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Abstract

Social media is an easy-to-access platform pro-001
viding timely updates about societal trends and002
events. Discussions regarding epidemic-related003
events such as infections, symptoms, and lo-004
cally deployed measures can be crucial for005
policy making during epidemic outbreaks. In006
this work, we exploit Event Detection (ED) for007
extracting and capturing relevant events from008
social media posts to provide better prepared-009
ness for any upcoming epidemic. To facilitate010
this task, we curate an epidemic event ontol-011
ogy comprising seven generic event types such012
as infect, symptom, prevent, etc. Using our013
event ontology and human expert annotation,014
we construct our epidemic preparedness Twitter015
dataset SPEED comprising 1,975 tweets and016
2,217 event mentions for the COVID-19 pan-017
demic. Experiments reveal that existing ED018
models and datasets cannot transfer well for our019
task, highlighting the challenging nature of our020
dataset. Finally, we provide empirical evidence021
highlighting the utility and generalizability of022
our dataset by showing that ED models trained023
on our COVID-only dataset SPEED, can effec-024
tively identify epidemic events and offer timely025
warnings for three unseen epidemics of Mon-026
keypox, Zika, and Dengue. This generalizabil-027
ity of SPEED lays the foundations for better028
preparedness against emerging epidemics.1029

1 Introduction030

Early epidemic warnings and effective control mea-031

sures are among the most important tools for poli-032

cymakers to be prepared against the threat of any033

epidemic (Collier et al., 2008). World Health Or-034

ganization (WHO) reports suggest that 65% of the035

first reports about infectious diseases and outbreaks036

originate from informal sources and the internet037

(Heymann et al., 2001). Social media becomes038

an important information source here, as it’s more039

timely than other alternatives like news and public040

1Code and data will be released upon acceptance.
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CONCERN 

Figure 1: Number of reported Monkeypox cases and
the number of extracted events from our trained BERT-
QA model from May 11 to Nov 11, 2022. Indicated
arrows show how our system can potentially provide
early epidemic warnings almost 4-8 weeks before the
WHO declared Monkeypox as a pandemic.

health (Lamb et al., 2013), more publicly accessi- 041

ble than clinical notes (Lybarger et al., 2021), and 042

possesses a huge volume of content.2 In our work, 043

we explore the social application of information 044

extraction towards building an automated system 045

to efficiently extract epidemic events from social 046

media to provide better epidemic preparedness. 047

The process of identifying and categorizing 048

significant events based on a pre-defined ontol- 049

ogy is a well-established task in NLP, known as 050

Event Detection (ED) (Sundheim, 1992; Dodding- 051

ton et al., 2004). However, standard ED datasets 052

mostly focus on general-purpose events for news or 053

Wikipedia domains, and can’t be transferred to the 054

epidemic domain (§ 5). Furthermore, most prior 055

epidemiological ED ontologies restrict themselves 056

only to certain diseases or are too fine-grained and 057

specific in nature; while the corresponding datasets 058

majorly focus on news or clinical domains (§ 8). 059

Thus, existing ED ontologies and datasets are not 060

sufficient and models trained on them cannot be 061

readily utilized for extracting events from social 062

2A daily average of 20 million tweets were posted about
COVID-19 from May 15 – May 31, 2020.

1



media for emerging epidemics.063

To this end, we construct our own epidemic ED064

ontology and dataset for social media. Our ontol-065

ogy comprises seven event types - infect, spread,066

symptom, prevent, cure, control, death - chosen067

based on their relevance for epidemic prepared-068

ness, frequency of mentions in social media, and069

their applicability to various diseases. Our ontol-070

ogy and event definitions are derived from clini-071

cal sources (Collier et al., 2008; Babcock et al.,072

2021) and its sufficiency and coverage are val-073

idated by public health experts and quantitative074

analyses. For our dataset, we choose Twitter as075

the social media platform and focus on the recent076

COVID-19 pandemic. Since our task requires do-077

main expertise, we hire six expert annotators to078

ensure high annotation quality for our dataset. Us-079

ing our curated ontology and expert annotation, we080

create our epidemic preparedness dataset SPEED081

(Social Platform based Epidemic Event Detection)082

comprising 1,975 tweets and 2,217 event mentions.083

SPEED provides good coverage of events charac-084

teristic of any disease and is granular for social085

media; thus, serves as a valuable ED benchmark086

for epidemic preparedness from social media.087

We benchmark various existing models includ-088

ing four zero-shot models (Shen et al., 2021; Lyu089

et al., 2021) and two supervised models (Hsu et al.,090

2022) pre-trained on existing ED datasets of ACE091

(Doddington et al., 2004) and MAVEN (Wang et al.,092

2020) on our SPEED benchmark. Experiments093

reveal that none of the existing models perform094

well on our dataset mainly owing to the domain-095

shift and noise in social media as well as unseen096

epidemic-based event types. Furthermore, train-097

ing on limited in-domain SPEED data provides098

significant gains compared to the existing mod-099

els, highlighting the importance of domain-specific100

training. Overall, these results reveal how SPEED101

is a challenging ED dataset.102

Tying back to our original motivation of epi-103

demic preparedness, we evaluate the utility and104

generalizability of our COVID-only dataset SPEED105

to detect events for any emerging epidemics. More106

specifically, we evaluate models trained only on107

SPEED to detect events for three unforeseen epi-108

demics of Monkeypox, Zika, and Dengue. Experi-109

ments reveal that SPEED-trained models can suc-110

cessfully detect events for all these epidemics while111

providing improvements of 29% F1 over zero-shot112

models and 10% F1 over supervised models trained113

on small samples of target epidemic data. Further-114

Might be allergic to the food, just sneezed.

Death
A total of eight residents who tested positive 
for COVID-19 at the local hospital have died.

Infect

Symptom

Figure 2: Illustration for the task of Event Detection.
Event mentions: Event symptom and trigger sneezed
(1st sentence), Event infect and trigger positive (2nd
sentence), Event death and trigger died (2nd sentence).

more, by comparing the trends of our extracted 115

events with the actual reported cases, we show that 116

our model can provide early preparedness warnings 117

for the Monkeypox epidemic (Figure 1). These 118

results underscore the strong generalizability and 119

applicability of our dataset SPEED for general epi- 120

demic preparedness. 121

Overall, we make the following contributions: 122

(1) We create an ED ontology and dataset SPEED 123

tailored for predicting epidemic events character- 124

sitc of any disease from social media, (2) We show 125

that existing zero-shot models and datasets cannot 126

transfer well to our dataset, highlighting the signifi- 127

cance of our dataset, (3) We validate the generaliz- 128

ability of our framework by demonstrating how 129

SPEED-trained ED models using only COVID- 130

tweets can successfully detect events and provide 131

early warnings for three unforeseen epidemics. 132

2 Task Definition 133

We employ the task of Event Detection (ED) (Sund- 134

heim, 1992; Grishman and Sundheim, 1996) for 135

identifying epidemic events from social media. We 136

define ED based on the ACE 2005 guidelines (Dod- 137

dington et al., 2004). An event is something that 138

happens or describes a change of state and is la- 139

beled by a specific event type. An event mention 140

is the sentence wherein the event is described. Each 141

event mention comprises an event trigger, which 142

is the word/phrase that most distinctly highlights 143

the occurrence of the event. Event Detection is the 144

task of identifying event triggers from sentences 145

and classifying them into one of the pre-defined 146

event types. The subtask of identifying event trig- 147

gers is called Trigger Identification and classifi- 148

cation into event types is Trigger Classification 149

(Ahn, 2006). The event types of interest are pre- 150

defined by an event ontology. Figure 2 shows 151

examples for three event mentions for the events 152

symptom, infect, and death. 153
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Figure 3: Overview of our dataset creation process.

