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ABSTRACT

Standard gradient descent algorithms applied to sequences of tasks are known to
induce catastrophic forgetting in deep neural networks. When trained on a new
task, the model’s parameters are updated in a way that degrades performance on
past tasks. This article explores continual learning (CL) on long sequences of
tasks sampled from a finite environment. We show that in this setting, learning
with stochastic gradient descent (SGD) results in knowledge retention and
accumulation without specific memorization mechanisms. This is in contrast to
the current notion of forgetting from the CL literature, which shows that training
on new task with such an approach results in forgetting previous tasks, especially
in class-incremental settings. To study this phenomenon, we propose an experi-
mental framework, SCoLe (Scaling Continual Learning), which allows to generate
arbitrarily long task sequences. Our experiments show that the previous results
obtained on relatively short task sequences may not reveal certain phenomena that
emerge in longer ones.

1 INTRODUCTION

Continual learning (CL) aims to design algorithms that learn from non-stationary sequences of tasks.
Classically, the main challenge of CL is catastrophic forgetting (CF) – fast performance degradation
on previous tasks when learning from new data. CF is usually evaluated on scenarios with sequences
of disjoint tasks (Lesort et al., 2020; Lange et al., 2019; Belouadah et al., 2021; Hadsell et al., 2020).
In these scenarios, fine-tuning a model with plain empirical risk minimization objective and stochastic
gradient descent (SGD) results in CF (Rebuffi et al., 2017; Lesort et al., 2019a; Kang et al., 2022).
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Figure 1: With SGD, knowledge
accumulation is not observable in
standard CL benchmarks (inset
top). However, when repeating
the sequence of tasks (bottom),
knowledge accumulation is appar-
ent and accuracy rises (MNIST, 2
per task, averaged over 3 lr and 5
seeds, each task trained until con-
vergence).

The main motivation for this work is to step back from classical
continual learning and investigate if fine-tuning with gradient
descents approaches only truly leads to catastrophic forgetting or
if it can result in knowledge accumulation and decaying forget-
ting. For example, Evron et al. (2022) theoretically showed that,
for linear regression trained with SGD knowledge accumulation
exists, leading to CF reducing uniformly when tasks reoccur
randomly or cyclically. This indicates that CF might not be as
catastrophic as it was initially assumed. Perhaps the problem
is that CF is often studied in a setup where it is particularly
excruciating — short task sequences with non-reoccurring data.

In this work, we empirically show that deep neural networks
(DNNs) may consistently learn more than they forget when
trained with SGD (Fig.1). We investigate how DNNs trained
continually for single-head classification on long sequences of
task with data reocurrence forget and accumulate knowledge.

To this end we propose SCoLe (Scaling Continual Learning),
an evaluation framework for CL algorithms that generates task
sequences of arbitrary length. As visualized in Fig. 2, SCoLe
creates each new task from a randomly selected subset of all classes. A model is trained for some
epochs on data from these classes until the task switches. The SCoLe framework creates tasks online
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by sampling an existing source dataset such as CIFAR (Krizhevsky et al.). By modifying the sampling
strategy of the source dataset, we can control data recurrence frequencies, the complexity of the
scenario, and the type of shifts in distribution (random, long-term, cyclic, etc.).

As in classical continual learning scenarios, SCoLe scenarios have regular distribution shifts that
should lead to CF. However, in SCoLe, tasks and data can sparsely reoccur. This reoccurrence makes
it possible when training with naive SGD, to study if knowledge can accumulate through time. The
idea is: if the model does not forget catastrophically but progressively, some knowledge can be
retained until the next occurrence of the data leading to potential knowledge accumulation. We study
the impact of such reoccurrence in a series of SCoLe experiments and confirm that DNNs trained
with gradient descent only accumulate knowledge without any supplementary CL mechanism.

Test Time

Figure 2: Illustration of SCoLe scenario. With 5 classes in total (one per color) and 2 classes per task.
The data are selected randomly based on their label to build the scenario dynamically, into a potential
infinite sequence. The evaluation is performed on the test set containing all possible classes.

Our contributions are as follows: (1) We propose an experimentation framework “SCoLe” with a
potentially infinitely long sequence of tasks. SCoLe scenarios are built to study knowledge retention
and accumulation in DNNs with non-stationnary training distributions. (2) We show that in such
scenarios standard SGD retains and accumulates knowledge without any CL algorithm, i.e. without
supplementary memorization mechanism. This result is counterintuitive given the well-known
phenomenon of catastrophic forgetting in DNNs. (3) We study the capabilities and limitations of such
training with scenario based on a variety of datasets (MNIST, Fashion-MNIST, KMNIST, CIFAR10,
CIFAR100, miniImageNet) and scenarios.

