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Abstract

A major consideration in multilingual language001
modeling is how to best represent languages002
with diverse vocabularies and scripts. Although003
contemporary text encoding methods cover004
most of the world’s writing systems, they ex-005
hibit bias towards the high-resource languages006
of the Global West. As a result, texts of un-007
derrepresented languages tend to be segmented008
into long sequences of linguistically meaning-009
less units. To address the disparities, we intro-010
duce a new paradigm that encodes the same011
information with segments of consistent size012
across diverse languages. Our encoding con-013
vention (MYTE) is based on morphemes, as014
their inventories are more balanced across lan-015
guages than characters, which are used in pre-016
vious methods. We show that MYTE pro-017
duces shorter encodings for all 99 analyzed018
languages, with the most notable improvements019
for non-European languages and non-Latin020
scripts. This, in turn, improves multilingual021
LM performance and diminishes the perplexity022
gap throughout diverse languages. 1023

1 Introduction024

Multilingual language models have become the025

state-of-the-art solution for performing tasks on a026

wide range of languages (Devlin et al., 2019; Con-027

neau et al., 2020; Xue et al., 2021). However, it028

is challenging to ensuring high performance for029

all languages, due to differences in data availabil-030

ity especially for the long tail of low-resource lan-031

guages (Malkin et al., 2022). This challenge is032

compounded by choices of how words are repre-033

sented in different langauges during tokenization;034

past studies showed that multilingual models ei-035

ther cannot accurately represent texts in rare lan-036

guages (Pfeiffer et al., 2021) or do so via over-037

segmentation, which is detrimental both to model038

1The code and models will be released upon publication
of this work.

EN: roughly at 12
utf-8 72 6F 75 67 68 6C 79 61 74 31 32

myte 52 82 A3 93 6C 79 61 74 31 32

CS: přibližně ve 12
utf-8 70 C5 99 69 62 6C 69 C5 BE 6E C4 9B 76 65 31 32

myte 4B 84 81 53 80 96 BB 43 97 76 65 31 32

TE: రసుమారు 12 వదద్
utf-8 E0 B0 B0 E0 B0 B8 E0 B1 81 E0 B0 AE E0 B0 BE E0 B0 B0 E0 B1 81

31 32 E0 B0 B5 E0 B0 A6 E0 B1 8D E0 B0 A6

myte 57 83 B7 94 E0 B1 81 57 80 8F B4 31 32 57 82 9C 8B

Figure 1: The same phrase is spelled in three languages:
English, Czech, and Telugu. UTF-8 byte encoding of
the phrase is shown in blue, while MYTE in green
underneath. MYTE achieves higher encoding compres-
sion for texts using diacritics or non-Latin script.

performance and inference cost (Petrov et al., 2023; 039

Ahia et al., 2023). 040

Byte-level models aim to solve these challenges. 041

They use byte-level text representations which in- 042

crease coverage (Xue et al., 2022), for example 043

common encodings such as UTF-8 support most 044

of the world’s scripts. Nevertheless, the over- 045

segmentation problem still exists even at the byte 046

level, as byte sequences for single characters are 047

overly long for many low-resource and non-Latin 048

script languages. This problem has an immense 049

effect on modeling these scripts in NLP systems, 050

as operating on longer sequences significantly in- 051

creases the computation costs of training and in- 052

ference in models, while also making learning less 053

sample efficient. Furthermore, the billing for APIs 054

such as ChatGPT (openai.com/chatgpt) is often 055

associated with the segmented sequence length, dis- 056

advantaging speakers of specific languages (Ahia 057

et al., 2023). 058

In this work, we propose a novel method to de- 059

rive byte representations of text and enable equi- 060

table segmentations across languages and scripts. 061

In our approach, we replace the current conven- 062

1
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tion of assigning byte codes to characters with063

a morphology-driven approach, as morphemes2064

are more informatively comparable constituents065

of text across languages than characters (Cotterell066

et al., 2018). Specifically, we introduce a novel067

algorithm for representing text as byte sequences068

that is based on unsupervised morphological seg-069

mentation (Smit et al., 2014). We demonstrate070

that our new paradigm for byte representation im-071

proves the segmentation of diverse languages of072

various scripts and morphological inventories. Fur-073

thermore, the segmentation of parallel sentences074

across languages converges to comparable lengths.075

We test our method’s effectiveness in creating076

equitable text representation – representations that077

given parallel texts have similar encoded sequence078

lengths. We then evaluate the applicability of the079

method to multilingual language modeling across080

99 typologically diverse languages.081

Our contributions can be summarized as follows:082

(a) We propose a novel byte-encoding method that083

is morphologically driven; (b) We show empiri-084

cally that the resulting representations are more085

equitable across languages than vanilla byte, char-086

acter, or subword segmentation; (c) We analyze the087

typical lengths of these representations and show088

decreased sequence length across all analyzed lan-089

guages, significantly reducing computation cost090

and benefiting non-Latin script languages the most;091

(d) We train a language model with our new repre-092

sentation scheme and demonstrate that it maintains093

balanced and better LM performance across diverse094

languages and exhibits faster inference speed. This095

improvements holds across different model scales.096

We will release our code and models to facilitate097

further research in this direction.098

2 Background: UTF-8 Bytes099

The vast majority of texts online3 are represented100

as bytes via UTF-8 convention, which is defined by101

the Unicode Standard (The Unicode Consortium,102

2011). In UTF-8, each character (or codepoint)103

is represented as a sequence of one to four bytes.104

Due to the gradual development of communication105

2In this work, the usage of term “morphemes” encom-
passes both “morphemes” and “morphs”. Some linguistic
theories use the term “morph” for specific textual realizations
of abstract “morphemes”. For instance, in English, es as in
foxes and s as in cats are two distinct “morphs” of a plurality
“morpheme”. For an in-depth discussion about these two terms,
see Section 4 of Žabokrtský et al. (2022)

3https://w3techs.com/technologies/overview/
character_encoding

Figure 2: UTF-8 codepage (inspired by the visualiza-
tions from: en.wikipedia.org/wiki/UTF-8). Each
row contains 16 bytes with the same leading hexadeci-
mal digit. Bytes in the range C2 - F4 are leading bytes.
They mark the beginning of a multibyte code of the
length shown in each cell. Bytes in the range 80 - BF
are continuation bytes, which follow a leading byte in
multibyte codes. Bytes FE and FF are unused. Range
C2 - F4 encodes Latin capital letters. In MYTE, these
characters are decomposed to free space used to encode
morphemes.

standards, UTF-8 first allocated one-byte represen- 106

tation ASCII symbols, which cover primary Latin- 107

script characters (see 00 to 7F in Figure 2). Other 108

characters are represented as multi-byte codes start- 109

ing with a byte from range C2 to F4 denoting the 110

number of bytes in the codepoint and followed by 111

continuation bytes from range 80 to BF. 112

In UTF-8 convention, characters in non-Latin 113

alphabetic scripts (Cyrillic, Armenian, Georgian), 114

diacritics, and abjads4 usually have two-byte codes, 115

while the byte length increases to three or four for 116

Brahmic abugidas5 and CJK (Chinese, Japanese, 117

Korean) logographs. As a result, the granularity 118

of byte codes varies significantly across languages; 119

this means that texts conveying the same informa- 120

tion across languages tend to be represented by 121

byte sequences of significantly different lengths. 122

4Abjads are writing scripts that do not denote vowels, e.g.,
Hebrew, Arabic.