3 Ontology Creation and Data Collection154

We choose social media as our document source155

since it provides faster and more timely worldly156

information than other alternatives like news and157

public health (Lamb et al., 2013) and is more pub-158

licly accessible than clinical notes (Lybarger et al.,159

2021). Owing to its public access and huge con-160

tent volume, we consider Twitter3 as the social161

media platform and consider the recent COVID-19162

pandemic as the primary disease for our dataset.163

Previous epidemiological ontologies are typ-164

ically specific to a particular disease, too fine-165

grained, or cover only a few event types (§ 8 and166

Table 6) and cannot be readily utilized for ED from167

social media. Similarly, standard ED datasets don’t168

comprise epidemiological events and are mostly169

confined to news or wikipedia domains (§ 8). Ow-170

ing to these reasons, we create our own event on-171

tology and dataset SPEED specific to detecting172

epidemics from social media. We provide a brief173

overview of our data creation process in Figure 3174

and discuss these steps in more detail below.175

3.1 Ontology Creation176

Taking inspiration from medical sources like177

BCEO (Collier et al., 2008), IDO (Babcock et al.,178

2021), and the ExcavatorCovid (Min et al., 2021a),179

we curate a wide range of epidemic events while180

ensuring that they are not biased for specific dis-181

eases. We categorize these events into three abstrac-182

tions of social (events involving larger populations),183

personal (individual-oriented events), and medical184

3https://www.twitter.com/

(medically focused events) types and create our ini- 185

tial ontology comprising 18 event types as reported 186

in Table 19 (§ A.1). 187

Social Media Relevance To adapt our curated on- 188

tology better for social media, we conduct a deeper 189

analysis of the event types based on their frequency 190

and relevance. Majorly, we associate each event 191

type with a certain set of keywords and rank them 192

based on the confidence and frequency of the occur- 193

rence of their keywords in social media posts (more 194

details in § A.2). Based on this relevance-based 195

ranking, we merge and discard some event types. 196

Furthermore, we conduct human studies and merge 197

event types to ensure better pairwise distinction. 198

Ontology Validation and Coverage Drawing 199

upon established epidemiological ontologies serves 200

to guarantee the medical soundness of our ontol- 201

ogy. In addition, we assess the sufficiency and 202

comprehensiveness of our ontology and definitions 203

through evaluation by two public health experts. 204

We also quantify our ontology coverage for four di- 205

verse diseases by evaluating the percentage of event 206

occurrence in disease-related tweets. We observe 207

a high coverage of 50% for COVID-19, 44% for 208

Monkeypox, 70% for Dengue and 73% for Zika 209

(more details in § A.3), ensuring strong disease 210

coverage of our ontology. 211

Our final SPEED ontology comprises seven ma- 212

jor event types that are better suited for social me- 213

dia and cover important aspects of an epidemic. We 214

present our ontology in Table 1 along with event 215

definitions and example event mentions. 216

3.2 Data Processing 217

To access a wide range of tweets related to COVID- 218

19, we utilized the Twitter COVID-19 Endpoint 219

released in April 2020. We used a randomized se- 220

lection of 331 million tweets between May 15 – 221

May 31 2020, as our base dataset. For preprocess- 222

ing tweets, we follow Pota et al. (2021): (1) we 223

anonymize personal information like phone num- 224

bers, emails, and handles, (2) we normalize any 225

retweets and URLs, (3) we remove emojis and split 226

hashtags, (4) we filter out tweets only in English. 227

Event-based Filtering Despite COVID-based fil- 228

tering, most tweets in our base dataset expressed 229

subjective public sentiments, while only 3% com- 230

prised mentions adhering to our curated event ontol- 231

ogy.4 To reduce annotation costs, we further filter 232

4Based on keyword-based study conducted on 1,000 tweets

3

https://www.twitter.com/


Event Type Event Definition Example Event Mention

Infect The process of a disease/pathogen invading host(s) Children can also catch COVID-19 ...

Spread The process of a disease spreading/prevailing mas-
sively at a large scale

#COVID-19 CASES RISE TO 85,940 IN INDIA ...

Symptom Individuals displaying physiological features indicat-
ing the abnormality of organisms

(user) (user) Still coughing two months after being
infected by this stupid virus ...

Prevent Individuals trying to prevent the infection of a disease ... wearing mask is the way to prevent COVID-19

Control Collective efforts trying to impede the spread of epi-
demic

Social Distancing is our responsibility to reduce
spread of COVID-19 ...

Cure Stopping infection and relieving individuals from
infections/symptoms

... recovered corona virus patients cant get it again

Death End of life of individuals due to infectious disease. More than 80,000 Americans have died of COVID ...

Table 1: Event ontology comprising seven event types promoting epidemic preparedness along with their definitions
and example event mentions. The trigger words are marked in bold.

these tweets based on our curated ontology using a233

simple sentence embedding similarity technique.234

Specifically, we associate each event type with235

a seed repository of 5-10 diverse tweets. Query236

tweets are filtered out based on their sentence-level237

similarity (measured using the BERT sentence em-238

bedding model (Reimers and Gurevych, 2019))239

with this event-based seed repository. This step240

filters about 95% tweets from our base dataset sig-241

nificantly reducing the annotation cost.242

Event-based Sampling Random sampling of243

tweets would yield an uneven and COVID-biased244

distribution of event types for our dataset. We in-245

stead perform a uniform sampling - wherein we246

over-sample tweets linked to less frequent types247

(e.g. prevent) and under-sample the more frequent248

ones (e.g. death). Such an uniform sampling has249

proven to ensure model robustness (Parekh et al.,250

2023) - as also validated by our experiments (§ B) -251

and in turn, would make SPEED generalizable to a252

wider range of diseases. We sample a total of 1,975253

tweets which are utilized for ED annotation.254

3.3 Data Annotation255

For ED annotation, annotators are tasked with iden-256

tifying whether a given tweet mentions any of the257

events outlined in our ontology. If an event is in-258

deed mentioned, annotators are required to identify259

the specific event trigger. Following the standard260

ACE dataset (Doddington et al., 2004), we design261

our annotation guidelines and amend them through262

several rounds of preliminary annotations to ensure263

consistency amongst the annotators. Additional de-264

tails and illustrations of the annotation guidelines265

and interface are provided in Appendix C.266

Annotator Details To ensure high annotation qual- 267

ity and enforce consistency, we choose six experts 268

instead of crowdsourced workers for our annota- 269

tion. These experts are computer science students 270

studying NLP and are well-versed with the task of 271

ED. They were further trained on our task through 272

multiple loops of annotations and feedback. 273

Inter-annotator agreement (IAA) We used Fleiss’ 274

Kappa (Fleiss, 1971) for measuring IAA. We con- 275

duct two phases of IAA studies: (1) Guideline Im- 276

provement: Three annotators participated in three 277

annotation rounds with a focus on improving the 278

guidelines. IAA score rose from 0.44 in the first 279

round to 0.59 (70 samples) in the final round. (2) 280

Agreement Improvement: All annotators partici- 281

pated in three rounds of annotations. IAA score 282

improved from 0.56 in the first round to a strong 283

0.65 (50 samples) in the final round. 284

Quality Control Apart from extensive IAA studies, 285

we deploy two mechanisms to ensure the high an- 286

notation quality: (1) Multi-Annotation: Each tweet 287

is annotated by two annotators and disagreements 288

are resolved by a third annotator. (2) Flagging: An- 289

notators can “flag” ambiguous annotations, which 290

are then resolved and annotated by a third annotator 291

through collective discussion. Both these mecha- 292

nisms along with a good IAA score ensure that the 293

annotations have high quality. 294

4 Data Analysis 295

In this section we present quantitative analyses of 296

our dataset for comparison with other standard ED 297

datasets. Comparison with other epidemiological 298

datasets is discussed in § 8 along with an objective 299

comparison in Table 6. 300
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Dataset # Event # Sent # EM Avg. EM DomainTypes per Event

ACE 33 18, 927 5, 055 153.2 News
ERE 38 17, 108 7, 284 191.7 News
MAVEN 168 49, 873 118, 732 706.7 Wikipedia
SPEED 7 1, 975 2, 217 316.7 Social Media

Table 2: Data Statistics for SPEED dataset and compari-
son with other standard ED datasets. # = “number of",
Avg. = average, Sent = sentences, EM = event mentions.
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Figure 4: Distribution of number event mentions per
sentence. Here % indicates percentage.

