Can Calibration Improve Sample Prioritization?

Abstract

Calibration can reduce overconfident predictions of deep neural networks, but can calibration also accelerate training by selecting the right samples? In this paper, we show that it can. We study the effect of popular calibration techniques in selecting better subsets of samples during training (also called sample prioritization) and observe that calibration can improve the quality of subsets, reduce the number of examples per epoch (by at least 70%), and can thereby speed up the overall training process. We further study the effect of using calibrated pre-trained models coupled with calibration during training to guide sample prioritization, which again seems to improve the quality of samples selected.

1 Introduction

Calibration is a widely used technique in machine learning to reduce overconfidence in predictions. Modern deep neural networks are known to be overconfident classifiers or predictors, and calibrated networks provide trustworthy and reliable confidence estimates [1]. Hence, finding new calibration techniques and improving them has been an active area of research [1, 6, 10, 11].

In this paper, we ask if calibration aids in accelerating training by using sample prioritization, i.e., we select training samples based on calibrated predictions to better steer the training performance. We explore different calibration techniques and focus on selecting a subset with the most informative samples during each epoch. We observe that calibration performed during training plays a crucial role in choosing the most informative subsets, which in turn accelerates neural network training.

We then investigate the effect of an external pre-trained model which is well-calibrated (with larger capacity), on the sample selection process during training.

Our contributions are as follows,

We provide an in-depth study analyzing the effect of various calibration techniques on sample prioritization during training. We also consider pre-trained calibrated target models and observe their effect on sample prioritization along with calibration during training. We benchmark our findings on widely used CIFAR-10 and CIFAR-100 datasets and observe the improved quality of the chosen subsets across different subset sizes, which ensures faster deep neural network training.

2 Background

2.1 Problem Statement

We formulate the problem in the paper as follows. A calibration technique C is performed during training at each epoch, and a sample prioritization function a is then used to select the most informative samples for training each subsequent epoch. We use Expected Calibration Error (ECE) for model calibration [10], which measures the absolute difference between the model's accuracy and its confidence.
The paper discusses how a calibration technique \(C \), when coupled with a sample prioritization function \(\alpha \), affects the performance (accuracy and calibration error (ECE)) of the model. In addition, we also observe if this phenomenon can aid in faster and more efficient training. We hypothesize a closer relationship between calibration and sample prioritization during training wherein, the calibrated model probabilities at each epoch are used by a sample prioritization criterion to select the most informative samples for training each subsequent epoch.

2.2 Calibration

Calibration is a technique that curbs overconfident predictions in deep neural networks, wherein the predicted (softmax) probabilities reflect true probabilities of correctness (better confidence estimates) \(^\text{1}\). In this paper, we consider various prominently used calibration techniques which are performed during training.

Label Smoothing \(^\text{9}\) implicitly calibrates a model by discouraging overconfident prediction probabilities during training. The one-hot encoded ground truth labels \(y_k \) are smoothened using a parameter \(\alpha \), that is \(y_{LS}^k = y_k(1 - \alpha) + \alpha/K \), where \(K \) is the number of classes. These smoothened targets \(y_{LS}^k \) and predicted outputs \(p_k \) are then used to minimize the cross-entropy loss.

Mixup is a data augmentation method \(^\text{14}\) which is shown to output well-calibrated predictive scores \(^\text{13}\), and is again performed during training.

\[
\bar{x} = \lambda x_i + (1 - \lambda)x_j \\
\bar{y} = \lambda y_i + (1 - \lambda)y_j
\]

where \(x_i \) and \(x_j \) are two input data points that are randomly sampled, and \(y_i \) and \(y_j \) are their respective one-hot encoded labels. Here, \(\lambda \sim \text{Beta}(\alpha, \alpha) \) with \(\lambda \in [0, 1] \).