2 SCoLe:A FRAMEWORK FOR CL WITH LONG TASK SEQUENCES

General Idea. We propose a framework that allows the creation of an arbitrarily long sequence of
tasks. The setting is based on the finite-world assumption (Mundt et al., 2020), which hypothesizes
that the world has a finite set of states, and in a finite period of time, the agent will see all of them.
Later data will, therefore, necessarily be a repetition of previous ones. As in classical CL, in SCoLe
each task is comprised of a subset of world’s data, whereby the evaluation is done on the whole world.
In such a world, a learning system must accumulate knowledge about the world by experiencing parts
of it in isolation. The difference to the classical CL scenarios is that data sparsely reoccurs. An agent
can succeed in this setup only by accumulating knowledge faster than forgetting it. SCoLe can reveal
learning dynamics of DNNs under distribution shift that are not observable on short sequences of
non-overlapping tasks, as we show next. Measuring the performance on whole world allows us to
estimate whether, overall, the agent accumulates knowledge faster than it forgets.

Framework.

We instantiate this idea in a classification setting (Fig. 2). At each task, a subset of classes is randomly
selected from the total of N available classes (N is dataset dependent). The agent is a DNN that
learns to classify on this subset only and is tested on the full test set with all classes. The framework
considers scenarios with varying numbers of tasks T and classes per task C.

Formally, the training set Dt for a task t consists of (x, y) pairs sampled from the distribution
p(X,Y |St) = p(X|Y )p(Y |St). Here St = {ci}C−1

i=0 is the set of classes in task t. In the default
SCoLe scenario, the elements of St are sampled from the uniform distribution over all N classes
ci ∼ U(0, N − 1) without replacement. We also consider cases where p(St;C) is non-uniform
(Sec. 4.2) or evolves over time (Sec. 5). Label y is sampled uniformly over St and x is obtained
as x ∼ p(X|Y = y). The test set Dtest contains all classes in the scenario. Following the data
generation process, it is generated with C = N .
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Figure 3: Initial experiments with default hyper-parameters on MNIST. Masking gradient and
removing momentum, increase knowledge accumulation leading to a reduction of forgetting.

Measuring divergence to IID. SCoLe enables studying knowledge accumulation as a function of
divergence to IID of the training distribution. We formalize the closeness of SCoLe scenarios to
the identically and independently distribution (IID) training regime using the expected (over tasks)
KL-divergence. When p(Y ) is uniform over N classes, the KL-divergence between p(X,Y |St) and
the IID joint piid(X,Y ) is Et[DKL

(
pt(X,Y |St) || piid(X,Y )

)
] = log N

C with N the total number
of classes and C the number of classes per task. (for derivation cf. App. B). Hence, in SCoLe
scenarios using an N/C ratio closer to 1 generates training tasks closer to IID. It also reduces the
expected number of tasks between two occurrences of the same task τtask (or of a class τclass).
Finally, it increases the probability po that classes of consecutive tasks overlap (cf. App. A for
details). For example with C = 2, τclass = 45 and τtask = 5 for CIFAR10, while τclass = 4095 and
τtask = 50 for CIFAR100. Thus, revisiting exactly the same task in CIFAR100 for C = 2 is very
rare (every 4,095 tasks). Note that in standard CL τtask and τclass are inf while po is 0.

In this paper, we propose three sets of experiments. We first present how to observe knowledge
accumulation (Sec. 3). Secondly, we experiment with various levels of non-stationarirty of the
scenarios to understand better the robustness of knowledge accumulation with gradient descent (Sec.
4), finally we observe knowledge accumulation with long term distribution shifts (Sec. 5).

3 OBSERVING KNOWLEDGE ACCUMULATION IN SCoLe

In this section we show how, in SCoLe, we can learn a sequence of tasks without a continual learning
algorithm such as replay, regularization, or a dynamic architecture.

3.1 INITIAL EXPERIMENT

In this experiments, we estimate knowledge accumulation with popular optimizers.

Setting: We study several standard approaches for training DNNs. We use the two most popular
optimizers in CL and ML in general: SGD with momentum (Qian, 1999), and Adam (Kingma & Ba,
2014). For SGD, we set the momentum to 0.9, since it is the default value in PyTorch (Paszke et al.,
2019). We start to experiment with a scenario with only 20 tasks on the MNIST dataset with 2 classes
per task and a small convolutional neural network (c.f. Appendix I).

At task t, the objective is to find θ∗t that minimizes the (global) test set Dtest loss. This is done
through the proxy of training loss minimization (cross-entropy) ℓ(x,y)∈Dt

(f(x; θ), y), where f(·; θ)
is a function realized by a neural network parameterized with θ. Training is done using batched
training procedure with b denoting the batch size and e denoting the number of epochs per task. We
define ut to be the number of gradient updates per task, which in general case is ut =

⌈
|Dt|
b

⌉
∗ e.

Results: The results in Fig. 3a show no progress in the test accuracy, even with a decrease in
performance over time. This result is in accordance to the common CF phenomenon (French, 1999).

Next we are going to show that knowledge can actually accumulate as seen in Figure 1 and how to
facilitate such accumulation with minimal modifications to the learning algorithm.
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3.2 IMPROVING KNOWLEDGE ACCUMULATION

Setting: We propose to use two small improvements for gradient descent (1) removing the momentum
for SGD, (2) masking gradient for classes not currently in the task in the output layer: “gradient
masking”. Accumulation can be observed without those improvements as seen in Fig. 1 but with
those improvements it becomes easier and more consistent. We test those improvements on the 20
tasks scenarios and on a 500 tasks scenarios ( 2 classes per task).

