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ABSTRACT

Requiring extensive human supervision is often impractical for continual learning
due to its cost, leading to the emergence of ‘name-only continual learning’ that only
provides the name of new concepts (e.g., classes) without providing supervised
samples. To address the task, recent approach uses web-scraped data but results
in issues such as data imbalance, copyright, and privacy concerns. To overcome
the limitations of both human supervision and webly supervision, we propose
Generative name only Continual Learning (GenCL) using generative models for
the name only continual learning. But naïve application of generative models results
in limited diversity of generated data. So, we specifically propose a diverse prompt
generation method, HIerarchical Recurrent Prompt Generation (HIRPG) as well
as COmplexity-NAvigating eNsembler (CONAN) that selects samples with min-
imal overlap from multiple generative models. We empirically validate that the
proposed GenCL outperforms prior arts, even a model trained with fully supervised
data, in various tasks including image recognition and multi-modal visual reasoning.
Data generated by GenCL is available at https://anonymous.4open.science/r/name-
only-continual-E079

1 INTRODUCTION

Continual learning (CL) has been addressing various domains across different modalities including
computer vision (Seo et al., 2024b), natural language processing (Wu et al., 2024b), and multimodal
learning (He et al., 2023a). But even the most existing methods (Wang et al., 2022; Kim et al., 2024a)
often rely on abundant well-curated human supervision. For example, obtaining 423.5k clean images
in DomainNet (Neyshabur et al., 2020) required 50,000 working hours to manually filter out outliers.

In standard learning, where all training data are provided at once, the time allocated for data collection
and preprocessing does not affect performance, since these steps are completed before model training
begins. In contrast, continual learning involves the continuous encounter of new ‘concepts’, which
can refer to classes, adjectives, and verbs in multi-modal tasks, necessitating ongoing data preparation
throughout training. Therefore, delays in preparing data for encountered concepts hinder the model’s
ability to quickly adapt to new concepts (Koh et al., 2021; Caccia et al., 2022). Consequently,
delays in data preparation, such as human annotation, could limit the applicability of CL method in
deployment, such as e-commerce recommendation systems and autonomous driving.

In recent literature, several alternatives to human annotation have been proposed. Madaan et al.
(2021) propose an unsupervised CL setup that eliminates the need for annotation. However, they
assume that the unlabeled data stream contains only data related to the target concepts, while in
real-world scenarios, unlabeled data often include irrelevant data, which can potentially hinder the
performance of the target concept (Halevy et al., 2016; Yang et al., 2023). As another alternative
to human-annotated data, Sato (2023); Prabhu et al. (2024) proposes the use of web-scraped data
for online learning. Although web-scrapped data presents advantages such as abundance (Xu et al.,
2024), diversity (Agun, 2023), and easy accessibility (Sun et al., 2018), challenges arise from privacy
and copyright concerns (Zhang et al., 2023a), as well as inherent noise (Neyshabur et al., 2020),
which significantly hinders the performance of continual learner (Kim et al., 2021; Bang et al., 2022).

To address those issues, we propose to leverage text-to-image (T2I) generative models for CL. Specif-
ically, we propose Generative name only Continual Learning (GenCL), which takes only concepts
as input and trains on images generated by text-to-image (T2I) generative models based on the
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Figure 1: Comparison of Manually Annotated (MA) data, Web-Scraped Data, and Generated data.
Generated data addresses constraints associated with Web-scraped or MA data, mitigating privacy concerns and
usage restrictions (i.e., whether images can be used for learning). Also, it maintains controllability (the ability to
generate images with various contexts, e.g., background, color) as desired. Generated data are less noisy (i.e.,
containing fewer undesired images) than web-scrapped data and proves to be a more cost-effective than MA data
which requires human annotation. For more details on the terminology employed in this figure, see Sec. A.19

given concepts. It takes advantage of generative models, such as controllability (Nie et al., 2021)
(i.e., generating desired data), and unlimited image generation (Liang et al., 2022), as illustrated in
Fig. 1. Additionally, it significantly accelerates the data collection process; for example, generating
DomainNet using SDXL (Podell et al., 2023) with 8 NVIDIA RTX 4090 GPUs take only 80 hours,
compared to the 50,000 hours required for manual annotation.

However, generated images often suffer from limited diversity (Tian et al., 2024a; Bianchi et al.,
2023; Fraser et al., 2023). To address this issue, we define intra-diversity and inter-diversity, which
refers to the diversity of data generated by a single T2I model and the diversity of data gener-
ated by multiple T2I models, respectively. Specifically, to improve intra-diversity, we propose
HIerarchical Recurrent Prompt Generation (HIRPG), a diverse prompt generation method that uti-
lizes the in-context learning capabilities of Large Language Models (LLMs) to generate a diverse
set of text prompts. To improve the inter-diversity, we propose a complexity-guided data ensemble
method, named COmplexity-NAvigating eNsembler (CONAN). CONAN not only ensembles data
from multiple generative models, but also selects a coreset, and trains a model exclusively on this
coreset to improve training efficiency for real-time adaptation to new concepts. We empirically
demonstrate that our framework significantly outperforms baselines in both class-incremental and
multi-modal visual concept-incremental setups.

In sum, we aim to address the following research questions, thus summarizing our core contributions
as follows:
RQ1. Can generated data substitute manually annotated (MA) in CL setups? GenCL improves
AAUC on the PACS (Zhou et al., 2020) OOD domain by 9% and 13% over the model trained with
web-scrapped and MA data, respectively.

RQ2. How to ensure diversity of images generated from generative models? We propose HIRPG, a
prompt generation method that takes advantage of LLM to create diverse text prompts for a given
concept, which are subsequently used by T2I models to generate images.

RQ3. How to ensemble generated data from a set of generators? We propose CONAN, a data
selection method that accounts for the complexity of generated samples.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Setups for Continual Learning. Many recent works propose realistic CL scenarios, such as
blurry (Prabhu et al., 2020; Bang et al., 2021), i-blurry (Koh et al., 2021), continuous (Shanahan
et al., 2021; Koh et al., 2023), and noisy (Bang et al., 2022) setups. However, they only focus on the
realistic data distribution of the stream data, rather than the acquisition of data for a new category, for
which the model needs to be learned. Recently, C2C (Prabhu et al., 2024) used web-scraped data for
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continual learning, to address the high cost of manual data annotation and the difficulty in acquiring
real-time data for the target concepts the model needs to learn. However, web-scraped data present
several limitations, including privacy concerns, usage restrictions, and inherent noise, as highlighted
in Fig. 1. Please refer to Sec. A.19 for more comparison between web data and generated data.

2.2 DATA SELECTION

For ensembling generated images from multiple T2I generative models, we consider data selection
methods that extract most essential samples to build a coreset from a larger candidate set. Formally,
from the candidate set T , these methods select a coreset V (|V | ≪ |T |), aiming to preserve as much
task-relevant information from T as possible (Shin et al., 2023). To estimate the informativeness of
the candidates, several metrics have been proposed, such as gradient (Paul et al., 2021; Pooladzandi
et al., 2022; Shin et al., 2023), uncertainty (Coleman et al., 2020), influential score (Yang et al.,
2022a; Pooladzandi et al., 2022), and distance (Xia et al., 2023).

Although these methods are effective at selecting coresets, many come with substantial computational
costs. Gradient-based methods (Paul et al., 2021; Pooladzandi et al., 2022; Shin et al., 2023), which
aim to minimize the difference between the gradients of the training dataset T and the selected set V ,
require a well-trained model on T , which significantly increases computational overhead. Similarly,
the influence score-based method (Yang et al., 2022a) also requires significant computation due to the
necessity of calculating the Hessian in the influence function, along with its iterative data selection
process (Xia et al., 2023). In contrast, distance-based methods, such as Xia et al. (2023) and our
proposed CONAN, can directly leverage a well-trained feature extractor, i.e., requiring only model
forward passes for feature extraction, leading to faster data preparation time.

2.3 TRAINING WITH TEXT-TO-IMAGE (T2I) GENERATIVE MODELS

With the availability of robust generative models (Gu et al., 2023; Tang et al., 2023; Podell et al.,
2023), several recent studies have utilized synthetic data for training (Azizi et al., 2023; Tian et al.,
2024a; Zhang et al., 2024c; Tian et al., 2024b). Notably, (Tian et al., 2024a) demonstrate the positive
impact of using diffusion model-generated datasets at ImageNet (Deng et al., 2009) scale for training.

To train a model with data generated by T2I generative models for a given concept c, concept-specific
prompts pc are needed. Ramesh et al. (2022); Jones et al. (2024) use the template "A photo of
a c", as proposed in CLIP (Radford et al., 2021), to construct prompt for concept c. However,
Sarıyıldız et al. (2023) claim that using only the class name as a prompt (pc = "c") yields better
image generation than pc = "A photo of a c". To add more concept-specific context to pc, Sarıyıldız
et al. (2023) combine the concept name c with its definition dc from WordNet (Miller, 1995), resulting
in pc = "c, dc". Nonetheless, all these approaches rely on a single type of pc per concept, limiting the
diversity of generated images despite the ability of T2I models to generate an unlimited number of
images (Vardanyan et al., 2024; Tian et al., 2024a).

To address the limited diversity in generated images, several prompt diversification methods have
been proposed. LE (He et al., 2023b) leverages a pre-trained word-to-sentence T5 model (Raffel
et al., 2020) to generate diverse sentences that incorporate class names. Furthermore, Sarıyıldız
et al. (2023) integrates the concept’s hypernym hc from WordNet, along with a background scene b
from the 365 scenes in Places365 (López-Cifuentes et al., 2020), resulting in pc = "c, hc inside b".
In contrast to random background selection, Tian et al. (2024a) utilize LLM to generate a list of
contextually appropriate backgrounds for the given concept c to create more plausible prompts.
Similarly, Hammoud et al. (2024) and our proposed diverse prompt generation method, HIRPG, also
employ an LLM-based prompt generator. However, while previous LLM-based prompt generation
methods do not account for the relationship between generated prompts, HIRPG minimizes overlap
between them by providing previously generated prompts as negative examples to the LLM.

We review more relevant literature and provide extended related work in Sec. A.18 for space’s sake.

3 PROBLEM STATEMENT OF NAME ONLY CONTINUAL LEARNING

In the name-only CL setup (Prabhu et al., 2024), only new concepts to be learned, denoted Y =
{y1, y2, ...}, are provided in a streaming manner, while the prevalent online continual learning setups
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assume well-curated annotated data (X ,Y) are given. The objective of this setup is to train a model
fθ, parameterized by θ, to classify the data into the concepts seen up to the given time step t, i.e.,
{yi}ti=1. To train fθ for the given concepts, the learner can access either public data, such as data
scraped on the Web (Prabhu et al., 2024), or generated data. To evaluate whether the model fθ
well-learn concepts {yi}ti=1 at the time step t, curated data {Xi, yi}ki=1 are used, where Xi refers to
the set of data that corresponds to the category yi.

4 APPROACH

We propose a Generative name only Continual Learning (GenCL) framework to address the absence
of data in the name-only CL setup. The GenCL framework is composed of four integral components:
(i) a Prompt Generation Module ψ (Sec. 4.1), (ii) a set of Generators G (Sec. 4.2), (iii) an Ensembler
∆ (Sec. 4.3), and (iv) a learner fθ. We illustrate an overview of GenCL in Fig. 2.

When a new concept is introduced, for which fθ needs to be learned, a generator g ∈ G generates
images related to the concept. However, despite generative models being capable of producing an
unlimited number of images, output diversity is often limited (Liu et al., 2023a; Sadat et al., 2023).
To address this, we employ a prompt generation module ψ, which generates diverse text prompts and
forwards them to the T2I generative models. Additionally, we further enhance the diversity of the
generated images by utilizing a proposed ensemble approach that combines the outputs of a set of
generators G through ensembler ∆. Generated images are streamed to the learner fθ in real-time,
while a finite episodic memory is maintained to replay previously encountered data. Note that while
it is possible to generate data for past concepts in real-time without using episodic memory, we use it
for efficiency, as it helps reduce computational costs.

4.1 PROMPT GENERATION MODULE (ψ)

Our pipeline ψ begins with the new concept as input and constructs a base prompt PB using the
template: ‘A photo of [concept]’ following (Shtedritski et al., 2023; Shi et al., 2023). While this base
prompt can be used directly with the T2I generators G, generating images using a single prompt may
lead to limited diversity in style, texture, and backgrounds across the generated images (Fan et al.,
2024). To enhance diversity, we generate additional diverse prompts using LLMs.

A straightforward approach for diverse prompt generation using LLMs is to generate N different
prompts at once or to generate a single prompt N times, as in previous work (He et al., 2023b;
Hammoud et al., 2024). However, multiple inferences to LLM with the same input can produce
similar outputs (Zhang et al., 2024a; Skapars et al., 2024), despite the non-deterministic nature of
LLM (Song et al., 2024). Empirically, as shown in Sec. A.32, our observations indicate that using
these approaches often leads to many generated prompts with similar meanings, which may reduce
the diversity of the generated images from T2I generative models.

To reduce overlap between generated prompts, we iteratively create new prompts that are distinct from
those produced in previous steps. Inspired by previous work that has shown improved performance
in solving complex problems by providing negative examples with positive examples in in-context
learning (Zhang et al., 2024b) and contrastive Chain-of-Thought (Chia et al., 2023), we incorporate
previously generated prompts into the LLM input to serve as negative examples. By presenting these
previously generated prompts and requesting a new prompt that is distinct from them, we impose
a hard constraint that effectively prevents overlap between the newly generated prompts and the
previous ones. Formally, this process can be described as follows:

Pi =

{
LLM(PS , PB) i = 1

LLM(PS , {PB} ∪ {Pm}i−1
m=1) i ≥ 2,

(1)

which takes the system prompt PS and all previously generated prompts {Pm}i−1
m=1 as input. Since

there are no negative examples in the initial step (i.e., i = 1), we use the base prompt PB as the initial
negative example, where PB = ‘A photo of [concept]’. To generate N different prompts, we repeat
the process N times. As previously generated prompts are iteratively used as negative examples,
we name this process as Recurrent Prompt Generation (RPG). The system prompt PS we use is as
follows:
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Figure 2: Illustration of the proposed GenCL framework. When a new concept that needs to be learned is
encountered, it is passed through a prompt generation module, ψ, to produce diverse prompts. These prompts
are then used to generate data from a set of generators, G. The data generated by each generator are combined
through the ensembler, ∆, and subsequently used to train the model, fθ .

To generate images using a text-to-image generative model, I need to create a prompt ˜˜˜
Here is a list of prompts that I have previously generated. Please create a new prompt that
does not overlap with {base prompt & previously generated prompts} ˜˜˜.

However, generating a large number of prompts using RPG poses a challenge. As the iterative steps
are repeated, the length of the LLM input for in-context learning (ICL) increases, which can lead
to difficulties in fully utilizing information within the long context, a problem known as lost-in-the-
middle challenge (An et al., 2024; Liu et al., 2023c), as well as substantial computational overhead in
long-context ICL (Li et al., 2024).

To address this challenge, we divide the RPG into multiple subtasks using a hierarchical tree structure.
Specifically, we construct a complete K-ary tree (Gross et al., 2018), where every internal node
has exactly K child nodes. Each node represents a prompt, with the root node (i.e., the node at
depth 0) defined as PB = ‘A photo of [concept]’. To generate the K child nodes at depth 1, we
first perform RPG. To generate more diverse prompts, we extend the tree to depth 2, again using
RPG, with each parent node at depth 1 serving as the base prompt PB in Eq. 1, and this process
continues for subsequent depths. Formally, focusing on the kth child node at depth d, denoted as
Pd,k (d ≥ 0, 1 ≤ k ≤ K), its child nodes Pd+1,k′ (1 ≤ k′ ≤ K) are generated through the RPG as
follows:

Pd+1,k′ =

{
LLM(PS , Pd,k) k′ = 1

LLM(PS , {Pd,k} ∪ {Pd+1,m}k
′−1

m=1) 2 ≤ k′ ≤ K,
(2)

where {Pd+1,m}k
′−1

m=1 refers to the previously generated nodes that share the same parent node Pd,k.
By constructing complete K-ary Tree with a depth of D, we can generate Kd+1−1

K−1 nodes (i.e.,
prompts), which includes all internal and leaf nodes. This hierarchical generation enables us to
generate diverse prompts while bounding the number of negative examples by K (≪ N ), thereby
addressing both the lost-in-the-middle challenge and the computational overhead. We name this
proposed diverse prompt generation process as HIerarchical Recurrent Prompt Generation (HIRPG).

Since we divide RPG into subtasks using a hierarchical tree structure, we cannot consider nodes
generated from different branches as negative examples during the RPG in each node. Nonetheless,
overlap between generated prompts from different nodes is rare. This is because RPG in each node
begins with a distinct Pd,k in Eq. 2, serving as a negative example in the first step (k′ = 1), and
different examples in in-context learning lead to varied outputs (Su et al., 2022; Agarwal et al.,
2024). We empirically demonstrate the effectiveness of HIRPG by comparing it quantitatively and
qualitatively with existing prompt generation methods in Sec.5.2 and Sec.A.32, respectively. We
provide a pseudocode for the prompt diversification module ψ in Algorithm 3 in the appendix.