Data Statistics Our dataset SPEED comprises301

seven event types with 2,217 event mentions an-302

notated over 1,975 tweets. We compare SPEED303

with other standard ED datasets like ACE (Dod-304

dington et al., 2004), ERE (Song et al., 2015), and305

MAVEN (Wang et al., 2020) in Table 2. Despite306

the lesser number of sentences and event mentions307

(since we focus only on 7 event types), SPEED has308

a reasonable size of 316 average event mentions309

per event, which is more than the standard ACE310

and ERE datasets. We also note the differences311

of the domain of data sources as ACE/ERE focus312

on News, MAVEN on Wikipedia, while SPEED is313

based on social media, specifically Twitter data.314

Event Mention Density Analysis We compare315

the distribution of event mentions per sentence with316

other ED datasets like ACE and MAVEN in Fig-317

ure 4. We observe that the event density of our318

dataset is less than MAVEN but better than ACE.319

This shows that despite having just seven event320

types, SPEED is a fairly dense dataset.321

Trigger Word Analysis We show the diversity322

of trigger words in SPEED and compare it with323

other datasets in Table 3. We note that SPEED has324

a strong average number of triggers per event men-325

tion. This demonstrates how SPEED is a diverse326

and challenging ED dataset.327

Dataset # Unique Avg. Triggers
Triggers per Mention

ACE 1, 229 0.24
MAVEN 7, 074 0.06
SPEED 555 0.25

Table 3: Comparison of SPEED with ACE and MAVEN
in terms of unique trigger words and average number of
triggers per event mention. Avg = Average.

5 Transfer Existing Methods 328

Since existing ED datasets and models are 329

based on general-purpose event ontologies and 330

news/wikipedia domains, they may not transfer 331

well to our social-media-based epidemic detec- 332

tion task. In order to verify this hypothesis, we 333

benchmark the transfer capabilities of these exist- 334

ing methods to our dataset SPEED. For this experi- 335

mentation, we assume no access to any annotated 336

social media data for epidemic events. We majorly 337

consider the following two families of models: 338

Zero-shot models do not train on any supervised 339

data and utilize names and definitions of the events 340

for ED. For this, we consider (1) TE (Lyu et al., 341

2021), a pre-trained model that uses event defi- 342

nitions to formulate ED as a textual entailment 343

and question-answering task, (2) WSD (Yao et al., 344

2021) which encodes the contextualized trigger 345

and event definitions jointly and uses a classifica- 346

tion head atop for event detection. (3) TABS (Li 347

et al., 2022), a model that utilizes two complemen- 348

tary embedding spaces ("mask view" and "token 349

view") to classify examples of new event types. (4) 350

ETypeClus (Shen et al., 2021), that extracts salient 351

predicate-object pairs and clusters the embeddings 352

of these pairs in a spherical latent space. 353

Data transfer models are supervised models pre- 354

trained on other standard ED datasets like ACE 355

(Doddington et al., 2004) and MAVEN (Wang et al., 356

2020) and transfer to SPEED in a zero-shot man- 357

ner. For this, we consider (5) DEGREE (Hsu et al., 358

2022), a generation-based model prompting using 359

natural language templates, (6) TagPrime (Hsu 360

et al., 2023), a sequence tagging approach that uti- 361

lizes priming words to input text to convey more 362

task-specific information. 363

5.1 Evaluation 364

We evaluate the above models on the 1, 683 tweets 365

from the SPEED dataset. Following previous 366

works (Ahn, 2006), we report the F1-score for the 367

two tasks of Trigger identification (Tri-I) and trig- 368
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Model Tri-I Tri-C

DATA-TRANSFER

ACE - TagPrime 0 0
ACE - DEGREE 1.82 1.71
MAVEN - TagPrime 27.65 0
MAVEN - DEGREE 26.72 0

ZERO-SHOT

TE 9.64 5.54
WSD 17.68 3.65
TABS 3.70 1.61
ETypeClus 17.56 7.66

Table 4: Benchmarking existing zero-shot and data-
transfer models on SPEED in terms of Tri-I and Tri-C
F1 scores.

ger classification (Tri-C) respectively. The results369

are shown in Table 4. We observe that models370

pre-trained on the news dataset ACE absolutely371

fail, while Wikipedia dataset MAVEN pre-training372

helps to improve Tri-I scores, but still has a nil373

Tri-C score. The zero-shot models using event374

definitions perform slightly better, while the best375

performance is provided by ETypeClus which is376

an unsupervised clustering model. Overall, all ex-377

isting zero-shot and data-transfer models fail378

to detect epidemic events, mainly owing to the379

domain shift of social media data and the finer380

granularity of epidemic events. In turn, this381

renders SPEED as a challenging ED dataset.382

6 Training with Limited SPEED Data383

To improve model performance for SPEED, we384

conduct experiments trainined ED models using385

limited amounts of in-domain SPEED training data.386

Majorly, we consider two training paradigms: (1)387

Few-shot (FS): Models are provided access to n388

mentions per event (n-shot) for training. We ex-389

plore 2-shot and 5-shot with three splits of data.390

(2) Low Resource (LR): Models have access to a391

limited 100-300 event mentions for training. (Data392

Statistics in Table 9 in Appendix § D.1).393

For training, we consider the following ED mod-394

els: (1) DyGIE++ (Wadden et al., 2019), a multi-395

task classification-based model utilizing local and396

global context via span graph propagation, (2)397

BERT-QA (Du and Cardie, 2020), a classifica-398

tion model utilizing label semantics by formulat-399

ing event detection as a question-answering task.400

We also consider (3) DEGREE and (4) TagPrime401

models (as described before in § 5). Other baselines402

also include (5) Keyword (Lejeune et al., 2015),403

FS-2 FS-5 LR-100 LR-200 LR-300
Limited Data Test Suites
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Figure 5: Model performances on the Few-Shot (FS)
and Low Resource (LR) test suites in terms of Tri-C F1
scores. Here, LR-XX represents low resource with XX
training event mentions and FS-Y represents few-shot
with Y training mentions per event.

a popular epidemiological model, that predicts an 404

event if any of the event-specific curated keywords 405

are present in the sentence, (6) GPT-3 (Brown et al., 406

2020), a large-language model (LLM) baseline us- 407

ing GPT-3.5-turbo as the base model with seven 408

in-context examples. 409

6.1 Evaluation 410

We follow the same evaluation setup described in 411

§ 5.1. Figure 5 presents the model performances 412

for the few-shot and low-resource settings. Ma- 413

jorly, we observe how training on in-domain data 414

can yield performance gains upto 50 F1 points 415

compared to zero-shot and data-transfer methods. 416

We also note that GPT-3 and Keyword baselines 417

are easily outperformed by models trained with 418

just 30 event mentions. Furthermore, these gains 419

are highly consistent for the different ED models. 420

Overall, we note that small amounts of in-domain 421

training data can provide significant gains in 422

model performance compared to the existing 423

zero-shot and data-transfer models. 424

7 Generalization for New Epidemics 425

Since SPEED focuses solely on COVID-19, its 426

transferability for detecting events for new epi- 427

demics remains unknown. To effectively evaluate 428

this generalization, we test if models trained only 429

using our in-domain COVID dataset can detect 430

events for unseen epidemics without any further 431

fine-tuning on the new epidemic data. Specifically, 432

we consider the outbreaks of three diverse diseases 433
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Model Monkeypox Zika + Dengue
Tri-I Tri-C Tri-I Tri-C

