, while event
type prevent and control can serve as indicators of
medium strength. Event type symptom, cure, and
death are weak indicators that barely contribute to
the early warning signal. (2) Distribution across



event types can potentially reveal high-level dis-
ease characteristics: We can infer some proper-
ties of diseases based on the frequency of men-
tions about particular events. For example, death
is less mentioned, which can indicate that Monkey-
pox is less fatal compared to other epidemics like
COVID. We would like to mention that these are
hypothetical properties based on predictions of our
best model (which can be imperfect) and should be
taken with a pinch of salt.
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Figure 13: Number of reported Monkeypox cases and
the number of extracted events for each SPEED event
type from our trained BERT-QA model from X X to
XX



An Event is defined as something happens in a sentence. In this task, we are trying to
identity whether one or more of the following events exist in a given string: infect, spread,
symptom,prevent,control, cure, and death. And if an event exist, what is the major triggering
word that mostly manifest its occurrence.

Event Definition

infect The process of a disease/pathogen invading host(s).

spread The process of a disease spreading/pervailing massively at a large scale.

symptom Individuals displaying physiological features indicating the abnormality of organisms.
prevent Individuals trying to prevent the infection of a disease.

control Collective efforts trying to impede the spread of a pandemic.

cure Stopping infection and relieving individuals from infections/symptoms.

death End of life of individuals due to infectious disease.

If there exist any explicit negation of an Event, we say that Event does NOT exist and do not mark it.
Important Notes:

There can be sentences without any events. No need to annotate anything for such sentences.

A trigger word can be linked to one or more events. Choose all possible events in such cases.
Multiple events can be presented in a given sentence. Mark all such events.

The same event can occur multiple times (at different parts) in the same sentence. Mark all
occurrences of the event.

You will be able to submit the HIT at the last sentence once you finish annotating all the sentences.

Select "flag" event if you see multiple triggering words or any other tricking situations that needs
revisiting, but do not abuse this function.

Figure 14: Task summary and the major annotation guidelines.
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Event name

Definition

Action for Final
Ontology

SoCIAL SCALE EVENTS

Prefigure The signal that precedes the occurrence of a potential | Discarded
epidemic.

Outbreak The process of disease spreading among a certain | Merged into Spread
amount of the population at a massive scale.

Spread The process of disease spreading among a certain | Final Event
amount of the population but at a local scale.

Control Collective efforts trying to impede the spread of a epi- | Final Event
demic.

Promote The relationship of a disease driver leading to the break- | Discarded
out of a disease.

PERSONAL SCALE EVENTS

Prevent Individuals trying to prevent the infection of disease. Final Event

Infect The process of a disease/pathogen invading host(s). Final Event

Symptom Individuals displaying physiological features indicating | Final Event
the abnormality of organisms.

Treatment The process that a patient is going through with the aim | Merged into Cure
of recovering from symptoms.

Cure Stopping infection and relieving individuals from infec- | Final Event
tions/symptoms.

Immunize The process by which an organism gains immunization | Merged into Pre-
against an infectious agent. vent

Death End of life of individuals due to infectious disease. Final Event

MEDICAL SCALE EVENTS

Cause The causal relationship of a pathogen and a disease. Discarded

Variant An alternation of a disease with genetic code-carrying | Discarded
mutations.

Intrude The process of an infectious agent intruding on its host. | Merged into Infect

Respond The process of a host responding to an infection. Discarded

Regulate The process of suppressing and slowing down the infec- | Merged into Cure
tion of a virus.

Transmission | The process of a pathogen entering another host from a | Discarded

route source.

Table 19: Complete initial epidemic event ontology comprising 18 event types organized into 3 higher-level abstract
categories. We also present details about the event definitions and the action taken for each event type in the final

ontology.
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Here are more detailed instructions for how to choose the most appropriate triggering word.