4.2 GENERATORS (G)

In addition to enhancing intra-diversity, we amplify the inter-diversity, the diversity between images
generated by multiple T2I generative models, by ensembling the images generated by these models.
Specifically, using a T2I generator gi(·) ∈ G and a prompt set P generated by ψ, we generate a
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set of images Ui = gi(P). At the end of generation, we have U =
⋃|G|

i=1 Ui, the union of images
generated by |G| generative models, with the same number of images generated for each model,
i.e., |U1| = |U2| = · · · = |U|G||. We provide detailed information about the generators we employ,
including examples of generated images from each generator in Sec. A.17.

4.3 ENSEMBLER (∆)

When ensembling images generated by different T2I models, a key question arises: Do we need to use
all of them? While large-scale training datasets have become standard for achieving state-of-the-art
deep learning models (Zhao et al., 2021; Yang et al., 2022b), training with massive data imposes
not only computational burden and time complexity (Sharir et al., 2020; Kim et al., 2022), but also
significant energy and carbon footprint (Schwartz et al., 2020; Patterson et al., 2021). In addition, in
CL setups, prolonged training periods can hinder fast adaptation to new concepts (Seo et al., 2024a).

Therefore, we aim to select a coreset V from the entire generated data U, and train a learner only
using V. Specifically, we select |Ui| (Ui ∈ U) samples from U for V to maintain the same training
cost as using data generated by a single generative model while increasing the diversity of the
ensemble set. A straightforward selection method for constructing V is to sample images from
each generator with equal weights. However, surprisingly, this method degrades the performance
of models trained with ensembled images, even compared to those trained on images from a single
generative model (i.e., no ensembling), as shown in Tab. 3. This degradation occurs because the
equal-weight selection method does not account for the overlap between images, i.e., diversity.

To enhance diversity in the ensembled set, we select samples positioned far from the class prototype
in the feature space, i.e., difficult samples, since these images are less likely to overlap with common
images compared to those that are closer to the prototype. To achieve this, we consider the class-wise
Mahalanobis distance (Mahalanobis, 2018), where a higher distance indicates that a sample is farther
from the class prototype. However, it only accounts for the class-specific difficulty, while the distance
from other classes can also affect the difficulty of samples. For example, consider two samples,
x1 and x2, both belonging to class c and having the same class-wise Mahalanobis distance. If x1
is closer to the global prototype (i.e., the class-agnostic prototype) than x2, then x1 may be more
challenging to classify as class c, since x1 is more likely to be confused with other classes. Therefore,
to select difficult samples in the ensemble set while considering for both class-wise difficulty and their
relationship to other classes, we employ the relative Mahalanobis distance (RMD) score (Ren et al.,
2021). It measures the difficulty in classifying a sample into its corresponding class by comparing the
distance from the class prototype with the distance from the global prototype (Cui et al., 2023). The
RMD score for a sample (xi, yi) ∈ U is given by the following:

RMD(xi, yi) =M(xi, yi)−Magn(xi),

M(x, y) = DM

(
g(x),

1

|Uy|
∑
j∈Uy

f(xj)

)
, Magn(x) = DM

(
g(x),

1

|U|
∑
j∈U

f(xj)

)
, (3)

where g(x) refers to the penultimate feature of the feature extractor g, DM refers to the Mahalanobis
distance (MD), Uy denotes the set of samples belonging to class y, M(xi, yi) and Magn(xi)
represents class-wise MD and class-agnostic MD (i.e., global MD), respectively. If a sample is close
to the class prototype but far from the global prototype (i.e., low RMD score), it is easy to classify
correctly. Conversely, if it is far from the class prototype but close to the global prototype (i.e., high
RMD score), the sample is hard to classify correctly and may belong to other near-classes. We show
samples with low RMD scores and samples with high RMD scores in Fig. 3.

Measuring the difficulty using the RMD score, we select images with high RMD scores, which are
expected to exhibit a widespread dispersion from the class prototype. However, in the coreset, which
is a representative subset of an entire dataset (Anonymous, 2023), it is necessary to include not only
samples near the decision boundary, but also class-representative samples (Bang et al., 2021; Harun
et al., 2023). Therefore, we adopt a probabilistic approach to ensemble selection, rather than simply
choosing images with the k-highest RMD scores, to incorporate class-representative samples into the
ensemble set. Specifically, we calculate pu|c, the selection probability for sample u to be included in
the coreset of class c, with details provided below.
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Figure 3: Samples with high RMD scores and low
RMD scores

First, we truncate the samples with RMD scores
in the upper and lower L% to minimize the impact
of outliers on the probability distribution. Next,
we normalize the scores using Z-score normaliza-
tion and apply a softmax function to obtain the
selection probability as:

pu|c =
e

¯RMDu|c/τ∑
u′∈Uc

e
¯RMDu′|c/τ

, (4)

where Uc refers to the set of samples for class c,
¯RMDu|c represents the normalized RMD score

for sample u ∈ Uc, and τ denotes the temperature parameter. Using the selection probability,
we not only sample complex samples, but also incorporate a small portion of class-representative
samples into the ensemble set. We name our proposed RMD-based probabilistic ensemble method as
COmplexity-NAvigating eNsembler (CONAN).

We compare CONAN with various RMD-based ensemble methods and existing coreset selection
methods in Sec.A.14 and Sec.5.2, respectively. Furthermore, we provide additional justification for
using the RMD score in Sec. A.13.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Continual Learning Setups. We first empirically validate the efficacy of our GenCL by comparing
it with state-of-the-art methods in class-incremental learning (CIL) task setups. Beyond CIL setups,
we also assess GenCL in multi-modal visual-concept incremental learning (MVCIL). In MVCIL,
concepts to be learned (e.g., ‘ride a bike’, ‘kick a ball’) are encountered incrementally. To learn a
concept, both positive and negative support sets are required, where the positive set contains images
representing the concept, while the negative set contains images that do not. We consider two types of
tasks that address the following queries: (1) What is the concept exclusively depicted by the positive
support set? and (2) Give a query image, does the query image belong to the positive or negative
support set?. We refer to these tasks as CA (Concept Answering) and P/N, respectively. We provide
a detailed explanation of the MVCIL setup in Sec. A.1.

Models. We use ResNet-18 and ImageNet-1K pretrained ViT-base as the network architecture for
the CIL setup. For the MVCIL setup, we fine-tune the LLaVA-1.5-7B model (Liu et al., 2023b).
Specifically, following Ye et al. (2023); Dong et al. (2024), we fine-tune only the pretrained projection
MLP layers and LoRA adapters (Hu et al., 2021), keeping the LLM frozen for training efficiency. In
all experiments, we train a model with ER (Rolnick et al., 2019), which is a simple but strong CL
method (Prabhu et al., 2023; Seo et al., 2024a).

Datasets. We evaluate the domain generalization performance of GenCL in the CIL setup using
widely adopted domain generalization (DG) benchmarks: PACS (Zhou et al., 2020), NICO (Zhang
et al., 2023c) and DomainNet (Neyshabur et al., 2020), dividing them into multiple discrete tasks.
Each DG benchmark consists of multiple domain datasets, e.g., PACS includes four domains: Photo,
Art, Cartoon, and Sketch. We selected data from one domain (i.e., photo domain) as MA data for each
benchmark, to compare GenCL with the oracle scenario, which assumes that manually annotated
(MA) data are available for training. During the evaluation, we considered the selected domain as
the in-distribution (ID) domain, while the other domains as out-of-distribution (OOD) domains. For
details on the task splits for each benchmark, please refer to Sec.A.2 due to space’s sake. For the
MVCIL setup, we used Bongard-HOI (Jiang et al., 2022) and Bongard-OpenWorld (Wu et al., 2024a).

Metrics. We report AAUC (Koh et al., 2021; Caccia et al., 2022; Koh et al., 2023) and Alast, which
measure inference performance at any time and at the end of training, respectively. In MVCIL-CA task
setups, to compare model-predicted sentences with ground-truth sentences, we use CiDER (Vedantam
et al., 2015), which measures the similarity between generated and ground truth sentences, while also
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capturing aspects such as grammaticality, saliency, importance, and both precision and recall. Note
that for evaluation, we use the test set for seen categories up to that point in time. Please refer to
Sec. A.16 for a more detailed explanation of the metrics we used.

Baselines. We compare a model trained using GenCL with models trained using web-scraped data
(C2C (Prabhu et al., 2024), IE (Li et al., 2023b)), other synthetic data (Glide-Syn(He et al., 2023b),
CHB (Sarıyıldız et al., 2023), SC (Tian et al., 2024a), LE (He et al., 2023b), CCG (Hammoud et al.,
2024)), and Real-Fake (Yuan et al., 2024), and manually annotated (MA) data. Specifically, CHB,
SC, LE, and CCG generate diverse prompts to enhance the variety of generated images. We compare
these methods with our proposed diverse prompt generation method, i.e., HIRPG. Furthermore, we
integrate prompt generation baselines with our proposed ensemble method (CONAN) to showcase
the effectiveness of CONAN, as well as to provide a fair comparison with GenCL, which leverages
multiple generators for ensembling.

Next, we extend GenCL to a standard learning setup (i.e., joint training), where all concepts to
be learned are provided at once. In this setup, we compare a model trained with data generated
by GenCL to models trained with web-scraped data, other synthetic data, and manually annotated
(MA) data. We also compare with training-free baselines, including CLIP-ZS(Radford et al., 2021),
SuS-X-SD(Udandarao et al., 2023), CuPL (Pratt et al., 2023), VisDesc (Menon & Vondrick, 2023),
and CALIP (Guo et al., 2023), as well as SD-Clf (Li et al., 2023a), which utilizes SDXL as a classifier.

Finally, we compare our proposed ensemble selection method, i.e., CONAN, with various base-
lines for coreset selection, including Uncertainty (Coleman et al., 2020), CRAIG (Mirzasoleiman
et al., 2020), Glister (Killamsetty et al., 2021b), GradMatch (Killamsetty et al., 2021a), Ada-
core (Pooladzandi et al., 2022), LCMat (Shin et al., 2023), and Moderate (Xia et al., 2023).

For detailed description of training-free name-only classification baselines, prompt generation base-
lines and data ensemble baselines, see Sec. A.12, Sec. A.10 and Sec. A.11, respectively.

5.2 QUANTITATIVE ANALYSIS

Effectiveness of GenCL in CIL. To assess the effectiveness of our proposed GenCL in a setup,
where only concept names are provided without data, we compare its performance against models
trained on web-scraped data, other synthetic data, as well as manually annotated data, representing
the ideal case. In the CIL setup, we assume that the category names of the PACS and DomainNet
datasets are provided incrementally, and we summarize the results not only in the ID domain but also
in the OOD domain in Tab. 1. Note that since DomainNet is a web-scraped dataset, sharing the same
domain as C2C (Prabhu et al., 2024), which also uses web-scraping for data acquisition, we exclude
C2C from the comparison in DomainNet.

In in-distribution (ID) domain, MA outperforms other baselines, as well as GenCL. This is because
the ID test set we use is derived from the same test set as the MA data, giving it an advantage in this
specific domain. However, in the out-of-distribution (OOD) domains of PACS, CONAN outperforms
both MA and other baselines. We believe that we achieve better generalization performance by
generating a more diverse set of images through a diversified set of prompts and an ensemble
selection of generators. We provide additional comparisons with various combinations of diverse
prompt generation baselines and data ensemble methods in Sec. A.33.

Effectiveness of GenCL in MVCIL. We also empirically validate the effectiveness of GenCL
in the MVCIL setup, and summarize the result in Tab. 2. Since CHB, SC, and CCG focus solely
on image classification tasks, we exclude them from the MVCIL setup. Additionally, Glide-Syn
and LE utilize a word-to-sentence model to generate diverse prompts, making them inapplicable
to Bongard-OpenWorld, which uses sentences as concepts. Note that while C2C and manually
annotated (MA) data utilize human-annotated hard negative concepts alongside the concepts to be
learned (i.e., positive concepts), GenCL relies solely on positive concepts. Specifically, to acquire MA
data, high-quality annotators from Amazon Mechanical Turk were employed to select hard negative
examples and filter out noisy data (Jiang et al., 2022). In contrast, GenCL automatically selects
relevant hard negative concepts based on the specified positive concept, leveraging commonsense
priors from large language models (Zhao et al., 2023; Yang et al., 2024). For web-scraped data, since
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Method

PACS DomainNet

ID OOD ID OOD

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
C2C (CoLLAs 2024) 47.29±2.75 39.23±3.78 28.33±1.93 20.77±1.51 35.06±0.41 27.81±0.15 11.89±0.22 8.82±0.08
Glide-Syn (ICLR 2023) 34.59±2.14 32.05±1.44 31.53±1.56 26.56±1.84 15.64±0.44 10.68±0.19 4.06±0.13 2.59±0.03
Real-Fake (ICLR 2024) 55.60±2.36 53.00±2.26 28.66±1.47 21.22±1.33 24.43±0.26 18.89±0.30 6.33±0.11 4.50±0.05
IE (ICML 2023) 47.29±3.29 38.99±2.94 25.74±2.11 18.23±1.87 34.76±0.52 27.55±0.24 11.92±0.26 8.50±0.14

LE (ICLR 2023) 46.47±2.00 45.76±2.33 32.42±1.35 27.56±0.66 20.01±0.27 15.38±0.31 6.40±0.13 4.59±0.09
(+) CONAN 49.37±3.77 50.45±1.56 33.88±1.79 30.29±0.81 30.80±0.63 25.33±0.20 9.54±0.25 7.59±0.17

CHB (CVPR 2023) 47.52±2.69 46.11±1.07 31.02±1.11 22.82±1.61 16.69±0.16 13.45±0.19 5.61±0.11 4.18±0.05
(+) CONAN 52.01±2.72 45.46±3.27 32.62±1.72 24.26±0.89 29.06±0.37 24.52±0.17 9.28±0.14 7.56±0.14

SC (CVPR 2024) 44.03±1.95 41.48±3.05 30.72±1.19 23.07±1.04 11.89±0.17 8.66±0.20 3.90±0.07 2.68±0.04
(+) CONAN 50.45±2.70 52.35±0.99 31.04±1.26 23.90±1.35 22.36±0.34 19.13±0.32 6.71±0.15 5.48±0.13

CCG (arXiv 2024) 45.49±2.81 45.29±1.69 30.20±1.91 23.44±0.71 12.55±0.22 10.21±0.26 4.03±0.10 2.91±0.10
(+) CONAN 46.65±3.36 45.75±1.92 31.14±1.88 25.77±1.18 18.32±0.42 15.83±0.34 5.78±0.17 4.70±0.14

HIRPG 51.36±2.59 51.63±2.49 34.12±1.27 28.18±1.32 27.72±0.30 23.71±0.39 10.70±0.19 8.75±0.13
(+) CONAN (Ours) 55.89±3.06 55.43±2.49 38.53±1.15 33.73±1.82 35.60±0.31 29.99±0.11 14.53±0.22 12.65±0.09
MA 67.10±4.07 61.95±0.92 27.75±1.44 20.90±0.95 51.13±0.28 42.95±0.15 13.48±0.09 10.69±0.07

Table 1: Quantitative comparison between different name-only baselines on CIL setup. We follow the ID
and OOD domains as described in Tab. 6. MA refers to training a model with manually annotated data.

Method
Bongard-HOI Bongard-OpenWorld

Positive / Negative Concept Answering Positive / Negative Concept Answering

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
C2C (CoLLAs 2024) 61.53±3.13 59.58±2.49 73.88±3.21 67.40±3.15 49.75±0.49 50.39±0.89 69.56±3.58 67.56±1.47
Glide-Syn (ICLR 2023) 54.83±2.07 55.77±3.54 67.87±3.30 59.38±3.62 - - - -

LE (ICLR 2023) 64.03±3.10 62.40±2.58 73.65±3.60 70.68±3.80 - - - -
(+) CONAN 65.90±2.59 65.63±2.59 74.99±3.07 72.38±2.76 - - - -

HIRPG 67.25±2.61 71.49±0.42 75.52±3.17 73.97±3.11 48.37±1.17 47.48±3.47 70.09±1.92 74.59±3.11
(+) CONAN (Ours) 70.20±3.97 73.18±2.40 77.01±3.45 75.80±1.83 53.68±1.18 57.74±2.18 73.10±3.79 76.77±3.81
MA 69.50±1.84 73.04±2.71 76.02±3.85 70.37±3.87 53.44±1.91 53.06±3.45 70.84±3.44 72.21±3.75

Table 2: Quantitative comparison between different name-only baselines on Multi-modal MVCIL setup.

long-context queries (e.g., ‘hard negative images of riding a bike’) often retrieve noisy images, they
require negative concepts derived from manually annotated data instead.

Even in the absence of hard negative concepts, GenCL outperforms models trained with both manually
annotated and web-scraped data by leveraging the ability of LLMs to generate prompts for hard
negative examples and the controllability of T2I generative models through text prompts (Nie et al.,
2021). For the prompts we use to select hard negative examples, see Sec. A.4.

Comparison of HIRPG with Diverse Prompt Generation Methods. To evaluate the effectiveness
of HIRPG in diverse prompt generation, we compare models trained on data generated from prompts
derived by prompt generation baselines (LE, CHB, SC, and CCG). As shown in Tab. 1, HIRPG sig-
nificantly outperforms the baselines, both with and without the combination of CONAN. We attribute
this performance improvement to two key components of the prompts: recurrent prompt generation
(RPG), which reduces the overlap between generated prompts, and hierarchical generation (HIG),
which addresses the lost-in-the-middle challenge (Liu et al., 2023c) that arises from solely using
RPG. We provide an ablation study of these two components of HIRPG in Sec. A.9. Furthermore, we
analyze the Diversity (Naeem et al., 2020) and Recognizability (Fan et al., 2024) of images generated
by each prompt generation baseline in Sec. A.5 in the Appendix for the sake of space.