TRANSFER FROM EXISTING DATASETS

ACE - TagPrime 4.80 0 23.64 0
ACE - DEGREE 12.15 5.14 14.47 0
MAVEN - TagPrime 29.16 0 33.97 0
MAVEN - DEGREE 27.94 0 32.04 0

NO TRAINING + ZERO-SHOT

TE 16.70 12.11 12.69 9.06
WSD 22.04 4.35 27.93 5.85
ETypeClus 18.31 6.78 13.99 5.33
Keyword 36.40 25.09 25.93 21.69
GPT-3∗ 42.23 35.33 53.22 14.27

TRAINED FOR TARGET EPIDEMIC

BERT-QA 59.8 54.08 94.92 80.89
DEGREE 59.58 54.12 86.21 78.76
TagPrime 55.57 49.65 96.67 84.43
DyGIE++ 55.83 50.31 73.24 65.65

TRANSFER FROM SPEED

BERT-QA 67.38 64.17 96.77 81.97
DEGREE 62.95 61.45 88.52 77.69
TagPrime 64.71 61.92 95.24 75.54
DyGIE++ 62.76 59.82 91.8 80.34

Table 5: Benchmarking ED models trained on COVID-
only SPEED for generalizability to new epidemics of
Monkeypox, Zika and Dengue in terms of F1 scores.

of Monkeypox (2022), Zika (2017), and Dengue434

(2018) as the unseen epidemics.435

Experimental Setup For creating datasets, we436

utilize the Twitter datasets of Thakur (2022) for437

Monkeypox and Dias (2020) for Zika and Dengue.438

Using expert annotation for a sample of the tweets,439

our final evaluation dataset comprises 286 tweets440

with 398 event mentions for Monkeypox while441

300 tweets with 274 event mentions for Zika and442

Dengue (statistics in § D.3 and § D.4).443

For model training, we use a 80-20 split of our444

COVID-only SPEED dataset to train various ED445

models (TRANSFER FROM SPEED). For compar-446

ison, we benchmark models trained on existing447

datasets (TRANSFER FROM EXISTING DATASETS)448

and models requiring no training data (NO TRAIN-449

ING). As strong baselines, we also consider su-450

pervised models trained on a small sample of 300451

tweets for the target epidemic (TRAINED ON TAR-452

GET EPIDEMIC).453

Results We present our results in Table 5. None454

of the existing data transfer methods or zero-shot455

methods perform well. Overall, we observe that ED456

models transferring from SPEED perform the best457

with model performance ranging from 60-65 F1458

0

2000

4000

6000

8000

10000 BERT-QA DEGREE

2022-05 2022-08 2022-11
0

2000

4000

6000

8000

10000 DyGIE++

2022-05 2022-08 2022-11

TagPrime
0

100

200

300

400

500

0

100

200

300

400

500

Ex
tra

ct
ed

 n
um

be
r o

f e
ve

nt
s

Re
po

rte
d 

nu
m

be
r o

f c
as

es

Figure 6: Number of reported Monkeypox cases and the
number of extracted events from four trained models
from May 11 to Nov 11, 2022.

points, thus demonstrating the generalizability 459

of our SPEED dataset to new epidemics. Fur- 460

thermore, we observe SPEED-trained models even 461

outperform models trained on for Monkeypox by 462

10 F1 points and are at par for Zika. This outcome 463

is particularly encouraging, as it demonstrates 464

the resilience of SPEED-trained models, making 465

them highly applicable during the early stages 466

of an unfamiliar epidemic, when minimal to no 467

epidemic-specific data is accessible. 468

7.1 Providing Early Epidemic Warnings 469

As a challenging yet practical evaluation, we eval- 470

uate our SPEED-trained models in their ability to 471

provide early warnings for an unknown epidemic. 472

We choose the Monkeypox as the unknown epi- 473

demic. We report the number of epidemic events 474

extracted by the BERT-QA trained on SPEED 475

along with the actual number of Monkeypox cases 476

reported in the US5 from May 11 to Nov 11, 2022, 477

in Figure 1. As shown by the arrows in the fig- 478

ure, our model could potentially provide two sets 479

of early warnings around May 23 and June 29 be- 480

fore the outbreak reached its peak around July 30. 481

In fact, all our trained ED models are capable of 482

providing these early signals as shown in Figure 6 483

(further analysis in Appendix F). This robust out- 484

come underscores the real-time practicality to 485

provide early warnings and broad applicability 486

to unknown epidemics of our SPEED dataset. 487

8 Related Work 488

Event Extraction Datasets Event Extraction 489

(EE) is the task of detecting events (Event Detec- 490

tion) and extracting structured information about 491

specific roles linked to the event (Event Argument 492

5As reported by CDC at https://www.cdc.gov/
poxvirus/mpox/response/2022/mpx-trends.html
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Dataset Data Sentence Trigger Social Personal Social Media
Source Level Present Events Events Granular

SPEED (Ours) Twitter ✓ ✓ ✓ ✓ ✓

COVIDKB (Zong et al., 2022) Twitter ✓ ✗ ✗ ✓ ✓

CACT (Lybarger et al., 2021) Clinical ✗ ✗ ✗ ∼ ✓

ExcavatorCovid (Min et al., 2021b) News ✗ ✓ ✓ ✓ ✗

BioCaster (Collier et al., 2008) News ✗ ✗ ✓ ✓ ✗

DANIEL (Lejeune et al., 2015) News ✗ ∼ ✗ ∼ ✓

Table 6: Objective comparison of various epidemiological datasets with our dataset SPEED. We objectify the source
of base data (Data Source), the level of annotation granularity (Sentence Level), the presence of trigger information
(Trigger Present), the presence of social and personal events in ontology (Social Events and Personal Events), and
the suitability of ontology for social media (Social Media Granular). ∼ indicates partial presence.