Goal: Look for the one word that MOST LIKELY manifests the event's occurrence. You can use the following priority order for
annotation:

1. Most of the times, the trigger of the event will be the main verb in the sentence.

2. If the verb is ambigous/vague, the trigger would be a noun semantocally related to the event.

3. (Rare case) If no such noun exist, the trigger would be any adjective/adverb that is realated to the event.

4. If still confused, use your best judgement to select the trigger.

In the following illustrations, correct trigger words are marked blue.

CASE | : main verb

Example Sentence: "l was coughing and got a fever yesterday and today confirmed | did not get COVID"

Annotation: There are 2 events of symptom

a. ...got a fever...-->Event symptom.

b. ...was coughing... -->Event symptom.

c. Note 1: "fever" and "COVID" are Not marked as triggering word of the events since the main verbas indicate the event.
Note 2: Here, due to the presence of "and", we have two occurrences of the event symptom.

d. Although "get COVID" appears, "not" is the negation emphasizing no infection happens, so event infect does NOT occur

e. More examples of main verbs as triggering word:

Example Event
fight against the pandemic control
caught a flu infect
recover from COVID cure
COVID takes lives death
prevent infection prevent
stomach hurts symptom
number of infection increases spread

CASE Il : nouns

Example Sentence: "Fever, cough, and headache are the most common symptoms of COVID"

Annotation: Here we have 1 event of symptom event:

a. ...symptoms -->Event symptom.

b. Note: "fever","cough", and "headache" manifest the symptom event but they are NOT triggering words because "symptom"
better manifests the Event.

c. More examples of nouns as triggering word:

Example Event
death rate death
therapy for COVID cure
infection prevention prevent
control of spread control
signs of infection symptom
spreading of COVID spread
infection rate infect

CASE III : adjective

Example Sentence: "l am feverish since 2 days ago"
Annotation: Here we have 1 event of the symptom event
a. ...feverish -->Event symptom.

b. Note: Here, we do not have a strong verb/noun for marking the trigger. Thus we
mark "feverish".

c. More examples of nouns as triggering word:

Example Event
get rid of disease cure
stay cautious against virus prevent
contagious virus infect

Figure 15: Guidelines to choose the proper triggering word.
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Good Examples

Example 1 : "3000+ people are dead due to COVID, so every one please remember to wear a mask and follow the rules to prevent infection and protect our nation from the virus."
Annotation:

a. prevent --> evemt prevent

b. protect --> event control

c. dead-->event death

Note1: Although "infection" is mentioned, it is prevented, meaning no infection is happening in the sentence, so event infect does NOT exist

Note2: Do not mark negation of an event.

Note3: intuitively, people die of COVID must have been infected, but event infect DOES NOT edist here because
An event must be triggered via triggering word and cannot be infered from another event.

Example 2: "if you ever have a fever, or cough, or have a sore throat, or feel difficult breathing, get tested immediately since you may have been infected."
Annotation:

a. ...have a fever --> event symptom

b. ...been infected --> event infect

Note1: if have more than two parallel phrases triggering an event, only mark the first one instead of all of them.

Note2: event infect has no explicit negation, so event infect exists here.

Bad Examples

Example 1: "Wear a mask™"

Wrong annotation:

a. wear-->event prevent

Note1: we may link the action of wearing a mask with pandemic prevention directly, but here it is just an action similar to "read a book" or "eat my lunch".

Note2: if the sentence is instead "wear a mask to prevent COVID." we mark prevent as a triggering word for event prevent instead of "wear"
Look for Events themselves instead of actions/policies related to Events.

Example 2:"Two weeks of quarantine is killing me! May God cure my mind and stop my crazy thoughts."
Wrong annotation:

a. killing->event death

b. cure--> event cure

Note1: killing does not indicate any body is dying, and cure does not indicate a therapy against a disease.
Note2: Do NOT mark hyperbole or rhetorics as Events

Figure 16: Positive and Negative examples in the annotation guideline.
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Figure 18: Illustration of selection of a word within a tweet for annotation in the interface.
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Figure 19: Illustration of the format and options available for a completed annotation in the interface.
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