Comparison of CONAN with Data Ensemble Methods. To demonstrate the effectiveness of
CONAN, we compare it with existing data ensemble methods (i.e., Moderate, Uncertainty, Glister,
GradMatch, and LCMat), as well as the equal-weight selection (EWS) and No ensembling (i.e., using
images generated from a single generative model). For a fair comparison, we use the same candidate
sets and ensure an equal number of selected images in the ensemble set across all ensemble methods.
After data selection, we evaluate the performance of continual learners trained with each ensemble
set and summarize the results in Tab. 3. We use a CLIP-pretrained ResNet-50 as the feature extractor
for data ensembling, following Cui et al. (2023), while employing ResNet-18 as the backbone
network for the continual learner across all baselines. Note that Uncertainty, Glister, GradMatch, and
LCMat require fine-tuning on the full dataset for gradient calculations of the fine-tuned model, even
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though they use a pre-trained feature extractor for initialization. Consequently, for these baselines,
we fine-tune the CLIP pre-trained ResNet-50 model for 30 epochs using the full dataset for those
baselines. In contrast, Moderate and CONAN do not require fine-tuning; they only need a feature
extractor to calculate distances. Despite being training-free, as shown in Tab. 3, CONAN outperforms
methods that require fine-tuning with a full dataset, as well as moderate.

We further compare CONAN with various RMD-based ensemble, such as k-highest RMD ensemble,
and summarize the results in Sec. A.14 for the space’s sake.

Method Full Dataset
Training

PACS DomainNet

ID OOD ID OOD

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
No ensembling ✗ 51.36±2.59 51.63±2.49 34.12±1.27 28.18±1.32 27.72±0.30 23.71±0.39 10.70±0.19 8.75±0.13
EWS ✗ 50.56±2.32 50.03±2.13 34.59±1.41 27.13±3.44 32.38±0.47 26.45±0.35 12.93±0.23 10.92±0.06
Moderate (ICLR 2023) ✗ 47.03±3.52 45.34±1.11 35.06±2.03 27.91±2.17 25.57±0.42 20.38±0.16 10.53±0.29 8.17±0.13
CONAN (Ours) ✗ 55.89±3.06 55.43±2.49 38.53±1.15 33.73±1.82 34.60±0.31 30.09±0.11 14.53±0.22 12.65±0.09
Uncertainty (ICLR 2020) ✓ 39.75±2.10 33.17±3.69 32.99±1.42 25.17±3.01 21.90/±0.37 15.70±0.08 10.01±0.23 7.19±0.11
CRAIG (ICML 2020) ✓ 53.57±2.43 54.24±2.04 35.54±0.90 32.29±0.96 32.53±0.20 28.44±0.23 13.25±0.15 11.53±0.06
Glister (AAAI 2021) ✓ 40.55±2.43 37.75±3.81 34.30±1.66 27.56±1.31 23.16±0.37 16.98±0.35 10.56±0.26 7.60±0.18
GradMatch (ICML 2022) ✓ 54.93±3.24 54.06±1.49 35.05±1.70 29.81±1.35 32.53±0.43 28.36±0.41 13.48±0.31 11.74±0.18
Adacore (ICML 2022) ✓ 52.06±2.64 48.37±2.80 35.55±2.09 30.36±0.85 32.15±0.55 26.83±0.18 13.62±0.27 11.37±0.04
LCMat (AISTATS 2023) ✓ 53.40±2.35 54.60±1.65 35.37±1.62 30.04±0.82 32.38±0.44 28.36±0.32 13.42±0.26 11.76±0.17

Table 3: Quantitative comparison between data ensemble methods on CIL setup. EWS refers to the method
of selecting and combining generated data from different generative models in equal proportions. No ensembling
refers to using a single generative model (i.e., SDXL).

Additionally, we provide a comparison of HIRPG and baselines in the joint training setup in Sec.A.7.

5.3 ABLATION STUDY

We conduct an ablation study on two components of GenCL, i.e., HIRPG and CONAN using the
ResNet-18 and ImageNet-1k pretrained ViT-Base models, and summarize the results in Tab. 4 and
Tab. 5, respectively. Our observations indicate that both components play a significant role in
enhancing both the ID domain performance and the OOD domain performance. In the tables, Vanilla
GenCL refers to generating 50 different prompts using an LLM without employing RPG or HIG, and
using a single T2I generator, i.e., SDXL. We provide the details about Vanilla GenCL in Sec A.9.

Method

PACS DomainNet

ID OOD ID OOD

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
Vanilla GenCL 47.74±1.52 47.30±2.38 31.66±1.45 25.41±0.66 20.82±0.39 17.19±0.34 7.09±0.21 5.55±0.11
(+) HIRPG 51.36±2.59 51.63±2.49 34.12±1.27 28.18±1.32 27.72±0.30 23.71±0.39 10.70±0.19 8.75±0.13
(+) CONAN 50.02±2.52 45.34±4.25 33.94±1.37 27.30±1.16 28.17±0.35 24.12±0.11 9.76±0.17 8.18±0.15
(+) HIRPG & CONAN (Ours) 55.89±3.06 55.43±2.49 38.53±1.15 33.73±1.82 34.60±0.31 29.99±0.11 14.53±0.22 12.65±0.09

Table 4: Ablations for proposed components of GenCL. We use ResNet-18 model.

Method
PACS DomainNet

ID OOD ID OOD
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Vanilla GenCL 72.91±1.40 56.85±2.68 40.39±1.67 27.11±2.90 30.96±0.34 22.52±0.46 11.17±0.25 7.78±0.21
(+) HIRPG 78.52±1.90 72.40±2.40 45.46±1.59 36.76±2.35 37.90±0.31 30.37±0.64 15.30±0.19 11.31±0.29
(+) CONAN 77.31±1.58 64.39±2.40 48.01±2.05 35.22±2.64 37.81±0.47 30.15±0.25 14.61±0.29 10.83±0.20
(+) HIRPG & CONAN (Ours) 79.32±1.97 72.46±0.42 53.88±1.57 41.31±2.42 42.73±0.25 36.09±0.50 18.64±0.28 14.68±0.16

Table 5: Ablations for proposed components of GenCL. We use ImageNet-1k pretrained ViT-base model.

6 CONCLUSION

Online continual learning represents a practical, real-world-aligned learning paradigm. However, the
assumption of having access to well-curated and annotated data in these scenarios hinders its real-
world application. To address the challenges arisen from using manually annotated and web-crawled
data, we introduce a unified name-only continual learning framework that integrates generators with
the continual learner, termed ‘Generative name only Continual Learning’ (GenCL).

Within the GenCL framework, we propose an diverse prompt generation method (i.e., HIRPG) and
complexity-guided ensembling (i.e., CONAN). Extensive experimental validations demonstrate the
performance improvements achieved by both components within the GenCL framework, showcasing
its effectiveness in both ID and OOD settings compared to webly-supervised and human supervision.
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Jędrzej Kozal, Jan Wasilewski, Bartosz Krawczyk, and Michał Woźniak. Continual learning with
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A APPENDIX

A.1 DETAILS ABOUT VISUAL-CONCEPT INCREMENTAL LEARNING SETUP

Beyond CIL setups, we also assess GenCL in multimodal tasks, such as context-dependent visual
reasoning tasks, focusing on Bongard-HOI (Jiang et al., 2022) and Bongard-OpenWorld (Wu et al.,
2024a). These benchmarks are based on two desirable characteristics of classical Bongard problems:
(1) few-shot concept learning and (2) context-dependent reasoning. The former refers to the ability
to induce visual concepts from a small number of examples, while the latter indicates that the label
of a query image may vary depending on the given context (i.e., positive and negative support set).
Specifically, as shown in Fig. 4 and Fig. 5, given a positive support set and a negative support set for
a particular concept (e.g., "ride a bike"), we consider two types of tasks that address the following
queries: (1) What is the concept exclusively depicted by the positive support set? and (2) Given
a query image, does the query image belong to the positive or negative support set? We refer to
these tasks as CA (Concept Answering) and P/N, respectively. In addition, we provide a detailed
description of each visual concept reasoning benchmark.

Bongard-HOI (Jiang et al., 2022). Bongard-HOI denotes a concept c = ⟨a, o⟩ as a visual relation-
ship tuple, where a, o are the class labels of action and object, respectively. Following Bongard’s
characteristic, there are positive support set Ip and negative support set In, where Ip and In have
different concepts. Specifically, if the concept of Ip is ⟨a, c⟩, In is composed of data with concept
c′ = ⟨ā, o⟩, where ā ̸= a. As a result, images from both In and Ip contain the same categories of
objects, with the only difference being the action labels, making it impossible to trivially distinguish
positive images from negative ones through visual recognition of object categories alone (i.e., hard
negative examples). We provide examples of Bongard-HOI-CA & Bongard-HOI-P/N (Jiang et al.,
2022) in Fig. 4.

Bongard-OpenWorld (Wu et al., 2024a). In contrast to Bongard-HOI, which has a structured
concept c represented as (action, object), Bongard-OpenWorld utilizes a free-form sentence as c to
describe the content depicted by all images in the positive set Ip exclusively. Specifically, concepts
are obtained by the annotators, who are instructed to write visual concepts by following a predefined
set of categories. We provide examples of Bongard-OpenWorld-CA & Bongard-OpenWorld-P/N (Wu
et al., 2024a) in Fig. 5.

Note that since the input consists of both text queries and images (i.e., support sets and a query image)
and outputs are sentences, we use multimodal large language models (MLLMs), such as LLaVA (Liu
et al., 2023b), which connects a vision encoder with an LLM for general-purpose visual and language
understanding. For further implementation details, such as the prompts we use, see Sec. A.3.

A.2 DETAILS ABOUT EXPERIMENT SETUP

To set a domain generalization benchmarks (i.e., PACS (Zhou et al., 2020), DomainNet (Neyshabur
et al., 2020), and CIFAR-10-W (Sun et al., 2024)) for a class incremental learning (CIL) setup, we
divide it into multiple disjoint tasks. We assume a disjoint setup (Parisi et al., 2019), where tasks
do not share classes. We summarize the in-distribution (ID) domain, the out-of-distribution (OOD)
domains, the total number of classes per dataset, the number of classes per task, and the number
of tasks for each dataset in Tab. 6. Within each dataset, all tasks have the same size, except PACS,
which has a total of 7 classes. For PACS, the first task includes 3 classes, while the subsequent tasks
include data for 2 classes each. For CIFAR-10-W, even though CIFAR-10 Krizhevsky et al. (2009)
can use MA data, the image resolution of CIFAR-10 is 32×32, while CIFAR-10-W has a resolution
of 224×224, leading to performance degradation. Therefore, we exclude comparison with MA in the
CIFAR-10-W experiments. For multi-modal visual-concept incremental learning (MVCIL) setup, we
summarize the the total number of concepts, number of tasks, and number of concepts per task in
Tab. 7.

Note that we run five different task splits using five different random seeds and report the average and
standard error of the mean (SEM) for all experiments.
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Labels: Positive Negative

Positive Support Set Negative Support Set

Query Images

Concept exclusively 
depicted by positive set?

Query image belongs to 
positive or negative set?

CA

P/N

Tasks

Ground truth concept     : walk a dog

Figure 4: An example of the Bongard-HOI task. CA refers to the concept answering task, while P/N refers to
the classifying whether a query image belongs to the positive or negative set.

Dataset ID domain OOD domains total # of classes # of tasks # of classes / task

PACS Photo Art, Cartoon, Sketch 7 3 2 (only initial task: 3)
DomainNet Real Clipart, Painting, Sketch 345 5 69
CIFAR-10-W - CIFAR-10-W 10 5 2

Table 6: Task configurations for the CIL setup on each domain generalization dataset.

Dataset Form of Concepts total # of concepts # of tasks # of concepts / task

Bongard-OpenWorld Free-form 10 5 2
Bongard-HOI (action, object) 50 5 10

Table 7: Task configurations for the MVCI setup on each Bongard benchmark.

A.3 IMPLEMENTATION DETAILS

We used ResNet18 (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy & Brox, 2016) as
network architectures for the class-incremental learning (CIL) setup. Due to the large number of
parameters in ViT, training it from scratch in an online setup resulted in lower performance. Therefore,
we used the weights of a model pre-trained on ImageNet-1K (Russakovsky et al., 2015) as initial
weights for ViT. For data augmentation, we consistently applied RandAugment (Cubuk et al., 2020)
in all experiments. For the optimizer and the learning rate (LR) scheduler in CIL setup, we employed
the Adam optimizer with initial LR of 0.0003 and Constant LR scheduler, respectively, following
prior works (Koh et al., 2023; Seo et al., 2024b). In MVCIL setup, we use Adam optimizer with
LR 5 × 10−5 and Constant LR scheduler. For task split, we adopt a disjoint setup, where tasks
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Figure 5: An example of the Bongard-OpenWorld task. CA refers to the concept answering task, while P/N
refers to the classifying whether a query image belongs to the positive or negative set. The concept c is free-form,
such as sentences.

do not share classes (Parisi et al., 2019). We used the GPT-4 model (Achiam et al., 2023) for all
LLM-based prompt generation baselines including HIRPG. To ensure a fair comparison among
manually annotated data, generated data, and web-scraped data, we used an equal number of samples
in all experiments. Regarding the web-scraped data, we obtained 20% more samples than necessary
for batch training with the aim of filtering out noisy data. To achieve this, we utilized pre-trained
CLIP (Radford et al., 2021) for filtering, which excludes the most noisy bottom samples, resulting in
a cleaned subset used for training, following (Schuhmann et al., 2022). We used 8×RTX 4090 GPUs
to generate images using text-to-image generative models.

Hyperparameters. For T , which refers to the temperature of the softmax function in CONAN, is
uniformly set to 0.5 across all datasets. For L, the truncation ratio used in RMD score normalization,
we set it to 5% for all experiments In all experiments, we run five different random seeds and report
the average and standard error mean. For diverse prompt generation, we generate 50 different prompts
for all baselines across all benchmarks, including HIRPG, to ensure a fair comparison. Specifically,
to generate 50 prompts using HIRPG, we set depth D = 2, and K = 7 for all setups.

Following (Koh et al., 2021; 2023; Kim et al., 2024a), we conduct batch training for each incoming
sample. Specifically, for PACS, CIFAR-10, and DomainNet, the number of batch iterations per
incoming sample is set to 2, 2, and 3, respectively, with batch sizes of 16, 16, and 128. Episodic
memory sizes are configured as 200, 2000, and 10000 for PACS, CIFAR-10-W, and DomainNet,
respectively.

For MVCIL setups, the number of batch iterations per incoming sample is set to 0.5, with a batch
size of 2, and a memory size of 500 in both Bongard-HOI and Bongard-OpenWorld. Unlike the CIL

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

setup, where data is composed solely of image and label pairs, in the MVCIL setup, each set contains
both negative and positive examples corresponding to a given concept. We store 500 sets in episodic
memory. In MVCIL benchmarks, i.e., Bongard-HOI and Bongard-OpenWorld, we used 2 positive
images and 2 negative images for a support set and 4 positive images and 4 negative images for a
support set, respectively. For the MVCIL setup, we use the LLaVA-1.5-7B (Liu et al., 2023b).

Prompts. For the prompt diversification module ψ, we use the following system prompt to sequen-
tially generate the prompts:

To generate images using a text-to-image generation model, I need to create a prompt. Keep the
domain photorealistic and use different visual scenes and visual styles or different color profiles/
palettes. Here is a list of prompts that I have previously generated <previous outputs>. Please
create a new prompt that does not overlap with these.

In Bongard-HOI-P/N, we use the following prompt:

‘positive’ images:<|endofchunk|><image><image>
‘negative’ images:<|endofchunk|><image><image>
‘query’ image:<|endofchunk|><image>
Given 2 ‘positive’ images and 2 ‘negative’ images, where both ‘positive’ and ‘negative’ images
share a ‘common’ object, and only ‘positive’ images share a ‘common’ action whereas ‘negative’
images have different actions compared to the ‘positive’ images, the ‘common’ action is exclusively
depicted by the ‘positive’ images. And then given 1 ‘query’ image, please determine whether it
belongs to ‘positive’ or ‘negative’ You must choose your answer from the Choice List. Choice
list:[Positive, Negative].
Your answer is:

In Bongard-HOI-CA, we use the following prompt:

‘positive’ images:<|endofchunk|><image><image>
‘negative’ images:<|endofchunk|><image><image>
Given 2 ‘positive’ images and 2 ‘negative’ images, where both ‘positive’ and ‘negative’ images
share a ‘common’ object, and only ‘positive’ images share a ‘common’ action whereas ‘negative’
images have different actions compared to the ‘positive’ images, the ‘common’ action is exclusively
depicted by the ‘positive’ images. Your job is to find the ‘common’ action within the ‘positive’
images. You must choose your answer from the Choice List. Choice List: [choice lists].
Your answer is:

In Bongard-OpenWorld-P/N, we use the following prompt:

‘positive’ images:<|endofchunk|><image><image><image><image>
‘negative’ images:<|endofchunk|><image><image><image><image>
Given 4 ‘positive’ images and 4 ‘negative’ images, where ‘positive’ images share ‘common’ visual
concepts and ‘negative’ images cannot, the ‘common’ visual concepts exclusively depicted by the
‘positive’ images. Here, ‘common’ sentence from ‘positive’ images is common concept. And then
given 1 ‘query’ image, please determine whether it belongs to ‘positive’ or ‘negative’.