Extraction) from natural text. Earliest works for493

this task can be dated back to MUC (Sundheim,494

1992; Grishman and Sundheim, 1996) and the more495

standard ACE (Doddington et al., 2004). Over the496

years, ACE was extended to various datasets like497

ERE (Song et al., 2015) and TAC KBP (Ellis et al.,498

2015). Recent progress has been the creation of499

massive datasets and huge event ontologies with500

datasets like MAVEN (Wang et al., 2020), RAMS501

(Ebner et al., 2020), WikiEvents (Li et al., 2021),502

DocEE (Tong et al., 2022), GENEVA (Parekh et al.,503

2023) and GLEN (Zhan et al., 2023). These ontolo-504

gies and datasets cater to general-purpose events505

and do not comprise epidemiological event types.506

Epidemiological Ontologies Earliest works507

(Lindberg et al., 1993; Rector et al., 1996) defined508

highly rich taxonomies for describing technical509

concepts used by biomedical experts. Further de-510

velopments led to the creation of SNOMED CT511

(Stearns et al., 2001) and PHSkb (Doyle et al.,512

2005) that define a list of reportable events used513

for communication between public health experts.514

BioCaster (Collier et al., 2008) and PULS (Du515

et al., 2011) extended ontologies for the news do-516

main. Recent works of NCBI (Dogan et al., 2014),517

IDO (Babcock et al., 2021) and DO (Schriml et al.,518

2022) focus on comprehensively organizing human519

diseases. In light of the recent COVID-19 pan-520

demic, CIDO (He et al., 2020) define a technical521

taxonomy for coronavirus, while ExcavatorCovid522

(Min et al., 2021b) automatically extract COVID-523

19 events and relations between them. Most of524

these ontologies are too fine-grained or limited to525

specific events, and can’t be directly used for ED526

from social media, as also shown in Table 6.527

Epidemiological Information Extraction Early528

works utilized search-engine queries and click-529

through rates for predicting influenza trends (Ey- 530

senbach, 2006; Ginsberg et al., 2009). Information 531

extraction from Twitter has also been quite suc- 532

cessful for predicting influenza trends (Signorini 533

et al., 2011; Lamb et al., 2013; Paul et al., 2014). 534

Over the years, various biomedical monitoring sys- 535

tems have been developed like BioCaster (Collier 536

et al., 2008; Meng et al., 2022), HeathMap (Freifeld 537

et al., 2008), DANIEL (Lejeune et al., 2015), Epi- 538

Core (Olsen, 2017). Extensions to support multi- 539

lingual systems has also been explored (Lejeune 540

et al., 2015; Mutuvi et al., 2020; Sahnoun and Leje- 541

une, 2021). For the COVID-19 pandemic, several 542

frameworks like CACT (Lybarger et al., 2021) and 543

COVIDKB (Zong et al., 2022) were developed for 544

extracting symptoms and infection statistics respec- 545

tively. Most of these systems focus on the domains 546

of news and clinical notes and use keyword/rule- 547

based or simple BERT-based models, as shown in 548

Table 6. In our work, we explore more recent ED 549

models while focusing specifically on the social 550

media domain. 551

9 Conclusion and Future Work 552

In this work, we leverage the framework of Event 553

Detection (ED) to extract epidemic events from 554

social media to promote better epidemic prepared- 555

ness. To facilitate this, we create our Twitter-based 556

dataset SPEED comprising seven major epidemic 557

event types. Through experimentation, we show 558

how existing datasets and models fail to transfer 559

for our task. Contrastingly, we show how models 560

trained on SPEED can generalize and provide early 561

warnings for unseen emerging epidemics. More 562

broadly, our work demonstrates how event extrac- 563

tion and in general, information extraction can ex- 564

ploit social media to aid policy-making for better 565

epidemic preparedness. 566
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Limitations567

Our work focuses majorly on a single source of568

social media - Twitter. We haven’t explored other569

social media platforms and how ED would work on570

those platforms in our work. We leave that for fu-571

ture work, but are optimistic that our models should572

be able to generalize across platforms. Secondly,573

our work mainly only focuses on ED as the pri-574

mary task, while its sister task Event Argument575

Extraction (EAE) is not explored. We hope to ex-576

tend our work for EAE as part of our future work.577

Finally, we would like to show the generalization578

of our models on a vast range of diseases. How-579

ever owing to budget constraints and the lack of580

publically available Twitter data for other diseases,581

we couldn’t perform such a study. However, we582

believe showing results on three diseases lays the583

foundation for generalizability of our model.584

Ethical Considerations585

One strong assumption in our work is the avail-586

ability of internet and social media for discussions587

about epidemics. Since not everyone has equal ac-588

cess to these platforms, our dataset, models, and589

results do not represent the whole world uniformly.590

Thus, our work can be biased and should be consid-591

ered with other sources for better representation.592

Our dataset SPEED is based on actual tweets593

posted by people all over the world. We attempted594

our best to anonymize any kind of private informa-595

tion in the tweets, but we can never be completely596

thorough, and there might be some private infor-597

mation embedded still in our dataset. Furthermore,598

these tweets were sentimental and may possess599

stark emotional, racial, and political viewpoints600

and biases. We do not attempt to clean any of such601

extreme data in our work (as our focus was on602

ED only) and these biases should be considered if603

being used for other applications.604

Since our ED models are trained on SPEED, they605

may possess some of the social biases embedded606

in SPEED. Since our work didn’t focus on bias607

mitigation, these models should be used with due608

consideration.609

Lastly, we do not claim that our models can610

be used off-the-shelf for epidemic prediction as611

it hasn’t been thoroughly tested and can have false612

positives and negatives too. We majorly throw light613

to show these model capabilities and motivate fu-614

ture work in this direction. The usage of these615

systems for practical purposes should be appropri-616

ately considered. 617
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A Ontology Creation - Additional Details942

A.1 Complete ontology943

We present our complete initial event ontology com-944

prising 18 event types organized into 3 abstract cat-945

egories in Table 19. We also describe each event946

type by its definition and also present details about947

the action taken for its role in the final event ontol-948

ogy.949

A.2 Initial analysis of events950

Our initial ontology (§ A.1) was constructed using951

previous ontologies and human knowledge. But952

the suitability of each event type for social media953

(specifically Twitter) remains unknown. To eval-954

uate this suitability, we use frequency and confi-955

dence as two guiding heuristics and use them for956

final filtering/merging. We utilize the base Twitter957

dataset for SPEED for conducting this analysis. We958

describe each of these heuristics here:959

Frequency To approximately estimate the fre-960

quency of events, we curate a list of keywords for961

each event type and count the number of posts con-962

taining any of these keywords. Keyword curation963

involves creating a seed list using human expert964

knowledge and expanding that list using synonyms965

from external sources like Thesaurus.6 We show966

the results in Figure 7. We observe that most events967

under the medical abstraction occur much lesser968

than others. Furthermore, the count variance is969

large as the most frequent event type control is 180970

times more likely to occur than the least frequent971

event type variant. Since low-frequency events are972

less likely to be mentioned in a smaller sample of973

data, we discard or merge such events for our final974

ontology.975

Confidence For each keyword, we randomly976

sample a small number of non-duplicate tweets977

and manually rate the keyword confidence based978

on the percentage of tweets wherein the semantic979

meaning of the keyword matches the definition of980

its event. We mainly categorize this confidence981

as high, medium, or low.7 Take event control982

as an example, it has high confidence keywords983

such as “quarantine”, “protocol”, and “distancing”;984

medium confidence keywords such as “restrict”,985

“postpone”, and “investigate”; low confidence key-986

words such as “battle”, “limitation”, and “separa-987

tion”. On the other hand, event prefigure does not988

6https://www.thesaurus.com/
7We release these keywords as part of our final code.

have high confidence keywords, but only medium 989

confidence keywords such as “foreshadow” and 990

low confidence keywords such as “foretell”. Our 991

heuristic suggests that low-confidence keywords 992

are more likely to give false positives relative to 993

high-confidence ones. Thus, we filter/merge event 994

types that have a high number of low-confidence 995

keywords. 996

Eventually, our final ontology comprises seven 997

events that are distinguishable, frequent, and have 998

a low false-positive rate. 999

A.3 Coverage analysis of ontology 1000

To quantitatively verify the coverage of our ontol- 1001

ogy, we conduct an analysis on four diseases with 1002

very different characteristics - COVID-19, Mon- 1003

keypox, Dengue, and Zika. For each disease, we 1004

randomly sample 300 tweets and then filter them 1005

if they are related to the disease or not. Next, we 1006

annotate the filtered disease-related tweets based 1007

on our ontology and evaluate the proportion of 1008

event occurrences relative to the number of disease- 1009

related tweets. We find that our ontology has high 1010

coverage of 50% for COVID-19, 44% for Monkey- 1011

pox, 70% for Dengue, and 73% for Zika. This in 1012

turn assures that our ontology can be used to de- 1013

tect epidemic events for various different kinds of 1014

diseases. 1015

Event Type Distribution As part of our analysis, 1016

we also study our ontology’s event type distribution 1017

for each disease and its correlation with the disease 1018

properties and outbreak stage. We show this event 1019

distribution in Figure 8 for each of the diseases. We 1020

note that distributions for Dengue and Monkeypox 1021

exhibit a strong focus on spread and infect events. 1022

This makes sense as the data for these diseases was 1023

collected at earlier stages of the outbreak when mit- 1024

igation measures were not being discussed yet. On 1025

the other hand, for COVID-19, the distribution is 1026

vastly dominated by control and death events. Our 1027

COVID-19 data was collected in May 2020 when 1028

the outbreak had vastly spread in America. Thus 1029

our distribution reflects more notions of lockdowns 1030

and control measures as well reflects the deadly 1031

nature of the disease. 1032

B Uniform Sampling v/s Random 1033

Sampling for Data Selection 1034

Previously Parekh et al. (2023) had shown how uni- 1035

form sampling of data for events can yield more 1036

robust model performance. To validate the same 1037
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Figure 7: Frequency of occurrence based on keyword search for all event types in the initial complete ontology.
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Figure 8: Event type distribution of the disease-related
tweets for each disease. Numbers on the axis represent
count of mentions for a given event type.

