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Abstract

A prominent goal of representation learning research is to achieve representations
which are factorized in a useful manner with respect to the ground truth factors of
variation. The fields of disentangled and equivariant representation learning have
approached this ideal from a range of complimentary perspectives; however, to
date, most approaches have proven to either be ill-specified or insufficiently flexible
to effectively separate all realistic factors of interest in a learned latent space. In
this work, we propose an alternative viewpoint on such structured representation
learning which we call Flow Factorized Representation Learning, and demonstrate
it to learn both more efficient and more usefully structured representations than
existing frameworks. Specifically, we introduce a generative model which specifies
a distinct set of latent probability paths that define different input transformations.
Each latent flow is generated by the gradient field of a learned potential following
dynamic optimal transport. Our novel setup brings new understandings to both
disentanglement and equivariance. We show that our model achieves higher
likelihoods on standard representation learning benchmarks while simultaneously
being closer to approximately equivariant models. Furthermore, we demonstrate
that the transformations learned by our model are flexibly composable and can
also extrapolate to new data, implying a degree of robustness and generalizability
approaching the ultimate goal of usefully factorized representation learning.

1 Introduction

Developing models which learn useful representations of data has become an increasingly important
focus in the machine learning community [5, 55]. For example, Large Language Models such as
GPT [9] rely on an extensive pre-training phase to learn valuable representations, enabling quick
finetuning on a diversity of tasks. However, a precise definition of what makes an ideal representation
is still debated. One line of work has focused on ‘disentanglement’ of the underlying ground
truth generative factors [5, 35, 13]. In general, the definition of ‘disentanglement’ often refers
to learning and controlling statistically independent factors of variation [5, 36]. Over the years,
many disentanglement methods have been proposed, including axis-aligned single-dimensional
manipulation [35, 13], linear multi-dimensional traversals [78, 77, 90, 66], and, more recently,
dynamic non-linear vector-based traversals [84, 79]. Although these methods have been met with
significant success (and even linked to single-neuron brain activity [37, 91]), there are known
theoretical limitations which make them ill-specified, including the presence of topological defects [7].
This has limited their deployment beyond toy settings.

Another line of work has focused on developing representations which respect symmetries of the
underlying data in their output space [15, 36]. Specifically, equivariant representations are those
for which the output transforms in a known predictable way for a given input transformation.
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They can be seen to share many similarities with disentangled representations since an object
undergoing a transformation which preserves its identity can be called a symmetry transformation [36].
Compared with disentanglement methods, equivariant networks are much more strictly defined,
allowing for significantly greater control and theoretical guarantees with respect to the learned
transformation [16, 50, 73, 20, 39]. However, this restriction also limits the types of transformations
to which they may be applied. For example, currently only group transformations are supported,
limiting real-world applicability. To avoid this caveat, some recent attempts propose to learn general
but approximate equivariance from disentangled representations [49, 45, 79].

Image Space

Latent Space

Figure 1: Illustration of our flow factorized repre-
sentation learning: at each point in the latent space
we have a distinct set of tangent directions ∇uk
which define different transformations we would
like to model in the image space. For each path, the
latent sample evolves to the target on the potential
landscape following dynamic optimal transport.

In this work, we provide an alternative view-
point at the intersection of these two fields of
work which we call Flow Factorized Represen-
tation Learning. Fig. 1 depicts the high-level
illustration of our method. Given k different
transformations pk(xt|x0) in the input space,
we have the corresponding latent probabilistic
path

∫
z0,zt

q(z0|x0)qk(zt|z0)p(xt|zt) for each
of the transformations. Each latent flow path
qk(zt|z0) is generated by the gradient field of
some learned potentials ∇uk following fluid me-
chanical dynamic Optimal Transport (OT) [4].
Our framework allows for novel understandings
of both disentanglement and equivariance. The
definition of disentanglement refers to the dis-
tinct set of tangent directions ∇uk that follow
the OT paths to generate latent flows for mod-
eling different factors of variation. The concept
of equivariance in our case means that the two
probabilistic paths, i.e., pk(xt|x0) in the image
space and

∫
z0,zt

q(z0|x0)qk(zt|z0)p(xt|zt) in
the latent space, would eventually result in the
same distribution of transformed data.

We build a formal generative model of se-
quences and integrate the above latent proba-
bility evolution as condition updates of the fac-
torized sequence distribution. Based on the continuity equation, we derive a proper flow of probability
density for the time evolution of both the prior and posterior. To perform inference, we approx-
imate the true posterior of latent variables and train the parameters as a Variational Autoencoder
(VAE) [47]. When the transformation type k is not observed (i.e., available as a label), we treat
k as another latent variable and incorporate its posterior into our framework by learning it from
sequences. Extensive experiments and thorough analyses have been conducted to show the effective-
ness of our method. For example, we demonstrate empirically that our representations are usefully
factorized, allowing flexible composability and generalization to new datasets. Furthermore, we
show that our methods are also approximately equivariant by demonstrating that they commute
with input transformations through the learned latent flows. Ultimately, we see these factors com-
bine to yield the highest likelihood on the test set in each setting. Code is publicly available at
https://github.com/KingJamesSong/latent-flow.

2 The generative model

In this section, we first introduce our generative model of sequences and then describe how we
perform inference over the latent variables of this model in the next section.