In Bongard-OpenWorld-CA, we use the following prompt:

‘positive’ images:<|endofchunk|><image><image><image><image>
‘negative’ images:<|endofchunk|><image><image><image><image>
Given 4 ‘positive’ images and 4 ‘negative’ images, where ‘positive’ images can be summarized
as 1 ‘common’ sentence and ‘negative’ images cannot, the ‘common’ sentence describes a set of
concepts that are common to ‘positive’ images. Please give the ‘common’ sentence from ‘positive’
images.
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A.4 SELECTING HARD NEGATIVE CONCEPTS IN GENCL ON MVCIL SETUPS

For Bongard-HOI benchmark, Given a (object, concept), e.g., (ride, a bike), GenCL retrieves hard negative
concept using an LLM and the following prompt:

To train a model that distinguishes between positive and negative images, you need to choose
N negative actions from the following negative action list. When choosing negative actions, you
should consider the available actions from the object. For example, if the object is ‘bird’, possible
actions are ‘chase’, ‘feed’, ‘no interaction’, ‘watch’, etc. If the object is ‘orange’, possible actions
are ‘cut’, ‘hold’, ‘no interaction’, ‘peel’, etc. You should choose hard negative actions that are
clearly distinguishable from positive actions among the possible actions.
object: <object class>
positive action: <positive action>
negative action list: <action set>
Please select a total of N negative actions. The response format must be strictly result: [‘negative
action1’, ‘negative action2’, ... ], and all negative actions must be included in the negative action
list.

For Bongard-OpenWorld benchmark, GenCL retrieves hard negative concept using an LLM and the following
prompt:

To create an image using a text-to-image generation model, I want to create a prompt. Below, a
prompt for a positive image will be provided, and the goal is to generate a prompt for a negative
image. It is important that the negative prompt partially overlaps with the positive prompt and
has slight differences. For example, if the positive prompt is ’Dogs are running’, then ’Dogs
are drinking water’ would be the negative prompt. Please create N ’negative’ prompt sentences
(under 5 words) that fits this description. Please ensure the response format is strictly ’prompt:
answer’.
Positive prompt: <positive prompt>.

A.5 COMPARISON OF HIRPG WITH DIVERSE PROMPT GENERATION METHODS.

To evaluate the effectiveness of HIRPG in diverse prompt generation, we further analyze the generated images
based on two attributes: Recognizability (Fan et al., 2024), which evaluates whether the images accurately
represent the intended concepts, and Diversity (Naeem et al., 2020), which assesses the variation among the
images. Although we aim to generate diverse images using varied prompts, the generated images should
accurately represent the desired concepts. For a fair comparison, we generate 50 text prompts using each prompt
diversification baseline and use SDXL to generate the same number of images for all baselines, including HIRPG.
We summarize the results in Tab. 8.

Method
PACS DomainNet

Recognizability ↑ Diversity ↑ Recognizability ↑ Diversity ↑
LE (He et al., 2023b) 65.39 0.27 38.49 0.31
CHB (Sarıyıldız et al., 2023) 62.96 0.16 41.57 0.24
SC (Tian et al., 2024a) 71.50 0.19 33.19 0.20
CCG (Hammoud et al., 2024) 68.78 0.18 32.71 0.19

HIRPG (Ours) 90.77 0.31 52.83 0.35

Table 8: Comparison of prompt diversification methods. We compare the Recognizability and Diversity of
images generated using text prompts derived from prompt generation methods in conjunction with a text-to-
image generative model.

The model trained with data generated by HIRPG significantly outperforms those trained with data generated by
the baselines in both the in-distribution (ID) and out-of-distribution (OOD) domains. Furthermore, as shown
in the Recognizability and Diversity, HIRPG not only generates more diverse data, but also produces more
recognizable data compared to baselines. Overall, DomainNet exhibits higher Diversity. This is because, despite
having approximately 50 times more classes than PACS, it has fewer images per class, resulting in a smaller
number of generated images per prompt. For detailed descriptions of the baselines and metrics (i.e., Rec and
Div), see Sec. A.10 and Sec. A.16, respectively.
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A.6 QUALITATIVE ANALYSIS

We qualitatively compare web-scraped images, manually annotated images, and GenCL-generated images,
highlighting diversity and recognizability of GenCL-generated images.

Multi-modal Visual-concept Incremental Learning Setup. We compare samples acquired through
different data acquisition methods for the given concept in the Bongard-HOI and Bongard-OpenWorld datasets,
as shown in Fig.6 and Fig.7, respectively. In Fig. 6, although the desired positive images are related to ‘ride a
bike’, the web-scraped positive set includes images of ‘not ride a bike’, such as ‘sitting on a bike’. In addition,
the positive set for ‘riding a bike’ contains even an image of a road with a bicycle symbol painted on it. These
inherent noises in web-scraped data, i.e., the inclusion of unwanted or irrelevant content, can significantly hinder
model performance, as discussed in Sec. 1. In contrast, GenCL leverages the controllability (Nie et al., 2021)
of the generative model, i.e., the ability to generate the desired output through text descriptions, allowing it to
produce the intended images.

Similarly, in Fig. 7, GenCL effectively generates both positive and negative support sets. In contrast, web-scraped
data include images that do not match the given concept ‘A leopard relaxing on a tree branch.’ This discrepancy
arises from the lengthy and free-form concepts used in Bongard OpenWorld, such as descriptive sentences,
compared to the simpler object-action combinations in Bongard-HOI. In web scraping, those detailed and lengthy
search queries may yield unrelated results.

Note that GenCL relies solely on positive concepts, as mentioned in Sec. 5.2. Specifically, in manually annotated
(MA) data, high-quality annotators not only select positive support sets but also curate hard negative examples
for the negative sets. In contrast, GenCL utilizes only positive concepts (i.e., concepts that the model needs to
learn) and automatically generates hard negative examples using text prompts created by large language models
(LLMs), as demonstrated in Sec. A.4. Nonetheless, as shown in Fig. 6 and Fig. 7, the negative samples generated
by GenCL are not clearly distinct from the positive examples, which enhances the model’s ability to differentiate
between the concepts.

Class Incremental Learning Setup. We compare samples acquired through different baselines in the CIL
setup, as illustrated in Fig. 8 and Fig. 9.

Figure 6: Samples using different data acquisition methods for the same concept in the MVCIL setup.
The given concept is ‘ride a bike’ from the Bongard-HOI benchmark. The left four images represent positive
examples that depict the given concept, while the right four images represent negative examples that illustrate
different concepts. Here, ‘MA’ refers to manually annotated data.

A.7 EXPANDING GENCL TO THE JOINT TRAINING SETUP

We extend our proposed GenCL to the standard learning setup (i.e., joint training setup), where all concepts to
be learned are provided at once. In this setting, we compare GenCL not only with training-based methods, such
as GLIDE, but also with training-free methods (i.e., CLIP-ZS (Radford et al., 2021), SuS-X-SD (Udandarao
et al., 2023), VisDesc (Menon & Vondrick, 2023), SD-Clf (Li et al., 2023a), and CUPL (Pratt et al., 2023))
that leverage pre-trained Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021) or generative
models, such as SDXL (Podell et al., 2023). Note that although these methods do not update model weights,
they generate images for support sets or create customized prompts using LLMs to classify the target concept.
We provide a detailed explanation of training-free baselines in Sec. A.12.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 7: Samples using different data acquisition methods for the same concept in the MVCIL setup. The
given concept is ‘A leopard relaxing on a tree branch’ from the Bongard-OpenWorld benchmark. The left four
images represent positive examples that depict the given concept, while the right four images represent negative
examples that illustrate different concepts. Here, ‘MA’ refers to manually annotated data.

We first compare these methods using the same model, i.e., ResNet-50-CLIP, a CLIP model with ResNet-50
as the vision encoder. For this, we utilize the YFCC100M (Thomee et al., 2016) pre-trained CLIP model. We
summarize the results in Tab. 9. For training-dependent methods, we train the model for 10 epochs, ensuring the
same amount of data is used across all baselines for a fair comparison. As shown in the table, GenCL significantly
outperforms existing name-only classification baselines, as well as combinations of baselines with our proposed
data ensemble method, i.e., CONAN. Furthermore, compared to diverse prompt generation baselines (LE, CHB,
SC, and CCG), our proposed HIRPG outperforms in both setups—with and without CONAN —demonstrating
the effectiveness of our proposed components in a joint training setup.

Next, we compare the results with those obtained using only the CLIP-pretrained ResNet-50 for training-
dependent methods. While the same model (i.e., CLIP) can be employed for training-free methods, training
vision-language models (VLMs) demands substantial computational resources, which impedes real-time adapta-
tion and limits their deployment in real-world applications(Koh et al., 2021; Caccia et al., 2022). Therefore, to
improve training efficiency and enable faster adaptation to newly encountered concepts, we also compare the
results of training solely on the vision encoder of the CLIP model for training-dependent methods. To assess
training efficiency, we train them for 10 epochs, consistent with Tab. 9, and summarize the results in Tab. 10.

As shown in the table, several training-free methods outperform GenCL in the in-domain (ID) scenario. This
advantage arises because they utilize off-the-shelf CLIP models, which are pre-trained on large-scale datasets,
particularly in the photo domain, which we consider as ID in our experiments. However, despite the benefits of
large-scale pre-training, these methods struggle to generalize in out-of-domain (OOD) scenarios, such as the
sketch and painting domains.

In contrast, GenCL not only outperforms all baselines but also surpasses a model trained with manually annotated
data in the OOD domains of both PACS and DomainNet. This demonstrates that large-scale pre-training alone
does not guarantee good generalization across all downstream tasks, highlighting the necessity of few-epoch
training for personalization and real-time adaptation in name-only setup.

A.8 ABLATION STUDY OF GENCL USING THE VIT

In addition to Sec. 5.3, we conduct an ablation study on two components of GenCL, namely HIRPG and
CONAN, using the ImageNet-pretrained ViT-base model. We use the same number of images for each baseline
to ensure a fair comparison, and summarize the results in Tab. 5.

Similar to the ablation study with ResNet-18, both components significantly enhance performance in both
in-distribution (ID) and out-of-distribution (OOD) domains.

A.9 ABLATION STUDY OF HIRPG

We conduct an ablation study on HIRPG to investigate the benefits of each proposed component, namely
hierarchical generation (HIG) and recurrent prompt generation (RPG), in PACS and DomainNet. For a fair
comparison, we generate 50 different prompts and use SDXL to generate images for all baselines. For HIG,
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Figure 8: Samples using different data acquisition methods for the same concept in the CIL setup. The
given concepts are Dog, Person, House, which are from PACS.

we use a 7-ary tree with a depth of 2. Since we only need 50 prompts, we sample 50 prompts from the 57 total
nodes of a complete 7-ary tree.

The results are summarized in Tab. 11. In the table, vanila prompt generation refers to generating N different
prompts using an LLM without applying RPG or HIG. Specifically, we use the following prompts for vanila
prompt generation:

To generate images using a text-to-image generation model, I need to create 50 prompts. Keep
the domain photorealistic and use different visual scenes and visual styles or different color profiles/
palettes. Please create 50 prompts that does not overlap with each other. Please ensure that
each response includes the word ‘[concept]’. For example, ‘A photo of a [concept].’, ‘A detailed
sketch of [concept].’, ‘A hyper-realistic portrait of [concept].’, etc.

As shown in the table, applying RPG alone even degrades the performance compared to vanilla prompt
generation. This degradation occurs because, as iterative steps progress, the length of the LLM input increases,
making it challenging to utilize the information within the extended context effectively (i.e., lost-in-the-middle
challenge (Liu et al., 2023c; An et al., 2024)), as discussed in Sec. 4.1. In contrast, combining RPG with
HIG addresses the lengthy input problem, leading to improved performance in both in-distribution (ID) and
out-of-distribution on PACS and DomainNet.
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Figure 9: Samples using different data acquisition methods for the same concept in the CIL setup. The
given concepts are Ambulance, Monkey, The Great Wall, which are from DomainNet.

A.10 PROMPT DIVERSIFICATION AND CONCEPT-SPECIFIC PROMPT GENERATION BASELINES

For a fair comparison, we used the same number of diversified prompts (i.e., 50) for all prompt diversification
methods, including our proposed HCFG. Moreover, for all LLM-based prompt generators, we consistently used
GPT-4o (Wu et al., 2024c) as LLM.

LE (He et al., 2023b). LE leverages an off-the-shelf word-to-sentence T5 model, pre-trained on the “Colossal
Clean Crawled Corpus” dataset (Raffel et al., 2020) and fine-tuned on the CommonGen dataset (Lin et al.,
2020), to increase the diversity of language prompts and generated images, with the aim of better harnessing
the potential of synthesized data. Specifically, the category names are entered into the word-to-sentence model,
which generates diversified sentences containing the category names. These diversified sentences are then used
as prompts for the text-to-image generation process.

CCG (Hammoud et al., 2024). For a given concept set C, CCG (Concept-based Captions Generation)
uses an LLM generator GLLM to produce concept-specific prompts for T2I models. The designed prompt p for
each concept c ∈ C is structured as follows:
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Type Training Data CIFAR-10-W DomainNet

OOD ID OOD

Training-free

CLIP-ZS (Radford et al., 2021) 57.14 14.69 5.17
SuS-X-SD (Udandarao et al., 2023) 53.08 20.06 7.5
VisDesc (Menon & Vondrick, 2023) 51.83 16.87 6.52
CuPL (Pratt et al., 2023) 50.5 18.25 6.36
CALIP (Guo et al., 2023) 51.62 16.43 6.39
SD-Clf (Li et al., 2023a) 52.48 12.27 11.85

Training-dependent

Glide-syn (He et al., 2023b) 55.93 38.26 9.31

LE (He et al., 2023b) 73.51 47.43 14.7
(+) CONAN 75.13 52.87 17.26

CHB (Sarıyıldız et al., 2023) 70.61 45.28 14.62
(+) CONAN 75.96 52.31 17.49

SC (Tian et al., 2024a) 71.3 40.42 12.36
(+) CONAN 75.04 49.64 15.19

CCG (Hammoud et al., 2024) 58.25 39.32 11.57
(+) CONAN 63.14 42.94 14.37

HIRPG 74.47 52.30 20.18
(+) CONAN (Ours) 77.64 54.85 22.66
Manually Annotated 59.12 71.13 20.29

Table 9: Quantitative comparison between different name-only baselines on joint training setup. We
employ the YFCC100M pre-trained ResNet50-CLIP, which uses ResNet50 as the vision encoder for the CLIP
model, for all methods.

Type Training Data PACS DomainNet

ID OOD ID OOD

Training-free

CLIP-ZS (Radford et al., 2021) 99.11 49.12 14.69 5.17
SuS-X-SD (Udandarao et al., 2023) 95.55 47.81 20.06 7.5
VisDesc (Menon & Vondrick, 2023) 93.77 46.09 16.87 6.52
CuPL (Pratt et al., 2023) 89.32 46.51 18.25 6.36
CALIP (Guo et al., 2023) 92.58 48.43 16.43 6.39
SD-Clf (Li et al., 2023a) 92.58 48.43 12.27 11.85

Training-dependent

Glide-syn (He et al., 2023b) 85.16 33.2 29.02 6.73

LE (He et al., 2023b) 88.43 38.03 40.74 10.47
(+) CONAN 93.47 44.54 54.60 15.62

CHB (Sarıyıldız et al., 2023) 83.38 30.98 35.97 9.60
(+) CONAN 92.88 41.42 49.17 15.51

SC (Tian et al., 2024a) 76.26 28.19 30.42 8.23
(+) CONAN 85.46 42.05 44.66 12.01

CCG (Hammoud et al., 2024) 81.01 31.71 26.59 6.89
(+) CONAN 85.76 41.55 32.31 8.72

HIRPG 89.91 43.98 46.19 17.80
(+) CONAN (Ours) 94.36 60.75 51.85 21.01
Manually Annotated 97.03 33.80 72.54 19.09

Table 10: Quantitative comparison between different name-only baselines on joint training setup. We
employ the YFCC100M pre-trained ResNet50-CLIP for training-free methods, while for training-dependent
methods, we utilize only the vision encoder of the CLIP model.
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Method
PACS DomainNet

ID OOD ID OOD
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Vanila Prompt Generation 47.74±1.52 47.30±2.38 31.66±1.45 25.41±0.66 20.82±0.39 17.19±0.34 7.09±0.21 5.55±0.11
(+) RPG 45.55±1.55 47.60±1.90 32.07±1.70 25.53±1.74 17.62±0.35 13.96±0.25 6.88±0.15 5.30±0.11
(+) HIG + RPG (Ours) 51.36±2.59 51.63±2.49 34.12±1.27 28.18±1.32 27.72±0.30 23.71±0.39 10.70±0.19 8.75±0.13

Table 11: Benifits of components of the proposed prompt generation method. RPG refers to the recurrent
prompt generation and HIG refers to the hierarchical generation. Vanilla prompt generation refers to generating
50 different prompts using an LLM without incorporating RPG or HIG.

Your task is to write me an image caption that includes and visually describes a scene around a
concept. Your concept is c. Output one single grammatically correct caption that is no longer
than 15 words. Do not output any notes, word counts, facts, etc. Output one single sentence
only.