5Abugidas are scripts representing consonant-vowel as one
character, typical to the Indian Subcontinent and South-East
Asia, e.g., Devanagari, Bengali.
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3 Method: Morphology-Driven Bytes123

As discussed in the prior section and shown in124

Figure 1, UTF-8 convention produces longer byte125

sequences for some languages due to the develop-126

ment choices. To make byte representation more127

equitable, we introduce an encoding paradigm that128

aims to assign byte codes of similar lengths to mor-129

phemes across languages. We base our encoding130

scheme on morphological analysis because mor-131

phemes are the shortest meaningful constituents132

and are independent of the writing convention133

(Haspelmath and Sims, 2010). We assume that134

the number of morphemes in sentences with the135

same information load is more balanced across lan-136

guages than the number of characters, bytes, or137

tokens. Thus, we enforce balanced segmentation138

granularity across languages.139

An alternative approach to encoding morpholog-140

ical representations would be treating the union141

of multilingual morpheme inventories across lan-142

guages as one large subword vocabulary. To cover143

the morphemes of many languages in this manner,144

the vocabulary would be much larger than the ones145

usually applied to models.6 This would incur ad-146

ditional computational costs and, similar to other147

subword representations, would likely not general-148

ize well to new, unseen languages.149

3.1 Morphological Analysis150

We train an unsupervised morphological analyzer,151

Morfessor (Smit et al., 2014) on lexicons derived152

from whole Wikipedia articles in 99 languages.153

The morphological analysis is performed on each154

of the languages separately to balance the number155

of morphemes per language, regardless of data re-156

sourcefulness. For each language, we derived a157

set of 4096 morphemes; the number was chosen to158

balance segmentation granularity across languages.159

For each morpheme, we save its score, defined as160

the hypothetical loss reduction of the Morfessor161

model if the morpheme had not been included in162

the set. We take the union of sets across languages163

to obtain a multilingual morpheme inventory. The164

details of lexicon preparation and the usage of Mor-165

fessor are provided in Appendix A.166

6The proposed MYTE encoding offers capacity for
2,130,432 of variable length codepoints. It is considerably
more than in any of the commonly used subword vocabularies.
For reference, large vocabulary XLM-V model allocates 1
million subwords (Liang et al., 2023).

ID Group Unicode Script(s) Leading Byte

2 b 3 b 4 b

0 Latin Latin 42 4A 52

1 Common Mixed, Common,
Inherited, Unkown

43 4B 53

2 Non-Latin
Alphabetic

Greek, Cyrillic, Ar-
menian, Georgian

44 4C 54

3 Abjads Hebrew, Arabic,
Syriac, Thaana,
Tifinagh

45 4D 55

4 Abugidas
North

Devanagari, Gur-
mukhi, Gujarati,
Oriya, Bengali,
Sinhala, Tibetan

46 4E 56

5 Abugidas
South

Telugu, Kannada,
Tamil, Malayalam,
Thai, Lao, Myan-
mar, Tai, Tagalog,
Khmer

47 4F 57

6 CJK Hangul, Han, Yi,
Katakana, Hiragana,
Bopomofo

48 50 58

7 Other Remaining scripts 49 51 59

Table 1: Groups of scripts with the initial bytes for their
morphological blocks. The groups were selected to
balance the number of covered languages with similar
writing systems.

3.2 Enriching Byte Representation with 167

Morphology 168

To alleviate UTF-8 inefficiencies, we propose a 169

systematic rearrangement of byte codepage. We 170

free 26 bytes ( 41 to 5A ) by decomposing capital 171

letter codes into lowercase letters and capitalization 172

markers. The first byte from this range ( 41 ) is re- 173

purposed as a capitalization marker. The remaining 174

25 bytes are freed space used to store morphemes. 175

Our method takes the sequences of UTF-8 bytes 176

and transcodes them into shorter sequences using 177

the vocabulary of the same size, i.e. 256, as de- 178

picted in Figure 1. We apply the following steps to 179

transcode UTF-8 sequences to MYTE encodings: 180

1. We use UTF-8 as base encoding of text. Then, 181

the byte sequences are transcoded from left 182

to right, merging morpheme sequences and 183

replacing them as dedicated codepoints de- 184

scribed in the following points. 185

2. The morphemes are grouped by scripts as 186

shown in Table 1. Codepoints of multiple 187
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scripts within a single morpheme are assigned188

to the second cluster (Mixed script).189

3. The morphemes are ranked based on their190

Morfessor score defined in Section 3.1.191

4. We assign multibyte codepoint for each of the192

morphemes analogously to the UTF-8 conven-193

tion (see Section 2). Specifically, the first byte194

denoting the beginning of the morphological195

codepoint is assigned from the freed range196

( 42 - 5A ) based on the morph’s inclusion in197

one of the script groups. It is followed by con-198

tinuation bytes from the 64 element range 80199

- BF, as in UTF-8 convention. The 64 mor-200

phemes with the highest score are saved as201

two-byte codepoints, following 642 = 4096202

as three-byte codepoints; the remaining mor-203

phemes are saved as up to 643 = 262, 144204

four-byte codepoints. The capacity for new205

codepoints was not exhausted for any script206

group.207

4 Equitable Multilingual Segmentation208

with MYTE209

We first analyze the properties of our proposed210

morphology-driven encoding. Following the set-211

ting of Petrov et al. (2023), we measure whether212

MYTE produces the segmented sequences of com-213

parable length across languages.214

We compute parity across languages using the215

multi-parallel corpus Flores 200 (Team et al., 2022).216

Parity is defined as |t(sl)|/|t(sen)|, where sl and217

sen stand for parallel sentences in language l and218

in English, respectively. |t(s)| is the length of se-219

quence s with segmentation method t.220

We compare the MYTE encoding from Sec-221

tion 3.2 to several baselines of common input rep-222

resentation: (a) Vanilla byte-level encoding via223

UTF-8; (b) Character-level encoding; (c) Subwords224

produced by Sentencepiece algorithm (Kudo and225

Richardson, 2018). In comparison, we focus on the226

equitability of sequence lengths produced by the227

methods for diverse languages.228

Furthermore, we compare our morphological229

byte encoding sequence compression rate against230

the UTF-8 convention. Compression is essential231

for an effective text representation as it affects NLP232

systems’ efficiency and usage cost (Ahia et al.,233

2023). Finally, we check whether our method more234

effectively compresses languages and scripts un-235

seen in MYTE algorithm described in Section 3.2.236

Figure 3: Boxplot aggregating parity against English
for three segmentation methods: MYTE, UTF-8, char-
acters, and subword tokens from mT5 tokenizer (Xue
et al., 2021). Parities were computed on multi-parallel
Flores 200 corpus.

