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Abstract001

International enterprises, organizations, and002
hospitals collect large amounts of multi-modal003
data stored in databases, text documents, im-004
ages, and videos. While there has been recent005
progress in the separate fields of multi-modal006
data exploration as well as in database sys-007
tems that automatically translate natural lan-008
guage questions to database query languages,009
the research challenge of querying both struc-010
tured databases and unstructured modalities011
(e.g., texts, images) in natural language remains012
largely unexplored. In this paper, we propose013
M2EX 1—a system that enables multi-modal014
data exploration via language agents. Our ap-015
proach is based on the following research con-016
tributions: (1) Our system is inspired by a real-017
world use case that enables users to explore018
multi-modal information systems. (2) M2EX019
leverages an LLM-based agentic AI framework020
to decompose a natural language question into021
subtasks such as text-to-SQL generation and022
image analysis and to orchestrate modality-023
specific experts in an efficient query plan. (3)024
Experimental results on multi-modal datasets,025
encompassing relational data, text, and images,026
demonstrate that our system outperforms state-027
of-the-art multi-modal exploration systems, ex-028
celling in both accuracy and various perfor-029
mance metrics, including query latency, API030
costs, and planning efficiency, thanks to the031
more effective utilization of the reasoning ca-032
pabilities of LLMs.033

1 Introduction034

The rapid growth of multi-modal data – spanning035

structured databases, text, images, and videos – has036

created an urgent need for flexible, scalable meth-037

ods to explore and analyze complex information038

spaces. In domains like healthcare, researchers,039

clinicians, and data scientists require seamless ac-040

cess to electronic health records (EHRs), stored041

1Data and code repository will be publicly available upon
acceptance.

primarily in relational databases, medical images, 042

and expert reports, often querying this diverse data 043

in natural language. However, current systems 044

struggle with multi-modal integration, user intent 045

understanding, and workflow optimization, limit- 046

ing their effectiveness in real-world applications. 047

Traditional approaches to data exploration have 048

largely focused on single-modality paradigms, such 049

as text-to-query systems (Sivasubramaniam et al., 050

2024; Nooralahzadeh et al., 2024; Pourreza and 051

Rafiei, 2024), visual question answering (VQA) (Li 052

et al., 2023a; Ko et al., 2023; Du et al., 2023), or 053

domain-specific question answering (QA) (Dong 054

et al., 2024; Liu et al., 2024b). These systems 055

often rely on hard-coded rules, task-specific archi- 056

tectures, or narrow pipelines tailored to predefined 057

objectives. While effective for their intended use 058

cases, such specialized frameworks lack the adapt- 059

ability to handle heterogeneous data types or evolv- 060

ing analytical requirements, limiting their utility 061

in real-world scenarios where multi-modal context 062

and dynamic reasoning are critical. 063

Recent advances in large language models 064

(LLMs) and vision-language LLMs (VLLMs) 065

have introduced new opportunities for generaliza- 066

tion, yet their application to multi-modal data ex- 067

ploration remains constrained. Techniques like 068

retrieval-augmented generation (RAG) aim to en- 069

hance LLM knowledge by grounding responses in 070

external data, but they often depend on simplistic 071

vector similarity mechanisms, which struggle with 072

domain-specific operations, long-term memory re- 073

tention, and precise functional requirements (e.g., 074

structured data manipulation or cross-modal align- 075

ment). This results in systems that, while broadly 076

capable, fail to address the nuanced demands of 077

specialized domains or maintain consistency across 078

iterative explorations. Efforts to inspire LLMs with 079

agentic capabilities – such as ReAct (Yao et al., 080

2023), tool invocation (Yang et al., 2023; Schick 081

et al., 2023), or workflow automation (Liu et al., 082
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Figure 1: (Left): Example workflows of multi-modal data exploration in natural language over heterogeneous data
sources. (Right): M2EX system architecture.