for our ontology and data, we conduct additional1038

experiments comparing uniform sampling with ran-1039

dom sampling. More specifically, we annotate 2001040

tweets that conform to a ‘real distribution’8 based1041

on random sampling and compare the trained mod-1042

els on this data with models trained on 200 tweets1043

of uniform-sampling data. We further annotated1044

300 tweets based on the ‘real-distribution’ which1045

8Event-based filtering was still applied before sampling.

was used for the evaluation of these two sampling 1046

techniques. 1047

Model Tri-I Tri-C

TRAINED ON UNIFORM DISTRIBUTION

BERT-QA 58.19 52.30
DEGREE 55.83 52.88
TagPrime 55.48 50.51
DyGIE++ 53.22 47.64
Average 55.68 50.83

TRAINED ON RANDOM DISTRIBUTION

BERT-QA 46.11 43.76
DEGREE 46.11 45.23
TagPrime 25.03 24.15
DyGIE++ 51.10 47.35
Average 42.09 40.12

Table 7: Benchmarking ED models trained on
uniformly-sampled and randomly-sampled SPEED data
on real-distribution based test data of 300 samples.

We present our results in Table 7 averaged over 1048

three model runs. We show that in terms of best 1049

model performance, uniform sampling is better by 1050

5.5 F1 points compared to random sampling. On 1051

average, uniform-sampling trained models outper- 1052

form the random-sampling trained models by up 1053

to 11 points. Both these results prove how de- 1054

spite train-test distribution differences, uniform 1055

sampling leads to better training of downstream 1056

models. 1057
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Generalizability to Other Diseases We also1058

evaluate the models trained on the uniform and1059

random-sampled data for generalizability to other1060

diseases of Monkeypox, Zika, and Dengue. We1061

show the results in Table 8. Clearly, we can see su-1062

perior generalizability of uniform-sampling trained1063

models as they outperform random-sampling1064

trained models by 37 F1 points for Monkeypox and1065

28 F1 points for Zika + Dengue. Overall, this result1066

strongly highlights the impact of uniform sampling1067

for robust and generalizable model training.1068

Model Monkeypox Zika + Dengue
Tri-I Tri-C Tri-I Tri-C

TRAINED ON UNIFORM SAMPLED DATA

BERT-QA 56.56 49.30 56.35 46.19
DEGREE 58.35 53.39 58.37 51.27
TagPrime 58.36 53.56 57.05 48.53
DyGIE++ 55.73 48.30 56.90 47.10

TRAINED ON REAL SAMPLED DATA

BERT-QA 9.48 7.97 21.68 20.43
DEGREE 10.76 10.53 19.33 19.00
TagPrime 10.37 8.57 12.78 12.28
DyGIE++ 19.59 16.62 26.43 23.40

Table 8: Generalizability benchmarking of ED mod-
els trained on 200 samples of uniformly-sampled and
randomly-sampled COVID data on other diseases of
Monkeypox, Zika, and Dengue.

C Annotation Guidelines and Interface1069

C.1 Annotation Guidelines1070

Inspired by Doddington et al. (2004), we de-1071

velop an extensive set of instructions with tricky1072

cases and examples that have been developed1073

through multiple rounds of expert annotation stud-1074

ies. For our interface, we utilize Amazon Mechani-1075

cal Turk.9 We present the task summary with the1076

major instructions in Figure 14. To reduce am-1077

biguity in trigger selection, we present extensive1078

examples and tricky cases with priority orders as1079

shown in Figure 15. Finally, we also provide a1080

wide range of annotated positive and negative ex-1081

amples as part of the guidelines and show those in1082

Figure 16.1083

C.2 Annotation Interface1084

We utilize Amazon Mechanical Turk10 as the inter-1085

face for quick annotation. To annotate, annotators1086

can select any word and label it into one of the1087

9https://www.mturk.com/
10https://www.mturk.com/

seven pre-defined event types. Event definitions 1088

and examples are provided alongside for reference. 1089

Each batch (also known as HIT) comprises five 1090

tweets for flexibility in annotations. We show the 1091

interface and various utilities in Figure 17, 18, and 1092

19 respectively. 1093

D Data Analysis for SPEED 1094

D.1 Benchmarking Test Suites Statistics 1095

We provide the statistics in terms of number of 1096

event mentions and tweets for the various bench- 1097

marking test suites based on SPEED in Table 9. 1098

Test Suite # Mentions # Tweets

Train

FS-2 14 11
FS-5 35 24.33
LR-100 99 67
LR-200 198 139
LR-300 306 211

Dev LR/FS 101 81
Test All 1,810 1,683

Table 9: Data Statistics for the various benchmarking
test suites in terms of number of event mentions and
number of tweets. Here, LR-XX represents low resource
with XX training event mentions and FS-YY represents
few-shot with YY training mentions per event. For FS,
we take the average over three different splits of data.

D.2 Event Distribution Analysis 1099

As part of data processing, we attempt to sample 1100

tweets in a more uniform distribution between the 1101

event types (§ 3.2). In Figure 9, we show the dis- 1102

tribution of our dataset in terms of event types. In 1103

contrast to tail-ending distributions of other stan- 1104

dard datasets like ACE (Doddington et al., 2004) 1105

and MAVEN (Wang et al., 2020) as shown in Fig- 1106

ures 10 and 11 respectively, our distribution of 1107

event mentions is more uniform. 1108
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Figure 9: Distribution of event mentions per event type
for our dataset SPEED.
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Figure 10: Distribution of event mentions for the event
types in the ACE dataset.
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Figure 11: Distribution of event mentions for the event
types in the MAVEN dataset.

D.3 Monkeypox Test Data Statistics1109

We share the data statistics of the evaluation dataset1110

used for Monkeypox in Table 10 split according to1111

each event type. We observe that there is a disparity1112

in distribution across different event types, with1113

spread mostly discussed and cure and death are1114

least discussed.1115

Event Type # Event Mentions

infect 78
spread 119
symptom 43
prevent 70
control 62
cure 13
death 13

Total 389

Table 10: Data Statistics for the evaluation dataset for
Monkeypox Event Detection categorized by event types.

D.4 Zika + Dengue Test Data Statistics1116

We share the data statistics of the evaluation dataset1117

used for Zika + Dengue in Table 11 split according1118

to each event type. We observe a more even dis-1119

tribution of event types with more focus on infect,1120

spread, and death well-discussed.1121

Event Type # Event Mentions

infect 57
spread 53
symptom 34
prevent 22
control 28
cure 20
death 60

Total 274

Table 11: Data Statistics for the evaluation dataset for
Zika+Dengue Event Detection categorized by event
types.

E Implementation Details for models 1122

We present the extensive set of hyperparameters 1123

and other implementation details about the various 1124

ED models we benchmarked in our work. 1125

E.1 BERT-QA 1126

We run our experiments for BERT-QA on an 1127

NVIDIA RTX A6000 machine with support for 8 1128

GPUs. The major hyperparameters for this model 1129

are listed in Table 12. 1130

Pre-trained LM RoBERTa-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5
Training Epochs 30
Warmup Epochs 5
Max Sequence Length 175
Linear Layer Dropout 0.2

Table 12: Hyperparameter details for BERT_QA model.

E.2 DEGREE 1131

We run our experiments for DEGREE on an 1132

NVIDIA RTX A6000 machine with support for 8 1133

GPUs. The major hyperparameters for this model 1134

are listed in Table 13. 1135

E.3 TagPrime 1136

We run our experiments for TagPrime on an 1137

NVIDIA RTX A6000 machine with support for 8 1138

GPUs. The major hyperparameters for this model 1139

are listed in Table 14. 1140
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Pre-trained LM BART-Large
Training Batch Size 32
Eval Batch Size 32
Learning Rate 0.00001
Weight Decay 0.00001
Gradient Clipping 5
Training Epochs 45
Warmup Epochs 5
Max Sequence Length 250
Max Output Length 20
Negative Samples 15
Beam Size 1

Table 13: Hyperparameter details for DEGREE model.