Formally, the set of generated captions for concept c can be defined as T = {tc,n ∼ GLLM(p, c)}, ∀c ∈ C, ∀n ∈
{1, 2, ..., N}, where N is the number of desired prompts for each concept.

CHB (Sarıyıldız et al., 2023). To increase the visual diversity of the output images, CHB (Concept Name
+ Hypernym + Background) combines background information along with hypernyms, which helps reduce
semantic ambiguity. They assume that class c can be seen ‘inside’ a scene or background. Therefore, to enhance
visual diversity, CHB combines the concept name and its hypernym (as defined by the WordNet (Miller, 1995)
graph) with scene classes from the Places365 dataset (López-Cifuentes et al., 2020) as background for each
concept. Formally, pc can be defined as "pc = c, hcinside b", where c refers to the concept name, hc refers to
the hypernym of the concept c, and b refers to the background.

SC (Tian et al., 2024a). SC (Synthesizing captions) consider three types of templates for each concept c:
c→ caption, (c, bg) → caption, and (c, rel) → caption.

• c→ caption. They generate a sentence directly from the concept name c using LLM.

• (c, bg) → caption. Similar to CHB (Sarıyıldız et al., 2023), they combine the visual concept c with a
background bg. However, while CHB randomly selects bg from the Places365 dataset, they generate
a list of suitable backgrounds for the chosen concepts using LLM, which helps avoid unlikely
combinations, such as a blue whale on a football field.

• (c, rel) → caption. They consider pairing a given visual concept c with a positional relationship word rel,
such as "in front of." To add variety, rel is randomly selected from a predefined set of 10 relationship
words. Using an LLM, they then generate captions that reflect the selected relationship word in relation
to the concept.

Real-Fake (Yuan et al., 2024). Real-Fake aligns both data and class-conditional distributions through
Maximum Mean Discrepancy (MMD)-based loss (Gretton et al., 2006) to minimize the discrepancy between
real and synthetic data distributions. For prompt generation, it leverages BLIP2 (Li et al.) to generate captions
that incorporate class-relevant information. These captions are combined with class names and intra-class visual
features to guide the generation process.

IE (Li et al., 2023b). IE (Internet Explorer) dynamically queries search engines by combining concepts
from the WordNet hierarchy (Miller, 1995) with descriptors generated by GPT-J (Wang & Komatsuzaki, 2021).
For instance, the concept ‘duck’ can be combined with descriptors like ‘baby’, or ‘red’, resulting in queries such
as ‘baby duck’ or ‘red duck’. The descriptors are generated using a prompt template like “The {concept} is
[descriptor]” and sampled with temperatures to ensure diversity. The retrieved images are filtered based on their
similarity to the target dataset using a relevance reward metric.

A.11 DATA ENSEMBLE BASELINES

Gradient-based methods (Killamsetty et al., 2021b;a; Shin et al., 2023) minimize the distance between the
gradients from the entire dataset T and from the selected coreset S (S ⊂ T ) as follows:

min
w,S

∥∥∥∥∥∥
∑

(x,y)∈T

∇θl(x, y; θ)

|T | −
∑

(x,y)∈S

wx∇θl(x, y; θ)

∥w∥1

∥∥∥∥∥∥
2

, (5)
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where w is the vector of learnable weights for the data in selected coreset S, l refers to the loss function, θ
denotes the model parameters, and ∥ ∥1, ∥ ∥2 represent the L1 norm and L2 norm, respectively. To solve Eq. 5,
GradMatch (Killamsetty et al., 2021a) uses orthogonal matching pursuit algorithm (Elenberg et al., 2016),
while CRAIG (Mirzasoleiman et al., 2020) uses submodular maximization.

LCMat (Shin et al., 2023). While Craig and GradMatch minimize the gradient difference between T
and the S, LCMat matches the loss curvatures of the T and S over the model parameter space, inspired
by the observation that a loss function L quantifies the fitness of the model parameters θ under a specific
dataset. Specifically, they claim that even though optimizing S toward T with respect to θ would decrease
the loss difference between T and S in θ (i.e., |L(T ; θ) − L(S; θ)), if the loss difference increases with a
small perturbation ϵ in θ (i.e., |L(T ; θ + ϵ)− L(S; θ + ϵ)), it indicates a lack of generalization on θ + ϵ, or an
over-fitted reduction of S by θ. Since this generalization failure on the locality of θ subsequently results in the
large difference of loss surfaces between T and S, they propose an objective that maximize the robustness of θ
under perturbation ϵ as follows:

min
S

(Labs(T, S; θ + ϵ)− Labs(T, S; θ)), (6)

where Labs refers to the loss difference between T and S on θ (i.e., L(T ; θ)− L(S; θ)).

Moderate (Xia et al., 2023). Moderate selects data points with scores close to the score median, using the
median as a proxy for the score distribution in statistics.

Specifically, given a well-trained feature extractor f(·) and the full training data T = {t1, t2, . . . , tn}, the
process begins by computing the hidden representations (or embeddings) of all data points in T , i.e., {z1 =
f(t1), z2 = f(t2), . . . , zn = f(tn)}. Next, the ℓ2 distance from the hidden representation of each data
point to the class prototype of its corresponding class is calculated. Formally, for a sample t belonging to
class c, its distance d(t) is given by d(t) = ∥z − zc∥2, where z = f(t) and zc is the prototype of class c.
Subsequently, all data points are sorted in ascending order according to their distance, which are denoted by
{d(t̃1), d(t̃2), . . . , d(t̃n)}. Finally, data points near the distance median are selected as the coreset S.

Uncertainty (Coleman et al., 2020). Uncertainty suggests that data samples with a lower level of
confidence in model predictions will have a greater influence on the formation of the decision boundary. For
uncertainty scores, we utilize Entropy, following the approach of Shin et al. (2023), among the methods
LeastConfidence, Entropy, and Margin.

Glister (Killamsetty et al., 2021b). Glister is a generalization-based data selection method that optimizes
generalization error via a bi-level optimization problem to select the coreset S, aiming to maximize the log-
likelihood on a held-out validation set.

A.12 DESCRIPTION OF NAME-ONLY CLASSIFICATION BASELINES.

Glide-Syn (He et al., 2023b). This approach takes category name as input and employs the word-to-
sentence T5 model (pre-trained on ‘Colossal Clean Crawled Corpus’ dataset (Raffel et al., 2020) and finetuned
on ‘CommonGen’ dataset (Lin et al., 2019)), to generate diverse concept-specific sentences. After generating
diverse sentences using the word-to-sentence T5 model, they generate corresponding images using prompts and
the Glide (Nichol et al., 2021) text-to-image generative model. Finally, they introduce a clip filter to reduce noise
and enhance robustness.

CLIP-ZS (Radford et al., 2021). CLIP-ZS refers to zero-shot classification using a pre-trained CLIP
model, where the model classifies images without any additional training, leveraging its knowledge from large-
scale pre-training. Since CLIP is pre-trained on large-scale web dataset, it demonstrates impressive zero-shot
performance (Qian et al., 2024).

SuS-X-SD (Udandarao et al., 2023). This approach uses generated SuS (Support Sets) to ensure accurate
predictions for target categories by taking only categories as input. Specifically, SuS-X-SD generates support
sets using Stable Diffusion (Podell et al., 2023) and uses them as a combination with the pre-trained vision
language model and an adapter module named TiP-X for inference.

CuPL (Pratt et al., 2023). While the standard zero-shot open vocabulary image classification model, e.g.,
CLIP (Radford et al., 2021), uses only the set of base prompts, i.e., ‘A photo of {category name}’, and target
images for classification, CuPL proposes to use customized prompts using LLM. Specifically, they propose
using GPT-3 (Brown et al., 2020), but we replace it with GPT-4o (Wu et al., 2024c), which is a stronger LLM
and the one used in our proposed GenCL, for a fair comparison.
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CALIP (Guo et al., 2023). CALIP enhances the zero-shot performance of CLIP (Radford et al., 2021) by
introducing a parameter-free attention module. This module enables visual and textual representations to interact
and explore cross-modal informative features via attention. As a result, image representations are enriched with
textual-aware signals, and text representations are guided by visual features, leading to better adaptive zero-shot
alignment.

SD-Clf (Li et al., 2023a). SD-Clf leverages large-scale text-to-image diffusion models, such as Stable
Diffusion (Podell et al., 2023), for classification tasks. Given an input x and a finite set of classes C, the model
computes the class-conditional likelihoods pθ(x|c). By selecting an appropriate prior distribution p(c) and
applying Bayes’ theorem, SD-Clf predicts class probabilities p(c|x), effectively classifying the input based on
the computed likelihoods.

A.13 JUSTIFICATION FOR THE USE OF RMD SCORE
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Figure 10: Examples of samples with high RMD & high Rarity scores, as well as samples with low RMD & low
Rarity scores. The average RMD scores for Dog, Horse, Guitar, and Elephant are 2.91, 3.03, 2.43, and 3.25,
respectively, while the corresponding average Rarity scores are 33.59, 33.58, 33.57, and 33.18.

Many recent works endeavor to assess the diversity (Naeem et al., 2020; Han et al., 2022; Kim et al., 2024b),
complexity (Hwang et al., 2023), aesthetics (Somepalli et al., 2024; Khajehabdollahi et al., 2019), and real-
ism (Chen et al., 2023a; 2024; 2023b) of the generated images. In our work, we use the relative Mahalanobis
distance (RMD) score (Cui et al., 2023), to evaluate the complexity of the generated samples. The reason for
selecting RMD is its independence from the need for real samples in its calculation, while other diversity metric,
such as the Rarity Score (Han et al., 2022) and the TopP&R (Kim et al., 2024b) requires real samples, i.e., data
that have not been generated. Note that our proposed framework, GenCL, operates exclusively with concept
inputs rather than real data, thus we cannot access real data.

As we can see in Fig. 10, the Rarity score and the RMD score exhibit similar trends, showing the ability of the
RMD score to effectively measure complexity even in the absence of real samples.

A.14 COMPARISON BETWEEN CONAN AND VARIOUS RMD-BASED ENSEMBLE

We compare CONAN with various RMD-based ensemble approaches in PACS, and summarize the result in
Tab. 12. The table reveals that CONAN significantly outperforms others in both In-Distribution (ID) and
Out-of-Distribution (OOD) evaluations. Furthermore, with the exception of CONAN, all ensemble methods
even exhibit a decrease in performance compared to the scenario where no ensembling1 is applied. The k-highest
RMD ensemble, which excludes easy samples, leads to insufficient learning in the class-representative region,
while the k-lowest RMD concentrates solely on easy samples, resulting in limited diversity. Inverse CONAN
employs the inverse of the probabilities utilized in CONAN. Similar to the k-lowest RMD ensemble, it tends to
prioritize easy samples, resulting in limited diversity and accuracy loss.

A.15 DETAILS ABOUT DETERMINING ID AND OOD DOMAINS

To compare with the model trained with GenCL and the model trained with manually annotated (MA) data, we
select one domain as MA data from each domain generalization benchmark.

1No ensembling denotes the usage of images generated exclusively through SDXL (Podell et al., 2023).
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Ensemble Method ∆
ID OOD

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
No ensembling 51.36±2.59 51.63±2.49 34.12±1.27 27.18±1.32
Equal weight ensemble 50.56±2.32 50.03±2.13 35.49±1.41 27.13±3.44
k-highest RMD ensemble 52.80±2.82 50.09±3.06 36.24±1.52 30.09±1.35
k-lowest RMD ensemble 41.72±2.88 37.98±2.19 31.17±2.34 24.58±2.49
Inverse Prob 45.01±3.03 38.70±4.12 32.94±1.62 27.61±1.97

CONAN (Ours) 55.89±3.06 55.43±2.49 38.53±1.15 33.73±1.82

Table 12: Comparison of ensemble methods in PACS (Zhou et al., 2020), using ER (Rolnick et al., 2019) for
all ensemble methods. The proposed ensemble method outperforms other ensemble methods. We used Photo
domain as the ID domain, whereas we used Art, Cartoon, and Sketch domain as OOD domains. For OOD
domains, AAUC and Alast refer to the average value across all OOD domains.

A.16 DETAILS ABOUT METRICS

Area Under the Curve of Accuracy (AAUC). In online CL setup, the model is trained using the stream
data in real time, thus the model is used for inference at every moment rather than the predefined time point (e.g.,
end of the task) (Koh et al., 2021; Caccia et al., 2022; Banerjee et al., 2023; Pellegrini et al., 2020). Therefore,
to measure inference performance at any time, we evaluated the model at regular intervals during a specified
evaluation period and then calculated the area under the accuracy curve, denoted AAUC (Koh et al., 2021; Caccia
et al., 2022; Koh et al., 2023), which is defined as follows:

AAUC =

k∑
i=1

f(i∆n)∆n, (7)

where the step size ∆n is the number of samples encountered between inference queries and f(·) is the accuracy
in the curve of the # of samples-to-accuracy plot. High AAUC indicates that the model maintains good inference
performance throughout the entire training process.

Recognizability. Following Boutin et al. (2022); Fan et al. (2024), we evaluate whether the images accurately
represent the intended concepts by computing the F1 score for each class. As previous work utilized a pre-trained
classifier (ViT-Base), we initialize the feature extractor with an ImageNet pre-trained ViT-Base. We then perform
linear probing (Alain, 2016) on this model with a downstream dataset to train a classification head for the dataset.
Recognizability is then calculated by averaging the F1 scores across all classes.

Diversity. To assess the diversity of generated images, Naeem et al. (2020) measures coverage, defined as
the ratio of real samples encompassed by the generated samples. Specifically, they calculate the fraction of real
samples whose k-nearest neighborhoods contain at least one generated sample. Formally, given the embedded
real and generated data, represented by {Xi} and {Yj} from an ImageNet pre-trained feature extractor, coverage
is defined as:

coverage =:=
1

N

N∑
i=1

1∃j s.t. Yj∈B(Xi,NNDk(Xi)), (8)

where NNDk(Xi) denotes the distance from Xi to the kth nearest neighboring among {Xi} excluding itself
and B(x, r) denotes the sphere in RD around x with radius r.

Consensus-based Image Description Evaluation (CIDEr). CIDEr (Vedantam et al., 2015) aims
to automatically evaluate how well a predicted sentence, sp, matches the consensus of a set of ground-truth
sentences, S = {sgt,1, . . . , sgt,N}. The intuition is that the measure of consensus should encode how often
n-grams from the candidate sentence appear in the reference sentences. In contrast, n-grams that are absent from
the reference sentences should not appear in the candidate sentence. To encode this intuition, they calculate the
TF-IDF (Robertson, 2004) vectors for the n-gram elements within the candidate and reference sentences by
computing the cosine similarity between the two vectors. Formally, CIDEr for n-grams is calculated as follows:

CIDErn(sp, sgt) =
gn(sp) · gn(sgt)

∥gn(sp)∥∥gn(sgt)∥
, (9)

where g(s) represents the vectorized form of a sentence s, obtained by calculating the TF-IDF values for its
n-gram elements. Finally, they combine the scores from n-grams of varying lengths as follows:

CIDEr =
1

N

N∑
i=1

CIDErn. (10)
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Following Vedantam et al. (2015), we use N = 4 and define the set of ground truth sentences in the positive set
as S.

A.17 DETAILS ABOUT GENERATORS G

For the set of generators G, we use five text-to-image generative models: SDXL (Podell et al., 2023), DeepFloyd
IF2, SD3 (Esser et al., 2024), CogView2 (Ding et al., 2022), and Auraflow3. As illustrated in Figure 11, different
generators produce varied samples when prompted with identical prompts conditioned on the same concept.

Details of each generator are as follows:

SDXL. SDXL is an enhanced latent diffusion model for text-to-image synthesis, building upon the previous
versions of Stable Diffusion. Specifically, SDXL introduces three key improvements: (1) a UNet (Ronneberger
et al., 2015) backbone that is 3× larger than in previous Stable Diffusion models, (2) an additional conditioning
technique, and (3) a diffusion-based refinement model to further improve the visual quality of generated images.

DeepFloyd IF. DeepFloyd IF utilizes a frozen text encoder alongside three cascaded pixel diffusion stages.
Initially, the base model produces a 64x64 image from a text prompt, which is then progressively enhanced by
two super-resolution models to reach 256x256 and ultimately 1024x1024 pixels. At every stage, the model uses
a frozen T5 transformer-based text encoder to derive text embeddings, which are then passed into a UNet.

CogView2. CogView2 pretrain a 6B-parameter transformer using a straightforward and adaptable self-
supervised task, resulting in a cross-modal general language model (CogLM). This model is then fine-tuned for
efficient super-resolution tasks. The hierarchical generation process is composed of three steps: (1) A batch of
low-resolution images (20 × 20 tokens) is first generated using the pretrained CogLM. Optionally, poor-quality
samples can be filtered out based on the perplexity of CogLM image captioning, following the post-selection
method introduced in CogView (Ding et al., 2021). (2) These generated images are then upscaled to 60 ×
60-token images via a direct super-resolution module fine-tuned from the pretrained CogLM. (3) Finally, these
high-resolution images are refined through another iterative super-resolution module fine-tuned from CogLM.

SD3. SD3 enhances current noise sampling methods for training rectified flow models (Liu et al., 2023d)
by steering them toward perceptually significant scales. In addition, SD3 introduces a new transformer-based
architecture for text-to-image generation, employing distinct weights for the two modalities. This design
facilitates a bidirectional flow of information between image and text tokens, leading to improved typography,
text comprehension, and higher human preference ratings.