2.1 Flow factorized sequence distributions

The model in this work defines a distribution over sequences of observed variables. We further
factorize this distribution into k distinct components by assuming that each observed sequence is
generated by one of the k separate flows of probability mass in latent space. Since in this work we
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Figure 2: Depiction of our model in plate notation. (Left) Supervised, (Right) Weakly-supervised.
White nodes denote latent variables, shaded nodes denote observed variables, solid lines denote
the generative model, and dashed lines denote the approximate posterior. We see, as in a standard
VAE framework, our model approximates the initial one-step posterior p(z0|x0), but additionally
approximates the conditional transition distribution p(zt|zt−1, k) through dynamic optimal transport
over a potential landscape.

model discrete sequences of observations x̄ = {x0,x1 . . . ,xT }, we aim to define a joint distribution
with a similarly discrete sequence of latent variables z̄ = {z0, z1 . . . , zT }, and a categorical random
variable k describing the sequence type (observed or unobserved). Explicitly, we assert the following
factorization of the joint distribution over T timesteps:

p(x̄, z̄, k) = p(k)p(z0)p(x0|z0)
T∏

t=1

p(zt|zt−1, k)p(xt|zt). (1)

Here p(k) is a categorical distribution defining the transformation type, p(xt|zt) asserts a mapping
from latents to observations with Gaussian noise, and p(z0) = N (0, 1). A plate diagram of this
model is depicted through the solid lines in Fig. 2.

2.2 Prior time evolution

To enforce that the time dynamics of the sequence define a proper flow of probability density, we
compute the conditional update p(zt|zt−1, k) from the continuous form of the continuity equation:
∂tp(z) = −∇ · (p(z)∇ψk(z)), where ψk(z) is the k’th potential function which advects the
density p(z) through the induced velocity field ∇ψk(z). Considering the discrete particle evolution
corresponding to this density evolution, zt = f(zt−1, k) = zt−1 +∇zψ

k(zt−1), we see that we can
derive the conditional update from the continuous change of variables formula [69, 11]:

p(zt|zt−1, k) = p(zt−1)
∣∣∣df(zt−1, k)

dzt−1

∣∣∣−1

(2)

In this setting, we see that the choice of ψ ultimately determines the prior on the transition probability
in our model. As a minimally informative prior for random trajectories, we use a diffusion equation
achieved by simply taking ψk = −Dk log p(zt). Then according to the continuity equation, the prior
evolves as:

∂tp(zt) = −∇ ·
(
p(zt)∇ψ

)
= Dk∇2p(zt) (3)

where Dk is a constant coefficient that does not change over time. The density evolution of the prior
distribution thus follows a constant diffusion process. We set Dk as a learnable parameter which is
distinct for each k.

3 Flow factorized variational autoencoders

To perform inference over the unobserved variables in our model, we propose to use a variational
approximation to the true posterior, and train the parameters of the model as a VAE. To do this,
we parameterize an approximate posterior for p(z0|x0), and additionally parameterize a set of K
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functions uk(z) to approximate the true latent potentials ψ∗. First, we will describe how we do this
in the setting where the categorical random variable k is observed (which we call the supervised
setting), then we will describe the model when k is also latent and thus additionally inferred (which
we call the weakly supervised setting).

3.1 Inference with observed k (supervised)

When k is observed, we define our approximate posterior to factorize as follows:

q(z̄|x̄, k) = q(z0|x0)

T∏
t=1

q(zt|zt−1, k) (4)

We see that, in effect, our approximate posterior only considers information from element x0;
however, combined with supervision in the form of k, we find this is sufficient for the posterior to be
able to accurately model full latent sequences. In the limitations section we discuss how the posterior
could be changed to include all elements {xt}T0 in future work.

Combing Eq. (4) with Eq. (1), we can derive the following lower bound to model evidence (ELBO):

log p(x̄|k) = Eqθ(z̄|x̄,k)

[
log

p(x̄, z̄|k)
q(z̄|x̄, k)

q(z̄|x̄, k)
p(z̄|x̄, k)

]
≥ Eqθ(z̄|x̄,k)

[
log

p(x̄|z̄, k)p(z̄|k)
q(z̄|x̄, k)

]
= Eqθ(z̄|x̄,k) [log p(x̄|z̄, k)] + Eqθ(z̄|x̄,k)

[
log

p(z̄|k)
q(z̄|x̄, k)

] (5)

Substituting and simplifying, Eq. (5) can be re-written as

log p(x̄|k) ≥
T∑

t=0

Eqθ(z̄|k)
[
log p(xt|zt, k)

]
− Eqθ(z̄|k)

[
DKL [qθ(z0|x0)||p(z0)]

]
−

T∑
t=1

Eqθ(z̄|k)
[
DKL [qθ(zt|zt−1, k)||p(zt|zt−1, k)]

] (6)

We thus see that we have an objective very similar to that of a traditional VAE, except that our
posterior and our prior now both have a time evolution defined by the conditional distributions.