2024a; Urban and Binnig, 2024) – have further083

exposed systemic challenges.084

Existing frameworks frequently adopt rigid, se-085

quential decision-making processes, incurring com-086

putational overhead and limiting scalability. Eval-087

uations of these systems are often conducted on088

in-house datasets, lacking rigorous benchmarking089

against ground-truth metrics or real-world multi-090

modal contexts. Moreover, many approaches en-091

force fixed task-planning hierarchies or routing092

mechanisms, stifling adaptability and reusability093

across diverse applications. This “one-size-fits-all”094

mentality contrasts starkly with the need for mod-095

ular, composable agents capable of dynamically096

integrating domain-specific tools, retaining contex-097

tual memory, and self-optimizing workflows.098

To understand these challenges, a concrete sce-099

nario of multi-modal exploration involving a re-100

lational database, text documents, and images is101

outlined here. A seemingly straightforward query102

like Show me the progression of cancer lesions over103

the last 12 months of patients with lung cancer who104

are smokers (see Figure 1) requires multi-modal105

integration, posing challenges in decomposition106

and optimization. Critical to this process is opti-107

mizing the workflow sequence, i.e., determining108

which queries should be executed first to minimize109

computational overhead and maximize efficiency.110

In this work, we propose a novel framework111

for multi-modal data exploration that bridges these112

gaps through LLM-based agents designed for ex-113

tensibility, precision, and cross-domain generaliza-114

tion. Our approach combines a “Swiss army knife”115

philosophy — enabling reusable, adaptable mod-116

ules for tasks like semantic parsing, cross-modal117

retrieval, and structured data operations — with118

a principled evaluation strategy spanning diverse119

benchmark datasets. By decoupling task planning120

from execution and incorporating feedback-driven 121

memory, our system supports iterative exploration 122

while mitigating the pitfalls of shallow evaluation 123

and fixed workflows. We demonstrate its efficacy 124

across text, visual, tabular, and hybrid data do- 125

mains, underscoring the potential of agentic LLMs 126

to unify multi-modal analysis in a scalable, user- 127

centric paradigm. 128

The goal of our paper is to support such multi- 129

modal data exploration scenarios in natural lan- 130

guage by designing and implementing a system to 131

address the following challenges: 132

• Heterogeneous data exploration: How can we 133

design a system that accurately interprets user 134

queries in natural language for exploring hetero- 135

geneous data sources with high accuracy? 136

• Orchestrating multiple expert models and tools 137

for data exploration: How can we automatically 138

break down a user question into sub-questions 139

that can later be organized into a workflow plan? 140

How do we delegate these tasks to the appro- 141

priate expert models from the available toolbox, 142

considering dependencies and the potential for 143

parallel execution? 144

• Explainability: How can we design a system that 145

facilitates multi-modal exploration, allowing end 146

users to trace conclusions back to their source 147

data, comprehend how intermediate results were 148

generated, and identify situations where ques- 149

tions remain unanswered due to missing data? 150

In this paper, we propose M2EX—a multi-modal 151

data exploration system that uses a LLM-based 152

agentic framework to tackle these challenges. The 153

basic idea is to first decompose a complex natu- 154

ral language question into simpler sub-questions. 155

Each sub-question is then translated into a work- 156

flow of specific tasks. By applying smart planning, 157

our approach can reason about which task in the 158

2



workflow fails and thus re-plan that specific task159

rather than restarting the complete workflow. The160

advantage of our approach compared to similar sys-161

tems such as CAESURA (Urban and Binnig, 2024)162

is that it enables parallel task execution through the163

construction of a directed acyclic task graph and164

requires a lower number of tokens from prompt165

engineering, resulting in more efficient query exe-166

cution times and API calling costs.167

The main contributions of our paper are as fol-168

lows: (i) Higher accuracy: M2EX is based on an169

agentic AI framework that shows higher accuracy170

with improvements of up to 42% for exploring mul-171

ti-modal data than traditional work due to the smart172

orchestration of different tasks of the data explo-173

ration pipeline. (ii) Improved performance: M2EX174

demonstrates performance improvements of up to175

51% compared to state-of-the-art through paral-176

lelism, reasoning and smart re-planning (iii) Better177

explainability: M2EX enhances explainability by178

enabling a user to inspect the decisions and reason-179

ing at each step that led to the final output, trac-180

ing back through the results of all previous steps.181

(iv) Generalizability: M2EX is designed and evalu-182

ated in a zero-shot setting, demonstrating its ability183

to perform complex tasks without relying on In–184

Context Learning (ICL), thereby improving both185

adaptability and accessibility.186

2 Related Work187

Text-to-SQL systems. The research field of text-188

to-SQL systems has seen tremendous progress over189

the last few years (Floratou et al., 2024; Pourreza190

and Rafiei, 2024) due to advances in large lan-191

guage models. Original success can be attributed192

to rather simplistic datasets consisting of databases193

with only several tables, as in Spider (Yu et al.,194

2018). Especially the introduction of new bench-195

marks such as ScienceBenchmark (Zhang et al.,196

2024b), FootbalDB (Fürst et al., 2024), BIRD (Li197

et al., 2024) or SM3 (Sivasubramaniam et al., 2024)198

has further pushed the limits of these systems. Most199

of the research efforts have been restricted to query-200

ing databases in English apart from a few excep-201

tions such as Statbot.Swiss (Nooralahzadeh et al.,202

2024).203

Multi-modal systems. Video Database Man-204

agement Systems (VDBMSs) support efficient and205

complex queries over video data, but are often re-206

stricted to videos only (e.g., Zhang et al., 2023;207

Kang et al., 2019; Kakkar et al., 2023). Thala-208

musDB (Jo and Trummer, 2024) enables queries 209

over multi-modal data but requires SQL as input, 210

with explicit identification of the predicates that 211

should be applied to an attribute corresponding 212

to video or audio data. Similarly, MindsDB2 and 213

VIVA (Kang et al., 2022) require that users write 214

SQL and manually combine data from relational ta- 215

bles and models. Vision-language models provide 216

textual descriptions of video data (Zhang et al., 217

2024a), but are not designed to support precise, 218

structured queries. 219

Closest to our work are CAESURA (Urban 220

and Binnig, 2024) and PALIMPZEST (Liu et al., 221

2024a), which address multi-modal querying and 222

AI workload optimization. In contrast, M2EX fo- 223

cuses on efficient orchestration of model calls and 224

dependencies, reducing latency and cost while im- 225

proving accuracy by minimizing interference from 226

intermediate outputs (Schick et al., 2023). 227

While related systems emphasize query plan- 228

ning, they fall short in enhancing the accuracy and 229

explainability of model outputs—critical needs in 230

domains like medical data science, where regula- 231

tory standards require transparent and justifiable 232

results. 233

3 Method and System Design 234

The details of the proposed M2EX, which enables 235

multi-modal data exploration via language agents, 236

are presented in Algorithm 1 and Figure 1 (right). 237

M2EX is an agentic system (Kapoor et al., 2024) 238

driven by LLMCompiler (Kim et al., 2023), a dy- 239

namic planner pattern based on a Large Language 240

Model, equipped with a comprehensive toolkit T 241

containing all the necessary models to decompose 242

a user’s request, such as a multi-modal natural lan- 243

guage question, into a workflow (i.e., a graph of 244

sub-questions). The workflow is represented as a 245

Directed Acyclic Graph (DAG), where each node 246

corresponds to a simple sub-task (or sub-question) 247

with a specific tool assigned by the planner. While 248

decoupling logical and physical plans can be subop- 249

timal due to plan ambiguity and nonlinearity, unlike 250

CAESURA, the planner determines sub-tasks that 251

can be executed in parallel and manages their de- 252

pendencies by leveraging an LLM to directly gener- 253

ate the execution plan from the query as a graph of 254

function calls. M2EX is designed to be adaptable, 255

allowing dynamic debugging and plan modifica- 256

tion (re-planning) when necessary, for example, if 257

2https://docs.mindsdb.com
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Algorithm 1 M2EX: Multi-Modal Data Explo-
ration via Language Agents
Require: User query q, Agent Core LLM, toolkit T , Data Lake D, Pre-

defined Prompts P , Empty memory stateR
Ensure: Final answer a

1 Stage 1: Planning & Expert Model Allocation
2 R ← R∪ {q,Dmeta}
3 S ← DECOMPOSE(R,LLM, Tmeta) ▷ Use an agent core LLM

(with a planner prompt ∈ P access to tool metadata) to decompose q
into subtasks s1, . . . , sn. Each task contains a tool, arguments, and list
of dependencies.

4 G← BUILDDAG(S,LLM) ▷ Construct a
Directed Acyclic Graph (DAG): G where each node represents a subtask
and edges represent dependencies

5 Stage 2: Execution & Self-debugging
6 σ ← TOPOLOGICALSORT(G) ▷ Determine an execution order that

respects dependencies
7 B ← GROUPPARALLELTASKS(σ,G) ▷ Partition tasks into parallel

execution
8 for each batch bk ∈ B do
9 Launch parallel execution:

10 for each subtask si ∈ bk do
11 ri ← EXECUTE(si, T ,D) ▷ Invoke the assigned expert

tool for si. Integrate n-time self-debugging to automatically detect and
correct errors as needed. (n = 1). If there is still an error, provide an
error message as an output of execution.

12 R ← R∪ {ri}
13 end for
14 end for
15 Stage 3: Decision Making
16 ValidateR via reflection ▷ Check that outputs are correct and

executable; if not, trigger error feedback.
17 if validation fails then
18 G← REPLAN(G,R,LLM, Tmeta) ▷ Dynamically adjust

the DAG (e.g., reallocate tasks or update tool parameters) based on error
feedback using an agent core LLM (with a replanning prompt ∈ P).

19 goto line 5 ▷ Restart execution with the updated plan.
20 end if
21 a← SYNTHESIZE(R,LLM) ▷ Aggregate and refine intermediate

results into the final answer using LLM reasoning.
22 if a is insufficient or uncertain then
23 G← REPLAN(G,R,LLM, Tmeta) ▷ Dynamically adjust

the DAG (e.g., reallocate tasks or update tool parameters) based on error
feedback using an agent core LLM (with a replanning prompt ∈ P).