AuraFlow. AuraFlow, inspired by SD3, is currently the largest text-to-image generation model. It introduces
several modifications to SD3, including the removal of most MMDiT blocks (Esser et al., 2024) and their
replacement with larger DiT encoder blocks (Peebles & Xie, 2023).

AuraFlowDeepFloyd IFSDXL CogView-2

A photo of [person] in
earth tones.

A black and white
image of [person]

 highlighting dramatic
contrasts.

Prompts SD3

Figure 11: Examples of PACS (Zhou et al., 2020) generated samples from various generators using two of the
prompt rewrites. Illustrations from the concept "Person" are showcased.

A.18 EXTENDED RELATED WORK

Methods for Continual Learning. Replay-based method, which stores data from previous tasks in episodic
memory for replay, is one of the most widely used approaches, due to its effectiveness in preventing catastrophic
forgetting (Zhang et al., 2023b; Yoo et al., 2024; Kozal et al., 2024). However, despite their effectiveness in
preventing forgetting, they raise data privacy concerns due to the storage of real data from previous tasks in
episodic memory. To address these privacy concerns, pseudo-replay approaches have been proposed (Graffieti
et al., 2023; Thandiackal et al., 2021; Van de Ven et al., 2020; Shin et al., 2017; Van de Ven & Tolias, 2018),

2https://github.com/deep-floyd/IF
3https://huggingface.co/fal/AuraFlow
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which leverage generative models to generate images of previous tasks instead of storing actual data in episodic
memory. While these approaches utilize generative models similar to our GenCL framework, they still require
manually annotated data to train the generative model (Shin et al., 2017; Van de Ven et al., 2020; Van de Ven &
Tolias, 2018). In contrast, our GenCL framework eliminates the need for any manually annotated data, relying
solely on the category names the model aims to learn.

A.19 MANUAL ANNOTATION VS. WEB-SCRAPING VS. GENERATIVE DATA

In modern deep learning, the trajectory of advancement is heavily influenced by the exponential growth of
training data and the corresponding models trained on these vast datasets. Foundation models are typically
exposed to datasets in the order of billions during training, obtained predominantly through web scraping
(Schuhmann et al., 2022; Xue et al., 2020; Zhu et al., 2024; Gao et al., 2020; Kocetkov et al., 2022; Bain et al.,
2021). Although web scraping is a cost-effective method to produce high-quality datasets, studies underscore
issues such as potential biases (Foerderer, 2023; Packer et al., 2018; Caliskan et al., 2017), copyright, privacy,
and license concerns (Quang, 2021; Solon, 2019), and the risks of data contamination (Dekoninck et al., 2024;
Li, 2023) or data leakage from evaluation (Balloccu et al., 2024).

As demonstrated in Fig. 1, we highlight the key differences between Manually Annotated (MA), Web scraped,
and Generated data on six different axes: (a) Controllability, (b) Storage issues, (c) Usage restrictions, (d) Privacy
issues, (e) Acquisition cost, and (f) Noise. In this section, we aim to provide the definition of each of these axes
and their corresponding implications on each type of data source.

Controllability. encompasses the ability to generate or acquire images with various contexts, backgrounds,
settings, and themes as desired. It pertains to the ability to obtain images depicting different concepts in
compositions not commonly found in natural environments, as well as in domains relevant to the task at hand.
Under this definition, we assert that the MA data exhibit low controllability. This limitation arises from its
reliance on data captured from a finite set of scenarios or sensors, which inherently restricts the breadth of
diverse settings where the concept can be observed. Web-scrapped data also suffer from low controllability
for the same reasons. In contrast, the generated data have high controllability due to the ability of foundation
text-to-image (T2I) generators to produce diverse images for each concept through varied prompting.

Storage Issues. Storing extensive data, locally or in the cloud, imposes additional costs, which can become
impractical in environments constrained by limited total storage capacity. In addition, transmitting large,
substantial data samples in a federated setup can face challenges arising from bandwidth and latency bottlenecks.
In such contexts, depending on a large corpus of MA data becomes counterintuitive. On the other hand, both
web-scraped and generated data present themselves as cost-effective alternatives for accessing substantial data
volumes without necessitating explicit storage expenditures.

Usage Restrictions. encompass limitations imposed on the use of images for training machine/deep learning
models, typically due to copyright or licensing protections. These restrictions arise from various legal frameworks
across different demographics, regulating, and sometimes prohibiting, the training of models on protected data
for commercial deployment. This challenge is particularly prevalent in web-scraped data, where the abundance
of protected data may not be adequately filtered (Khan & Hanna, 2020). In contrast, MA data bypass this issue,
as it is presumed that the data are filtered or obtained from a proprietary source with appropriate permissions
during annotation. Notably, generated data offer a more advantageous position, as they do not necessitate such
filtering and encounter limited or no usage restrictions, thereby providing a readily available solution to issues
arising from data protection concerns.

Privacy Issues. may arise when data samples inadvertently leak or explicitly contain sensitive, confidential,
or private user information. Examples of such images could include those featuring people’s faces (O’Sullivan,
2020; Murgia & Harlow, 2019) or personal objects that disclose identity-related details, such as addresses or
financial assets. Once again, web data emerge as the primary source vulnerable to issues stemming from the
use of private data, an issue extensively present in web-scraped data (Subramani et al., 2023; Wenger et al.,
2022; Solon, 2019; Lukas et al., 2023). MA data are expected to be protected from privacy concerns due to prior
filtering or explicit agreement on data usage prior to annotation. Using generative model for continual learning
make it avoid storing real data in episodic memory, which can cause privacy concerns (Shin et al., 2017; Liu
et al., 2024). However, generat

Acquisition Cost. refers to the total expenses incurred in obtaining a specific number of data samples
necessary to train or evaluate the learner fθ for a particular task. As emphasized in 1, MA data entail a substantial
acquisition cost, primarily due to the expenses associated with densely annotating the data through human
workers. This, coupled with the rigorous filtering process, makes MA data prohibitively expensive to acquire at
scale. Although web data do not require such significant financial outlay for annotation, they do require intensive
filtering, which contributes to an elevated cost and poses a barrier to constructing large datasets solely from web
sources. In contrast, due to the advantages in controllability, generated data boast a notably low acquisition cost
for generating large and diverse datasets.
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Noise. pertains to instances where data that are not related to a concept are erroneously labeled as belonging
to that concept. It may also mean discrepancies between the context of the data and the associated concept. As
highlighted in Sec. A.24, web data often exhibit a high degree of noise, necessitating extensive filtering or label
correction processes. In contrast, both MA data and generated data are less susceptible to such noise. In the case
of MA data, the presumption of prior filtering serves as a primary solution to mitigate noisy data. Meanwhile,
for generated data, the advantages of controllability enable the mitigation of noise resulting from inconsistencies
in concept-image alignment. Despite the drawback of requiring GPU usage, T2I model inference incurs lower
costs compared to MA due to its ability to generate pure images, making it a more cost-effective option.

A.20 DETAILS OF RMD SCORE CALCULATION

Decision boundary

k-lowest RMD ensemble CONAN (Ours)

, ,
Class 1, Class 2 centroid

Figure 12: CONAN helps in finding a tighter decision boundary due to having a higher probability of including
high RMD scored samples in the ensemble of generated data D. Intuitively, high RMD scored samples are
farther away from their class prototype but closer to other class samples in comparison to low RMD scored
samples which are concentrated closer around the class prototype. Note that CONAN includes not only high
RMD samples but also some low RMD (i.e., class-representative) samples.

The RMD (Cui et al., 2023) score of a sample (xi, yi) is defined as follows:

RMD(xi, yi) = Mcls(xi, yi)−Magn(xi),

Mcls(xi, yi) = − (G(xi)− µyi)
T Σ−1 (G(xi)− µyi) ,

Magn(xi) = − (G(xi)− µagn)
T Σ−1

agn (G(xi)− µagn) ,

(11)

where G represents the feature extractor, Mcls(xi, yi) denotes the Mahalanobis distance from G(xi) to the
corresponding class mean vector µyi =

1
Ni

∑
yj=yi

G(xj), with Ni being the count of samples labeled as yi,

Σ−1 denotes the inverse of the averaged covariance matrix across classes. Furthermore, Magn(xi) represents
the class-agnostic Mahalanobis distance, where µagn denotes the overall sample mean, and Σ−1

agn denotes the
inverse covariance for the class-agnostic case.

In the online CL setup, where data arrive in a continuous stream, it is not feasible to calculate µ and Σ of the
entire dataset. Instead, a necessity arises to continuously update these statistical parameters to accommodate the
dynamic nature of the incoming data stream.

Starting with the initially computed mean vector µyi and the covariance matrix Σ from N samples, the arrival of
a new sample xN+1 triggers an update. The updated mean vector µnew is computed incrementally using a simple
moving average (SMA), as follows:

µnew =
Nµold + xN+1

N + 1
. (12)

Similarly, we calculate Σ using a simple moving variance. Specifically, the update for the new covariance matrix
Σnew is calculated using the deviation of the new sample from the old mean ∆ = xN+1 − µold, and its deviation
from the new mean ∆new = xN+1 − µnew.

Formally, we formulate the update process as follows:

Σnew =
1

N + 1

(
NΣold +∆∆T

new

)
. (13)

The update process for the class-agnostic mean vector µagn and covariance Σagn follows the same incremental
approach as described for the class-specific components.

CONAN includes a significant number of samples with high RMD scores in the ensemble dataset. Not only
does it include samples with the highest RMD scores, but it also probabilistically incorporates samples with low
RMD scores. This approach ensures a core-set ensemble, and we illustrate the effect of CONAN in Fig. 12
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A.21 SCALING BEHAVIOR

Recent scaling law studies (Hernandez et al., 2021; Hoffmann et al., 2022) offer predictive insight into model
performance by scaling computation, data, and model capacity. Despite the limited exploration of scaling in
continual learning settings (Ramasesh et al., 2022), and particularly with synthetic data (Fan et al., 2024) being
confined to static frameworks, our empirical analysis in Fig. 13 delves into scaling dynamics with varying
proportions of generated data for online continual learning setup.

For ResNet18 (He et al., 2016) and ViT (Dosovitskiy & Brox, 2016), we observe a consistent linear improvement
trend in both ID and OOD AAUC as the volume of generated data increases, across the PACS (Zhou et al., 2020)
dataset. This scaling behavior underscores the positive correlation between performance improvement and larger
generated data ensembles in online continual learning, reinforcing the rationale for the use of generators in the
absence of annotated data.
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Figure 13: Ensemble scaling behavior of (a) ResNet18 (He et al., 2016) and (b) ViT (Dosovitskiy & Brox, 2016)
for ID AAUC vs. OOD AAUC on the PACS dataset (Zhou et al., 2020) using ER (Rolnick et al., 2019). (x 1)
denotes the ensemble volume in primary experiments, the default data budget.

A.22 EXPERIMENTAL RESULTS ON CIFAR-10-W

We compared manually annotated (MA) data and generated data using CONAN on CIFAR-10-W (Sun et al.,
2024). As mentioned in Sec. 5.1, since CIFAR-10-W only contains data on the OOD domains of CIFAR-10, we
evaluated only the performance of the out-of-distribution (OOD) domain.

Additionally, since CIFAR-10-W is a web-scraped dataset, the domain of CIFAR-10-W and the web-scraped
data are the same. Therefore, we excluded web-scraped data in experiments on CIFAR-10-W and only evaluated
OOD performance. We summarize the results in Tab. 13.

Method CIFAR-10-W

AAUC ↑ Alast ↑
Glide-Syn (ICLR 2023) 47.14±0.80 34.13±0.54

LE (ICLR 2023) 47.20±0.67 34.03±0.60
(+) CONAN 51.69±0.70 41.32±1.38

CHB (CVPR 2023) 45.30±0.62 31.20±0.54
(+) CONAN 51.29±0.72 37.06±1.77

SC (CVPR 2024) 44.75±0.62 30.41±0.84
(+) CONAN 48.60±0.63 36.39±0.88

CCG (arXiv 2024) 38.96±0.94 24.71±0.70
(+) CONAN 41.32±0.99 28.94±0.77

HIRPG 52.52±0.37 41.04±1.26
(+) CONAN (Ours) 55.53±0.41 43.51±1.13

Table 13: Qantitative comparison between different diverse prompt generation baselines on CIFAR-10-W.
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Algorithm 1 GenCL

1: Input Model fθ, Prompt generation module ψ, Set of Generators G, Ensembler ∆, Concept
stream C, Learning rate µ, Episodic memoryM

2: for y ∈ Y do ▷ New concept arrives from concept stream Y
3: Generate Pc ← ψ(c) ▷ Generate prompt set Pc for a given concept c using ψ

4: Generate {X (i)
c }|G|

i=1 ← G(Pc) ▷ Generate image set Xc using G and Pc

5: (Xc, c)← ∆({X (i)
c }|G|

i=1) ▷ Ensemble generated image set using ensembler ∆
6: L = LCE(fθ(Xc), c) ▷ Calculate cross entropy loss
7: Update θ ← θ − µ · ∇θL ▷ Update model
8: UpdateM← ReservoirSampler (M, (Xc, c)) ▷ Update episodic memory
9: end for

10: Output fθ

Algorithm 2 RPG

1: Input Maximum number of leaf nodes of K-ary Tree K, System prompt Ps, Large language
model LLM , Prompt of parent node Pd,k

2: P ← ∅ ▷ Initialize the generated prompt set P
3: k′ ← 1 ▷ Initialize the number of child node of Pd,k

4: while k′ ≤ K do ▷ Generate k′th child node of Pd,k

5: if k′ = 1 then
6: Pd+1,k′ ← LLM(Ps, Pd,k)
7: else
8: Pd+1,k′ ← LLM(Ps, Pd,k ∪ P) ▷ Recurrently forward the previously generated prompts P
9: end if

10: P ← P ∪ {Pd+1,k′} ▷ Add the currently generated prompts to P
11: k′ ← k′ + 1
12: end while
13: Output P

Algorithm 3 HIRPG

1: Input Newly encountered concept y, Maximum number of leaf nodes of K-ary Tree K, Prompt
of parent node Pd,k

2: P ← RPG(Pd,k) ▷ Generate K number of prompts using RPG
3: Pch ← ∅ ▷ Initialize the prompt set generated from the child nodes
4: if d < D then
5: for Pk′ ∈ P do
6: Pch ← Pch ∪ HIRPG(Pk′ , d+ 1) ▷ Merge prompt generated in child noes
7: end for
8: end if
9: Output P ∪ Pch ▷ Merge the prompts generated in the child nodes and the current node, then return

A.23 PSEUDOCODE FOR THE GENCL

Algorithm 1 provides a detailed pseudocode for GenCL. When a new concept is encountered, the prompt
generation module ψ generates concept-specific prompts. These prompts are then used by a set of T2I generators
G to create concept-specific images. Subsequently, the ensembler ∆ selects a coreset from these generated
images for efficiency, instead of training on the entire dataset. The continual learner is then trained using this
selected ensemble set. During training, GenCL also stores a small portion of previously generated samples
in episodic memory M . Although GenCL can generate images related to previously encountered concepts,
retaining these samples helps to reduce computational overhead.

Additionally, Algorithm 3, Algorithm 4, Algorithm 5 provide a detailed pseudo code for prompt generation
module ψ, a set of generators G, ensembler ∆, respectively, which are components of GenCL.
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Algorithm 4 Set of Generators G
1: Input Rewritten prompt set P, Generative models G = {g1, g2, ..., g|G|}
2: U1, ..., U|G| ← ∅, ..., ∅ ▷ Initialize the sets of generated images for each model

3: for p ∈ P do
4: for gi ∈ G do
5: Generate x(i)y ← gi(p) ▷ Generate image x(i)y using prompt p and generative model gi
6: Ui ← Ui ∪ {x(i)y } ▷ Append x(i)y to the set Ui

7: end for
8: end for
9: Output {U1, U2, ..., U|G|} ▷ Return the generated image sets for each model

Algorithm 5 Ensembler ∆

1: Input Generated image sets {U1, U2, ..., U|G|}, Coreset size |V |, Temperature parameter τ
2: U ←

⋃|G|
i=1 Ui ▷ Combine all generated image sets into a single set U

3: for each sample (xi, yi) ∈ U do
4: ComputeRMD(xi, yi)←M(xi, yi)−Magn(xi) ▷ Compute RMD scores for each sample
5: end for
6: TruncateRMD(xi, yi) ▷ Remove outliers from RMD scores
7: Normalize ¯RMD(xi, yi)← RMD(xi, yi) ▷ Apply Z-score normalization

8: Compute selection probability px|y = e
¯RMDx|y/τ∑

x′∈U e
¯RMD

x′|y/τ for each x ∈ U ▷ Compute the

selection probability using softmax function
9: Select V← Sample |V | images from U based on probabilities px|y

10: Output Coreset V

Dog Elephant Giraffe Guitar Horse House Person

Figure 14: Examples of noisy raw data obtained via web-scraping for the classes in the PACS dataset.