3.2 Inference with latent k (weakly supervised)

When k is not observed, we can treat it as another latent variable, and simultaneously perform
inference over it in addition to the sequential latent z̄. To achieve this, we define our approximate
posterior and instead factorize it as

q(z̄, k|x̄) = q(k|x̄)q(z0|x0)

T∏
t=1

q(zt|zt−1, k) (7)

Following a similar procedure as in the supervised setting, we derive the new ELBO as

log p(x̄) = Eqθ(z̄,k|x̄)

[
log

p(x̄, z̄, k)

q(z̄, k|x̄)
q(z̄, k|x̄)
p(z̄, k|x̄)

]
≥ Eqθ(z̄,k|x̄)

[
log

p(x̄|z̄, k)p(z̄|k)
q(z̄|x̄, k)

p(k)

q(k|x̄)

]
= Eqθ(z̄,k|x̄) [log p(x̄|z̄, k)] + Eqθ(z̄,k|x̄)

[
log

p(z̄|k)
q(z̄|x̄, k)

]
+ Eqγ(k|x̄)

[
log

p(k)

q(k|x̄)

] (8)

We see that, compared with Eq. (5), only one additional KL divergence term DKL [qγ(k|x̄)||p(k)]
]

is
added. The prior p(k) is set to follow a categorical distribution, and we apply the Gumbel-SoftMax
trick [43] to allow for categorical re-parameterization and sampling of qγ(k|x̄).
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3.3 Posterior time evolution

As noted, to approximate the true generative model which has some unknown latent potentials ψk,
we propose to parameterize a set of potentials as uk(z, t) = MLP([z; t]) and train them through the
ELBOs above. Again, we use the continuity equation to define the time evolution of the posterior,
and thus we can derive the conditional time update q(zt|zt−1, k) through the change of variables
formula. Given the function of the sample evolution zt = g(zt−1, k) = zt−1 +∇zu

k, we have:

q(zt|zt−1, k) = q(zt−1)
∣∣∣dg(zt−1, k)

dzt−1

∣∣∣−1

(9)

Converting the above continuous equation to the discrete setting and taking the logarithm of both
sides gives the normalizing-flow-like density evolution of our posterior:

log q(zt|zt−1, k) = log q(zt−1)− log |1 +∇2
zu

k| (10)

The above relation can be equivalently derived from the continuity equation (i.e., ∂tq(z) =
−∇ ·

(
q(z)∇uk

)
). Notice that we only assume the initial posterior q(z0|x0) follows a Gaussian

distribution. For future timesteps, we do not pose any further assumptions and just let the density
evolve according to the sample motion.

3.4 Ensuring optimal transport of the posterior flow

As an inductive bias, we would like each latent posterior flow to follow the OT path. To accomplish
this, it is known that when the gradient ∇uk satisfies certain PDEs, the evolution of the probability
density can be seen to minimize the L2 Wasserstein distance between the source distribution and the
distribution of the target transformation. Specifically, we have:
Theorem 1 (Benamou-Brenier Formula [4]). For probability measures µ0 and µ1, the L2 Wasserstein
distance can be defined as

W2(µ0, µ1)
2 = min

ρ,v

{∫ ∫
1

2
ρ(x, t)|v(x, t)|2 dx dt

}
(11)

where the density ρ and the velocity v satisfy:

d ρ(x, t)

dt
= −∇ · (v(x, t)ρ(x, t)), v(x, t) = ∇u(x, t) (12)

The optimality condition of the velocity is given by the generalized Hamilton-Jacobi (HJ) equation
(i.e., ∂tu + 1/2||∇u||2 ≤ 0). The detailed derivation is deferred to the supplementary. We thus
encourage our potential to satisfy the HJ equation with an external driving force as

∂

∂t
uk(z, t) +

1

2
||∇zu

k(z, t)||2 = f(z, t) subject to f(z, t) ≤ 0 (13)

Here we use another MLP to parameterize the external force f(z, t) and realize the negativity constraint
by setting f(z, t) = −MLP([z; t])2. Notice that here we take the external force as learnable MLPs
simply because we would like to obtain a flexible negativity constraint. The MLP architecture is set
the same for both u(z, t) and f(z, t). To achieve the PDE constraint, we impose a Physics-Informed
Neural Network (PINN) [67] loss as

LHJ =
1

T

T∑
t=1

( ∂
∂t
uk(z, t) +

1

2
||∇zu

k(z, t)||2 − f(z, t)
)2

+ ||∇uk(z0, 0)||2 (14)

where the first term restricts the potential to obey the HJ equation, and the second term limits u(zt, t)
to return no update at t=0, therefore matching the initial condition.

4 Experiments

This section starts with the experimental setup, followed by the main qualitative and quantitative
results, then proceeds to discussions about the generalization ability to different composability and
unseen data, and ends with the results on complex real-world datasets.
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Figure 3: Exemplary latent evolution results of Scaling, Rotation, and Coloring on MNIST [54]. The
top two rows are based on the supervised experiment, while the images of the bottom row are taken
from the weakly-supervised setting of our experiment.

4.1 Setup

Datasets. We evaluate our method on two widely-used datasets in generative modeling, namely
MNIST [54] and Shapes3D [10]. For MNIST [54], we manually construct three simple transforma-
tions including Scaling, Rotation, and Coloring. For Shapes3D [10], we use the self-contained four
transformations that consist of Floor Hue, Wall Hue, Object Hue, and Scale.

Besides these two common benchmarks, we take a step further to apply our method on Falcol3D and
Isaac3D [61], two complex large-scale and real-world datasets that contain sequences of different
transformations. Falcol3D consists of indoor 3D scenes in different lighting conditions and viewpoints,
while Isaac3D is a dataset of various robot arm movements in dynamic environments.

Figure 4: Exemplary latent flow results on Shapes3D [10]. The transformations from top to bottom
are Floor Hue, Wall Hue, Object Hue, and Scale, respectively. The images of the top row are from
the supervised experiment, while the bottom row is based on the weakly-supervised experiment.