24 goto line 5 ▷ Restart execution with the updated plan.
25 end if
26 return a

a failure occurs during a text-to-SQL sub-task.258

As shown in Algorithm 1 and Figure 1, the sys-259

tem is composed of the following key components:260

(1) User Query (q): a multi-modal natural lan-261

guage question posed by the user, which initiates262

the process of task decomposition and execution.263

(2) Agent Core (LLM): the core reasoning engine264

that powers the dynamic planning, execution, and265

decision-making processes. The LLM is responsi-266

ble for decomposing the user query into subtasks,267

managing dependencies, and synthesizing final re-268

sults using diverse prompts P . (3) Expert Models &269

Tools ( Toolkit ) (T ): a comprehensive collection of270

expert models and tools that are used for executing271

specific sub-tasks. The toolkit provides the neces-272

sary models for tasks such as text-to-SQL, text273

analysis, image analysis, data preparation,274

and data plotting. Each expert model or tool275

should include a description and argument specifi-276

cations (Tmeta), and they will be available during277

the planning and re-planning stages. (4) Data Lake278

(D): a central repository that stores both structured279

and unstructured data, such as tabular data, images, 280

and text. Each expert model and tool has direct 281

access to the data lake to perform its assigned tasks. 282

The data stored in the lake is utilized as input for 283

various tasks, enabling the system to generate ac- 284

curate results for the user’s query. (5) Pre-defined 285

Prompts (P): a collection of predefined prompts 286

available to the LLM, which are used to guide 287

the reasoning process during planning, execution, 288

and decision-making (see details in Appendix B). 289

(6) Memory State (R): The initial memory state 290

starts empty and captures all intermediate results 291

and interactions throughout the workflow execu- 292

tion. The system tracks these intermediate results 293

using an output object that stores the answer and 294

reasoning at each node in the workflow. (7) Final 295

Answer (a): The final answer is the output gen- 296

erated by the system after executing all the tasks 297

and performing reasoning through the LLM. It con- 298

solidates all intermediate results and provides a 299

comprehensive response to the user’s query. The 300

final answer typically includes several components: 301

a summary of the task or query result, detailed 302

information about the outcome, the source of the 303

data used, an inference indicating the success of 304

the task, and any additional explanations or clarifi- 305

cations. This structured output ensures that the user 306

receives not only the result but also the reasoning 307

and context behind it. In Figure 2, we demonstrate 308

the showcase of M2EX using an example query 309

applied to the EHRXQA data, which includes re- 310

lational tables and images: Was patient 18061894 311

prescribed acetaminophen, and did a chest x-ray 312

show any technical assessments until 12/2103? 313

The system starts with the user query q and pro- 314

cesses it through several stages, as detailed below: 315

(i) Planning & Expert Model Allocation. The sys- 316

tem begins by analyzing the user query q and de- 317

composes it into a sequence of tasks. Using the 318

agent core (LLM), the system identifies the re- 319

quired expert models and tools from the toolkit 320

T , along with their input arguments and inter- 321

dependencies. These subtasks are synthesized 322

into a workflow represented as a Directed Acyclic 323

Graph (DAG), G, where each node represents a 324

task, and edges represent dependencies between 325

them. E.g., a natural language question can be split 326

into multiple tasks such as intent table detec- 327

tion, text2SQL, and image analysis as shown 328

in Figure 2. The workflow reflects the execution 329

sequence and dependencies that are necessary to 330

answer the user’s query. The system also utilizes 331
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Figure 2: M2EX system architecture in EHRXQA (Bae et al., 2024) with an example of processing a multi-modal
query. The query is automatically decomposed into various components which can be inspected by the user for
explainability.

predefined prompts P to guide the reasoning pro-332

cess during task decomposition.333

(ii) Execution and Self-Debugging. The system334

executes the tasks according to the generated work-335

flow by invoking the relevant expert models and336

tools from the toolkit T . The system utilizes a337

state object R, which stores intermediate results338

and interactions during the execution. The tasks are339

partitioned into independent batches B that can be340

executed in parallel, which is determined through341

a topological sort (TOPOLOGICALSORT(G)) of the342

DAG. For each batch, the system launches parallel343

executions of the assigned tasks. The tasks are ex-344

ecuted using the expert models, and the outcomes345

are passed on to subsequent tasks that depend on346

them. Each expert model includes a self-debugging347

mechanism to detect and correct errors during exe-348

cution. If an error persists, the system can provide349

feedback and retry the process, thereby enhancing350

the robustness of the execution.351

(iii) Decision Making. After the execution of the352

subtasks, M2EX inspects the intermediate results353

stored in R to determine whether they are suffi-354

cient to fulfill the user’s request. If the results are355

satisfactory, the system synthesizes them into the356

final answer a. However, if the results are insuffi-357

cient or uncertain, the system triggers a re-planning358

process by invoking REPLAN(G,R,LLM, Tmeta)359

to adjust the DAG and re-execute the tasks. This360

process repeats until the decision-making compo-361

nent is satisfied with the final result or a predefined362

maximum loop limit is reached.363

In summary, M2EX uses an algorithmic ap- 364

proach where the system first decomposes the user 365

query into subtasks, executes these tasks with error 366

detection and correction mechanisms, and synthe- 367

sizes the results into a final answer. The system is 368

highly adaptive, with dynamic re-planning capabil- 369

ities powered by the reasoning abilities of the LLM 370

to ensure efficient task execution, debugging, and 371

modification of the plan when needed. Our current 372

M2EX implementation offers a range of features, 373

including self-debugging, query re-planning, opti- 374

mization, and explainability to better understand 375

how a natural language question is decomposed 376

into multiple sub-tasks. See details in Appendix C. 377

4 Experiments 378

In this section, we evaluate M2EX’s performance, 379

focusing on the following research questions: 380

• How well does M2EX tackle multi-modal natural 381

language questions on three different datasets 382

consisting of tabular data and images? 383

• How does the system perform compared to state- 384

of-the-art systems such as CAESURA (Urban 385

and Binnig, 2024) and NeuralSQL (Bae et al., 386

2024)? 387

• What systematic errors can we observe? 388

4.1 Experimental Setup 389

Datasets For our experiments, we used three dif- 390

ferent datasets, namely datasets about artwork, bas- 391

ketball, as well as electronic health records. Due 392

to hardware limitations, we reduced the dataset to 393
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100 images and reports. Processing the full size394