Intuitively, in the presence of data distribution drifts, momentum (also present in Adam) produces a
mixture between the gradient of the previous task and the gradient of the current task. This can create
interference in the training process.

Recent papers show that masking the gradient in the last layer helps classifiers to learn continu-
ally (Caccia et al., 2022; Zeno et al., 2018) even without any supplementary memorization pro-
cess (Lesort et al., 2021a). Therefore, we tested whether “group masking” from Lesort et al. (2021a)
could also be useful in training a model end-to-end in a SCoLe scenario. The idea is that, when
learning on subsets of classes (without replay), the gradient is only backpropageted through the
outputs corresponding to the classes in the current batch. The inference is realized in the same way
as single head approaches but the loss is computed by only taking into account outputs of classes
currently in the mini-batch. On the other hand, Ramasesh et al. (2021) shows that CF happens
the most on the higher layers and gradient masking is the most straight-forward way to reduce
forgetting in the output layer for free. We hypothesize that apparent reduction of forgetting through
such masking can be partially attributed to its regularizing effect for preventing overfitting and not
forgetting (even though in this case both are evidenced in the reduced performance): if no masking is
applied the layer can quickly achieve low training error by reducing biases and norms of classes not
observed in the current batch hence Hou et al. (2019); Lesort et al. (2021a).

Results: Fig. 3b shows that these two small improvements result in an increase in performance even
after a few tasks. In Fig. 3c, we scale the number of tasks to see at which point the accuracy stops
improving. Thereby, the accuracy of the model can reach close to IID a accuracy.

Those slight improvements help us see that gradient descent algorithms may not forget catastrophically
even without using memorization mechanisms (beyond masking in the last layer).

3.3 HPS SEARCH.

Setting: To find the best setup to run our further experiments, we run a small hyperparameter search
on the same scenario, but with 500 tasks on MNIST, Fashion-MNIST, and KMNIST. Fig. 4a shows
the average performance on the three datasets with various learning rates.

Results: In Fig. 4b we show that SGD without momentum and with masking is a stable baseline,
as it leads to knowledge accumulation consistently on all datasets. We also find that, with a small
learning rate, Adam and SGD with momentum can achieve knowledge accumulation and improve
their accuracy on the test set when scaling the number of tasks, even without masking.

Our results show that knowledge accumulation might happen with any gradient descent optimizer.
SGD with masking (without momentum) is overall more stable. Hence, We will experiment this
baseline in further experiments.

3.4 ROBUSTNESS OF KNOWLEDGE ACCUMULATION

We investigate if knowledge accumulation happens consistently among datasets and architectures.

Setting: We create scenarios on MNIST, Fashion-MNIST and KMNIST with 500 tasks, CIFAR10,
CIFAR100 and miniImageNet with 1,000 tasks (3 seeds). We experiments the baseline SGD+Mask
on all of them. For CIFAR100 and miniImageNet, we set C = 5, while for the other datasets C = 1.
In addition, we train several architectures (Resnet18, Inception, vit_b_16 and VGG) from the torch
library and compare them in a default SCoLe scenario on CIFAR10 with 2 classes per task.

Results: Fig. 4b shows the learning curve on the various datasets. We normalize accuracies by the
IID accuracy to make curves comparable. The IID test accuracies are: MNIST 99%, Fashion MNIST
89%, KMNIST 94%, CIFAR10 79%, CIFAR100 40%, and miniImageNet 20%. The accuracies
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Figure 4: Test acc. with T scaled up to 1,000 tasks averaged over MNIST, Fashion-MNIST, KMNIST
with 3 seeds. line is the best IID performance. SGD+Mask w/tMomentum is the most stable
baseline that works with various datasets and architectures.

were obtained with the same models and Adam training with default parameters and without data
augmentation. This figure shows that knowledge accumulation occurs consistently in all these
datasets. Fig. 4c shows that on CIFAR10 the knowledge accumulation consistently happens with
various type of architectures.

Conclusion. In this section, we showed that SGD without momentum and with gradient masking
accumulates knowledge over time. After a high number of tasks, it can even converge to a solution
that is close to the IID training accuracy. This shows the limited effect of CF and the ability of models
to retain and accumulate knowledge.

A possible explanation for this behavior is that, while learning new tasks, DNNs do not forget
catastrophically. Beyond the catastrophic drop in performance on previous tasks, some knowledge
stays and is forgotten only progressively. If data reoccurs, as in SCoLe, before being completely
forgotten, knowledge accumulation happens and leads to a progressive diminution of forgetting.
Hence, the model learns more than it forgets, and the accumulation of knowledge overcomes
the forgetting. In CL without masking, forgetting occurs more strongly because the last layer is
determinant for prediction and more sensitive to forgetting (Wu et al., 2019; Hou et al., 2019; Zhao
et al., 2020; Ramasesh et al., 2021; Bell & Lawrence, 2021; Lesort et al., 2021a). Masking stabilizes
the last-layer weights, and when we scale the number of tasks with reoccurring data, knowledge
retention and accumulation is amplified and becomes visible.