Baselines. We mainly compare our method with SlowVAE [49] and Topographic VAE (TVAE) [45].
These two baselines could both achieve approximate equivariance. Specifically, TVAE intro-
duces some learned latent operators, while SlowVAE enforces the Laplacian prior p(zt|zt−1) =∏

αλ/2Γ(1/α) exp (−λ|zt,i − zt−1,i|α) to sequential pairs. Within the disentanglement literature, our
method is compared with the supervised PoFlow [79] which adopts a wave-like potential flow for sam-
ple evolution, and the unsupervised β-VAE [35] and FactorVAE [46] which encourage independence
between single latent dimensions. Finally, the vanilla VAE is used as a controlled baseline.
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Methods Supervision? Equivariance Error (↓) Log-likelihood (↑)Scaling Rotation Coloring
VAE [47] No (✗) 1275.31±1.89 1310.72±2.19 1368.92±2.33 -2206.17±1.83
β-VAE [35] No (✗) 741.58±4.57 751.32±5.22 808.16±5.03 -2224.67±2.35

FactorVAE [46] No (✗) 659.71±4.89 632.44±5.76 662.18±5.26 -2209.33±2.47
SlowVAE [49] Weak (✓) 461.59±5.37 447.46±5.46 398.12±4.83 -2197.68±2.39

TVAE [45] Yes (✓) 505.19±2.77 493.28±3.37 451.25±2.76 -2181.13±1.87
PoFlow [79] Yes (✓) 234.78±2.91 231.42±2.98 240.57±2.58 -2145.03±2.01

Ours Yes (✓) 185.42±2.35 153.54±3.10 158.57±2.95 -2112.45±1.57
Ours Weak (✓) 193.84±2.47 157.16±3.24 165.19±2.78 -2119.94±1.76

Table 1: Equivariance error Ek and log-likelihood log p(xt) on MNIST [54].

Metrics. We use the approximate equivariance error Ek and the log-likelihood of transformed
data log p(xt) as the evaluation protocols. The equivariance error is defined as Ek =

∑T
t=1 |xt −

Decode(zt)| where zt = z0+
∑T

t=1 ∇zu
k. For TVAE, the latent operator is changed to Roll(z0, t).

For unsupervised disentanglement baselines [35, 46] and SlowVAE [49], we carefully select the latent
dimension and tune the interpolation range to attain the traversal direction and range that correspond
to the smallest equivariance error. Since the vanilla VAE does not have the corresponding learned
transformation in the latent space, we simply set ∇zu

k = 0 and take it as a lower-bound baseline.
For all the methods, the results are reported based on 5 runs.

Notice that the above equivariance error is defined in the output space. Another reasonable evaluation
metric is instead measuring error in the latent space as Ek =

∑T
t=1 |Encode(xt)− zt|. We see the

first evaluation method is more comprehensive as it further involves the decoder in the evaluation.

4.2 Main Results

Qualitative results. Fig. 3 and 4 display decoded images of the latent evolution on MNIST [54] and
Shapes3D [10], respectively. On both datasets, our latent flow can perform the target transformation
precisely during evolution while leaving other traits of the image unaffected. In particular, for
the weakly-supervised setting, the decoded images (i.e., the bottom rows of Fig. 3 and 4) can still
reproduce the given transformations well and it is even hard to visually tell them apart from the
generated images under the supervised setting. This demonstrates the effectiveness of the weakly-
supervised setting of our method, and implies that qualitatively our latent flow is able to learn the
sequence transformations well under both supervised and weakly-supervised settings.

Methods Supervision? Equivariance Error (↓) Log-likelihood (↑)Floor Hue Wall Hue Object Hue Scale
VAE [47] No (✗) 6924.63±8.92 7746.37±8.77 4383.54±9.26 2609.59±7.41 -11784.69±4.87
β-VAE [35] No (✗) 2243.95±12.48 2279.23±13.97 2188.73±12.61 2037.94±11.72 -11924.83±5.64

FactorVAE [46] No (✗) 1985.75±13.26 1876.41±11.93 1902.83±12.27 1657.32±11.05 -11802.17±5.69
SlowVAE [49] Weak (✓) 1247.36±12.49 1314.86±11.41 1102.28±12.17 1058.74±10.96 -11674.89±5.74

TVAE [45] Yes (✓) 1225.47±9.82 1246.32±9.54 1261.79±9.86 1142.01±9.37 -11475.48±5.18
PoFlow [79] Yes (✓) 885.46±10.37 916.71±10.49 912.48±9.86 924.39±10.05 -11335.84±4.95

Ours Yes (✓) 613.29±8.93 653.45±9.48 605.79±8.63 599.71±9.34 -11215.42±5.71
Ours Weak (✓) 690.84±9.57 717.74±10.65 681.59±9.02 653.58±9.57 -11279.61±5.89

Table 2: Equivariance error Ek and log-likelihood log p(xt) on Shapes3D [10].

Quantitative results. Tables 1 and 2 compare the equivariance error and the log-likelihood on
MNIST [54] and Shapes3D [10], respectively. Our method learns the latent flows which model the
transformations precisely, achieving the best performance across datasets under different supervision
settings. Specifically, our method outperforms the previous best baseline by 69.74 on average in
the equivariance error and by 32.58 in the log-likelihood on MNIST. The performance gain is also
consistent on Shapes3D: our method surpasses the second-best baseline by 291.70 in the average
equivariance error and by 120.42 in the log-likelihood. In the weakly-supervised setting, our method
also achieves very competitive performance, falling behind that of the supervised setting in the
average equivariance error slightly by 6.22 on MNIST and by 67.88 on Shapes3D.