in CAESURA can result in crashes due to out-of-395

memory issues.396

DATASET 1: ARTWORK. This dataset was intro-397

duced by Urban and Binnig (2024) and contains398

information about paintings in tabular form as well399

as an image collection containing 100 images of400

the artworks, collected from Wikipedia. The tab-401

ular data contains metadata about paintings such402

as title, inception, movement, etc. as well as a403

reference to the respective paintings. A typical ex-404

ample question from this dataset is Plot the number405

of paintings depicting war for each century (see406

Figure 3 in the Appendix).407

In addition to the 24 existing questions in the Art-408

Work dataset, we propose six new questions aimed409

at evaluating parallel task planning and execution,410

facilitating a comparison between the character-411

istics of the two architectures. These six ques-412

tions incorporate both single and multiple modali-413

ties. Moreover, four of the six questions require re-414

sponses in various formats: two questions demand415

two plots, and two questions involve a combination416

of plotting and showing the results in a specific417

data structure, i.e. either as a tabular format or as418

a JSON format. The final test dataset contains 30419

natural language questions derived from the orig-420

inal 24 in the ArtWork dataset. These include 8421

queries seeking a single result value, 11 requir-422

ing structured data as output, and 11 requesting423

a plot. Of these, 18 queries involve multi-modal424

data, while the remaining 12 are based exclusively425

on relational data. We have chosen this dataset to426

directly compare our system with CAESURA (Ur-427

ban and Binnig, 2024), one of the state-of-the-art428

systems for multi-modal data exploration in natural429

language.430

DATASET 2: ROTOWIRE. This dataset is also uti-431

lized by Urban and Binnig (2024) and consists432

of one relational database and 100 randomly se-433

lected textual reports about NBA games, including434

metadata, key statistics of individual players, and435

team performance metrics. A typical example ques-436

tion from this dataset is Plot the highest number of437

three-pointers made by players from each national-438

ity. The test dataset comprises 12 natural language439

questions, evenly divided into 6 single-modal and440

6 multi-modal queries. Regarding output format,441

3 questions require a single value as a response, 5442

involve structured data outputs, and 4 necessitate443

visualization through plots.444

DATASET 3: ELECTRONIC HEALTH RECORDS445

(EHR). We also utilized the EHRXQA (Bae et al., 446

2024) dataset, a multi-modal question answering 447

dataset that integrates structured electronic health 448

records (EHRs) with chest X-ray images. This 449

dataset consists of 18 tables and 432 images, and 450

specifically requires cross-modal reasoning. The 451

questions of EHRXQA are categorized based on 452

their scope in terms of modality and patient rele- 453

vance. For modality-based categorization, ques- 454

tions were classified into three types: Table-related, 455

image-related, and table-image-related, based on 456

the data modality required. The patient-based cat- 457

egorization classified questions based on their rel- 458

evance to a single patient, a group of patients, 459

or none (i.e., unrelated to specific patients). We 460

have chosen this dataset since it was used to eval- 461

uate NeuralSQL, another state-of-the-art system 462

for multi-modal data exploration. To manage the 463

cost of an API call, we extracted 100 questions 464

randomly. The selection process was guided by 465

three predefined categories within the test set of the 466

EHRXQA dataset: Image Single-1, Image Single- 467

2, and Image+Table Single (for details, please look 468

at Bae et al. (2024)). 469

Several considerations influenced our decision to 470

work with reduced versions of these datasets: 471

Demonstrating Viability The reduced dataset size 472

demonstrates M2EX’s viability across diverse mul- 473

ti-modal datasets with ground truth, proving its 474

ability to handle complex queries in a controlled 475

setting. Complexity of Building Datasets Construct- 476

ing large-scale multi-modal datasets with precise 477

ground truth is a complex, manual process, which 478

limits the scaling-up within the study’s scope. Cost 479

Considerations The cost of API calls to the LLM 480

powering M2EX necessitates a balance between 481

dataset size and experimental feasibility, ensuring 482

thorough evaluation within practical constraints. 483

4.2 Baseline Systems and Setup 484

We compare M2EX to the baseline implementa- 485

tions of CAESURA (Urban and Binnig, 2024) 486

and NeuralSQL (Bae et al., 2024) - two impor- 487

tant state-of-the-art systems for multi-modal data 488

exploration. 489

CAESURA supports natural language queries 490

over a multi-modal data lake, leveraging BLIP-2 491

(Li et al., 2023b) for visual question answering 492

and a fine-tuned BART (Lewis et al., 2020) for 493

text question answering. We reproduced the re- 494

sults of CAESURA on the ArtWork and RotoWire 495

datasets using GPT-4o for planning, data process- 496
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ing, and plot generation while adopting the other497

tool models as proposed in CAESURA (Urban and498

Binnig, 2024). For comparison with our system,499

we use GPT-4o as the LLM for both planning and500

text analysis on RotoWire. On ArtWork, we em-501

ploy GPT-4o as the planner and retain the same502

model for visual question answering (i.e., BLIP-2)503

in M2EX.504

In NeuralSQL, an LLM is integrated with an505

external visual question answering system, M3AE506

model (Chen et al., 2022), to handle multi-modal507

questions over a structured database with images508

by translating a user question to SQL in one step.509

To ensure that we used the optimal hyperparameter510

settings and prompt structure, we contacted the au-511

thors of EHRXQA (Bae et al., 2024), who provided512

the results of their experiment for NeuralSQL using513

GPT-4o on 100 randomly selected questions.514

For M2EX, we employ the M3AE model with515

task-specific fine-tuned weights, provided by (Bae516

et al., 2024), for the image analysis task. The cus-517

tomized M3AE model is encapsulated as a web518

service and deployed on the same computing node519

described in Section 4.3.520

4.3 Evaluation Metrics521

To evaluate M2EX against state-of-the-art systems,522

we use the following metrics: (i) Accuracy: Mea-523

sures the accuracy (i.e., exact match) of the gen-524

erated result set compared with the gold standard525

result set or with the human expert. (ii) Steps: Num-526

ber of steps required by the respective system to527

come up with the final result. These steps include528

reasoning, planning, re-planning, etc. (iii) Tokens:529

Number of tokens used for prompt engineering.530

(iv) Latency: End-to-end execution time for a sys-531

tem to come up with the final result. (v) API costs:532

Costs for calling the LLM, e.g. for GPT4o.533

We apply the above-mentioned metrics under534

various questions and system categories:535

(i) Modality: Questions can either be of single536

modality, i.e., querying only relational data or im-537

age data, or of multiple modalities, i.e., querying538

both relational and image data. (ii) Output Type:539

The output type of a question can either be a single540

value, e.g., true or false, a data structure, e.g., in541

tabular or JSON format, a plot, or a combination542

of plots and data structures. (iii) Workflow: The543

generated workflow plan can either be sequential or544

parallel. Finally, we evaluate if a system generates545

a correct (multi-modal) query plan (i.e., generated546

plan), and if it supports re-planning.547

We conduct the following experiments using 548

a CUDA-accelerated computational node on an 549

OpenStack virtual host. This node is equipped with 550

a 16-core CPU, 16 GB of main memory, and 240 551

GB of SSD storage. Additionally, it features an 552

NVIDIA T4 GPU with 16 GB of dedicated graph- 553

ics memory. 554

4.4 Results on the Benchmark Datasets 555

Results on the ArtWork and RotoWire Datasets 556

Table 1 shows M2EX outperforms CAESURA by 557

30% on the ArtWork and by ca. 42% on the Ro- 558

toWire datasets in accuracy, with advantages in 559

both single- and multi-modality queries. Efficiency- 560

wise, M2EX excels on ArtWork with fewer steps, 561

lower latency, and reduced costs. On RotoWire, 562

despite higher token usage and costs due to ad- 563

vanced text analysis, M2EX maintains superior ac- 564

curacy. Additionally, M2EX supports re-planning 565

and offers better explanations, features absent in 566

CAESURA. 567

Results on the EHRXQA Dataset In Table 2, 568

M2EX outperforms NeuralSQL in overall accu- 569

racy (51.00% vs. 33.00% in 10-shot) on the 570

EHRXQA dataset, especially in multiple-table 571

queries (77.50% vs. 47.50%) and binary ques- 572

tions (74.00% vs. 48.00%). Additionally, M2EX 573

provides plan generation (98% coverage), expla- 574

nations, and replanning—features that NeuralSQL 575

lacks. Metrics like steps, tokens, and latency are 576

excluded since NeuralSQL generates answers di- 577

rectly without intermediate steps, unlike M2EX’s 578

transparent workflow. 579

We exclude CAESURA from the EHRXQA ex- 580

periments due to its inefficiency with EHRXQA’s 581

complex schema. While CAESURA is intended 582

to be a general-purpose multi-modal system, it 583

processes the relational database through multi- 584

ple steps, examining each table and relationship 585

sequentially. This limitation introduces significant 586

overhead when handling the complex data schema 587

of the EHRXQA dataset (there are 18 tables) dur- 588

ing its discovery phase. Consequently, reproducing 589

CAESURA on EHRXQA questions fails to per- 590

form inferences at the early stages of the planning 591

phase, ultimately terminating after exceeding the 592

maximum number of allowed attempts. 593

4.5 Error Analysis 594

We evaluate system errors across three datasets: 595

ArtWork, RotoWire, and EHRXQA, identifying 596
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System Category (# in ArtWork|# in RotoWire)
ArtWork RotoWire Re-planning

Accuracy Steps Tokens Latency [s] Cost [$] Gen. Plan Accuracy Steps Tokens Latency [s] Cost [$] Gen. Plan