Pre-trained LM RoBERTa-Large
Training Batch Size 64
Eval Batch Size 8
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5
Training Epochs 100
Warmup Epochs 5
Max Sequence Length 175
Linear Layer Dropout 0.2

Table 14: Hyperparameter details for TagPrime model.

E.4 DyGIE++1141

We run our experiments for DyGIE++ on an1142

NVIDIA RTX A6000 machine with support for 81143

GPUs. The major hyperparameters for this model1144

are listed in Table 15.1145

E.5 TE1146

We run our experiments for TE on an NVIDIA1147

1080Ti machine with support for 8 GPUs. Our1148

hyperparameters are as listed in the original paper1149

(Lyu et al., 2021).1150

E.6 WSD1151

We run our experiments for WSD on an NVIDIA1152

A100 machine with support for 8 GPUs. The ma-1153

jor hyperparameters for this model are listed in1154

Table 16.1155

E.7 TABS1156

TABS is an event type induction model, wherein1157

the goal is to discover new event types without a1158

pre-defined event ontology. To adapt this for ED,1159

we follow the end-to-end event discovery setting1160

Pre-trained LM RoBERTa-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5
Training Epochs 60
Warmup Epochs 5
Max Sequence Length 200
Linear Layer Dropout 0.4

Table 15: Hyperparameter details for DyGIE++ model.

Pre-trained LM RoBERTa-Large
Training Batch Size 64
Eval Batch Size 8
Learning Rate 0.00001
Weight Decay 0.01
# Training Epochs 7
Max Sentence Length 128
Max gradient norm 1

Table 16: Hyperparameter details for WSD model.

in (Choi et al., 2022) while making the follow- 1161

ing modifications: (1) Dataset Composition: We 1162

utilize ACE (Doddington et al., 2004) dataset for 1163

training and development and our SPEED dataset 1164

for testing. Our training data comprises 26 known 1165

event types from ACE, the validation set comprises 1166

7 ACE event types, while our test set comprises 1167

7 event types from SPEED. (2) Candidate Trig- 1168

ger Extraction: To improve trigger coverage, we 1169

extract all nouns and non-auxiliary verbs as can- 1170

didate trigger mentions. (3) Evaluation Setup: 1171

Trigger identification (Tri-I) F1 score is evaluated 1172

using the extracted candidate triggers. For trigger 1173

classification (Tri-C), we first find the best cluster 1174

assignment of the predicted event clusters to the 1175

gold event types and then evaluate the F1 score. 1176

We run our experiments for TABS on an NVIDIA 1177

RTX 2080 Ti machine with support for 8 GPUs. 1178

The major hyperparameters for this model are listed 1179

in Table 17. 1180

E.8 ETypeClus 1181

For consistency across our evaluations, we follow 1182

the re-implementation of the ETypeClus model in 1183

(Choi et al., 2022), which consists of the latent 1184

space clustering stage of the ETypeClus pipeline 1185

and uses the embeddings of trigger mentions to be 1186
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Pre-trained LM BERT-Base
Training Batch Size 8
Eval Batch Size 8
Gradient Accumulation Steps 2
Learning Rate 0.00005
Gradient Clipping 1
# Pretrain Epochs 10
# Training Epochs 30
Consistency Loss Weight 0.2
# Target Unknown Event Types 30

Table 17: Hyperparameter details for TABS model.

the input features. We utilize the contextualized em-1187

beddings of the candidate triggers extracted from1188

SPEED for unsupervised training. The candidate1189

trigger extraction process and the evaluation setup1190

are the same as described in § E.7.1191

We run our experiments for ETypeClus on an1192

NVIDIA RTX 2080 Ti machine with support for 81193

GPUs. The major hyperparameters for this model1194

are listed in Table 18.1195

Pre-trained LM BERT-Base
Training Batch Size 64
Eval Batch Size 64
Learning Rate 0.0001
Gradient Clipping 1
# Pretrain Epochs 10
# Training Epochs 50
KL Loss Weight 5
Temperature 0.1
# Target Unknown Event Types 30

Table 18: Hyperparameter details for ETypeClus model.

E.9 Keyword1196

This baseline model basically curates a list of key-1197

words specific to each event and predicts a trigger1198

for a particular event if it matches one of the cu-1199

rated event keywords. Event keywords are curated1200

by expert annotators based on the gold triggers1201

appearing in the SPEED dataset and classified as1202

high confidence, medium confidence, and low con-1203

fidence based on their occurrence counts and false1204

positive rates (as described in § A.2.11 Although1205

this baseline accesses gold test data, it is meant to1206

be a baseline to provide the upper cap for models1207

of this family.1208

11We will release the set of keywords with our final code.

This is an event extraction task where the goal is to extract structured events from the text. A 
structured event contains an event trigger word and an event type.

Here are seven events that we are interested in:
CONTROL: A CONTROL event are collective efforts trying to impede the spread of a pandemic.
INFECT: A INFECT event is the process of a disease or pathogen invading a host or hosts.
…
SPREAD: A SPREAD event is the process of a disease spreading or prevailing massively at a large 
scale.

Some examples:

Input: As the Covid - 19 outbreak spreads at breakneck speed , so does information about the 
coronavirus . But experts say there ' s a balancing act between sharing findings quickly and taking 
the time to ensure they ' re scientifically sound . ( url )
Output: [{"event_type": "SPREAD", "trigger": "spreads"}]

Input: signs and symptoms of this phenomenon include fever , rash , abdominal pain , vomiting or 
diarrhea , along with blood tests showing ( url ) news headlines & amp ; live updates : A New COVID 
- 19 Syndrome In Children ( url ) ( url )
Output: [{"event_type": "SYMPTOM", "trigger": "symptoms"}]

…

Input: We are waiting for the vaccine against the Covid - 19 , when it will be ready ? we need to live 
in normality .
Output: [{"event_type": "PREVENT", "trigger": "vaccine"}]

Test Sentence: 
Input: My COVID19 antibodies test came back positive . Crazy . Ive had no symptoms . Please get 
tested if possible . The more data we have on this the better .

Task Description

Ontology and Definitions

In-context Examples

Test Query

Figure 12: Illustration of the prompt used for GPT-
3 model. It includes a task description, followed by
ontology details of event types and their definitions.
Next, we show some in-context examples for each event
type and finally, provide the test sentence.

E.10 GPT-3 1209

We use the GPT-3.5 turbo model as the base GPT 1210

model. We experiment with ChatGPT (OpenAI, 1211

2021) for tuning our prompts that ensure output 1212

consistency. Our final prompt (as shown in Fig- 1213

ure 12) comprises a task definition, ontology de- 1214

tails, 1 example for each event type, and the final 1215

test query. We conducted a looser evaluation for 1216

GPT and only match if the predicted trigger text 1217

matches the gold trigger text (we didn’t check the 1218

exact span match basically). 1219

F Predicting Early Warnings for 1220

Monkeypox 1221

F.1 Event-wise Analysis 1222

As BERT-QA yields the strongest early warning 1223

signal (shown in Figure 6), we conduct an analy- 1224

sis at a more granular level on the contribution of 1225

each event type to the early warning signal based 1226

on the trained BERT-QA output. We present the 1227

results in Figure 13, which leads to the following 1228

observations: (1) Strength of indication varies 1229

among event types: As indicated in Figure 13, 1230

event type infect and spread are strong indicators 1231

of the incoming surge in reported cases, while event 1232

type prevent and control can serve as indicators of 1233

medium strength. Event type symptom, cure, and 1234

death are weak indicators that barely contribute to 1235

the early warning signal. (2) Distribution across 1236
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event types can potentially reveal high-level dis-1237