4.1 Results 237

MYTE is Equitable across Languages The 238

comparison of sequence length across parallel sen- 239

tences in Flores 200 is shown in Figure 4. Our rep- 240

resentation is more balanced across languages than 241

the original UTF-8 bytes. There are still four lan- 242

guages with observably higher code lengths (e.g., 243

Greek, Vietnamese, Punjabi, Khmer). However, 244

MYTE encoding still improves their parity to En- 245

glish such that it is much lower than outlier lan- 246

guages in UTF-8 (1.7 vs. 3.5 in the worst-case 247

languages, respectively). 248

Figure 3 shows that MYTE representations are 249

more balanced in parity scores across languages 250

than subword tokenization. In particular, we im- 251

prove on the long tail of languages over-segmented 252

either in byte or subword encoding. The parties 253

closest to MYTE are obtained by character repre- 254

sentation. However, the set of all Unicode char- 255

acters is larger by orders of magnitude than the 256

number of unique bytes used in MYTE (149,878 257

vs. 254). 258

MYTE Encoding Compresses Text Representa- 259

tion The encoded sequence lengths are decreased 260

with MYTE encoding for all languages, as de- 261

picted in Figure 4c. The rate of compression 262

varies from 1% for Vietnamese and Chinese to 263

almost 70% for Burmese. As seen in Table 2, the 264

highest compression is obtained for low-resource 265

languages with non-Latin scripts. Notably, this 266

group of languages is the most susceptible to over- 267

segmentation in UTF-8 encoding. 268
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(a) UTF-8

(b) MYTE

(c) Sequence compression

Figure 4: Average byte sequence lengths of parallel
sentences from Flores 200 encoded by a) UTF-8 and b)
MYTE. Figure c) depicts the percentage by which the
latter sequences are shorter than the former. Results for
all the languages can be found in Appendix B.

Findings Generalize to Unseen Languages but269

not Unseen Scripts In Table 2, we observe that270

a decrease in sequence length and parity applies271

Byte Myte Comp.

Parity Len. Parity Len.

English 1.00 131 1.00 109 16%

Latin HR 1.14 149 1.18 129 14%
Latin LR 1.12 147 1.18 128 12%
¬Latin HR 1.62 212 1.29 141 29%
¬Latin LR 2.33 305 1.33 145 50%

Seen 1.56 204 1.24 135 26%

Unseen Lang 1.50 196 1.27 138 23%
Unseen Script 2.80 365 3.35 365 0%

Unseen 1.72 224 1.61 176 19%

Table 2: Averaged sequence length and corresponding
parities to English of UTF-8 and MYTE. We aggregated
results for languages used in morphological adaptation
(i.e., Seen) by their script (Latin vs. Non-Latin) and
resourcefulness (HR: high resource, LR: low resource)
based on categorization from Joshi et al. (2020). The
last three rows present results for languages unseen in
morphological adaptation; all of them are low-resource.
Shortened column headers: Len. – Length, Comp. –
Compression.

to five low-resource languages not considered in 272

constructing MYTE representation, referred to as 273

unseen languages. One exemption from the rule 274

is Santhali, written in unseen Ol Chiki script, for 275

which we do not observe a change in the encoded 276

sequence length. This observation highlights the 277

importance of considering a wide range of lan- 278

guages and scripts when constructing morpheme 279

inventories. Importantly, MYTE did not reach a 280

capacity of available byte codepoints, and thus, the 281

method can be extended to additional languages. 282

The complete results for unseen languages and 283

scripts are shown in Appendix B. 284

5 MyT5: Language Modeling with 285

MYTE 286

This section investigates the benefits of using 287

MYTE in byte-level language modeling. For that 288

purpose, we have trained T5 language models on 289

MYTE representation. We refer to these models 290

as Myte T5 models, or MyT5 for short. 291

5.1 Training Details 292

We base the architecture and implementation of our 293

MyT5 model on the byte-level T5 model, i.e., ByT5 294

(Xue et al., 2022). ByT5, like other T5 models (Raf- 295

fel et al., 2020), is an encoder-decoder Transformer 296

model trained on predicting masked spans of texts. 297

The main novelty of the ByT5 model is that it op- 298
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(a) LM Performance (ρS = −0.81) (b) Inference Time (ρS = −0.77)

Figure 5: The difference in Byte-per-English-Bit and inference time between MyT5 and ByT5 large models against
compression factor of MYTE. For each sentence, the BPEB value is normalized by the number of UTF-8 bytes used
to represent the corresponding English sentence. The inference was run on A40 GPU core, we report an average
per-example delta. ρS are Spearman’s correlation coefficients.

erates on bytes instead of subword tokens, as in299

the standard T5 model, making it a suitable base300

model for our setting.301

We pre-train three new instances of MYTE-302

level models of different sizes: small (300M), base303

(582M), and large (1.23B parameters). For pre-304

training, we used the standard task of restoring305

corrupted spans from mC4 corpus (Raffel et al.,306

2020). All the byte sequences are transcoded into307

morphologically-driven bytes. We use Jax imple-308

mentation, i.e., t5x repository (Roberts et al., 2022),309

and the same hyperparameters as in ByT5 (Xue310

et al., 2022). The only difference from their train-311

ing approach is that we pre-train for 250,000 steps312

rather than one million steps since we observe over-313

fitting when training for more steps, especially on314

low-resource languages. Similarly, Chung et al.315

(2023) also observed overfitting in multilingual316

T5 models caused by extensive duplications in317

the mC4 corpus, leading them to train models for318

250,000 steps only. In evaluations, we compare319

against a reimplemented ByT5 instance trained for320

the same time.321

5.2 Experiments322

We compare the performance of the MyT5 and323

ByT5 models, focusing on two aspects:324

First, the multilingual language modeling per-325

formance of MyT5 – how is it, and is it compa-326

rable across languages? Following Cotterell et al.327

(2018), we use the Bit-per-English-Byte metric on 328

the multi-parallel FLORES 200 corpus to control 329

for the informativeness of evaluation sequences: 330

BPEB =
1

|cEnglish,UTF |+ 1

|c|+1∑
i=1

log p(ci|c<i)