CAESURA

Modality Single (15|6) 60.00% 152 214,014 973.28 1.33

80%

50.00% 79 100,277 500.52 0.65

91.67% No

Multiple (15|6) 6.67% 164 268,918 4,847.95 1.65 0.00% 78 133,230 959.17 0.85

Output

Single Value (8|3) 37.50% 88 135,077 1,047.24 0.82 66.67% 32 45,145 287.55 0.29
Data Structure (10|5) 50.00% 116 183,454 2,683.03 1.14 20.00% 69 104,345 659.37 0.68
Plot (8|4) 25.00% 79 112,732 1,856.66 0.69 0.00% 56 84,017 512.77 0.53

few-shot (4) Type Plot-Plot (2|0) 0% 16 21,508 108.87 0.14 – – – – –
in planning Plot-Data Structure (2|0) 0% 17 30,161 125.42 0.19 – – – – –

Workflow Sequential (24|12) 41.67% 261 399,045 5,330.12 2.45 25.00% 157 233,507 1,459.69 1.50
Parallel (6|0) 0% 55 83,887 491.11 0.52 – – – – –

Overall (30|12) 33.33% 316 482,932 5,821.23 2.98 25.00% 157 233,507 1,459.69 1.50

M2EX

Modality Single (15|6) 100.00% 96 159,212 525.09 0.61 100.00% 34 89,810 524.06 0.40
Multiple (15|6) 26.67% 107 326,400 2,515.03 1.49

100%

33.33% 42 952,386 3,235.96 3.22

100% Yes
Output

Single Value (8|3) 50.00% 56 71,575 494.78 0.39 100.00% 16 108,520 499.70 0.40
Data Structure (10|5) 50.00% 67 223,528 1,330.40 0.89 40.00% 27 410,698 2,120.15 1.57
Plot (8|4) 75.00% 52 118,431 798.97 0.48 75.00% 33 522,987 1,140.17 1.65

zero-shot Type Plot-Plot (2|0) 100.00% 14 50,108 308.92 0.22 – – – – –
Plot-Data Structure (2|0) 100.00% 14 21,970 107.05 0.10 – – – – –

Workflow Sequential (24|12) 62.50% 163 338,766 2,131.11 1.51 66.67% 76 1,042,196 3,760.02 3.62
Parallel (6|0) 66.67% 40 146,846 909.01 0.59 – – – – –

Overall (30|12) 63.33% 203 485,612 3,040.12 2.10 66.67% 76 1,042,196 3,760.02 3.62

Table 1: Performance metrics of Caesura (Urban and Binnig, 2024) and M2EX on ArtWork and RotoWire.

System
Scope Output Type

Overall (100)
Generated

ReplanningImage Single-1 Image Single-2 Image+Table Single Binary Categorical Plan
(30) (30) (40) (50) (50)

NeuralSQL
zero-shot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

N/A No
few-shot (n = 10) 26.67% 20.00% 47.50% 48.00% 18.00% 33.00%

M2EX zero-shot 23.33% 43.33% 77.50% 74.00% 28.00% 51.00% 98% Yes

Table 2: Performance metrics of NeuralSQL (zero-shot and few-shot) and M2EX (zero-shot) on EHRXQA.

key bottlenecks and component failures (see de-597

tailed breakdown in Appendix D, Fig. 6). On the598

ArtWork dataset, CAESURA exhibits 20 errors out599

of 30 tasks, mainly due to faulty planning in se-600

quential workflows and incorrect outputs from the601

image analysis module. Multi-modal tasks involv-602

ing plot and data structure outputs are particularly603

error-prone, especially in parallel workflows where604

planning failures are common. By contrast, M2EX605

achieves full planning success, with image interpre-606

tation errors being the only significant issue.607

In the RotoWire dataset, CAESURA fails on 9608

of 12 tasks due to text analysis failures and SQL609

generation flaws. M2EX resolves all single-modal610

tasks but faces 4 errors in multi-modal tasks, again611

tied to text interpretation. These patterns high-612

light M2EX’s robustness in planning and execu-613

tion while exposing shared weaknesses in text and614

image understanding across systems.615

For the EHRXQA dataset, we focus solely on616

M2EX due to NeuralSQL’s lack of interpretable617

planning. Of 49 errors, 36 arise in categorical tasks,618

indicating a strong link between output type and619

model performance. Most failures originate from620

inaccurate image analysis by the M3AE model.621

These results emphasize the need for improved622

image understanding, especially for categorical rea- 623

soning, alongside stronger planning and SQL com- 624

ponents. See Appendix D for full error analysis. 625

5 Conclusions 626

In this paper, we show that multi-agent collabora- 627

tion using LLMs (GPT4o) is a promising approach 628

for multi-modal data exploration in natural lan- 629

guage. Our system, M2EX, achieves superior ac- 630

curacy and efficiency compared to state-of-the-art 631

methods on datasets with tabular, text, and image 632

data, leveraging smart re-planning and parallel exe- 633

cution. It also enhances transparency through de- 634

tailed explanations, fostering user trust. Our work 635

demonstrates an effective paradigm for integrating 636

diverse data types, with strong performance in text- 637

to-SQL tasks but room for improvement in image 638

analysis and workflow optimization. Future efforts 639

should focus on exploring better data alignment, 640

prompt engineering, planning optimization, scaling 641

to larger datasets, and incorporating modalities like 642

video and human-in-the-loop strategies. Overall, 643

M2EX shows a significant advance in multi-modal 644

data exploration, blending accuracy, efficiency, and 645

user-centric design, with potential for further en- 646

hancement. 647
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Limitations648

Despite M2EX’s overall superior performance, sev-649

eral limitations remain. Most notably, the system’s650

reliance on image analysis introduces a consistent651

source of error, particularly in tasks involving cat-652

egorical outputs. The M3AE model often fails to653

capture subtle visual distinctions, which dispro-654

portionately affects the accuracy of multi-modal655

tasks. We did not explore alternative image process-656

ing approaches, as improving the visual pipeline657

was not the primary objective of this study. In-658

stead, we adopted visual models commonly used in659

prior work to ensure a fair and consistent basis for660

comparison. Similarly, we restricted our language661

model experiments to GPT-4o to both showcase662

our proposed methods and maintain comparability663

with recent studies.664

Additionally, although M2EX successfully gen-665

erates plans for all tasks, its performance still666

hinges on accurate text interpretation. In the Ro-667

toWire dataset, for example, errors in multi-modal668

questions were largely driven by flawed text com-669

prehension, revealing a vulnerability in the lan-670

guage understanding pipeline.671

Finally, the system exhibits a performance gap672

between binary and categorical tasks, suggesting673

that output type complexity influences success674

rates. These findings indicate that further improve-675

ments are needed in visual reasoning, nuanced lan-676

guage understanding, and output-type generaliza-677

tion.678
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A M2EX on ArtWork 848

Figure 3: M2EX framework on ArtWork (Urban and Binnig, 2024) with an example of processing a multi-modal
query. The query is automatically decomposed into various components such as text2SQL, and image analysis
which can be inspected by the user for explainability.