4 EFFECT OF NON-STATIONARITY ON CONTINUAL LEARNING WITH SGD

In this section, we turn out attention to various levels of non-stationarity in SCoLe scenarios. Specifi-
cally, we study three ways to control the level of non-stationarity: (1) through the divergence from the
IID by changing the total number of classes N and classes per task C, (2) by changing the probability
of classes reoccurrence, and, (3) through the frequency of the distribution shift by changing the
number of gradient steps per task u.

4.1 INCREASING THE DIVERGENCE TO IID BY INCREASING THE NUMBER OF CLASSES

Here we control the divergence to IID by varying the total number of classes N in SCoLe scenarios
with fixed C = 2.

Setting: We use CIFAR100 and create different subsets of N classes by subsampling the total number
of classes of the train and the test set. A higher N results in a more difficult learning problem (more
classes in the test set) and a greater divergence from the IID regime (i.e. larger τtask and τclass). We
fix number of epochs e = 1 and batch size b = 64 resulting in u = 15 (|Dt| = 900). Results: In Fig.
5 (left) we plot the accuracy of scenarios with different N . We normalized the test accuracy by the
IID accuracy on the same data in order to only assess the effect of increasing N on the knowledge
accumulation and minimize the effect of increasing the difficulty of the problem.
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Figure 5: Varying N on CIFAR100 dataset (left)
for C=2,N impacts divergence from IID and dif-
ficulty.(Right) Imbalanced class distribution on
CIFAR10. line is the IID training baseline.
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Figure 6: (Left) Test acc. when half of the classes
is removed at T=500. (Right) Test acc. under a
shift in classes distribution at T=500. The impact
of shift is smaller for wider models.

This experiment shows that widening the divergence from IID, slows down knowledge accumulation
but it still occurs. Reaching IID accuracy would presumably be possible but would require further
scaling T and/or C (cf App. Fig. 10).

4.2 CHANGING CLASS OCCURRENCE FREQUENCY

While so far, the task sampling distribution p(Y ) was uniform, we now make it non-uniform by
changing its entropy. Hence, τclass will grow for some classes and decrease for others N = 10 is
fixed.

Setup. We plot the model’s test accuracy curves for different entropy of p(Y ). As in previous
experiments, the class distribution does not change over time in a given scenario and instances
per classes are balanced within a task. Details on the implementation of the entropy control are
in App. G.2. Entropy = 2.3 corresponds to the uniform distribution. Results: In Fig. 5 (right),
we see that the closer we are to a uniform class distribution for sampling tasks, the steeper is the
accumulation curve. This can be attributed to nonuniform τclass over classes, leading to (a) knowledge
accumulation becoming slower for these rare classes and (b) more probable classes are repeated more
frequently in the same context, leading to possible overfitting.

Lowering the entropy of the class distribution increase the sparsity of reoccurrence of certain classes,
which leads to a global slowdown of knowledge accumulation.

4.3 THE ROLE OF THE NUMBER OF UPDATES BETWEEN REVISITS
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Figure 7: (left:) Test acc. in the
online setting (e = 1) versus the
offline setting (train until conver-
gence) with N = 10. (right:) Same
as left, but with N = 50.

In previous experiments, we have shown that knowledge ac-
cumulation reliably occurs for one epoch per task (“online”,
e = 1). Here we study the effect increasing the number of
epochs per task (“offline”). Larger e should result in larger ex-
pected number of SGD steps between re-occurrence of classes,
uclass, and more time for CF.

Setup. We compare the online setup (e = 1) with the offline
one. In the latter, we train on each task until convergence
with an early stopping (e.s.) criterion of 5 epochs (e.s. is the
strategy of choice for model selection). We fix the batch size
b = 64, classes per task C = 2 and study CIFAR10 (N =
10) and CIFAR100 datasets (N = 50). CIFAR10 has 4500
samples/class resulting in u = 141, and uclass = u ∗ τclass =
705 in the online case. In the offline setup, τclass and uclass are at least 5 times bigger due to e.s.
criterion. On the other hand, CIFAR100 dataset comes with 450 samples/class resulting in u = 15
but comparable uclass = 15 ∗ 50 = 750 due to higher τclass (cf.Sec. 2).

Result. In Fig. 7(left) for CIFAR10 the gap between the online and offline training is small showing
that increasing the number of gradient updates does not necessarily slow down knowledge accumula-
tion. On this dataset knowledge accumulation dominates forgetting. For CIFAR100 (right) the gap is
significantly larger. Given the comparable period size uclass, this can be explained by (a) a lack of
data diversity given the smaller number of samples per class which can lead to overfitting, and (b) a
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larger τclass. The latter implies that a (much) larger set of tasks with different classes is seen before
an instance of a class is repeated, which can lead to more forgetting. Hence, the number of samples
per classes and τclass are critical for accumulation.