Focal Loss is an alternative loss function to cross-entropy which yields calibrated probabilities by minimizing a regularized KL divergence between the predicted and target distributions \(^\text{8}\).

\[
L_{Focal} = -(1 - p)^\gamma \log p
\]

where \(p \) is the probability assigned by the model to the ground-truth correct class, and \(\gamma \) is a hyperparameter. When compared with cross-entropy, focal loss has an added factor that encourages the samples predicted with correct classes to have lower probabilities. This enables the predicted distribution to have higher entropy, thereby helping avoid overconfident predictions.

2.3 Sample Prioritization

Sample prioritization/subset selection is the process of selecting important samples during different stages of training to accelerate the training process of a deep neural network without compromising on performance. In this paper, we perform sample prioritization during training using **Max Entropy**, which is a de facto uncertainty sampling technique to select the most efficient samples at each epoch.

Max Entropy selects the most informative samples (top-\(k \)) that maximize the predictive entropy \(^\text{12}\).

\[
H[y|x, D_{\text{train}}] := - \sum_c p(y = c|x, D_{\text{train}}) \log p(y = c|x, D_{\text{train}})
\]

2.4 Pre-trained Calibrated Target models

Pre-trained models have been widely used in literature to obtain comprehensive sample representations before training a downstream task \(^\text{5}\). We use a **pre-trained calibrated target model with larger capacity** \(^\text{3}\) and use the Max Entropy estimates obtained from this target model at each epoch to select the samples, thereby guiding the corresponding epochs of the model during training. This is performed in addition to calibrating a model during training.

3 Experiments and Results

We perform our experiments on CIFAR-10 and CIFAR-100 \(^\text{4}\) datasets with the setting mentioned in Section \(^\text{2.1}\) and we use the Resnet-34 architecture \(^\text{2}\) for training. For both datasets, the initial
Table 1: Test Accuracies (%) and ECEs (%) across various calibration techniques and subset sizes with Resnet-34 model for all datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Calibration</th>
<th>100% Accuracy</th>
<th>ECE</th>
<th>30% Accuracy</th>
<th>ECE</th>
<th>20% Accuracy</th>
<th>ECE</th>
<th>10% Accuracy</th>
<th>ECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10</td>
<td>No Calibration (Baseline)</td>
<td>94.1</td>
<td>4.1</td>
<td>93.6</td>
<td>5.33</td>
<td>93.86</td>
<td>4.01</td>
<td>93.23</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Label Smoothing</td>
<td>94</td>
<td>1.84</td>
<td>91.74</td>
<td>3.17</td>
<td>91.48</td>
<td>3.56</td>
<td>91.72</td>
<td>2.71</td>
</tr>
<tr>
<td></td>
<td>Mixup</td>
<td>95.1</td>
<td>2.1</td>
<td>94.39</td>
<td>2.67</td>
<td>93.35</td>
<td>2.59</td>
<td>93.17</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>Focal Loss</td>
<td>94.69</td>
<td>1.71</td>
<td>93.19</td>
<td>1.2</td>
<td>92.6</td>
<td>1.25</td>
<td>92.25</td>
<td>1.42</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>No Calibration (Baseline)</td>
<td>77.48</td>
<td>5.42</td>
<td>73.13</td>
<td>10.77</td>
<td>71.54</td>
<td>13.16</td>
<td>69.65</td>
<td>14.47</td>
</tr>
<tr>
<td></td>
<td>Label Smoothing</td>
<td>77.05</td>
<td>4.88</td>
<td>72.21</td>
<td>3.45</td>
<td>70.93</td>
<td>5.75</td>
<td>68.63</td>
<td>5.67</td>
</tr>
<tr>
<td></td>
<td>Mixup</td>
<td>78.68</td>
<td>3.59</td>
<td>73.57</td>
<td>1.49</td>
<td>72.02</td>
<td>2.4</td>
<td>69.1</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>Focal Loss</td>
<td>78.59</td>
<td>3.57</td>
<td>71.86</td>
<td>1.67</td>
<td>70.61</td>
<td>3.25</td>
<td>65.81</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Figure 1: Validation ECEs (%) for all datasets with 30% subset size.