4.3 Discussion

Extrapolation: switching transformations. In Fig. 5 we demonstrate that, empowered by our
method, it is possible to switch latent transformation categories mid-way through the latent evolution
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Wall Hue Object Hue

Floor Hue Wall Hue

Rotation Coloring

Rotation Scaling

Coloring Scaling Object Size Object Hue

Figure 5: Exemplary visualization of switching transformations during the latent sample evolution.

and maintain coherence. That is, we perform zt = zt−1 +∇zu
k for t ≤ T/2 and then change to

zt = zt−1 +∇zu
j where j ̸= k for t > T/2. As can be seen, the factor of variation immediately

changes after the transformation type is switched. Moreover, the transition phase is smooth and no
other attributes of the image are influenced.

All Transformations Wall Hue + Scale Floor Hue + Object Hue

Scale + Object Hue Wall Hue + Floor Hue Wall Hue + Object Hue

Figure 6: Examples of combining different transformations simultaneously during the latent evolution.

Extrapolation: superposing transformations. Besides switching transformations, our method
also supports applying different transformations simultaneously, i.e., consistently performing zt =

zt−1 +
∑K

k ∇zu
k during the latent flow process. Fig. 6 presents such exemplary visualizations of

superposing two and all transformations simultaneously. In each case, the latent evolution corresponds
to simultaneous smooth variations of multiple image attributes. This indicates that our method also
generalizes well to superposing different transformations.

Notice that we only apply single and separate transformations in the training stage. Switching or
superposing transformations in the test phase can be thus understood as an extrapolation test to
measure the generalization ability of the learned equivariance to novel compositions.

Equivariance generalization to new data. We also test whether the learned equivariance holds for
Out-of-Distribution (OoD) data. To verify this, we validate our method on a test dataset that is different
from the training set and therefore unseen to the model. Fig. 7 displays the exemplary visualization
results of the VAE trained on MNIST [54] but evaluated on dSprites [59]. Although the reconstruction
quality is poor, the learned equivariance is still clearly effective as each transformation still operates
as expected: scaling, rotation, and coloring transformations from top to bottom respectively.

4.4 Results on Complex Real-world and Large-scale Datasets

Table 3 and 4 compare the equivariance error of our methods and the representative baselines on
Falcol3D and Isaac3D, respectively. Notice that the values are much larger than previous datasets
due to the increased image resolution. Our method still outperforms other baselines by a large margin
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Figure 7: Equivariance generalization to unseen OoD input data. Here the model is trained on
MNIST [54] but the latent flow is tested on dSprites [59].

Methods Lighting Intensity Lighting X-dir Lighting Y-dir Lighting Z-dir Camera X-pos Camera Y-pos Camera Y-pos
TVAE [45] 11477.81 12568.32 11807.34 11829.33 11539.69 11736.78 11951.45

PoFlow [79] 8312.97 7956.18 8519.39 8871.62 8116.82 8534.91 8994.63
Ours 5798.42 6145.09 6334.87 6782.84 6312.95 6513.68 6614.27

Table 3: Equivariance error (↓) on Falcol3D [61].

and achieves reasonable equivariance error. Fig. 8 displays the qualitative comparisons of our method
against other baselines. Our method precisely can control the image transformations through our
latent flows. Overall, the above results demonstrate that our method can go beyond the toy setting
and can be further applied to more complex real-world scenarios.

More visualization results of exemplary latent flows are kindly referred to in the supplementary.

5 Related work

Disentangled representation learning. The idea of learning disentangled representation dates back
to factorizing non-redundant input patterns [74] but is recently first studied by InfoGAN [13] and
β-VAE [35]. InfoGAN [13] achieves disentanglement by maximizing the mutual information between
a subset of latent dimensions and observations, while β-VAE [35] induces the factorized posterior
q(z) by penalizing the Total Correlation (TC) through an extra hyper-parameter β>1 controlling the
strength of the KL divergence. Following infoGAN, many attempts have been made to facilitate the
discovery of semantically meaningful traversal directions through regularization [33, 42, 89, 34, 100,
66, 77, 90, 98, 84, 99, 78, 62]. The follow-up research of β-VAE mainly explored different methods
to factorize the aggregated posterior [22, 25, 52, 46, 12, 44, 96, 23, 76, 58, 80, 28]. More recently,
some works proposed to discover meaningful directions of diffusion models in the bottleneck of
denoising networks [53, 64, 95, 41]. The previous literature mainly considers disentanglement as
learning different transformations per dimension or per linear direction. Our method generalizes this
concept to learning a distinct tangent bundle ∇uk that moves every latent sample via dynamic OT.

We see the most similar method to ours is the work of [79]. In [79], the authors also apply the
gradient of a potential function to move the latent code. However, their potentials are restricted to
obey the wave equations, which do not really correspond to the OT theory. Also, they do not consider
the posterior evolution but instead use the loss ||zt − Encode(xt)||2 to match the latent codes. By
contrast, we propose a unified probabilistic generative model that encompasses the posterior flow that
follows dynamic OT, the flow-like time evolution, and different supervision settings.