Increasing the number of gradient steps per task can compromise knowledge accumulation when
there is a risk of overfitting. Nevertheless, it can also keep it high by improving the knowledge of the
model on the current tasks. A right trade-off between learning new knowledge and forgetting past
ones exists then that does not necessarily push to low divergence with the IID setting. We propose
other evidence of this, by varying the number of epochs per task and the batch size in appendix K Fig
17.

Conclusion. The SCoLe framework is convenient for controling the stationarity of the scenarios or
creating setups of various difficulty to study knowledge accumulation. In this section, we have shown
that knowledge retention and accumulation still happens when increasing the non-stationary. This
means that knowledge learned in the past can be retained for long periods of training without being
forgotten. In the next section, we evaluate how knowledge retention and forgetting happen in SCoLe
scenarios with long-term distribution shifts that influence many tasks.

5 EFFECT OF LONG-TERM DISTRIBUTION SHIFTS

In the experiments presented so far, we sampled classes for each task from the same distribution
p(St;C). Here we create SCoLe scenarios with a shift over time in the class distribution and assess
the accumulation of knowledge under long-term shifts — shifts that persist for over several hundreds
of tasks. Those shifts may result in very large or infinite τclass for some classes. We evaluate
knowledge retention and interference by designing three different shift patterns and evaluate models
with increasing width to access whether increasing the width can slow down forgetting (Mirzadeh
et al., 2021).

5.1 KNOWLEDGE RETENTION WITH LONG-TERM CLASS SHIFT

We assess the capabilities of deep neural networks to maintain correct prediction on classes that stop
appearing. This evaluation of knowledge retention is strict in comparison to related works (Fini et al.,
2022; Davari et al., 2022) that evaluate knowledge retention by linear probing latent representation.
In our setup, knowledge retention in lower layers is not sufficient, and the model also has to maintain
knowledge from feature extraction in lower layers to the decision boundaries in the last layer.

Setting: We train on a scenario with C = 2 and uniform p(Y |St) on CIFAR10. We start the training
with all classes, after 500 tasks, we remove half the classes from the class distribution. In contrast to
standard CL, where distribution shift is usually caused by adding classes, here we remove classes. In
such a scenario, the forgetting behavior should be smooth because the error on remaining classes
should be low. Results: Fig. 6 (left) shows that even if no new data is introduced to the learner,
that is, no interference with old knowledge is possible, the model can still forget when a subset of
already learned classes is no longer trained on. Interestingly, in this setup forgetting is slow and not
catastrophic, and knowledge persists during several hundreds of tasks. Moreover, we clearly observe
that growing the width of the model increases knowledge retention to the point that it looks like the
model perfectly memorized removed classes for the maximum model size.

5.2 KNOWLEDGE RETENTION WITH CLASS SUBSTITUTION

Similarly to the previous section, we investigate a setting with an abrupt shift in the class distribution,
however instead of removing classes (shrinking the domain of p(St;C)), we replace existing classes
with new (shift the domain of p(St;C)). This allows us to investigate the interference and forgetting
dynamics that both cause performance drop in this setting. The goal is to assess whether observed
knowledge retention can help to slow down forgetting.

Setting: First, 500 tasks are generated from the first 5 classes of CIFAR10 (first period), and the
second 500 tasks are generated from the remaining 5 classes (second period). There is then no overlap
between the classes in the first and second periods. Also here we test models with various widths.
Results: The results in Fig. 6 (right) show that this sudden class shift creates disturbance in the
training process as in classical CL scenarios. Moreover, in the second period of training, the model
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struggles more to learn the tasks than during the first period, meaning the first period does not provide
good initialization for later tasks and that the forward transfer is limited in such a regime. This result
corroborates the results of Ash & Adams (2020), who witnessed a similar phenomenon in a transfer
setting. Similarly to the previous section, observe that wider models can better resist to CF. Still, this
difference appears less clear, and it could be due to the better knowledge retention of first classes.

5.3 CYCLIC SHIFTS
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Figure 8: Cyclic Shifts
Experiments: (top)
shows the test accuracy
averaged over the 10 last
tasks for all cycle and
model sizes. (bottom)
the effect of cyclic shifts
for the smaller model.

Here we aim to assess whether knowledge retention in DNNs observed
previously persists when we fix τclass to be equal for all classes but
varying number of expected SGD updates uclass before repetitions. To
this end we let the distribution p(St;C) follow a cyclic patterns.

Setting: We define a shifting window of W classes as the domain of
p(St;C) for N

λ tasks after which it is shifted by one class or more depend-
ing on N and λ. Here λ is the cycle size, i.e. W is exactly the same every
λ tasks. For example, if the class subset Wt before is [0, 1, 2], after a shift
it will become [1, 2, 3]. After λ tasks, it will be again [0, 1, 2]. We use the
full CIFAR100 dataset (N = 100) with 5 classes per task, the window
size is W = 10, and the cycle size is λ ∈ [50, 100, 200, 500], higher λ
leads to higher uclass. We choose CIFAR100 because it has more classes
than with CIFAR10 and allows creating of shifts with longer period. In
this experiment, when a class leaves the subset window, it needs λ−W
tasks to return leading to equal τclass for all classes.