For both datasets, we use the Stochastic Gradient Descent optimizer with initial learning rates of 0.01 and 0.1 respectively, with a cosine annealing [2] scheduler and 200 training epochs, weight decay of $5e^{-4}$ and momentum of 0.9. The models are trained using a V100 GPU. We consider classification accuracies and ECEs across different calibration techniques with their respective parameter sweeps as follows: Label Smoothing (α) – {0.01, 0.03, 0.05, 0.07, 0.09}, Mixup (α) – {0.1, 0.15, 0.2, 0.25, 0.3, 0.35} and Focal Loss (γ) – {1, 2, 3, 4, 5}. As baselines, we consider uncalibrated models with standard cross-entropy loss. For the target experiments, we choose Resnet-50 models [2] trained with Mixup (with $\alpha = 0.3$ for CIFAR-10, and $\alpha = 0.25$ for CIFAR-100) as our calibrated pre-trained target models after performing parameter sweeps across all calibration techniques.

3.1 Discussion on Results

Table 1 shows the test ECEs and accuracies across different calibration techniques and subset sizes with Max Entropy criterion. We can observe that all calibration techniques have lower test ECEs than their respective uncalibrated models for all subset sizes. Figures 1a and 1b also illustrate lower validation ECEs across training epochs for calibrated models than their respective uncalibrated models, for 30% subset size. In addition, we observe that test accuracies for Mixup are consistently comparable and often higher than their respective uncalibrated models for both datasets. These results...
Table 2: Test Accuracies (%) and ECEs (%) across various calibration techniques and subset sizes with Resnet-34 model for all datasets, and Resnet-50 (Mixup) model as target.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Calibration</th>
<th>100% Accuracy</th>
<th>ECE</th>
<th>30% Accuracy</th>
<th>ECE</th>
<th>20% Accuracy</th>
<th>ECE</th>
<th>10% Accuracy</th>
<th>ECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10</td>
<td>No Calibration</td>
<td>94.1</td>
<td>4.1</td>
<td>93.95</td>
<td>4.04</td>
<td>93.43</td>
<td>4.9</td>
<td>93.16</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td>Cross-Entropy (Baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Label Smoothing 0.03/0.05/0.05/0.03</td>
<td>94</td>
<td>1.84</td>
<td>93.62</td>
<td>2.93</td>
<td>93.3</td>
<td>3.32</td>
<td>93.27</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Mixup 0.1/0.3/0.15/0.15</td>
<td>95.1</td>
<td>2.1</td>
<td>94.7</td>
<td>2.88</td>
<td>93.79</td>
<td>2.73</td>
<td>93.22</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>Focal Loss 1/2/2/1</td>
<td>94.69</td>
<td>1.71</td>
<td>93.15</td>
<td>1.06</td>
<td>92.65</td>
<td>1.58</td>
<td>92.84</td>
<td>1.89</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>No Calibration</td>
<td>77.48</td>
<td>5.42</td>
<td>75.38</td>
<td>9.36</td>
<td>75.04</td>
<td>9.39</td>
<td>71.07</td>
<td>9.27</td>
</tr>
<tr>
<td></td>
<td>Cross-Entropy (Baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Label Smoothing 0.03/0.03/0.03/0.09</td>
<td>77.05</td>
<td>4.88</td>
<td>76.06</td>
<td>2.28</td>
<td>75.27</td>
<td>2.67</td>
<td>72.59</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>Mixup 0.15/0.20/0.15/0.15</td>
<td>78.68</td>
<td>3.59</td>
<td>75.62</td>
<td>0.86</td>
<td>74.78</td>
<td>1.43</td>
<td>70.32</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Focal Loss 1/2/3/2</td>
<td>78.59</td>
<td>3.57</td>
<td>74.89</td>
<td>2.37</td>
<td>73.73</td>
<td>1.43</td>
<td>70.89</td>
<td>1.51</td>
</tr>
</tbody>
</table>

indicate that there are no significant trade-offs between model accuracy and model confidence (ECE) when calibration is performed with sample prioritization, thereby demonstrating that performing calibration during training improves sample prioritization.