Equivariant neural networks. A function is said to be an equivariant map if it commutes with a given
transformation, i.e., T ′[f(x)] = f(T [x]) where T and T ′ represent operators in different domains.
Equivariance has been considered a desired inductive bias for deep neural networks as this property
can preserve geometric symmetries of the input space [38, 75, 56, 57, 1]. Analytically equivariant

Methods Robot X-move Robot Y-move Camera Height Object Scale Lighting Intensity Lighting Y-dir Object Color Wall Color
TVAE [45] 8441.65 8348.23 8495.31 8251.34 8291.70 8741.07 8456.78 8512.09

PoFlow [79] 6572.19 6489.35 6319.82 6188.59 6517.40 6712.06 7056.98 6343.76
Ours 3659.72 3993.33 4170.27 4359.78 4225.34 4019.84 5514.97 3876.01

Table 4: Equivariance error (↓) on Isaac3D [61].
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Figure 8: Qualitative comparison of our method against TVAE and PoFlow on Falcol3D and Isaac3D.

networks typically enforce explicit symmetry to group transformations in neural networks [16, 17,
68, 93, 92, 85, 31, 39]. Another line of research proposed to directly learn approximate equivariance
from data [21, 18, 49, 20, 45]. Our framework re-defines approximate equivariance by matching the
latent probabilistic flow to the actual path of the given transformation in the image space.

Optimal transport in deep learning. There is a vast literature on OT theory and applications
in various fields [87, 88]. Here we mainly highlight the relevant applications in deep learning.
The pioneering work of [19] proposed a light-speed implementation of the Sinkhorn algorithm for
fast computation of entropy-regularized Wasserstein distances, which opened the way for many
differentiable Sinkhorn algorithm-based applications [32, 29, 14, 27, 51]. In generative modeling,
the Wasserstein distance is often used to minimize the discrepancy between the data distribution and
the model distribution [2, 81, 72, 65]. Inspired by the fluid mechanical interpretation of OT [4], some
normalizing flow methods [69, 24, 48] considered regularizing the velocity fields to satisfy the HJ
equation, thus matching the dynamic OT plan [94, 30, 83, 63, 60]. Our method applies PINNs [67]
to directly model generalized HJ equations in the latent space and uses the gradient fields of learned
potentials to generate latent flows, which also aligns to the theory of dynamic fluid mechanical OT.

6 Conclusion

In this paper, we introduce Flow Factorized Representation Learning which defines a set of latent
flow paths that correspond to sequences of different input transformations. The latent evolution is
generated by the gradient flow of learned potentials following dynamic optimal transport. Our setup re-
interprets the concepts of both disentanglement and equivariance. Extensive experiments demonstrate
that our model achieves higher likelihoods on standard representation learning benchmarks while
simultaneously achieving smaller equivariance error. Furthermore, we show that the learned latent
transformations generalize well, allowing for flexible composition and extrapolation to new data.

7 Limitations

For flexibility and efficiency, we use PINN [67] constraints to model the HJ equation. However,
such PDE constraints are approximate and not strictly enforced. Other PDE modeling approaches
include accurate neural PDE solvers [40, 8, 70] or other improved PINN variants such as competitive
PINNs [97] and robust PINNs [3]. Also, when infering with observed k, we change the posterior
from q(z̄|x̄, k) to q(z̄|x0, k) because we assume k contains sufficient information of the whole
sequence. To keep the posterior definition of q(z̄|x̄, k), we need to make q(zt) also a function of xt.
This can be achieved either by changing the potential to u(zt−1,xt, t−1) or modifying the external
driving force to f(zt−1,xt, t−1). Nonetheless, we see these modifications would make the model
less flexible than our current formulations as the element xt might be needed during inference.
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A Supplementary Material

A.1 Pseudo codes

1 import torch
2

3 #Randomly sample a transformation at each iteration
4 index = torch.randint(0, potential_number)
5 x_bar = sequence_generation(index)
6

7 #Generating index according to the supervision setting
8 if training_mode = "supervised":
9 index_potential = index

10 elif training_mode = "weakly -supervised":
11 index_potential = q_k(x_bar)
12

13 #initial element of the sequence
14 z, rho_z = flow_vae(x_bar [0])
15

16 #Future elements of the sequence obtained by latent flow
17 for t in range(0,T)
18 PDE_loss , delta_z , delat_rho_z = HJ_PDE(index_potential ,z,t)
19

20 #Updates in the sample and probability space
21 z = z + delta_z
22 rho_z = rho_z + delat_rho_z
23

24 #Inference at every intermediate step
25 hat_xt = flow_vae.inference(z)
26

27 #Loss: PDE loss + reconstrutction loss + KL div
28 loss += PDE_loss + CE(hat_xt ,x_bar[t]) + KL(rho_z , prior_rho_z)
29

30 #KL div for index prediction (weakly -supervised setting)
31 if training_mode = "weakly -supervised":
32 loss += KL(index_potential ,index)
33

34 loss.backward ()
35 optimizer.step()

Figure 9: Pytorch-like pseudo codes for training our flow-factorized VAE.

Fig. 9 displays the Pytorch implementation for training our flow-factorized VAE under different
supervision settings. Here we omit the computation of HJ PDEs for concisity.

A.2 Implementation details

Common settings. During the training stage, we randomly sample one single transformation at each
iteration. The batch size is set to 128 for both datasets. We use Adam optimizer and the learning rate
is set as 1e−4 for all the parameters. The encoder consists of four stacked convolution layers with
the activation function ReLU, while the decoder is comprised of four stacked transposed convolution
layers. For the prior evolution, the diffusion coefficient Dk is initialized with 0 and we set it as a
learnable parameter for distinct k. For MLPs that parameterize the potential u(z, t) and the force
f(z, t), we use the sinusoidal positional embeddings [86] to embed the timestep t, and use linear
layers for embedding the latent code z. Tanh gates are applied as the activation functions of the MLPs.
All the experiments are run on a single NVIDIA Quadro RTX 6000 GPU.