B Prompts 849

Planner Prompt / Replanning Prompt

[SYSTEM]: Given a user question and a database schema, analyze the question to identify and break it down into relevant sub-questions.
Determine which tools (e.g., {tool_names}) are appropriate for answering each sub-question based on the available database information and
tools.
Decompose the user question into sub-questions that capture all elements of the question’s intent. This includes identifying the main objective,
relevant sub-questions, necessary background information, assumptions, and any secondary requirements.
Ensure that no part of the original question’s intent is omitted, and create a list of individual steps to answer the question fully and
accurately using tools.
You may need to use one tool multiple times to answer the original question.
First, you should begin by thoroughly analyzing the user’s main question. It’s important to understand the key components and objectives within
the query.
Next, you must review the provided database schema. This involves examining the tables, fields, and relationships within the database to
identify which parts of the schema are relevant to the user’s question and contribute to a set of sub-questions.
For each sub-question, provide all the required information that may required in other tasks. In order to find this information look at the
user question and the database information.
Each sub-question or step should focus exclusively on a single task.
Each sub-question should be a textual question. Don’t generate a code as a sub-question.
Create a plan to solve it with the utmost parallelizability.
Each plan should comprise an action from the following {num_tools} types:
{tool_descriptions}
{num_tools}. join(): Collects and combines results from prior actions.
- An LLM agent is called upon invoking join() to either finalize the user query or wait until the plans are executed.
- join should always be the last action in the plan, and will be called in two scenarios:
(a) if the answer can be determined by gathering the outputs from tasks to generate the final response.
(b) if the answer cannot be determined in the planning phase before you execute the plans. Guidelines:
- Each action described above contains input/output types and descriptions.
- You must strictly adhere to the input and output types for each action.
- The action descriptions contain the guidelines. You MUST strictly follow those guidelines when you use the actions.
- Each action in the plan should strictly be one of the above types. Follow the Python conventions for each action.
- Each action MUST have a unique ID, which is strictly increasing.
- Inputs for actions can either be constants or outputs from preceding actions. In the latter case, use the format $id to denote the ID of the
previous action whose output will be the input.
- If there is an input from preceding actions, always point its id as ‘$id‘ in the context of the action
- Always call join as the last action in the plan. Say ’<END_OF_PLAN>’ after you call join.
- Ensure the plan maximizes parallelizability.
- Only use the provided action types. If a query cannot be addressed using these, invoke the join action for the next steps.
- Never introduce new actions other than the ones provided.
{list of usecase-specific business rules}
[USER]:{state}
[SYSTEM]: Remember, ONLY respond with the task list in the correct format! E.g.: idx. tool(arg_name=args),

850
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Prompt for Decision Making

[SYSTEM]: Solve a question answering task. Here are some guidelines:
- In the Assistant Scratchpad, you will be given results of a plan you have executed to answer the user’s question.
- Thought needs to reason about the question based on the Observations in 1-2 sentences.
- Ignore irrelevant action results.
- If the required information is present, give a concise but complete and helpful answer to the user’s question. - If you are unable to give a
satisfactory finishing answer, replan to get the required information. Respond in the following format:
Thought: <reason about the task results and whether you have sufficient information to answer the question>
Action: <action to take>
- If an error occurs during previous actions, replan and take corrective measures to obtain the required information.
- Ensure that you consider errors in all the previous steps, and try to replan accordingly.
- Ensure the final answer is provided in a structured format as JSON as follows:
{{’Summary’: <concise summary of the answer>,
’details’: <detailed explanation and supporting information>,
’source’: <source of the information or how it was obtained>,
’inference’:<your final inference as YES, No, or list of requested information without any extra information which you can take from the ‘labels‘
as given below>, ’extra explanation’:<put here the extra information that you don’t provide in inference >,
}}
In the ‘inference‘ do not provide additional explanation or description. Put them in ‘extra explanation‘.
Available actions:
(1) Finish (the final answer to return to the user): returns the answer and finishes the task.
(2) Replan(the reasoning and other information that will help you plan again. Can be a line of any length): instructs why we must replan.
[USER]: {state}
[SYSTEM]: Using the above previous actions, decide whether to replan or finish.
If all the required information is present, you may finish. Consider replanning for data_preparation task if you want to structure the response
in a proper way.
If you have made many attempts to find the information without success, admit so and respond with whatever information you have gathered so the
user can work well with you.
Do not generate a response based on the sample data (assumption). If you failed after multiple attempts, you can finish and explain the reason.

851

Prompt for text2SQL

[SYSTEM]: You are a database expert. Generate a SQL query given the following user question, database information and other context that you
receive. You should analyse the question, context and database schema and come up with the executable sqlite3 query.
Provide all the required information in the SQL code to answer the original user question that may required in other tasks utilizing the relevant
database schema.
Ensure you include all necessary information, including columns used for filtering, especially when the task involves plotting or data
exploration.
This must be taken into account when performing any time-based data queries or analyses.
Translate a text question into a SQL query that can be executed on the SQLite database.
You should stick to the available schema including tables and columns in the database and should not bring any new tables or columns.
[USER]: {text2SQL task description}, {db schema}

852

Prompt for text_analysis

[SYSTEM]: You are a text analysis assistant. Analyze the provided question and report to answer the question.
Only answer the question and don’t provide extra information in your answer.
In your answer, be concrete and use None if you can’t find the answer in the report.
The output should be in the format: {{’reasoning’: ’...’, ’answer’: ’...’}}
[USER]: {text analysis task description}, {text}

853

Prompt for data_preparation

[SYSTEM]: You are a data preparation and processing assistant. Create a proper structure for the provided data from the previous steps to answer
the request.
- If the required information has not found in the provided data, ask for replanning and ask from previous tools to include the missing
information.
- You should include all the input data in the code, and prevent of ignoring them by ‘# ... (rest of the data)‘.
- You should provide a name or caption for each value in the final output considering the question and the input context."
- Don’t create any sample data in order to answer to the user question.
- You should print the final data structure.
- You should save the final data structure at the specified path with a proper filename.
- You should output the final data structure as a final output.
[USER]: {data preparation task description}, {result from previous task}

854

Prompt for data_plotting

[SYSTEM]: You are a data plotting assistant. Plot the provided data from the previous steps to answer the question.
- Analyze the user’s request and input data to determine the most suitable type of visualization/plot that also can be understood by the simple
user.
- If the required information has not been found in the provided data, ask for replanning and ask from previous tools to include the missing
information.
- Don’t create any sample data in order to answer to the user question.
- You should save the generated plot at the specified path with the proper filename and .png extension.
[USER]: {data plotting task description}, {data}

855

C Optimizations in M2EX Explained with Examples856

To better demonstrate advantages of M2EX, we provide several examples (see Figures 3 and 4) across857

three key aspects: explanations, smart replanning, and parallel planning. The following examples provide858

a detailed illustration of these three aspects.859
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Example 1: Plot the number of paintings that depict war for each century (see Figure 3).

Through a series of well-planned and systematically executed steps, the model demonstrates not only 860

how it processes the query but also how it provides transparency and reasoning at every stage, ensuring 861

the user understands the process and results. The figure depicts a workflow that involves (1) Planning & 862

Expert Model Allocation, (2) Execution & Self-Debugging, and (3) Decision Making. Here’s a breakdown 863

of each step: 864

1) Planning & Expert Model Allocation: The process begins with the query being broken down into a 865

sequence of subtasks: Task 1: Retrieve painting metadata, including their years and associated centuries, 866

from the database. Task 2: Analyze the images to determine whether they depict war. Task 3: Prepare the 867

data by counting the number of war-related paintings per century. Task 4: Visualize these counts in a bar 868

chart. 869

Each task is allocated to specialized tools or models, such as text2SQL to translate the natural language 870

question to SQL and database retrieval, image analysis tools for visual interpretation, coding tools to 871

structure the data, and visualization libraries like matplotlib. This stage establishes a clear plan, showing 872

how the overall query will be tackled in logical steps. 873

2) Execution & Self-Debugging: The model begins executing the tasks, providing explanations and outputs 874

at every stage to ensure clarity. Task 1 - Retrieving Data: The model constructs a SQL query to retrieve 875

the required information from the database. It explains its reasoning: to determine the century of each 876

painting, it converts the inception year into century values. The result is a list of paintings, each associated 877

with its image path and century. Task 2 - Image Analysis: With the retrieved data, the model analyzes 878

each painting to determine if it depicts war. It applies image analysis tools to interpret the visual content 879

of the paintings. The reasoning here is clear—war-related imagery, such as battles or soldiers, must be 880

identified to answer the query. The output is a dataset indicating whether each painting depicts war. Task 3 881