As expected, we observe that the test accuracies reduce when the subset size becomes smaller. Moreover, Mixup consistently has higher test accuracies and low test ECEs across different subset sizes compared to other calibration techniques for both datasets. This could be attributed to Mixup being a data transformation/augmentation technique, thereby performing well even in the low-data regime. Further, training with Mixup leads to a balanced representation of classes in the chosen subsets (Refer Appendix A Figure 2a). In contrast, Label Smoothing and Focal Loss are loss-based calibration techniques with no explicit transformation performed on the underlying training data.

We also observe that Mixup has lower test ECEs and also consistently high test accuracies across the board on both datasets, contrary to Focal Loss which results in lower test ECEs only for CIFAR-10 with comparable test accuracies. Here, it is important to note that Focal Loss is more effective when coupled with a post hoc calibration technique like temperature scaling [8]. However, this setting is not applicable in our paper since we explicitly focus on calibration techniques during training.

Effectiveness of Target: Table 2 exhibits the results when a calibrated pre-trained target (Resnet-50 with Mixup) is used for guiding sample prioritization with calibration during training. Interestingly, a well-calibrated target model can boost the performance of under-performing calibration techniques (like Label Smoothing for CIFAR-10 and CIFAR-100) performed without a target. However, for calibration techniques that are already performing well (like Mixup and Focal Loss), there is no significant loss in performance on CIFAR10, while there is a significant improvement in performance on CIFAR100. This can be clearly observed when comparing Table 2 with Table 1. We assume that the performance of an uncalibrated model (no calibration) trained with full (100%) data is similar for experiments performed with and without a target model.

4 Conclusion

In this paper, we investigate whether existing calibration techniques can improve sample prioritization during training. We empirically showcase that a deep neural network that is calibrated during training selects better subsets of samples than an uncalibrated model. We also demonstrate the effectiveness of pre-trained calibrated target models in boosting calibration efficiencies when performing sample prioritization during training. Finally, we show that since calibration improves sample prioritization, it also accelerates neural network training multifold.
References

A Class Distribution

Figure 2: Class Distribution across epochs for all calibration techniques with Max Entropy and Random with 30% subset size.

We can infer that even after performing calibration during training, Mixup (Figure 2a) produces a relatively balanced representation of classes in each epoch when compared to Label Smoothing and Focal Loss (Figures 2b, 2c), which do not exhibit balanced representation of classes in the chosen subsets. The class representations are imbalanced for the no calibration setting as well. (Figure 2d).

B Common Samples between Epochs

Figure 3: Common Samples (%) between epochs for all datasets with 30% subset size.

Figures 3a and 3b show the percentage of common samples between consecutive epochs for CIFAR-10 and CIFAR-100 respectively, across various calibration techniques, with Max Entropy as the sample prioritization mechanism with 30% subset size. For comparison, we consider random sampling as a baseline sample prioritization technique. In all settings, sample selection based on Max Entropy leads to a significantly higher percentage of common samples between consecutive epochs. In contrast, random selection results in very few common samples between consecutive epochs throughout training. Despite changing only a small percentage of samples across epochs, sample prioritization with Max Entropy coupled with any calibration technique performs well in terms of classification accuracy and ECE.
C Validation Accuracies

We also report the validation accuracies of CIFAR-10 and CIFAR-100 with 30% subset size across all calibration techniques with Max Entropy as the sample prioritization technique in Figures 4a and 4b.

D Reliability Diagrams

We report the reliability diagrams of CIFAR-10 and CIFAR-100 with 30% subset size across all calibration techniques with Max Entropy as the sample prioritization criterion in Figures 5 and 6.

Figure 4: Validation Accuracies (%) for all datasets with 30% subset size.

Figure 5: Reliability diagrams for CIFAR-10 with 30% subset size
Figure 6: Reliability diagrams for CIFAR-100 with 30% subset size

(a) Mixup
(b) Focal Loss
(c) Label Smoothing
(d) No Calibration