Results: We can see in Fig. 8 that increased shift period makes training
harder, i.e., better learning happens if classes reoccur more frequently.
Even with the largest period, the model still progresses systematically over
time, as seen in Fig. 8 (bottom). Consistently with other experiments,
wider models result in better performance, as shown in Figs. 8 (top).
These experiments show that SGD-trained DNNs are also capable of
long-term retention and can still accumulate even if they do not see some
classes for a long period of time.

Conclusion. Forgetting still happening in long sequences of tasks with long term distribution
shifts is expected. However, experiments in this section show that models are capable of long-term
knowledge retention, enabling knowledge accumulation even when data is not seen for a long time.
Our results are in line with the findings of Mirzadeh et al. (2021): Wider models forget less in
incremental scenarios. Further, we have also shown that the widest models are capable of almost
perfect knowledge retention and that with long-term distribution shifts such as cyclic shifts, deep
neural networks can accumulate knowledge. They can memorize and reuse knowledge from classes
not seen since more than 200 hundred tasks.

6 RELATED WORK

Most scenarios in the continual learning literature study catastrophic forgetting (van de Ven & Tolias,
2019; Lesort et al., 2021b). They are made up of a sequence of tasks where data points appear in
one task without reoccurring later. Those settings evaluate whether models can remember tasks
that they have seen only once. The no reappearance constraint makes the evaluation of CF clearer.
Tasks overlap can not interfere with forgetting. However, they cannot evaluate if models accumulate
knowledge through time that could be reused with data/tasks reoccurence.

The scenario we propose has some similarities to the CMR (Lin et al., 2022) and OSAKA (Caccia
et al., 2020) frameworks. However, in our setting, we do not evaluate fast adaptation, but rather the
capacity to learn a solution to a problem from a long sequence of subproblems. Moreover, there is no
real concept shift in SCoLe, that is, p(y|x) is fixed over time. Our evaluation protocol is also similar
to the ALMA scenario (Caccia et al., 2021), since we evaluate on a fixed test set. However, in ALMA
the data distribution does not drift, while in SCoLe there are drifts between tasks. A scenario with
a long sequence of tasks was proposed by (Wortsman et al., 2020). Their scenario is composed of
various permutations for the permut-MNIST scenario. This scenario also makes it possible to scale

8
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the number of tasks, but it does not allow one to see the progressive knowledge accumulation of SGD
witnessed in SCoLe scenarios because there is no task reoccurence.

In Lesort et al. (2021a), the masking method, referred to as “group masking”, applies gradients only
to the outputs of classes within the current batch while training. In particular, the authors showed
that this masking is possible while training a linear classifier on top of a frozen pretrained model.
Caccia et al. (2022); Zeno et al. (2018) applied a similar method in continual learning, respectively, in
end-to-end training and multihead training, and showed that this method helped mitigate forgetting.

7 DISCUSSION

Another interpretation of knowledge accumulation (besides the forgetting lens) is through the lens of
transfer. Knowledge accumulation is also the result of a positive forward transfer (with SGD). The
knowledge learned on a task can be reused and improved when the task reoccurs. By this perspective,
avoiding forgetting and maximizing forward transfer to the next occurrence, both require some form
of knowledge accumulation through time.

Beyond evaluating how SGD forgets, SCoLe is also designed to be a practical evaluation tool to assess
knowledge accumulation in a setting with data reoccurrence. SCoLe could be directly transferable
to similar real-life settings. For example, a robot that manipulates objects from visual perception
or performs semantic segmentation of scenes when moving around. The robot can witness data
distribution shifts through time depending on different factors (lightning, rooms, objects), and the
same tasks/classes naturally reoccur. Our results suggest that SGD with gradient masking could be a
very light approach that could serve an embodied agent with restricted compute or memory.

The reoccurence of data could be compared with the action of a replay methods. However, while
replay typically emulates an IID distribution, this never happens in SCoLe scenarios. The data
streamed by the generative process only provides access to a subset of the classes. Moreover, in
replay-based methods, the amount of replay and the distribution of replay can be adapted to maximize
performance while SCoLe’s generative process can not be modified during training.

Training dynamics with SCoLe also share similarities with reinforcement learning agents that learn in
finite environments, such as video games or simulations. While they learn, the training distribution
changes, either because the policy changes or because the agent explores new parts of the environment.
This leads to drifts in the local data distribution with reoccurring data as in the SCoLe scenarios. In
the long run, reinforcement learning agents can still learn a policy that is applicable to the entire
environment. The results of this paper are in line with this behavior.

8 CONCLUSION

SCoLe is a framework for creating continual learning scenarios with long sequences of tasks. It can
be adjusted through using several hyper parameters to generate scenarios of varying difficulty and
various distribution shifts between tasks. This versatility makes SCoLe a tool to study the ability of
deep neural networks to continually learn.