(1) 331

c is a sequence of bytes (original UTF-8 or 332

MYTE) with ci being the i-th byte. For normaliza- 333

tion, we use the number of UTF-8 bytes in English 334

sentence cEnglish,UTF for fair comparison across 335

languages and representation methods. It is the 336

main difference from perplexity, which is normal- 337

ized by the sequence length and thus confounded 338

by segmentation rates characteristic of individual 339

languages and encodings. 340

Second, we compare inference times of text gen- 341

eration of MyT5 and ByT5. We expect a decrease 342

in sequence length, as shown in the last section, will 343

render up to a quadratic reduction of forward-pass 344

time due to the quadratic complexity of attention 345

computation. 346

For both aspects, we report the results on three 347

scales of the model (small, base, and large). Unless 348

stated otherwise, we present the results of the large 349

model. 350

6



5.3 Results351

MyT5 Outperforms ByT5 in Language Model-352

ing In Figure 5a, our model outperforms ByT5,353

producing lower (better) average BPEB scores354

for all analyzed languages. The improvement is355

strongly negatively correlated with the compression356

rate discussed in the previous section. The gains are357

largest for languages using Abugidas (scripts repre-358

senting consonant-vowel as one character, typical359

to the Indian Subcontinent and SE Asia) that tend360

to be shortened the most by MYTE encoding. On361

the other end of compression distribution, we still362

observe (smaller) improvement for Latin and CJK363

scripts. This observation suggests that the MYTE364

encoding’s leverage is not constrained to shorten-365

ing sequences, but it also uses codepoints that are366

easier to predict by a language model. MYTE367

uses codepoints based on morphemes that are in-368

herently meaningful language units in contrast to369

orthographic symbols, which are the backbone of370

the UTF-8 convention.371

Encoding in MyT5 Diminishes LM Performance372

Gap Across Languages Previous works ob-373

served that some languages are more challenging374

language models (Cotterell et al., 2018) due to375

their morphological properties. In contrast, others376

showed that LM performance is linked with how377

texts in specific languages are represented (Park378

et al., 2021). Our results in Figure 6 support the379

latter view, specifically that the predictability of380

the languages can be balanced by using equitable381

underlying representation, i.e., MYTE encoding.382

For the experiments across languages, we show383

that MyT5 achieves more balanced BPEB across384

languages than ByT5. As discussed in the previous385

section, the improvement is the starkest for lan-386

guages prone to over-segmentation under UTF-8.387

The worst results of MyT5 were obtained for lan-388

guages benefited by MYTE to a lesser extent, as389

observed in Section 4.1: Greek and Vietnamese.390

MyT5 is More Efficient across Scales than ByT5391

As shown in Figure 5b, MyT5’s inference time is392

shorter than that of ByT5 for almost all languages.393

This behavior is mostly observed for Non-Latin394

script languages and can thus be attributed to se-395

quence shortening.396

Table 3 shows that MyT5 edge over ByT5 is the397

highest with the largest available scale. It hints that398

MYTE can be successively applied to models of399

larger scales.400

Byt5 Myt5

BPEB T (ms) BPEB T (ms)

small All 10.1 7.0 4.6 6.7
Latin 4.6 5.9 4.2 6.6
Non Latin 18.1 8.5 5.1 6.8

base All 8.2 11.5 5.8 8.9
Latin 4.9 9.4 5.0 8.7
Non Latin 13.0 14.6 6.9 9.1

large All 13.4 31.8 4.6 26.7
Latin 10.1 28.1 4.0 26.6
Non Latin 18.2 37.3 5.4 27.0

Table 3: Byte-per-English-Bits and Inference times (av-
erage per sentence) averaged for three language group-
ings.

6 Related Work 401

6.1 Fair Representation across Languages 402

Perhaps the most significant challenge of multilin- 403

gual NLP is the large disparity of resourcefulness 404

across the world’s languages (Joshi et al., 2020), 405

as the size and quality of data used for the model 406

training directly affects its performance in individ- 407

ual languages. Hence, researchers have proposed 408

multiple ways to balance the training signal across 409

languages (Malkin et al., 2022). Solutions include 410

sampling data to overrepresent low-resource lan- 411

guages, e.g., with alpha (Conneau et al., 2020) or 412

uniform sampling of data across languages (Chung 413

et al., 2023). This unequal treatment of languages 414

is also present in how data is encoded as input to 415

the model (Ahia et al., 2023). Petrov et al. (2023) 416

show that practically all methods used to repre- 417

sent texts as input of NLP systems treat languages 418

unequally, segmenting some (mainly the lowest- 419

resourced ones) into fine-grained non-informative 420

units. 421

Some approaches aimed at balancing the seg- 422

mentation or tokenization methods have been pro- 423

posed. Limisiewicz et al. (2023) proposed merging 424

vocabulary based on the tokenizer scoring func- 425

tion. Zheng et al. (2021) introduced a method of 426

allocating vocabulary capacity uniformly across 427

languages, while Chung et al. (2020) constructed 428

multilingual vocabulary for clusters of languages 429

and merged them. Liang et al. (2023) combined 430

the elements of both approaches and showed the 431

advantage of extending vocabulary to benefit multi- 432

lingual transfer. These solutions offer the promise 433

of obtaining a better allocation of vocabulary units. 434

However, they do not solve the inequality of the 435

7



Figure 6: Sentence prediction superisal expressed as the normed NLL score on multi-parallel FLORES-200 corpus.
The comparison shows that under myT5 model, surprisal factors are more equitable than in the standard byT5
model.