A.24 DETAILS ABOUT WEB-SCRAPPING

For web-scrapping, we follow C2C (Prabhu et al., 2024), which proposes scraping data from the web using
category names. C2C (Prabhu et al., 2024) uses four search engines, including Flickr, Google, Bing, and
DuckDuckGo, using the publicly available querying tool4 to collect URLs. While C2C uses four search engines
for scraping, we only use three search engines, i.e., Flickr, Google, and Bing, since ICrawler did not support web
data scraping from DuckDuckGo at the time of our attempt on February 20, 2024. After collecting the URLs from
each search engine, we use a multi-threaded downloader5 to quickly download the images, following (Prabhu
et al., 2024). For Flickr, we are able to download approximately 500 images per minute due to the rapid URL
collection facilitated by the official API. Meanwhile, for Google and Bing, the download rate is slower, at
approximately 100 images per minute on a single CPU machine. However, the download rate depends on the
network conditions and the status of the API and the search engine. In C2C, the ensemble of web-scrapped data
from search engines is weighted differently for each benchmark. For example, in the Stanford Cars benchmark,
the weights are Google: Bing: Flickr = 5:4:2, while in the Flowers benchmark, they are 1:1:2, respectively. Since
we use different benchmarks compared to C2C, we select equal weight selection to ensemble web-scrapped
data, i.e., Google: Bing: Flickr = 1:1:1, which is one of the most straightforward and widely used ensemble
techniques (Shahhosseini et al., 2022; Ju et al., 2018).

4https://github.com/hellock/icrawler
5https://github.com/rom1504/img2dataset
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Datasets scraped from search engines such as Flickr, Google, and Bing contain uncurated (i.e., noisy) samples.
To clean these datasets, following (Schuhmann et al., 2022), we use a pre-trained CLIP (Radford et al., 2021)
model to measure the similarity between the images and corresponding promts. Specifically, we scraped 10%
more data than the required dataset size (i.e., the number of manually annotated data) and removed samples
with a low CLIP similarity score for each experiment. Although prior work (Prabhu et al., 2024) addressed the
ambiguity of queries through manual query design, such as adding an auxiliary suffix to refine queries, in an
online CL scenario, where new concepts stream in real-time, such hand-crafted query designs for each concept
are limited.

In summary, data noise, network dependency, and the need for manual query design specific to each concept
restrict the use of web-scrapped data in real-world scenarios where new concepts are encountered in real-time.

A.25 ANALYSIS OF BIAS

We analyze gender bias, race bias, and geographical bias in web-scraped data (i.e., C2C) and generated data
from GenCL and other generative baselines (i.e., LE, CHB, SC, and CCG), as well as MA for comparison.

Bias Type Category Attribution Keywords

Gender Female [‘she’, ‘her’, ‘hers’, ‘woman’, ‘female’, ‘girl’]
Male [‘he’, ‘him’, ‘his’, ‘man’, ‘male’, ‘boy’]

Race
Black [‘Black person’, ‘Black man’, ‘Black woman’, ‘Black boy’, ‘Black girl’]
White [‘White person’, ‘White man’, ‘White woman’, ‘White boy’, ‘White girl’]
Asian [‘Asian person’, ‘Asian man’, ‘Asian woman’, ‘Asian boy’, ‘Asian girl’]

Table 14: Attention keywords for Gender/Race bias. We categorize gender bias into female and male and race
bias into Black, White, and Asian, respectively.

Gender/Race Bias. To measure gender/race bias, we evaluate how closely each image aligns with a specific
gender or race. Specifically, we calculate the similarity between the text embeddings of gender/race attribution
keywords and the image embeddings. We follow the attribution keywords used in Mandal et al. (2023) for
assessing gender/race bias and summarize them in Tab. 14. Based on this alignment, we assign each image to its
closest gender or race category and compare the number of images across these categories, following Wan et al.
(2024); He et al. (2024).

We first compare gender and race biases among GenCL, web-scraped data (i.e., C2C), and manually annotated
(MA) data, summarizing the results in Fig. 15. As shown, GenCL exhibits less bias in both gender and race
compared to C2C and MA, except for the race bias observed in C2C. Next, we evaluate gender and race
biases in generative methods, including GenCL, and we summarize the results in Fig. 16. As depicted, GenCL
demonstrates the least bias in both categories compared to other generative baselines. We believe these results
stem from our proposed prompt diversification method (i.e., HIRPG), which increase the diversity of generated
data, as shown in Tab. 8 in Sec. A.5, thereby mitigating bias issues. To this end, we believe that training with
data generated by GenCL is unlikely to introduce significant biases toward specific genders or races, as its bias
levels are minimal, even when compared to manually annotated data.

Method Accuracy

C2C 71.26
CHB 64.37
CCG 64.72
SC 72.16
LE 74.71

GenCL (Ours) 77.01

Table 15: Accuracy of the fine-tuned
CLIP model on the ‘person’ class in
the PACS dataset.

To analyze the impact of biased data in continual learning, we con-
tinually fine-tune a CLIP model on the PACS dataset acquired by
baselines and GenCL, which includes the person class. We then eval-
uate whether the predictions for the person class exhibit biases toward
specific genders. Specifically, we fine-tune a pre-trained CLIP model
on the person class using the prompt ‘A photo of a person’ and its
corresponding image pairs. During evaluation, we measure accuracy,
which evaluates whether the model correctly predicts the ground truth
gender of the test data. We summarize the results in Tab. 15. As shown
in the table, CLIP models trained on data generated by CHB and CCG,
which exhibit significant biases toward specific genders, as illustrated
in Fig. 16, tend to reflect these biases in their predictions. In contrast,
CLIP models trained using data generated by GenCL correctly predict
gender with higher accuracy, highlighting the impact of the unbiased
data generated by GenCL.

Geographical bias. In addition to gender/race bias, we measure the geographical bias of objects, evaluating
whether the generated content reflects artifacts and surroundings from across the globe, rather than dispropor-
tionately representing certain regions, as proposed by Basu et al. (2023). Specifically, similar to the method for
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measuring gender and race bias, we calculate the similarity between the text embedding of ‘a high-definition
image of a typical {concept} in {nation}’ and the image embeddings for all concepts in the dataset. We summarize
the results in Fig. 17.
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66.7%

33.3%
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Figure 15: Comparison of gender/race bias between GenCL, web-scraped data (i.e., C2C), and manually
annotated (MA) data.
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Figure 16: Comparison of gender/race bias between generative baselines with GenCL

A.26 COMPARISON OF CONAN WITH HARD NEGATIVE SAMPLING METHODS

In addition to comparing CONAN with coreset selection methods, we also evaluate it against hard negative
sampling methods, which prioritize hard samples based on their own selection criteria, including HCL (Robinson
et al., 2021) and H-SCL (Jiang et al., 2024). We summarize the results in Tab. 16.

As shown in Tab. 16, CONAN outperforms hard negative sampling baselines in both PACS and DomainNet. We
believe that the lower performance of hard negative sampling methods stems from the lack of class-representative
samples, which are crucial in coreset, similar to the lower performance with k-highest RMD selection strategy in
Sec. A.14.

A.27 COMPARISON OF CLASS-SPECIFIC PROMPTS AND CLASS-AGNOSTIC PROMPTS

We can categorize prompt diversification strategies, which aim to generate diverse samples through diversified
prompt, into two categories: class-agnostic diversification and class-aware diversification. Class-agnostic
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Figure 17: Comparison of geographical bias between GenCL, web-scraped data (i.e., C2C), and manually
annotated (MA) data.

Method

PACS DomainNet

ID OOD ID OOD

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
HCL 51.18±2.76 46.10±3.76 36.52±1.66 29.25±2.27 30.34±0.78 24.76±0.82 13.26±0.56 11.56±0.43
H-SCL 51.55±1.69 47.41±2.91 35.99±1.20 27.57±1.70 32.22±0.34 26.47±0.25 13.88±0.13 11.36±0.20

CONAN (Ours) 55.89±3.06 55.43±2.49 38.53±1.15 33.73±1.82 34.60±0.31 30.09±0.11 14.53±0.22 12.65±0.09

Table 16: Quantitative comparison between hard negative sampling methods on CIL setup.

diversification strategy first generate a set of diverse prompts, e.g., {A vibrant photo of {concept} during sunrise
with a warm color palette, A cinematic wide-angle shot of {concept} at dusk, ...}, and then inserts a given concept
into the concept placeholder. As a result, prompts for all classes follow the same sample templates. In contrast,
class-aware prompts generate unique prompts for each class, which can differ in aspects like background and
color schemes.

LE, SC and CCG generate class-aware prompts—causing prompt generation time to scale with the total number
of classes—GenCL employs the same template across all classes and benchmarks. While revising prompts using
LLMs, such as GPT-3.5, can enhance their naturalness by incorporating suitable backgrounds and styles for each
class, applying fixed templates uniformly across all classes may result in unnatural prompts. However, we draw
inspiration from the renowned psychologist Dr. K. Anders Ericsson, who argued that high-end performance of
human results from extensive practice beyond one’s comfort zone Ericsson et al. (1993); Huang et al. (2022).
Following this perspective, we believe that samples generated from such unnatural prompts can facilitate the
learning of concepts from more diverse viewpoints. To this end, by applying fixed templates across all classes
rather than generating class-specific prompts, we can significantly reduce computational costs—i.e., prompt
generation time becomes independent of the total number of classes—while also providing opportunities to train
with more challenging samples.

A.28 DISCUSSION OF COMPUTATIONAL AND MEMORY COST OF GENCL AND BASELINES

We compare computation cost, memory cost, and extra resources, and summarize results in Tab. 17. Since
measuring FLOPs is not feasible when using APIs like GPT-4o, we compare the wall time of the methods
instead. Manually annotated (MA) data requires 50000 human working hours (i.e., 3,000,000 minutes) to filter
out outliers. C2C does not require any GPU resources; instead, it relies on web browsers for crawling. Note
that the wall time of C2C can vary significantly depending on network conditions, the status of the API, and the
search engine’s performance. Generative baselines, such as Glide-Syn, LE, CHB, SC, CCG, and our proposed
GenCL, utilize 32 RTX 4090 GPUs for image generation. Additionally, these methods require 12GB of memory
to store the weights of generative models.

The major reasons for the lower wall time of GenCL compared to baselines is the use of class-agnostic prompts,
which make its prompt generation time independent of the total number of concepts, as mentioned in Sec. A.27.
Real-Fake (Yuan et al., 2024) requires more storage than other baselines due to the necessity of fine-tuning
diffusion models, specifically through the use of LoRA (Hu et al., 2021) for training.

A.29 EFFECT OF HYPERPARAMETERS

Hyperparameters, including temperature τ , truncate ratio L, depth D and width K of K-ary tree, are selected
through a hyperparameter search on DomainNet and are consistently applied to the other benchmarks.
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Method Wall time (min) Storage usage (GB) Extra resources

MA 3,000,000 0 Human annotation

IE 330 0 Web browsers
C2C 300 0 Web browsers

Glide-Syn 254 4.5 32 × RTX 4090 GPUsReal-Fake 480 32

LE 240

12 32 × RTX 4090 GPUs
CHB 222
SC 952
CCG 952
GenCL 182

Table 17: Comparison of computational cost, memory budget, and extra resources for acquiring data of
concepts in DomainNet.

Effect of Temperature τ . A lower temperature causes the ensemble method to focus more on samples with
high RMD scores (i.e., difficult samples). However, setting the temperature too low can hinder performance by
excluding low RMD samples (i.e., easy samples). Conversely, a higher temperature increases the likelihood
of including samples with low RMD scores (i.e., easy samples), but setting it too high results in an ensemble
containing too many easy samples. Therefore, we select an appropriate temperature via a hyperparameter search.
The results of this search are presented in Fig. 18. While both excessively high and low temperatures lead to
diminished performance, there is a wide range of temperatures that maintain stable performance.
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Figure 18: Effect of temperature T . We measureAAUC andAlast on both ID and OOD domains in DomainNet.

Effect of Truncate Ratio L. In CONAN, we truncate the samples with RMD scores in the upper and lower
L% to minimize the impact of outliers on the probability distribution. Truncating a very small portion of the
candidate set may cause the ensemble set to include outliers and generated images with artifacts. In contrast,
truncating a large portion of the candidate set can discard difficult samples that are not outliers, as well as
easy samples (i.e., concept-representative samples) that are crucial for coreset construction (Bang et al., 2021).
Therefore, as shown in Fig. 19, both very high and low truncation ratios cause performance degradation. To
this end, we select an appropriate truncation ratio by balancing the advantages and drawbacks of high and low
truncate ratios.

Effect of Depth D and Width K Our proposed prompt diversification method (i.e., HIRPG) utilizes a
hierarchical tree structure. Specifically, we construct a complete K-ary tree with a depth of D, allowing us
to generate Kd+1−1

K−1
diverse prompts. To generate a desired number of diverse prompts, we can adjust the

parameters by either increasing K and decreasing D, or decreasing K and increasing D. Below, we demonstrate
the effects of the tree’s depth (D) and width (K), and explain how we selected the hyperparameters used in
GenCL.
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Figure 19: Effect of Truncate Ratio L. We adjust the truncation ratio over a wide range in DomainNet and
measure AAUC and Alast on both in-distribution and out-of-distribution domains.
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Figure 20: Effect of K and D of K-ary tree in
HIRPG. To generate 100 different prompts on PACS,
we generate prompts using various combinations of
K and D of the tree. We then use these prompts to
generate images and measure the Recognizability and
Diversity of the generated images.

In Fig.20 and Fig.21, the case of D = 1 demonstrates
low diversity and recognizability. This occurs because
significantly increasing K and decreasing D can lead
to difficulties in fully utilizing information within the
long context, a challenge referred to as the ‘lost-in-the-
middle’ problem (Liu et al., 2023c; An et al., 2024).
Specifically, to generate N distinct prompts, we iter-
atively generate prompts at each RPG step. In the final
step, N − 1 previously generated prompts are used as
negative examples. Providing such a long context to
the LLM can hinder its ability to fully comprehend and
effectively reference the negative examples (i.e., pre-
viously generated prompts). As a result, the LLM may
produce unrecognizable prompts or generate prompts
that duplicate previously created ones.

Conversely, the cases ofD = 3 andD = 4, which cor-
respond to low K values, exhibit low recognizability.
This is because providing only a few negative exam-
ples offers insufficient context. Specifically, recent
studies (Agarwal et al., 2024) have observed signifi-
cant performance improvements across a variety of generative and discriminative tasks when using many-shot
examples, compared to few-shot examples, in in-context learning.

By balancing the trade-offs of both scenarios, we recommend selecting appropriate values for K that avoid
being excessively high or low, along with the corresponding D.

A.30 QUANTITATE ANALYSIS ON FINE-GRAINED BENCHMARKS

We evaluate GenCL on fine-grained benchmarks. Specifically, as our focus extends beyond in-distribution
accuracy to include out-of-distribution accuracy, we conduct experiments on Birds-31 (Yu et al., 2024), a
fine-grained domain generalization benchmark comprising CUB-200-2011 (He & Peng, 2019), NABirds (Horn
et al., 2015), and iNaturalist2017 (Van Horn et al., 2018). We summarize the results in Tab. 18.

As shown in Tab. 18, GenCL outperforms the baselines and achieves performance comparable to MA. We
attribute this success to GenCL’s ability to effectively generate diverse images of fine-grained species through
our proposed prompt diversification method (i.e., HIRPG) and data ensembling method (i.e., CONAN), as shown
in Tab. 8 in Sec. A.5

A.31 ANALYSIS OF SIMILARITY BETWEEN PROMPTS GENERATED AT EACH NODE IN HIRPG

We empirically demonstrate that the overlap between generated prompts from different nodes is rare by measuring
the similarity of prompts generated at each node. To measure similarity, we first construct a K-ary Tree with
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(a) Generating 50 prompts in PACS
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(b) Generating 50 prompts in DomainNet

Figure 21: Effect of K and D of K-ary tree in HIRPG. To generate 50 different prompts on PACS and
DomainNet, we generate prompts using various combinations ofK andD of the tree. We then use these prompts
to generate images and measure the Recognizability and Diversity of the generated images.

Method ID OOD
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

MA 26.19±1.12 16.09±1.97 21.29±0.76 12.98±0.74
GenCL (Ours) 24.25±0.41 20.06±0.93 18.62±0.33 13.49±1.01

Table 18: Qualitative comparison of baselines on Birds-31. MA refers to the manually annotated data.

K = 7 and D = 2, following hyperparameters determined in Sec. A.29. Next, we divide the generated
prompts into 7 groups, where i-th group refers to the set of prompts generated by RPG using the prompt of
i-th node at depth 1 is used as the initial negative prompt. We then measure the group-wise similarity by
calculating the average of all pairwise similarities between prompts generated from each node, where the
similarity between prompts is measured by the cosine similarity of their respective text embeddings extracted by
Sentence-BERT (Reimers, 2019). We summarize the group-wise similarity of generated prompts in a similarity
matrix, as shown in Fig. 22.

As shown in the similarity matrix, The similarity between the prompt sets generated by RPG from two different
nodes is generally low. In many cases, it is even lower than the intra-similarity (i.e., diagonal elements) observed
within the prompt sets generated from the same node. We believe this is attributed to a characteristic of LLM,
where different examples provided during in-context learning lead to varied outputs (Su et al., 2022; Agarwal
et al., 2024). Specifically, since RPG at each node begins with distinct initial negative examples passed from
the previous depth, it generates different prompts, even though the model cannot directly reference prompts
generated by other nodes as negative examples.

A.32 QUALITATIVE RESULTS FOR PROMPT GENERATION METHODS

We also qualitatively evaluate the performance of our proposed prompt generation method, HIRPG, against
existing prompt diversification baselines, including LE, CHB, SC, and CCG. The comparison is illustrated
across multiple concepts from the PACS and DomainNet datasets, as shown in Table 19, Table 20, Table 21,
and Table 22. We observe that most methods are not able to generate diverse prompts as well as maintain
coherence and logic across generated instances. Common issues across baseline methods include irrelevant
content, repetitions, and overused phrases.