This paper shows that beyond the catastrophic decrease in performance in classical continual learning
benchmarks, standard gradient descent is capable of knowledge retention and accumulation. The
phenomenon becomes visible when we scale the number of tasks and repeat classes and tasks. To our
knowledge, this phenomenon has not been investigated in the literature before. To amplify knowledge
accumulation and to increase its impact, we propose to mask gradients of unused classes in SGD
training and removing momentum. In the classical continual learning literature the common intuition
is that such a simple approach would not be enough to allow accumulation and overcome catastrophic
forgetting. However, our results show that knowledge retention and accumulation are sufficient to
overcome catastrophic forgetting in SCoLe scenarios. The magnitude of this behavior still depends
on the scenario characteristics and notably on the frequency of reoccurence. Our experiments with
SCoLe show interesting insights into forgetting, knowledge accumulation, and knowledge retention.
We believe that the knowledge accumulation observed with SGD is not restricted to SCoLe training
scenarios, the training setups was made to amplify knowledge accumulation. We hope that our
framework will inspire further research in this field improve knowledge accumulation in deep neural
networks in various scenarios.

9
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REPRODUCIBILITY STATEMENT

For all of our experiments, we use the standard deep neural network architectures and publicly
available datasets. We specify all the training details, including datasets for the experiments of
knowledge accumulation and distribution shifts in section 3 and 4 respectively. We also show
the SCoLe scenario in Fig. 2 and include the pseudo-code for implementation in Appendix D.
We provide the code (https://anonymous.4open.science/r/COVERGENCE-5533/)
for all the experimental results presented in the paper. The code base contains all the parameter
configurations for running the experiments to reproduce the figures.
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A REOCCURRENCE STATISTICS

The re-occurrence statistics for SCoLe include (assuming the uniform distribution of classes):

• the expected number of tasks between the same class is repeated τclass = [
(
N−1
C−1

)
/
(
N
C

)
]−1

• the expected number of tasks between the task is repeated τtask = 1
p , where p is the

probability of sampling each task, p = 1/
(
N
C

)
.

• po – the probability that the supports St and Sk for two tasks (t ̸= k) overlap is∑C
i=1[

(
C
i

)(
N−C
C−i

)
]/
(
N
C

)
.

Note that in standard CL τtask and τclass are ∞ while po is 0. In vanilla experience replay (ER) (Rol-
nick et al., 2019; Rebuffi et al., 2017) – which is a method for mitigating CF (cf Sec.6), both τclass
and τtask

1 are 0, and po = 1 2.

1Since ER simulates IID setup, all tasks overlap and technically speaking no tasks are identical in this regime.
2In "standard" CL with ER this in only true for future tasks w.r.t past tasks.
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B KL DERIVATION

DKL

(
p(X,Y |St)||piid(X,Y )

)
=

∑
x∈X,y∈Y

pt(x, y|St) log
pt(x, y|St)

p(x, y)
=

=
∑

x∈X,y∈Y

p(x|y)p(y|St) log
p(x|y)p(y|St)

p(x|y)p(y)
=

∑
y∈Y

p(y|St) log
p(y|St)

p(y)

∑
x∈X

p(x|y) =

=
∑
y∈Y

1{y∈St}

C
log

N

C
= log

N

C

Since p(y|St) is uniform over elements n set St, it is equal to 1
C and the uniform p(Y ) is evaluated to

1
N . Since each of the T tasks is equally probable the expected divergence is as follows:

E[log
N

C
] =

T∑
t=1

1

T
log

N

C
= log

N

C
.

C LIMITATIONS

In this paper, we investigate the phenomenon of steady knowledge accumulation until convergence
when continually training a model in long sequences of tasks within a finite world despite catastrophic
forgetting. However, with increasing complexity of tasks, it takes longer to converge due to slower
knowledge accumulation.

Estimating the complexity of a SCoLe scenario is challenging and probably impossible in practice. In
this condition, it is not clear how long the sequence of tasks needs to be for a given scenario.

It is not guaranteed that the trends observed in this work could be observed in the same way for
more challenging datasets such as the ImageNet (Deng et al., 2009). However, the size of the chosen
datasets make SCoLe ideal for fast experimentation, which has helped us to test a large number of
hypotheses. This is an advantage that would not exist with larger datasets.

D SCENARIO IMPLEMENTATION

The implementation presented in Figure 9 proposes a static version of the scenario. However, the
“probability” distribution can be modified through the task sequence to create never-ending drifts or
cyclic drifts in the class distribution or simply to change the balance of the class distribution.

E TRAINING IID BASELINES

The training of the IID baselines has been carried out with the same models as the other training
processes. However, they were trained with Adam optimizer to improve performance. They were
trained with 100 epochs on the full dataset. We experimented with the learning rates of 0.001, 0.01,
and 0.1 over 5 seeds and only kept the best-performing baselines.

F ADDITIONAL EXPERIMENTS

F.1 INCREASING THE NUMBER OF CLASSES PER TASK

Fig. 10, shows that our training framework also works when the number of classes per task increases.
The more classes in the task, the faster the learning curve is. Here, we sample tasks from the entire
CIFAR100 dataset.