underlying encoding, which may affect the con-436

struction process of vocabulary units. For instance,437

byte merges in the BPE algorithm always begin438

at individual bytes (Sennrich et al., 2016; Zouhar439

et al., 2023).440

Morphological analyzers, such as Morfessor,441

showed promising results for segmenting input442

texts for language models and neural machine trans-443

lators (Machácek et al., 2018; Hou et al., 2023). We444

are the first to apply morphology-based encoding445

for a massively multilingual setting.446

6.2 Tokenization-free Language Modeling447

An alternative to subword tokenization is represent-448

ing texts directly as underlying encoding: charac-449

ters or bytes. Or even representing texts as pixels450

of rendered text images (Rust et al., 2023).451

Xue et al. (2022) shows that for many non-Latin452

scripts, byte-level encoding performs worse than453

subword tokenization. The problem with small454

units is that they do not carry meaningful infor-455

mation independently and often underperform sub-456

word models (Sun et al., 2023; Clark et al., 2022).457

The researchers have proposed multiple algo-458

rithms to enrich the byte-level embeddings with459

information from a local context. For that pur-460

pose, recent approaches use shallow networks to461

aggregate information in local contexts defined as 462

character n-grams (Clark et al., 2022), byte patches 463

(Yu et al., 2023), or character blocks (Tay et al., 464

2022). However, the problem with choosing the 465

appropriate context window is hard, because infor- 466

mation density varies for different languages. A so- 467

lution to that problem can be dynamically learning 468

the segmentation in byte sequences (Nawrot et al., 469

2023). Another approach is to redefine the encod- 470

ing convention to equate the information loads in 471

sequences, as the proposed MYTE approach. 472

7 Conclusions 473

In this paper, we introduce MYTE encoding, a 474

fairer byte-level representation for multilingual lan- 475

guage modeling that is based on morphological seg- 476

mentation. We show that adapting a morphological 477

analyzer to unsupervised segmentation allows us 478

to represent multi-parallel corpora in comparable 479

encoding lengths across a wide range of languages 480

Additionally, our new representation significantly 481

improves modeling, especially of low-resource and 482

non-Latin script languages. This trend holds across 483

models of different sizes. 484
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Ethical Statement485

Our work makes a significant contribution to a486

fairer representation of text across diverse lan-487

guages. It will potentially benefit the speakers of488

underrepresented languages by enabling access to489

more reliable and cheaper NLP tools. For all the490

experiments, we relied on open-source tools and491

datasets. We strongly discourage unintended usage492

of the released language models.493

Limitations494

Our method inherits the limitations of Morfessor,495

which was used to obtain multilingual morpholog-496

ical segmentation for MYTE. First, Morfessor is497

data dependent and is affected by the quality of the498

corpus (Wikipedia) and the lexicon (MUSE when499

available). The artifact of these resources is a sig-500

nificant presence of cross-lingual contamination,501

typically from high-resource languages (Blevins502

and Zettlemoyer, 2022). This leads to the appear-503

ance of Latin (typically English) morphemes in504

analyses of many languages. Second, we use the505

unsupervised mode of Morfessor that can be ap-506

plied to any language due to its independence of507

annotated data. However, it is also prone to errors508

in morphological segmentations, i.e., oversegment-509

ing texts of specific languages. We mitigate this510

issue by picking a constant target number of mor-511

phemes.512

Dependence on data might also affect the gen-513

eralizability of our findings’ to the languages that514

were not used in the construction of MYTE. Re-515

sults in Section 4.1 show that the method is indeed516

effective in compressing text representation of un-517

seen languages but not unseen scripts. Notably, we518

do not exhaust the capacity of the MYTE code-519

page; thus, it can be extended to further languages.520

Lastly, even perfect morphological analysis can-521

not guarantee equal granularity of segmentation522

across languages. Some languages are character-523

ized by higher morphological richness, thus their524

texts consist of more morphemes. Accordingly,525

we observe differences in MYTE segmentation526

lengths across languages, yet these disparities are527

significantly smaller than in other conventions.528
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A Details of Unsupervised Morphological793

Analysis794

In this appendix, we provide details on the prerequi-795

sites of MYTE transcoding algorithm: a) preparing796

multilingual lexicons and corpora for morpholog-797

ical analysis and b) usage of Morfessor unsuper-798

vised algorithm to obtain morpheme inventory for799

each language.800

A.1 Preparing Lexicons for Morphological801

Analysis802

To obtain morphological segmentation across a803

wide variety of languages and scripts, we perform804

the following steps:805

1. We use 45 languages with bilingual lexicons806

available through MUSE (Lample et al., 2018)807

as a base. Lexicons are obtained indepen-808

dently for each language; hence, we ignore the809

bilingual aspect of the data. We filter out the810

lexemes that are the same in English and the811

target language to avoid contamination that812

would unfairly boost the frequency of English813

words across lexicons.814

2. We use Wikipedia corpus dump from Septem-815

ber 2023 dumps.wikimedia.org to count the816

occurances of lexemes. For 54 languages in-817

cluded in mC4 (Raffel et al., 2020), but with-818

out the MUSE lexicon, we compile the list of819

unique words in Wikipedia as a lexicon.820

3. The lexicons are clipped to the size of 30,000821

lexemes.822

4. All lexemes are transcribed to bytes via UTF-8823

standard. All byte sequences are decomposed824

following NKFD convention, i.e., modifying825

symbols (diacritics, accents), which are rep-826

resented as separate codepoints. On top of827

UTF-8 decomposition, we rewrite capital let-828

ter codes into lowercase letters and capitaliza-829

tion markers.830

A.2 Unsupervised Segmentation with831

Morfessor832

We use Morfessor (Smit et al., 2014), an unsuper-833

vised algorithm producing segmentation on a sub-834

word level that resembles morphological analysis.835

The unsupervised nature of the method allows us836

to apply it to a wide range of languages. However,837

it is essential to note that the method is prone to838

errors, such as over-segmentation of roots or mis- 839

placed morph boundaries. We use adaptive loss 840

weighting to limit the number of attested morphs 841

to around 4096 to avoid over-segmentation. Unlike 842

the typical usage of Morfessor, we applied it to the 843

corpus on byte instead of character level. 844

A.3 Morfessor: Technical Details 845

Morfessor uses recursive optimization to produce 846

subword segmentation akin to morphological anal- 847

ysis. The input data required for unsupervised anal- 848

ysis are language corpus and lexicon consisting of 849

unique words c ∈ C. We also define the set of 850

atoms a ∈ A, which are indivisible segments of 851

texts that can be assembled into words. We choose 852

atoms to be UTF-8 bytes. 853

The aim of the algorithm is to find a set of mor- 854

phemes m ∈ M appearing in the segmentation 855

of words from the given lexicon. The set of mor- 856

phemes M is extended by a recursive algorithm 857

optimizing two losses: corpus loss and lexicon loss 858

computed with respective data resources. Before 859

providing equations for the mentioned losses, let’s 860

define the auxiliary variables: 861

M =
∑
m∈M

#COR(m)

C =
∑
c∈C

#COR(m)− 1

A =
∑
a∈A

#M(a)

(2) 862

The # notation is used to denote the number 863

of elements in the corpus (COR) or morpheme 864

set M. In other words, M is the total number of 865

morphemes in the corpus, C is the total number of 866

words in the corpus, and A is the total number of 867

atoms in the set of (unique) morphemes. Morfessor 868

uses the following losses in recursive optimization: 869

Corpus loss favors morphemes frequently ap- 870

pearing in the corpus: 871

LCOR = (M + C) log(M + C)+

−
∑
m∈M

#COR(m) log#COR(m)+

+ log

(
M − 1

|M| − 1

) (3) 872

Lexocon loss favors segments consisting of di- 873

verse sets of atoms so that overlapping segments 874

are not identified as morphemes: 875
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LLEX = (A+ |M|) log(A+ |M|)− |M| log |M|+