MNIST. The input images are of the size 28×28. The sequence of each transformation contains
9 states of variations. The scaling transformation scales the image from 1.0 up to 1.8 times. The
rotation transformation rotates the object by maximally 80 degrees, and the coloring transformation
adjusts the image hue from 0 to 340 degrees. The model is trained for 90, 000 iterations.
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Shapes3D. The input images are resized to 64×64. Each transformation sequence consists of 8
images. The model is also trained for 90, 000 iterations.

Falcol3D and Isaac3D. The input images are in the resolution of 128×128. We use the self-
contained transformations of the datasets, which mainly comprise variations of lighting conditions
and viewpoints in indoor 3D scenes for Falcolr3D, and different robot arm movements in dynamic
environments for Isaac3D.

Weakly-supervised setting. For the Gumbel-Softmax trick, we re-parameterize qγ(k|x̄) by

yi =
e

xi+gi
τ∑

i e
xi+gi

τ

(15)

where xi is the category prediction, gi is the sample drawn from Gumbel distributions, and τ is the
small temperature to make softmax behave like argmax. We take the ‘hard’ binary prediction in
the forward pass and use the straight-through gradient estimator [6] during backpropagation. The
temperature τ is initialized with 1 and is gradually reduced to 0.05 with the annealing rate 3e−5.

Baselines. For the disentanglement methods, we largely enrich the original MNIST dataset by adding
the transformed images of the whole sequence. This makes it possible for both β-VAE and FactorVAE
to learn the given transformations in an unsupervised manner. For tuning the interpolation range, we
start from the initial value zi and traverse till the appropriate bound which is selected from the range
[−5, 5] with the interval of 0.1.

A.3 Disentanglement metrics

There are many traditional disentanglement metrics [71, 26, 12], but they are designed for single-
dimension traversal methods. These metrics assume and require that each latent dimension is
responsible for one semantic and manipulating single dimensions of the latent variable would
involve distinct output transformations. However, for the recent disentanglement methods including
ours [77, 84, 79], there emerges a more realistic disengagement setting: all the latent dimensions
are perturbed by vectors for meaningful output variations. When it comes to these vector-based
disentanglement methods, their scores of disentanglement metrics would drop considerably and
cannot be compared with those single-dimension baselines.

Table 5: VP Scores (%) on MNIST.

Training Set Split Ours PoFlow TVAE FactorVAE β-VAE
10% 95.69 93.05 89.91 85.92 87.31
1% 92.71 91.27 88.15 84.46 85.25

Table 6: VP Scores (%) on Shapes3D.

Training Set Split Ours PoFlow TVAE FactorVAE β-VAE
10% 95.92 91.48 88.27 84.49 85.91
1% 77.03 72.32 68.39 63.83 65.78

Nonetheless, certain disentanglement metrics such as VP scores [100] can be leveraged as they do
not pose any assumptions on the latent space but only require image pairs [x0,xT ] of different
transformations for evaluation. The VP metric adopts the few-shot learning setting (using 1% or 10%
of the dataset as the training set) and takes a lightweight neural network for learning to classify image
pairs [x0,xT ] of different attributes. The generalization ability ( i.e., validation accuracy) can be
thus regarded as a reasonable surrogate for the disentanglement ability. Table 5 and 6 present the
VP scores of all the baseline methods on MNIST and Shapes3D. To ensure a fair comparison, for
FactorVAE and β-VAE, we choose the dimensions with the lowest equivariance errors to generate
image pairs of different transformations. Our method outperforms the previous disentanglement
baselines and achieves superior performance on the VP scores. This indicates that our flow-factorized
VAE has better disentanglement ability.

A.4 Ablation studies

Impact of different priors. We use diffusion equations to model the prior evolution as random parti-
cle movement. It would also be intriguing to choose other priors commonly used in the VAE literature,
such as Standard Gaussian (SG) priors N (0, 1), mixture of Gaussian (MoG) priors

∑
wiN (µi, σ

2
i ),

and VAMP priors [82] which average aggregated posterior of N pseudo-inputs as 1/N
∑

n q(zn). Ta-
ble 7 presents the equivariance error of different priors on MNIST. Among these priors, our diffusion
equations achieve the best performance. This meets our assumption that modeling the prior evolution
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Table 7: Equivariance error of different priors.

Prior Scaling Rotation Coloring
SG 190.24±2.18 158.93±3.25 164.18±2.77

MoG 188.23±2.45 157.79±2.86 161.49±2.62
VAMP 192.81±3.67 161.47±4.12 162.97±3.89

Diffusion 185.42±2.35 153.54±3.10 158.57±2.95

Table 8: Equivariance error of different PDEs.

Prior Scaling Rotation Coloring
Heat 223.95±3.38 212.47±3.85 207.66±2.91
FP 211.54±3.17 188.59±3.92 194.73±3.09

OHJ 190.43±2.48 163.87±3.03 162.38±2.86
GHJ 185.42±2.35 153.54±3.10 158.57±2.95

as a diffusion process suits more the random motion. Nonetheless, we see that the performance gap
between each baseline is narrow, which somehow implies that the impact of different priors is limited.