- Data Preparation: The model filters and aggregates the data, counting the number of paintings depicting 882

war for each century. It explains that grouping the paintings by century allows for easy comparison of 883

trends across time periods. The result is a concise summary: 1 painting from the 16th century 884

and 2 from the 18th century are identified as depicting war. Task 4 - Data Visualization: 885

Finally, the model prepares a bar chart to visualize the results. It explains its reasoning for choosing this 886

visualization: bar charts effectively compare counts across categories, in this case, centuries. A Python 887

script is provided, showing how the chart was generated, and the output is saved as an image for user 888

reference. 889

3) Decision Making: When the tasks are completed, the model reflects on its work and provides a final 890

output based on its thought as Summary:"The number of paintings depicting war has been 891

plotted for the 16th and 18th centuries.", "Details": "The analysis identified 1 892

painting from the 16th century and 2 paintings from the 18th century that depict war. 893

The plot visualizes these findings. [..]". Throughout the workflow, the model demonstrates a 894

commitment to transparency. 895

At every stage, M2EX provides reasoning to justify its actions, from choosing SQL for retrieval to 896

selecting a bar chart for visualization. Intermediate outputs, like the dataset of war paintings and the 897

Python plotting code, are made visible, ensuring the user can trace the steps taken. The decision making 898

phase wraps up the process by summarizing findings, clarifying the approach, and sharing the final 899

visual result. This shows that M2EX not only answers the query effectively but also ensures its steps are 900

understandable, logical, and well-documented, building trust in its analysis. 901

Example 2 - Smart Replanning: What is depicted on the oldest Renaissance painting in the database?
(see Figure 4).

Contrary to the previous example, M2EX here involves smart replanning - a major optimization technique 902

of M2EX. The main idea is to dynamically adapt the planning in case some tasks of the workflow fail or 903

do not produce any results. Here’s a breakdown of each step: 904

1) Planning & Expert Model Allocation: M2EX outputs the initial workflow plan that has 2 tasks. The 905
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Figure 4: Optimization of M2EX: Smart replanning.

first task involves retrieving the image path and the year of the oldest Renaissance painting in the database906

using a "text2SQL" expert model. It also involves an "image_analysis" expert model in the second task,907

which aims to determine what is depicted in the image.908

2) Execution and Self-Debugging: M2EX takes the information about the planned workflow as well as909

task dependencies and puts it into action. In Task 1, it comes with a reasoning statement to generate the910

SQL query as: SELECT img_path, strftime(’%Y’, inception) AS year FROM paintings WHERE911

movement = ’Renaissance’ ORDER BY inception ASC LIMIT 1. Then it executes the query over the912

Artwork database and retrieves the specific image path and year for the oldest Renaissance painting as913

[’img_path’: ’images/img_0.jpg’, ’year’: ’1438’]. This allows the model to access the actual914

painting data in the subsequent task.915

In Task 2, M2EX utilizes the "image_analysis" expert model (i.e. visual question answering based on916

BLIP) to examine the contents of img_0.jpg to answer the question: What is depicted in the image? The917

output of this task is transferred as a final result to the decision making component. At this point, the918

model’s "thought" process in this component becomes evident. It reasons that while it knows that img_-919

0.jpg is a painting, the details about what is depicted in the painting have not been provided. Therefore,920

the model decides to not provide a final answer to the user and does replanning.921

The replanning capability is a crucial aspect of the M2EX’s approach. Rather than blindly accepting922

the final answer which does not produce a satisfiable or correct result, the model recognizes the need to923

replan and calls the "image_analysis" module again. Since the model already knows which image in the924

database contains the oldest Renaissance painting, it smartly plans the "image_analysis" task as Task 3,925

by reformulating the question as What is specifically depicted in the painting? M2EX then executes the926

task, and receives the more concrete answer "umbrellas".927

Moving forward, the decision making component confirms the details about the painting. Here, it928

verifies that the information it has gathered so far aligns with the natural language question and makes929

sense as a comprehensive understanding of the oldest Renaissance painting. The key aspect is the model’s930

ability to replan effectively and to strategically leverage the available information to avoid repeating931

tasks.932
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Figure 5: Optimization of M2EX: Parallel planning.

Example 3 - Parallel Planning: In the Renaissance, find the total number of paintings depicting war and
the number of paintings depicting swords (see Figure 5).

The figure illustrates how M2EX processes a complex query about Renaissance paintings, focusing on 933

identifying how many paintings depict war and how many depict swords. The pipeline is structured to 934

combine parallel task execution with step-by-step explanations, ensuring clarity and efficiency throughout 935

the process. 936

The process begins in the Planning & Expert Model Allocation, where the model breaks down the user’s 937

query into distinct subtasks. These subtasks are assigned to specialized modules: Task 1 "text2SQL": 938

This task retrieves image paths and relevant metadata for Renaissance paintings from a database using 939

a SQL query. Task 2 "image_analysis": This task examines whether each painting depicts war. Task 3 940

"image_analysis": Simultaneously, another module analyzes whether each painting depicts a sword. Task 941

4 "data_preparation": This task consolidates the results from Task 2 and Task 3 to count and summarize 942

the paintings. 943

The execution phase begins with Task 1, where the model generates and runs a SQL query. The 944

reasoning provided for this step explains how the schema is understood and how the query ensures that 945

only Renaissance paintings are retrieved. The output of Task 1 includes image paths and metadata, which 946

are then sent to the next stage. 947

At this point, the model showcases its parallel planning capability. Tasks 2 and 3 are performed 948

concurrently: For Task 2, the system uses image analysis to determine if each painting depicts war. For 949

Task 3, a similar image analysis process identifies paintings that depict swords. Running these tasks 950

in parallel significantly speeds up the workflow, as they operate independently of each other. Once the 951

image analysis tasks are complete, the model transitions to Task 4, where it aggregates the results. The 952

reasoning here details how the system compiles two lists - one for paintings depicting war and one for 953

those depicting swords. Afterwards, M2EX counts the entries in each list. The final results are prepared 954

for the decision making module. 955

In the decision making phase, the model reflects on its findings. It confirms that sufficient data was 956

processed to answer the query and provides a summary: "There is 1 painting depicting war and 957

38 paintings depicting swords." 958

M2EX offers details, explaining how the analysis was conducted and highlighting the disparity between 959

the two categories of paintings. The system further provides an explanation of its methodology, emphasiz- 960

ing how it worked systematically to answer the query. This demonstrates M2EX’s ability to manage tasks 961
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efficiently through parallel execution and to ensure transparency through reasoned explanations at every962

step. By combining these capabilities, the system provides a clear, accurate, and well-supported response963

to the user’s query.964

Note that we did not compare M2EX with NeuralSQL on ArtWork dataset, as such a comparison would965

be unfair due to NeuralSQL’s inability to support plotting.966
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Figure 6: Error analysis on different datasets: (a) CAESURA on ArtWork, (b) M2EX on ArtWork, (c) CAESURA
on RotoWire, (d) M2EX on RotoWire, and (e) M2EX on EHRXQA.