−
∑
a∈A

#M(a) log#M(a)− log(|M|!)+

+ log

(
A− 1

|A| − 1

)
(4)

876

The losses are weighted by a parameter α, which877

indirectly controls the size of the morpheme set878

|M|. For instance, we adapt α to keep the number879

of morphemes close to 4096 for each language. We880

observed that this size leads to comparable segmen-881

tation across languages,882

L = αLCOR + LLEX (5)883

B Supplementary Results884

This appendix summarizes complementary results885

referred to throughout the papers.886

Results for Each Language All the experimen-887

tal results for each of the analyzed mC4 languages888

are presented in Table 4. Sequence lengths under889

UTF-8 and MYTE are visualized in Figure 8. Cor-890

responding compression rates in Figure 9.891

Figure 7 illustrates the sequence lengths and892

compressions obtained for languages unseen in the893

morphological analysis.894

LM Performance Across Scales Figure 10895

shows the difference of BPEB between MyT5896

and ByT5 the models in small and base scales. Fur-897

thermore, Table 4 contains average language mod-898

eling scores and inference times across all available899

scales for each language.900

C Compuatational Infrastracture901

The MyT5 and reimplemented ByT5 models were902

trained on TPUs available at the Google Cloud903

Platform. We used v3-8 for training small and base904

models and v3-32 for the large model. The train-905

ing took approximately 90h for small, 230h for906

base, and 190h for large models. We are thankful907

to Google for providing free quotas for those ma-908

chines through the TPU Research Cloud program.909

The inference in language modeling experiments910

was run on an A40 GPU core.911

(a) UTF-8

(b) MYTE

(c) Sequence compression

Figure 7: Average byte sequence lengths of parallel
sentences for languages unseen in the morphological
analysis. Santali (sal) uses a script (Ol Chicki) distinct
from all other languages included in morphological anal-
ysis.
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(a) Original UTF-8

(b) With Morph Codepoints (Same order as in a)

Figure 8: Average byte sequence lenghts of parallel sentences from FLORES-200 (Team et al., 2022)

Figure 9: Sequence compression rates on FLORES 200 from decomposition and subsequent morph merging in
comparison with the original utf-8 encoding. Ordered as in a
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(a) small (b) base

Figure 10: The difference in Byte-per-English-Bit between MyT5 and ByT5 for models in small and base scales.
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Lang
UTF-8 MYTE Comp. . ByT5 ByT5

Parity Len. Parity Len. BPEB Time (ms) BPEB Time (ms)