ease characteristics: We can infer some proper-1238

ties of diseases based on the frequency of men-1239

tions about particular events. For example, death1240

is less mentioned, which can indicate that Monkey-1241

pox is less fatal compared to other epidemics like1242

COVID. We would like to mention that these are1243

hypothetical properties based on predictions of our1244

best model (which can be imperfect) and should be1245

taken with a pinch of salt.1246
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Figure 13: Number of reported Monkeypox cases and
the number of extracted events for each SPEED event
type from our trained BERT-QA model from XX to
XX
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An Event is defined as something happens in a sentence. In this task, we are trying to 
identity whether one or more of the following events exist in a given string: infect, spread,
symptom,prevent,control, cure, and death. And if an event exist, what is the major triggering 
word that mostly manifest its occurrence.
Event Definition
infect The process of a disease/pathogen invading host(s).
spread The process of a disease spreading/pervailing massively at a large scale.
symptom Individuals displaying physiological features indicating the abnormality of organisms.
prevent Individuals trying to prevent the infection of a disease.
control Collective efforts trying to impede the spread of a pandemic.
cure Stopping infection and relieving individuals from infections/symptoms.
death End of life of individuals due to infectious disease.
If there exist any explicit negation of an Event, we say that Event does NOT exist and do not mark it.
Important Notes:
There can be sentences without any events. No need to annotate anything for such sentences.
A trigger word can be linked to one or more events. Choose all possible events in such cases.
Multiple events can be presented in a given sentence. Mark all such events.
The same event can occur multiple times (at different parts) in the same sentence. Mark all 
occurrences of the event.
You will be able to submit the HIT at the last sentence once you finish annotating all the sentences.
Select "flag" event if you see multiple triggering words or any other tricking situations that needs 
revisiting, but do not abuse this function.

Figure 14: Task summary and the major annotation guidelines.
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Event name Definition Action for Final
Ontology

SOCIAL SCALE EVENTS

Prefigure The signal that precedes the occurrence of a potential
epidemic.

Discarded

Outbreak The process of disease spreading among a certain
amount of the population at a massive scale.

Merged into Spread

Spread The process of disease spreading among a certain
amount of the population but at a local scale.

Final Event

Control Collective efforts trying to impede the spread of a epi-
demic.

Final Event

Promote The relationship of a disease driver leading to the break-
out of a disease.

Discarded

PERSONAL SCALE EVENTS

Prevent Individuals trying to prevent the infection of disease. Final Event
Infect The process of a disease/pathogen invading host(s). Final Event
Symptom Individuals displaying physiological features indicating

the abnormality of organisms.
Final Event

Treatment The process that a patient is going through with the aim
of recovering from symptoms.

Merged into Cure

Cure Stopping infection and relieving individuals from infec-
tions/symptoms.

Final Event

Immunize The process by which an organism gains immunization
against an infectious agent.

Merged into Pre-
vent

Death End of life of individuals due to infectious disease. Final Event

MEDICAL SCALE EVENTS

Cause The causal relationship of a pathogen and a disease. Discarded
Variant An alternation of a disease with genetic code-carrying

mutations.
Discarded

Intrude The process of an infectious agent intruding on its host. Merged into Infect
Respond The process of a host responding to an infection. Discarded
Regulate The process of suppressing and slowing down the infec-

tion of a virus.
Merged into Cure

Transmission
route

The process of a pathogen entering another host from a
source.

Discarded

Table 19: Complete initial epidemic event ontology comprising 18 event types organized into 3 higher-level abstract
categories. We also present details about the event definitions and the action taken for each event type in the final
ontology.
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Here are more detailed instructions for how to choose the most appropriate triggering word.

Goal: Look for the one word that MOST LIKELY manifests the event's occurrence. You can use the following priority order for 
annotation:
1. Most of the times, the trigger of the event will be the main verb in the sentence.
2. If the verb is ambigous/vague, the trigger would be a noun semantocally related to the event.
3. (Rare case) If no such noun exist, the trigger would be any adjective/adverb that is realated to the event.
4. If still confused, use your best judgement to select the trigger.

In the following illustrations, correct trigger words are marked blue.

CASE I : main verb
Example Sentence: "I was coughing and got a fever yesterday and today confirmed I did not get COVID"
Annotation: There are 2 events of symptom
a. ...got a fever...-->Event symptom. 
b. ...was coughing... -->Event symptom.
c. Note 1: "fever" and "COVID" are Not marked as triggering word of the events since the main verbas indicate the event.
    Note 2: Here, due to the presence of "and", we have two occurrences of the event symptom.
d. Although "get COVID" appears, "not" is the negation emphasizing no infection happens, so event infect does NOT occur
e. More examples of main verbs as triggering word:
Example Event
fight against the pandemic control
caught a flu infect
recover from COVID cure
COVID takes lives death
prevent infection prevent
stomach hurts symptom
number of infection increases spread

CASE II : nouns
Example Sentence: "Fever, cough, and headache are the most common symptoms of COVID"
Annotation: Here we have 1 event of symptom event:
a. ...symptoms -->Event symptom.
b. Note: "fever","cough", and "headache" manifest the symptom event but they are NOT triggering words because "symptom" 
better manifests the Event.
c. More examples of nouns as triggering word:
Example Event
death rate death
therapy for COVID cure
infection prevention prevent
control of spread control
signs of infection symptom
spreading of COVID spread
infection rate infect

CASE III : adjective
Example Sentence: "I am feverish since 2 days ago"
Annotation: Here we have 1 event of the symptom event
a. ...feverish -->Event symptom.
b. Note: Here, we do not have a strong verb/noun for marking the trigger. Thus we 
mark "feverish".
c. More examples of nouns as triggering word:
Example Event
get rid of disease cure
stay cautious against virus prevent
contagious virus infect

Figure 15: Guidelines to choose the proper triggering word.
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Good Examples
Example 1 : "3000+ people are dead due to COVID, so every one please remember to wear a mask and follow the rules to prevent infection and protect our nation from the virus."
Annotation:
a. prevent --> evemt prevent
b. protect --> event control
c. dead-->event death
Note1: Although "infection" is mentioned, it is prevented, meaning no infection is happening in the sentence, so event infect does NOT exist
Note2: Do not mark negation of an event.
Note3: intuitively, people die of COVID must have been infected, but event infect DOES NOT edist here because
An event must be triggered via triggering word and cannot be infered from another event.

Example 2: "if you ever have a fever, or cough, or have a sore throat, or feel difficult breathing, get tested immediately since you may have been infected."
Annotation:
a. ...have a fever --> event symptom
b. ...been infected --> event infect
Note1: if have more than two parallel phrases triggering an event, only mark the first one instead of all of them.
Note2: event infect has no explicit negation, so event infect exists here.

Bad Examples
Example 1: "Wear a mask""
Wrong annotation:
a. wear-->event prevent
Note1: we may link the action of wearing a mask with pandemic prevention directly, but here it is just an action similar to "read a book" or "eat my lunch".
Note2: if the sentence is instead "wear a mask to prevent COVID." we mark prevent as a triggering word for event prevent instead of "wear" 
Look for Events themselves instead of actions/policies related to Events.

Example 2:"Two weeks of quarantine is killing me! May God cure my mind and stop my crazy thoughts."
Wrong annotation:
a. killing-->event death
b. cure--> event cure
Note1: killing does not indicate any body is dying, and cure does not indicate a therapy against a disease.
Note2: Do NOT mark hyperbole or rhetorics as Events

Figure 16: Positive and Negative examples in the annotation guideline.

Figure 17: Illustration of the default annotation interface on Amazon Mechanical Turk.
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Figure 18: Illustration of selection of a word within a tweet for annotation in the interface.

Figure 19: Illustration of the format and options available for a completed annotation in the interface.
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