Error Analysis on the ArtWork Dataset As illustrated in Figure 6 (a), a total of 20 errors are identified968

out of 30 inference tasks for CAESURA. Of these, 14 errors occur within CAESURA’s sequential969

workflow. The errors include three single-modal questions and 11 multi-modal questions. Among the970

three single-modal, one task could not be resolved due to insufficient data available in the data pool.971

Following this failure, CAESURA attempts to replan twice but ultimately generates an incorrect plan,972

and consequently results in an erroneous response. The remaining two errors in single-modal tasks were973

classified as Plot Generation Errors, which are caused by inconsistencies in the time axis units of the plot974

output.975

For 11 errors in multi-modal questions, five are related to single-value outputs, four to plots, and three976

to data structures. All of these errors are attributed to incorrect outputs generated by the image analysis977

model. After further research, we found two ambiguous tasks in classifying the error categories. (1) Plot978

the number of paintings that depict war for each year and (2) What is depicted on the oldest religious979

artwork in the database? Both tasks failed due to improperly parsed sub question for the image analysis980

task, specifically the oversimplified term “war.” While this term is semantically related to the correct981

natural language question, “Does the image depict war?”, it does not fully capture the intent of the task.982

As a result, it cannot be classified as a completely faulty question. Notably, the M2EX model generated983
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correct results for these tasks, underscoring the limitations of CAESURA’s approach in handling subtle 984

semantic distinctions. 985

In questions which require a parallel workflow - including two data structures, plot | plot, and plot | data 986

structure outputs — errors are observed at the early planning stage. Our analysis reveals that CAESURA 987

encounters significant challenges in generating accurate plans for embarrassingly parallel tasks. For two 988

of these tasks, the system fails to generate any plan at all. For the remaining four tasks, CAESURA can 989

provide partial results for some subtasks, but other subtasks are left unanswered, reflecting a broader 990

issue in its ability to manage parallel planning. Our M2EX system successfully generates the appropriate 991

plans for all tasks, as shown in Figure 6 (b). In addition, all text-to-SQL steps, data preparation pipelines, 992

and plot outputs, where required, are validated as correct. As illustrated in Figure 6(b), the only source 993

of errors is the inaccurate output of the image analysis model, which accounted for 11 errors. No other 994

errors are located in the text-to-SQL task, plot generation, or task planning deficiencies. This analysis 995

highlights the image analysis model as the bottleneck in system performance, underscoring the need for 996

further refinement in its predictive accuracy. 997

Error Analysis on the RotoWire Dataset Figure 6 (c) reveals that CAESURA encounters 9 errors 998

across 12 inference tasks on the RotoWire dataset. These tasks are evenly divided between single-modal 999

and multi-modal categories. Among the three single-modal tasks, one stumbles due to an SQL query 1000

missing essential filter clauses, resulting in inaccurate structured data. The other two, focused on plotting, 1001

fail to generate visualizations consistent with the analytical findings. 1002

In the multi-modal group, six tasks face challenges. A task requiring a single-value output is derailed 1003

by suboptimal text analysis. Additionally, the Bart model’s limited text comprehension hampers two tasks 1004

expecting data structure outputs and two others involving plots, all undermined by faulty text interpretation. 1005

Another task, aimed at producing a structured output, falters during the planning stage because the strategy 1006

cannot be refined within the permitted attempts. 1007

In contrast, our M2EX system, as illustrated in Figure 6 (d), excels by devising suitable plans for all 1008

tasks and accurately resolving every single-modal task. However, it encounters issues in four multi-modal 1009

tasks: two demanding data structures and one plotting task succumb to flawed text analysis, while a 1010

fourth task needing a structured output fails during post-data preparation. Beyond these, no errors arise in 1011

text-to-SQL conversions or plot generation. This comparison underscores M2EX’s greater resilience while 1012

highlighting text analysis as a shared weakness. CAESURA, however, suffers from additional pipeline 1013

limitations. 1014

Error Analysis on the EHRXQA Dataset Since NeuralSQL is a one-step approach lacking task 1015

planning and explainability, we are unable to localize the source of errors as systematically as in the 1016

M2EX or CAESURA systems. Consequently, we focus our error analysis solely on the M2EX system 1017

using the EHRXQA dataset. 1018

Figure 6 (e) presents the distribution of 49 errors across various steps, categorized by their respective 1019

scopes: Image Single-1 (23 errors), Image Single-2 (17 errors), and Image+Table Single (9 errors). Among 1020

these, 36 errors are associated with the categorical scope, with 20 attributed to Image Single-1 and 16 to 1021

Image Single-2. In contrast, errors linked to the binary output type are primarily found in the Image+Table 1022

Single scope. Specifically, Image Single-1 contributes three binary errors, Image Single-2 accounts for one, 1023

and Image+Table Single includes nine, summing up to 13 binary errors out of the total 49. Considering 1024

the uneven distribution of errors across various output types and scopes, we identified inaccurate image 1025

analysis — primarily driven by the M3AE model (Chen et al., 2022) — as the main source of errors. Our 1026

analysis reveals that errors linked to categorical output types (36) are nearly three times higher than those 1027

associated with binary output types (13). This suggests that the error pattern is less related to the task 1028

difficulty across different scopes and more influenced by the output type, as binary questions demonstrate 1029

a statistically higher success rate compared to categorical ones. Notably, the Image + Table Single scope 1030

exclusively utilizes binary output types. 1031

To gain a deeper understanding, a step-by-step error analysis reveals that out of the 23 errors in the 1032

Image Single-1 scope, 22 are due to inaccuracies in image analysis, while only one is related to a misstep 1033

in the text-to-SQL process. The specific question text for this case is: “Catalog all the anatomical findings 1034
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seen in the image, given the first study of patient 11801290 on the first hospital visit.” The generated1035

SQL query fails to include the condition specifying the first study, resulting in an incorrect output. In the1036

Image Single-2 category, 16 out of 17 total errors are due to inaccurate image analysis, with one error1037

attributed to the text-to-SQL step. The specific query in question is: “Does the second-to-last study of1038

patient 16345504 this year reveal still-present fluid overload/heart failure in the right lung compared to1039

the first study this year?”. The text-to-SQL task fails to correctly retrieve the first and last study of this1040

year as required, instead erroneously returning multiple studies from the current year. In the Image+Table1041

Single scope, all nine errors involve binary output types. Of these, six result from inaccurate image1042

analysis, one from incomplete planning, and two from an incorrect text-to-SQL step. The error caused1043

by incomplete planning occurs with the question: “Did patient 19055351 undergo the combined right1044

and left heart cardiac catheterization procedure within the same month after a chest x-ray revealed any1045

anatomical findings until 2104?”. In this case, the plan omits the necessary image analysis step, leading1046

to an incorrect final output. During the reasoning stage, instances were identified where an empty output1047

produced a no response that coincidentally aligned with the ground truth. However, M2EX’s explainability1048

highlights this as a misclassification, as the absence of output was not due to correct reasoning.1049

Two errors in the Image+Table Single category are attributed to text-to-SQL misbehavior. The specific1050

questions causing these errors are: "Was patient 12724975 diagnosed with hypoxemia until 1 year ago,1051

and did a chest x-ray reveal any tubes/lines in the abdomen during the same period?” and "Was patient1052

10762986 diagnosed with a personal history of tobacco use within the same month after a chest x-ray1053

showing any abnormalities in the aortic arch until 1 year ago?" In both cases, the SQL queries fail to1054

correctly apply the condition (since current time) until 1 year ago, instead treating 1 year ago as a fixed1055

point in time.1056

These findings highlight the pivotal role of accurate image analysis in multi-modal data exploration sys-1057

tems. Particularly, they emphasize a formidable challenge associated with categorical outputs. Moreover,1058

the findings underscore the necessity of robust planning and effective SQL query generation to achieve1059

optimal system performance. Addressing these challenges requires advancements in visual reasoning,1060

temporal logic comprehension, and SQL generation, all of which are essential for mitigating errors and1061

enhancing system accuracy.1062
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