in % small base large small base large small base large small base large

af 1.1 139.6 1.1 123.3 11.7 3.9 4.6 9.5 5.8 8.9 27.6 3.7 4.3 3.4 6.6 8.4 26.1
am 1.7 222.8 1.3 137.6 38.2 11.7 8.3 15.3 6.9 12.5 32.0 5.1 6.9 5.2 6.7 9.0 27.0
ar 1.6 208.8 1.3 144.2 30.9 7.0 6.7 13.7 7.0 11.6 31.4 4.6 6.4 4.4 6.4 9.1 26.7
az 1.3 164.6 1.2 129.1 21.6 6.4 5.7 11.4 6.3 9.9 28.9 4.6 5.4 4.7 6.7 8.7 27.5
be 2.1 267.7 1.4 155.5 41.9 14.6 11.6 17.1 8.1 13.5 35.5 5.7 7.5 5.9 6.9 9.5 27.4
bg 1.9 247.6 1.3 137.1 44.6 11.9 9.6 14.6 7.7 12.6 33.9 4.3 4.9 3.8 7.1 8.8 24.1
bn 2.6 340.6 1.3 145.0 57.4 28.4 17.2 21.3 9.3 16.6 41.3 5.3 7.2 5.4 6.9 9.2 27.5
ca 1.1 147.1 1.2 127.7 13.2 4.1 4.6 9.6 5.8 9.4 27.9 3.9 4.6 3.4 6.7 8.5 25.9
ceb 1.2 156.9 1.3 143.8 8.3 5.0 5.0 11.1 6.0 9.6 28.7 4.4 6.0 4.5 6.3 9.2 27.6
cs 1.1 140.7 1.1 124.1 11.8 4.4 4.8 9.5 5.5 9.0 28.1 4.5 4.8 4.1 6.7 8.4 26.0
cy 1.1 140.1 1.2 129.1 7.9 4.5 5.1 10.7 5.9 8.7 27.6 4.2 5.1 4.2 7.1 8.5 23.4
da 1.0 136.7 1.1 116.9 14.5 3.9 4.5 9.3 5.9 8.7 27.8 3.6 4.0 3.3 6.8 8.2 33.7
de 1.2 154.5 1.2 132.8 14.1 4.6 5.1 10.2 6.2 9.7 27.9 4.2 5.1 3.6 6.5 8.8 26.7
el 2.2 284.1 1.7 185.0 34.9 12.8 13.6 19.5 8.3 14.0 36.6 8.2 13.3 9.3 7.1 10.4 29.7
en 1.0 130.5 1.0 109.1 16.4 2.6 3.3 6.8 6.2 11.0 28.4 2.6 3.2 1.9 6.6 10.5 30.3
eo 1.0 132.2 1.1 115.1 12.9 3.8 4.4 9.1 5.8 8.5 27.2 3.6 4.1 3.3 6.6 8.1 25.7
es 1.2 158.0 1.2 133.5 15.5 4.7 4.8 9.9 6.2 9.2 28.2 4.0 4.8 3.4 6.4 8.7 34.2
et 1.0 131.9 1.1 115.0 12.8 4.1 4.4 9.1 5.8 8.6 27.3 3.9 4.3 3.7 6.4 8.2 24.7
eu 1.1 138.6 1.0 114.0 17.8 4.3 4.6 9.4 5.9 8.8 27.9 3.7 4.1 3.5 6.5 8.1 25.6
fa 1.7 220.9 1.3 143.4 35.1 8.6 7.6 14.5 8.7 12.0 32.0 4.4 6.1 4.5 7.0 9.0 26.7
fi 1.1 144.1 1.1 122.3 15.1 4.7 4.8 9.7 5.8 9.4 26.6 4.2 4.9 4.1 6.7 8.4 25.9
fr 1.2 162.1 1.3 138.6 14.5 4.7 5.1 10.2 6.3 9.6 28.2 4.2 5.3 3.5 6.5 9.0 26.9
fy 1.1 143.0 1.2 131.3 8.2 4.8 5.1 9.8 5.7 9.1 27.6 4.5 5.5 4.4 6.5 8.8 26.1
ga 1.2 160.3 1.3 142.5 11.1 5.4 5.7 11.2 6.0 9.7 28.1 5.0 6.2 5.1 6.7 9.1 26.5
gd 1.3 167.2 1.4 148.8 11.0 5.8 6.0 12.0 6.1 10.5 28.9 5.1 6.9 5.5 6.8 9.1 27.3
gl 1.1 148.0 1.1 124.8 15.7 4.2 4.5 9.4 6.1 9.4 28.0 3.8 4.4 3.3 6.7 8.5 27.6
gu 2.5 327.1 1.4 150.0 54.1 26.5 16.6 23.5 8.9 16.7 39.8 5.8 7.8 6.2 6.8 9.4 26.8
ha 1.1 140.0 1.2 126.5 9.6 4.1 4.6 9.9 5.7 9.3 27.5 3.7 4.5 3.7 6.5 8.6 25.9
he 1.4 180.9 1.2 127.3 29.6 5.6 7.4 11.3 6.5 10.2 29.6 4.3 5.0 3.9 6.7 8.5 26.0
hi 2.6 333.1 1.5 161.6 51.5 23.8 15.8 22.2 9.2 16.2 40.4 5.9 9.0 6.1 7.2 9.7 28.5
ht 0.9 123.2 1.1 115.8 6.0 3.5 4.2 8.7 5.4 8.4 27.1 3.5 4.0 3.3 6.3 8.0 25.6
hu 1.2 150.8 1.2 128.9 14.5 5.2 5.3 10.5 5.8 9.5 28.4 4.7 5.3 4.4 6.7 8.6 25.9
hy 2.0 266.5 1.3 141.2 47.0 13.0 13.6 18.1 8.1 13.4 35.6 5.3 6.2 5.5 7.0 9.0 26.3
id 1.1 140.8 1.1 120.7 14.3 4.0 4.3 9.4 5.9 9.2 27.6 3.5 4.1 3.4 6.6 8.3 25.3
ig 1.2 159.1 1.3 137.4 13.7 5.8 5.7 11.1 6.0 10.5 28.1 4.8 5.8 4.8 6.7 9.0 25.9
is 1.1 141.8 1.1 124.1 12.4 4.9 5.1 9.7 5.7 9.1 27.6 4.2 4.9 4.1 6.4 8.6 26.0
it 1.2 155.4 1.2 130.9 15.8 4.5 4.9 10.0 6.1 9.3 28.1 3.9 4.7 3.4 6.4 8.5 25.9
ja 1.3 165.1 1.4 151.6 8.2 5.4 5.0 7.0 6.3 10.0 28.4 4.9 7.5 5.1 6.7 9.2 26.5
jv 1.0 135.6 1.1 117.2 13.5 3.9 4.3 9.2 5.6 8.9 27.6 3.5 4.0 3.4 6.4 7.9 25.3
ka 2.9 385.0 1.4 154.4 59.9 23.5 16.0 24.5 10.3 18.9 44.9 6.0 7.9 6.6 7.1 9.5 28.3
kk 1.9 247.0 1.2 132.1 46.5 12.2 9.7 15.0 7.7 12.6 33.8 4.4 4.8 4.3 6.3 8.7 27.6
km 3.3 430.0 1.5 167.3 61.1 27.6 22.7 29.0 10.8 20.6 48.3 7.0 12.3 9.3 7.2 10.1 28.3
kn 2.8 371.0 1.3 139.7 62.4 34.1 20.5 23.5 9.8 18.4 43.7 4.8 6.7 5.7 6.7 9.1 26.4
ko 1.2 155.9 1.2 133.0 14.7 4.5 5.0 9.1 6.0 9.7 30.6 4.7 5.8 4.0 6.8 8.7 26.2
ku 1.1 143.0 1.2 131.6 8.0 4.7 5.0 10.1 5.7 9.1 27.6 4.5 5.2 4.4 6.5 8.8 26.2
ky 1.9 247.3 1.2 129.5 47.6 12.2 9.8 14.6 7.6 12.9 34.1 4.3 4.7 4.1 6.5 8.6 26.2
lb 1.1 150.1 1.2 130.2 13.2 4.7 5.2 10.8 5.8 9.3 28.0 4.3 5.1 4.1 6.5 8.7 26.0
lo 2.7 356.5 1.2 125.9 64.7 30.8 19.6 22.7 9.3 17.5 44.9 4.6 6.1 5.2 6.5 8.6 26.4
lt 1.1 137.6 1.2 125.8 8.5 4.4 4.7 9.2 5.9 8.7 27.3 4.5 5.1 4.2 6.4 8.6 27.6
lv 1.1 144.9 1.2 126.1 13.0 4.8 5.0 9.6 5.8 9.2 27.9 4.6 5.0 4.3 6.7 8.5 26.9