Impact of different PDEs. We apply the generalized HJ (GHJ) equation as the PINN constraint in
order to achieve dynamic OT. It would be also interesting to try other commonly used PDEs. We
compare our GHJ with the ordinary HJ (OHJ) equation, the Fokker Planck (FP) equation, and the
heat equation. Table 8 compares the equivariance error of PDEs on MNIST. Our GHJ and OHJ
equations achieve the best performance as they both satisfy the condition of dynamic OT. This
empirical evidence indicates that the OT theory can indeed model better latent flow paths. Moreover,
our GHJ outperforms the OHJ by a slight margin. We attribute this advantage to the external driving
force f(z, t) which gives us more flexibility and dynamics in modeling the velocity fields ∇uk.

Table 9: Equivariance error on MNIST of a differ-
ent number of transformations (K).

K Scaling Rotation Coloring
1 185.27±2.59 – –
2 185.78±2.21 154.29±2.87 –
3 185.42±2.45 153.54±3.10 158.57±2.95

Table 10: Equivariance error on MNIST of differ-
ent sequence lengths (T).

Sequnce Length (T ) Scaling Rotation
9 185.42±2.35 153.54±3.10

12 214.47±2.59 198.72±2.89

Impact of different K. We conduct an ablation study on the impact of the number of transformations
on MNIST and present the evaluation results in Table 9. As indicated above, in general, the
performance is not affected by the number of transformations being applied. The fluctuation of the
results whenK varies can be sufficiently negligible. We expect that this is because the transformations
are learned by distinct potentials (which are implemented as K different MLPs). Each flow evolves
along with the gradient field ∇u on the potential landscape u; having multiple latent flows defined on
different potential landscapes therefore does not interfere with each other.

Impact of different sequence lengths. Regarding the impact of sequence lengths, if the sequence is
longer and has larger variations, generally the equivariance error would be worse. To better illustrate
this point, we perform an ablation study on MNIST and present the results in Table 10. Specifically,
we change the sequence length from 9 to 12, which increases the extent of scaling from maximally
1.8 times to maximally 2.1 times, and increases the rotation angle from maximally 80 degrees to
maximally 110 degrees. As can be observed, the equivariance error gets larger when the sequence
becomes longer and the variations are larger. Notice that even for the longer sequence, our method
still outperforms other baselines with shorter sequences.

A.5 HJ equations as dynamic optimal transport

We now turn to introduce why HJ equations could minimize the Wasserstein distance. As stated
in [4], the L2 Wasserstein distance can be re-formulated in the fluid mechanical interpretation as

W 2 = inf

∫
D

∫ 1

0

1

2
ρ(x, t)v(x, t)2 dx dt (16)

where the density satisfies the continuity equation (∂tρ = −∇ · (ρ(x, t)v(x, t)). If we introduce the
momentum m(x, t) = ρ(x, t)v(x, t) and two Lagrange multipliers u and λ, the Lagrangian function
of the Wasserstein distance would be:

L(ρ,m, ϕ) =

∫
D

∫ 1

0

||m||2

2ρ
+ u(∂tρ+∇ ·m)− λ(ρ− s2) (17)
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Scaling Rotation Coloring

Figure 10: More visualizations of the learned latent flows on MNIST [54].

where the second term is the equality constraint, and the third term is an equality constraint with a
slack variable s. Using integration by parts formula, the above equation can be re-written as

L(ρ,m, ϕ) =

∫
D

∫ 1

0

||m||2

2ρ
+

∫
D

uρ|10 −
∫
D

∫ 1

0

(∂tuρ+∇u ·m)− λ(ρ− s2) (18)

Based on the set of Karush–Kuhn–Tucker (KKT) conditions (∂mL = 0, ∂uL = 0, ∂ρL = 0, and
λ ≥ 0), we would have:

∂mL = m
ρ −∇u = v −∇u = 0

∂uL = ∂tρ+∇ ·m = 0

∂ρL = − ||m||2
2ρ2 − ∂tu− λ = − 1

2 ||v||
2 − ∂tu− λ = 0

(19)

where the first condition indicates that the gradient ∇u acts as the velocity field, and the third
condition implies the optimal solution is given by the generalized HJ equation:

∂tu+
1

2
||∇u||2 = −λ ≤ 0 (20)

We thus apply the generalized HJ equation (i.e., ∂tu+ 1
2 ||∇u||

2 ≤ 0) as the constraints. We further
use an extra negative force because this would give more dynamics for modeling the posterior flow.

A.6 More visualizations

Fig. 10, 11, and 12 display more visualization results of the latent evolution on MNIST, Shapes3D,
Falcol3D and Isaac3D, respectively. Across all the datasets, our method presents precise control of the
given transformations. Fig. 13 and 14 show more latent evolution results of switching transformations
(top) and combining transformations (bottom) on MNIST and Shapes3D, respectively. Fig. 15 also
visualizes a few examples of superposing and switching transformation on Falcol3D and Isaac3D.
Our latent flows learn to compose or switch different transformations precisely and flexibly.
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Figure 11: More visualizations of the learned latent flows on Shapes3D [10].
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Figure 12: Exemplary visualizations of learned latent flows on Falcol3D (top) and Isaac3D (bottom).
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Figure 13: More visualizations of switching and superposing transformations on MNIST [54].
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Figure 14: More visualizations of switching and superposing transformations on Shapes3D [10].
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Figure 15: Exemplary visualization results of superposing transformations on Isaac3D (left) and
switching transformations on Falcol3D (right).
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