LE generates repetitive phrases across difference concepts that, while slightly different in wording, essentially
convey the same meaning. In Table 19 and Table 20, despite that phrases differ in their choice of words, they
describe the same visual concept: a subject illuminated by soft, warm light, typically seen at sunrise or sunset.
CHB, on the other hand, generate prompts with nonsensical combinations of objects and environments, such as
"horse inside a bakery" or "house inside an aquarium". While diverse, the prompts are not grounded in reality,
which limits their practical use in downstream tasks.

SC and CCG methods produce more coherent and consistent prompts. However, they show a tendency toward
redundancy, particularly in descriptors like "majestic" and "gallops" for the horse concept, or "charming" and
"rustic" for the house concept, reducing the overall uniqueness of the generated prompts. Compared to these
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Figure 22: Similarity matrix of prompts generated at each node in HIRPG in a K-ary structure with
D = 2 and K = 7 on DomainNet. Node index i refers to the set of prompts generated by RPG, where the
prompt of the i-th node at depth 1 is used as the initial negative example. We measure the similarity between
two nodes by calculating the average of all pairwise similarities between prompts generated from each node.
The similarity between prompts is measured by the cosine similarity of their respective text embeddings.

existing prompt diversification baselines, our proposed prompt generation method, HIRPG, successfully captures
not only the diversity but also the originality and coherence within its generated prompts.

A.33 EXTENDED QUANTITATIVE ANALYSIS

We perform additional comparisons with various combinations of diverse prompt generation baselines and data
ensemble methods on DomainNet, and summarize the results in Tab. 23. For all data ensemble methods, including
our proposed CONAN, we select an equal number of samples for the coreset to ensure a fair comparison. As
shown in the table, CONAN is not only effective when combined with HIRPG, but also shows strong performance
when paired with other prompt generation baselines, demonstrating its plug-and-play applicability across various
methods.

A.34 LIMITATIONS AND FUTURE WORK

While GenCL replaces manual annotation by generating diverse images that only require concepts using HIRPG
and CONAN, we acknowledge the limitations arising from the use of generative models. Here, we outline these
limitations and propose future directions to address them.

Privacy and Copyright Concerns. Using generative models addresses privacy concerns associated with
storing real data in episodic memory in replay-based CL methods by preventing data leakage from real data (Shin
et al., 2017; Liu et al., 2024). However, generative models may also introduce privacy issues, such as the
potential memorization of training data (Wang et al., 2023; Carlini et al., 2023). We believe that advancing
privacy-preserving generative models (Xu et al., 2023; Chen & Yan, 2024) would effectively mitigate these
concerns.

Capability of Generation. GenCL, along with other generative baselines, depends on the capability and
coverage of the generative models, thus there are limitations when it comes to completely new concepts that
generative models have not been trained on. To generate unseen concepts, we can fine-tune generative models
using real data from these unseen concepts. We believe that developing efficient continual training methods for
generative models (Uehara et al., 2024), which require less real data and computational resources, will accelerate
the expansion of GenCL to accommodate unseen classes.
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Concept Method Examples

Horse LE • A calm horse illuminated by the first light of morning.
• A sunrise horse bathed in warm orange hues.
• A dew-drenched horse in vibrant sunset colors.
• A serene horse under a pastel sunrise.
• A peaceful horse bathed in the soft glow of dawn.

CHB • horse equine inside aquarium
• horse equine inside bakery
• horse equine inside music studio
• horse, equine inside wave
• horse, equine inside pizzeria

SC • A majestic horse stands gracefully in the middle of a sun-
dappled apple orchard, surrounded by rows of apple-laden
trees and the sweet fragrance of ripe fruit filling the air.

• A majestic horse stands in a lush green pasture, its mane
flowing gracefully in the gentle breeze

• A majestic brown horse with a glossy coat stands gracefully in
a sunlit meadow, surrounded by lush green grass and blooming
wildflowers.

• A majestic horse stands gracefully in a sunlit meadow, its coat
shimmering in the golden rays of the setting sun.

• A majestic horse stands gracefully in a lush, green meadow,
its mane gently blowing in the breeze.

CCG • A majestic brown horse gallops freely through a sunlit meadow
of wildflowers.

• A majestic horse gallops through a sunlit meadow with wild-
flowers swaying in the breeze.

• A majestic brown horse gallops freely across a sunlit, grassy
meadow surrounded by blooming wildflowers.

• A majestic horse gallops across a sunlit field, mane flowing in
the breeze.

• A majestic horse gallops through a sunlit meadow, its mane
flowing in the breeze.

HIRPG • A high-contrast black and white photograph of horse.
• A serene watercolor painting of horse.
• A vibrant photo of horse during sunrise with a warm color

palette.
• A vivid painting of horse using vibrant colors.
• A cinematic wide-angle shot of horse at dusk.

Table 19: Prompt samples using different prompt generation methods for the concept Horse from PACS dataset.
Irrelvant content, repetitions, and overused phrases are marked in red, brown, and turquoise respectively.

Scalability. Recent studies (Yuan et al., 2024; Hammoud et al., 2024) have shown that training a model
with samples generated by text-to-image models—producing 10 to 100 times more samples than real data—can
achieve performance comparable to models trained on real data. However, such scaling methods may not be
suitable for the name-only continual learning setup, as they require substantial time and computational cost,
whereas continual learning demands fast adaptation to new concepts (Koh et al., 2021; Ghunaim et al., 2023).

In real-world scenarios, there are various applications where a few manually annotated samples are provided
along with concept names. Therefore, a small number of real data samples can be used alongside data generated
by GenCL. Recent works (Seib et al., 2020; Yuan et al., 2024) have shown that jointly using generated and real
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Concept Method Examples

House LE • A calm house illuminated by the first light of morning.
• A sunrise house bathed in warm orange hues.
• A dew-drenched house in vibrant sunset colors.
• A serene house under a pastel sunrise.
• A peaceful house bathed in the soft glow of dawn.

CHB • house, building inside aquarium
• house, building inside bakery
• house, building inside music studio
• house, building inside wave
• house, building inside pizzeria

SC • house => A charming, rustic house with ivy-covered walls and
a thatched roof, nestled amidst a flourishing garden of vibrant,
blooming flowers, creating a serene and picturesque scene.

• A charming countryside house with a thatched roof and ivy-
covered walls, surrounded by a lush, colorful garden blooming
with flowers on a sunny day

• A charming rustic house stands besides a tranquil pond, sur-
rounded by lush greenery and vibrant blooming plants, reflect-
ing its serene image in the still water.

• A charming rustic house, nestled in a vibrant, colorful gar-
den filled with blooming flowers and tall trees, creating a
picturesque and cozy scene.

• A charming rustic house stands besides a tranquil pond, sur-
rounded by lush greenery and vibrant blooming plants, reflect-
ing its serene image in the still water.

CCG • A cozy, red-brick house with a white picket fence stands
amidst colorful autumn trees.

• A cozy, rustic house stands peacefully surrounded by vibrant
autumn trees and a cobblestone path..

• A cozy, rustic house nestled in a forest, surrounded by vibrant
autumn leaves and tall trees.

• A cozy countryside house stands surrounded by vibrant au-
tumn foliage under a clear, blue sky.

• A cozy wooden house surrounded by colorful autumn trees
under a clear blue sky.

HIRPG • A high-contrast black and white photograph of house.
• A serene watercolor painting of house.
• A vibrant photo of house during sunrise with a warm color

palette.
• A vivid painting of house using vibrant colors.
• A cinematic wide-angle shot of house at dusk.

Table 20: Prompt samples using different prompt generation methods for the concept House from PACS dataset.
Irrelevant content, repetitions, and overused phrases are marked in red, brown, and turquoise respectively.

data further enhances neural network performance. Combining these not only improves scalability and reduces
computational costs but also boosts overall performance.

Domain Gap Between the Training Domain of Generative Models and Target Domains. There
are limitations in applying GenCL to entirely new domains that differ from the training domains of the generative
models, such as medical domains. To address this, it would be beneficial to replace the generative models in
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Concept Method Examples

Diving Board LE • Scuba diver lands on the dry seas with his bare feet on a
• The man with the green board doing darts is really nice.
• Man in the snow at the beach... the guy on the scuba boat...
• Man on the seaboard while diving
• A man is caught in a sea of dolphins scuba diving on a

CHB • diving board, springboard inside home office
• diving board, springboard inside bakery
• diving board, springboard inside music studio
• diving board, springboard inside subway station
• diving board, springboard inside pizzeria

SC • A sleek, modern diving board extends over a pristine pool at
an indoor diving facility, brightly lit with natural light stream-
ing through large windows, casting reflections on the water’s
surface below.

• A sleek diving board extends over a shimmering blue swim-
ming pool, surrounded by lush greenery and bustling with
activity under the bright summer sun.

• A sleek diving board extends over an oceanview pool, with the
shimmering blue waters of the ocean and a clear sky stretching
out in the background.

• On a serene summer day, a sleek diving board extends over
a sparkling zero-entry pool, inviting swimmers to take the
plunge into its crystal-clear, gradually deepening waters.

• A sleek diving board extends over a crystal-clear synchronized
swimming pool, surrounded by vibrant, choreographed swim-
mers creating mesmerizing patterns in the water.

CCG • A young girl prepares to leap off a wooden diving board into
a sparkling pool below.

• A young girl jumps joyously off a colorful diving board into
the sparkling blue pool below.

• A young girl poised on the diving board, ready to leap into the
sparkling pool below.

• A young girl leaps joyfully off a high diving board into a
sparkling blue pool.

• A young girl stands poised on a diving board, ready to leap
into the sparkling pool.

HIRPG • A high-contrast black and white photograph of diving board.
• A serene watercolor painting of diving board.
• A vibrant photo of diving board during sunrise with a warm

color palette.
• A vivid painting of diving board using vibrant colors.
• A cinematic wide-angle shot of diving board at dusk.

Table 21: Prompt samples using different prompt generation methods for the concept Diving Board from
DomainNet dataset. Irrelevant content, repetitions, and overused phrases are marked in red, brown, and turquoise
respectively.

GenCL with those specifically trained on medical domain data, such as Medical Diffusion (Khader et al., 2022)
or MedM2G (Zhan et al., 2024). Since the generative models in GenCL can be easily swapped with other
generative models, we believe that choosing a generative model that is suitable for the downstream task can
maximize the performance in the name-only CL setup.
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Concept Method Examples

The Great Wall of China LE • The great wall of china was completed
• The great wall of china
• The Great Wall of the China
• The great wall of the province of the city of Beijing
• The Wall of China... a building in the countryside

CHB • The Great Wall of China, wall inside home office
• The Great Wall of China, wall inside bakery
• The Great Wall of China, wall inside music studio
• The Great Wall of China, wall inside subway station
• The Great Wall of China wall inside pizzeria

SC • The Great Wall of China winds majestically through the dense,
vibrant greenery of a bamboo forest, creating a striking con-
trast between ancient architecture and natural beauty.

• The Great Wall of China winds majestically through the land-
scape, surrounded by ancient historical courtyards that echo
with the rich history of past dynasties.

• The Great Wall of China winds majestically through the dense,
vibrant greenery of a bamboo forest, creating a striking con-
trast between ancient architecture and natural beauty.

• Majestic Great Wall of China winding through lush green
hills, while sailboats gently glide across a serene lake in the
foreground.

• The Great Wall of China majestically winds its way through
a vibrant, sunny meadow, with lush green grass and colorful
wildflowers stretching out in the foreground.

CCG • The ancient Great Wall of China winds through lush green
hills under a bright blue sky.

• Tourists wander along the ancient, winding Great Wall of
China amidst lush mountains.

• Tourists hike along the ancient stone path of the Great Wall
winding through green hills.

• Visitors hike along the winding, ancient Great Wall of China
amidst lush, rolling green hills.

• A majestic stretch of ancient stone wall winds over lush,
rolling hills under a bright sky.

HIRPG • A high-contrast black and white photograph of The Great Wall
of China.

• A serene watercolor painting of The Great Wall of China.
• A vibrant photo of The Great Wall of China during sunrise

with a warm color palette.
• A vivid painting of The Great Wall of China using vibrant

colors.
• A cinematic wide-angle shot of The Great Wall of China at

dusk.

Table 22: Prompt samples using different prompt generation methods for the concept The Great Wall of China
from DomainNet dataset. Irrelevant content, repetitions, and overused phrases are marked in red, brown, and
turquoise respectively.
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Method ID OOD
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

LE 20.01±0.27 15.38±0.31 6.40±0.13 4.59±0.09
(+) Uncertainty 14.66±0.30 9.40±0.14 4.85±0.08 3.08±0.06
(+) CRAIG 28.64±0.55 23.91±0.27 8.53±0.27 6.83±0.07
(+) Glister 17.53±0.44 11.57±0.25 5.67±0.15 3.61±0.06
(+) GradMatch 27.68±0.68 22.89±0.14 8.57±0.31 6.86±0.07
(+) AdaCore 24.73±0.56 18.95±0.25 7.62±0.17 5.53±0.12
(+) LCMat 27.72±0.49 23.10±0.23 8.50±0.22 6.84±0.02
(+) Moderate 21.33±0.54 15.91±0.27 6.47±0.20 4.56±0.11
(+) CONAN 30.80±0.63 25.33±0.20 9.54±0.25 7.59±0.17
CHB 16.69±0.16 13.45±0.19 5.61±0.11 4.18±0.05
(+) Uncertainty 11.15±0.35 7.06±0.15 3.97±0.09 2.41±0.05
(+) CRAIG 26.42±0.35 22.49±0.33 8.11±0.09 6.61±0.20
(+) Glister 14.07±0.13 9.38±0.06 4.68±0.05 2.98±0.04
(+) GradMatch 25.20±0.36 21.58±0.27 7.97±0.15 6.51±0.14
(+) AdaCore 22.29±0.31 17.27±0.16 7.23±0.09 5.27±0.08
(+) LCMat 24.99±0.37 21.46±0.24 7.99±0.12 6.68±0.10
(+) Moderate 18.64±0.24 13.96±0.10 5.92±0.07 4.08±0.06
(+) CONAN 29.06±0.37 24.52±0.17 9.28±0.14 7.56±0.14
SC 11.89±0.17 8.66±0.20 3.90±0.07 2.68±0.04
(+) Uncertainty 10.32±0.26 6.41±0.20 3.17±0.05 1.87±0.05
(+) CRAIG 20.05±0.25 17.13±0.16 6.02±0.12 4.83±0.08
(+) Glister 11.30±0.24 7.24±0.08 3.42±0.07 2.10±0.04
(+) GradMatch 19.83±0.38 16.82±0.19 5.94±0.10 4.78±0.08
(+) AdaCore 17.67±0.37 13.29±0.38 5.19±0.13 3.69±0.06
(+) LCMat 19.86±0.32 16.79±0.29 5.98±0.11 4.77±0.07
(+) Moderate 14.17±0.24 10.34±0.06 4.03±0.07 2.72±0.05
(+) CONAN 22.36±0.34 19.13±0.32 6.71±0.15 5.48±0.13
CCG 12.55±0.22 10.21±0.26 4.03±0.10 2.91±0.10
(+) Uncertainty 14.73±0.41 10.65±0.22 4.48±0.14 3.13±0.07
(+) CRAIG 16.72±0.27 14.23±0.30 5.16±0.08 4.11±0.05
(+) Glister 14.51±0.38 10.54±0.15 4.46±0.12 3.08±0.03
(+) GradMatch 16.75±0.26 14.31±0.21 5.15±0.11 4.10±0.07
(+) AdaCore 17.11±0.36 13.87±0.18 5.20±0.14 3.93±0.11
(+) LCMat 16.71±0.23 14.08±0.26 5.15±0.09 4.05±0.05
(+) Moderate 14.52±0.29 11.01±0.14 4.40±0.10 3.15±0.07
(+) CONAN 18.32±0.42 15.83±0.34 5.78±0.17 4.70±0.14
HIRPG (Ours) 27.72±0.30 23.71±0.39 10.70±0.19 8.75±0.13
(+) Uncertainty 21.90±0.37 15.70±0.08 10.01±0.23 7.19±0.11
(+) CRAIG 32.53±0.20 28.44±0.23 13.25±0.15 11.53±0.06
(+) Glister 23.16±0.37 16.98±0.35 10.56±0.26 7.60±0.18
(+) GradMatch 32.53±0.43 28.36±0.41 13.48±0.31 11.74±0.18
(+) AdaCore 32.15±0.55 26.83±0.18 13.62±0.27 11.37±0.04
(+) LCMat 32.38±0.44 28.36±0.32 13.42±0.26 11.76±0.17
(+) Moderate 25.57±0.42 20.38±0.16 10.53±0.29 8.17±0.13
(+) CONAN (Ours) 34.60±0.31 30.09±0.11 14.53±0.22 12.65±0.09

Table 23: Quantitative comparison between data selection methods with different diverse prompt gen-
eration baselines on DomainNet. Uncertainty, CRAIG, Glister, GradMatch, Adacore, and LCMat require
fine-tuning on the full dataset to compute gradient calculations for the fine-tuned model, despite using a pre-
trained model for initialization. In contrast, Moderate and CONAN do not require any fine-tuning.
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