mg 1.3 163.7 1.3 142.4 13.0 5.5 5.7 11.1 6.2 9.8 28.8 4.6 6.0 4.8 6.9 9.0 26.6
mi 1.2 152.0 1.3 140.0 7.9 4.8 5.3 10.7 5.8 9.9 28.2 4.7 5.7 4.6 6.6 9.0 26.8
mk 1.9 248.2 1.3 137.7 44.5 12.2 9.8 14.7 7.6 12.9 37.7 4.3 4.9 3.9 6.8 8.8 27.3
ml 3.1 406.9 1.4 148.4 63.5 37.6 21.0 25.9 17.9 19.4 46.7 5.4 7.8 6.5 7.0 9.2 26.6
mn 1.9 249.0 1.3 139.7 43.9 12.2 10.3 15.0 7.5 13.5 33.5 4.9 5.3 4.7 6.6 8.9 26.4
mr 2.7 351.5 1.3 140.2 60.1 26.8 17.1 22.9 9.5 17.0 42.1 5.1 6.5 5.0 6.9 9.0 26.6
ms 1.1 144.9 1.1 124.5 14.0 4.2 4.4 9.7 5.9 8.9 27.9 3.6 4.3 3.6 6.6 8.3 26.0
mt 1.2 152.0 1.2 127.2 16.3 5.2 5.5 11.0 5.7 9.9 31.6 4.4 5.1 4.3 6.5 8.6 33.1
my 3.5 460.0 1.2 136.1 70.4 31.9 21.3 29.7 11.6 21.7 51.4 5.1 6.9 6.3 7.0 8.9 26.4
ne 2.6 335.4 1.2 130.3 61.2 24.2 16.1 22.0 9.1 16.0 40.7 4.6 5.5 4.3 7.5 8.7 26.2
nl 1.1 146.0 1.1 125.5 14.1 4.1 4.8 9.9 6.0 9.2 27.8 3.8 4.5 3.5 6.4 8.5 25.9
no 1.0 133.4 1.1 115.7 13.3 3.8 4.4 9.1 5.7 9.0 27.4 3.5 4.0 3.3 6.6 8.2 25.9
ny 1.1 145.8 1.1 121.6 16.6 4.7 4.8 10.3 5.4 9.6 27.1 3.9 4.5 3.9 6.4 8.4 25.7
pa 2.6 340.1 1.6 179.3 47.3 26.9 17.9 23.8 9.2 16.7 40.8 7.4 12.6 8.6 7.3 10.5 28.5
pl 1.1 146.5 1.2 129.0 11.9 4.7 5.1 10.1 6.0 9.4 32.3 4.5 5.3 4.3 6.5 8.4 25.8
ps 1.6 212.3 1.3 145.4 31.5 8.4 7.7 14.7 6.9 11.9 31.1 4.6 6.3 5.0 6.8 9.1 27.1
pt 1.1 145.8 1.1 124.0 14.9 4.1 4.4 9.3 5.9 9.4 28.1 3.8 4.3 3.3 6.4 8.4 25.7
ro 1.2 155.1 1.2 135.3 12.8 4.8 5.1 10.4 6.0 9.5 28.5 4.5 5.4 4.3 6.9 8.8 26.3
ru 2.0 257.3 1.3 142.5 44.6 12.5 9.9 14.5 7.9 13.0 34.5 4.6 5.6 3.8 6.6 9.0 26.6
sd 1.6 209.4 1.3 145.2 30.7 8.1 7.5 14.8 6.7 12.0 30.9 4.8 6.5 5.3 6.8 9.2 27.1
si 2.6 342.0 1.4 149.2 56.4 28.0 18.2 24.0 9.2 18.1 40.9 5.7 7.5 6.4 6.8 9.3 27.0
sk 1.1 142.0 1.1 124.7 12.2 4.5 4.9 9.6 5.9 8.8 27.6 4.5 4.9 4.1 6.3 8.4 23.2
sl 1.0 132.4 1.1 117.5 11.2 3.9 4.5 9.0 5.8 8.8 27.7 3.9 4.3 3.5 6.6 8.3 27.3
sm 1.2 158.2 1.3 146.3 7.5 4.9 5.6 11.4 5.8 10.1 28.2 4.5 6.2 4.8 6.7 9.2 26.2
sn 1.1 145.9 1.1 124.1 14.9 4.7 4.7 10.2 5.7 9.9 27.8 4.1 4.9 4.1 6.5 8.5 26.5
so 1.2 150.1 1.2 133.5 11.1 4.8 5.1 11.0 5.7 9.8 27.8 4.4 5.4 4.5 6.5 13.2 26.7
sq 1.2 156.6 1.2 134.6 14.1 5.4 5.5 10.8 6.0 9.6 28.5 4.7 5.5 4.6 6.8 8.8 26.3
sr 1.8 235.2 1.2 136.0 42.2 11.1 9.2 13.8 7.3 12.5 32.9 4.3 4.9 4.0 6.8 8.8 26.3
st 1.2 157.2 1.3 142.9 9.1 5.2 5.4 11.5 5.6 10.0 27.8 4.5 6.0 4.8 6.7 9.1 26.4
su 1.0 136.6 1.1 118.0 13.6 3.9 4.3 9.2 5.6 8.9 27.4 3.6 4.2 3.5 6.3 8.3 25.3
sv 1.0 135.8 1.1 114.9 15.4 3.9 4.4 9.2 6.1 8.7 27.2 3.7 4.1 3.3 6.3 8.3 26.6
sw 1.0 136.7 1.1 121.8 10.8 4.1 4.5 9.6 5.7 8.9 27.5 3.8 4.4 3.6 6.7 8.1 25.9
ta 3.2 416.6 1.4 153.2 63.2 39.4 22.0 24.9 10.7 19.8 47.6 5.5 8.2 6.7 7.1 9.4 28.2
te 2.7 349.5 1.3 140.3 59.9 30.0 17.9 22.2 9.4 16.9 41.9 4.8 6.5 5.6 6.9 9.0 26.5
tg 2.0 262.4 1.4 150.4 42.7 14.2 11.0 16.4 7.8 13.4 34.7 5.3 6.5 5.3 7.0 9.2 26.6
th 2.8 360.8 1.2 134.4 62.7 30.5 19.2 20.5 9.8 17.5 42.6 4.6 6.8 5.1 6.8 8.8 27.7
tr 1.1 146.2 1.1 124.2 15.0 4.8 4.8 9.5 5.7 9.4 28.1 4.2 4.8 4.1 6.7 8.4 26.0
uk 1.9 243.0 1.3 140.9 42.0 11.7 9.6 14.2 7.6 12.8 33.5 4.7 5.4 4.3 6.5 8.9 26.5
ur 1.8 229.0 1.4 150.8 34.1 10.1 8.7 15.7 7.4 12.3 32.7 4.9 7.1 5.4 7.0 9.4 28.2
uz 1.1 147.7 1.1 122.7 16.9 4.8 5.1 10.7 6.1 9.0 27.9 4.1 4.8 4.0 6.8 8.4 23.2
vi 1.4 181.4 1.6 179.6 1.0 7.1 6.1 11.7 6.5 10.6 29.5 7.3 12.2 8.3 6.9 10.2 28.3
xh 1.1 137.6 1.1 115.0 16.4 4.4 4.5 9.9 5.5 9.4 30.2 3.9 4.4 3.8 6.3 8.2 25.6
yi 1.9 253.8 1.3 145.6 42.6 12.5 13.2 18.1 7.4 13.5 34.1 5.0 6.6 5.7 6.7 9.2 27.2
yo 1.3 166.9 1.3 144.8 13.2 6.3 6.3 11.9 6.2 10.0 29.0 5.3 6.8 5.4 6.9 9.3 26.9
zh 0.9 119.4 1.1 117.5 1.6 3.4 4.0 6.0 5.6 8.6 27.2 3.4 4.9 3.3 6.3 8.2 25.4
zu 1.1 146.8 1.1 121.3 17.4 4.8 4.8 10.6 5.7 9.9 27.7 4.1 4.7 4.1 6.4 8.4 26.5

Table 4: Results for each of the analyzed languages. The left-hand columns contain the comparison of enoding
lengths UTF-8 and MYTE. The right-hand columns present performance (BPEB) and inference time of correspond-
ing language models ByT5 and MyT5. All numbers are averages across the FLORES-200 test split.