F.2 MAKING THE MODEL DEEPER

In these experiments, we train on CIFAR10 with binary tasks and classes sampled uniformly. Fig. 11
shows that depth has a low impact in our experiments.
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# num_classes: the total number of classes
# classes_per_tasks: number of tasks per class (2 by default)
# probability: vector defining probability of sampling each class

for a task (Uniform by
default)

# nb_epochs: epochs of training per task (1 by default)

import numpy as np
from continuum.scenarios import ClassIncremental
from continuum.datasets import CIFAR10

scenario = ClassIncremental(CIFAR10(config.data_dir, train=True),
nb_tasks=nb_classes)

test_set = CIFAR10(config.data_dir, train=False).to_taskset()

for task_index in range(num_tasks):
classes = np.random.choice(np.arange(num_classes), p=

probability, size=
classes_per_tasks,
replace=False)

# create taskset with only selected classes
taskset = scenario[classes]
for epoch in range(nb_epochs):

# train the model on "taskset" data
[...]

# test the model on the full test set
[...]

Figure 9: Pseudo-Code using continuum (Douillard & Lesort, 2021) to control the distribution
imbalance in classes.
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Figure 10: Growing the number of classes per task within a task in full CIFAR100 dataset.

F.3 STRUCTURING THE TASK SEQUENCE

Setting: In this experiment, we want to evaluate the role of randomization of classes within tasks.
In other words, we try to answer the following question: Is it important that classes are randomly
sampled when building tasks? For this, we start with a fixed sequence of binary classification tasks.
This sequence is built so that all possible pairs of classes exist and occur only once. By default,
training is achieved by repeating training on this fixed sequence of tasks until the end of the full
sequence of tasks. We compare this baseline with the same sequence of tasks, but for each task, we
set the probability p that each class is flipped by random to another class. The classes of the initial
sequence of tasks is [0, 1] −→ [0, 2] −→ [...] −→ [1, 2] −→ [1, 3] −→ [8, 9] −→ [0, 1] −→ [...]. The values of
p are 0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1. We can see that p = 1 is the same as in the default scenario.
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Figure 11: Growing the number of layers in the resnet model. line represent IID performance
with resnet22.

0 200 400 600 800 1000
task_index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Flip Prob.
0
0.01
0.1
0.2
0.3
0.4
0.5
1

Figure 12: Comparison on several sequence of tasks with a default structure modified by random flip
of classes at each task. Scenario created with CIFAR10, 2 classes per task. The randomization of
tasks is not critical for knowledge accumulation.

Results: The results presented in Fig. 12 show that having a fixed sequence of tasks instead of a
randomized one does not reduce knowledge accumulation in our setting.

F.4 LIMITING THE POSSIBLE PAIRS OF CLASSES IN TASKS

Setting: In this experiment, we want to evaluate how important it is that all possible pairs of classes
exist within the full sequence of tasks. For this, we start from the list of all possible tasks and select
only a subset of them. When building the task sequence, we only select pairs of classes from the
selected list.

Results: The results presented in Fig. 13 show that the presence of all possible pairs of classes within
the sequence of tasks plays an important role. In fact, without replay to learn discriminative features
between two classes, classes must be on the same task (Lesort et al., 2019b).

G INCREASING DIFFICULTY

G.1 REGRESSSIONS

G.2 MODIFICATION OF DISTRIBUTION ENTROPY

To change the entropy of the class distribution, we start with a uniform vector of probabilities u. For
each class, u gives the probability of this class to be sampled for a task. To create an imbalance
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Figure 13: Comparison of SCoLe scenario when selecting only a subset of all possible pairs of classes
within tasks. We vary the proportion of pairs kept and plot test accuracy.
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Figure 14: Regression of test accuracy over last 10 tasks on three seeds with entropy on CIFAR10
(left) and number of classes on CIFAR100 (right). More details of the experiments in Sec. 4

in class probabilities, we slightly modify this vector using u′ = u − 1
C ∗ numpy.arange(C) ∗ λ,

with C the number of classes and λ and the hyperparameter that decides how much the distribution
is modified. We choose empirically λ = 1

2∗C for a slight imbalance. To increase the imbalance in
the distribution, we multiply u′ by itself d times. The complete experimentation tests the values of
0, 1, 2, 5 and 10. Note that d = 0 means that the distribution is uniform (cf. Appendix Sec. G.2 for
the Python implementation and the probability vectors for each d).

Probability vectors for ten classes and λ = 0.05 with different entropy_decrease parameters
(rounded with 3 decimals).

• entropy_decrease = 0 −→ [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
entropy=2.303

• entropy_decrease = 1 −→ [0.129, 0.123, 0.116, 0.11, 0.103, 0.097, 0.09, 0.084, 0.077, 0.071]
entropy=2.285

• entropy_decrease = 2 −→ [0.161, 0.145, 0.13, 0.116, 0.103, 0.091, 0.079, 0.068, 0.058, 0.049]
entropy=2.237

• entropy_decrease = 5 −→ [0.264, 0.204, 0.156, 0.117, 0.087, 0.063, 0.044, 0.031, 0.021, 0.013]
entropy=1.985

• entropy_decrease = 10 −→ [0.424, 0.254, 0.148, 0.083, 0.046, 0.024, 0.012, 0.006, 0.003, 0.001]
entropy=1.537
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# num_classes: the total number of classes
# lambda: hyper-parameter = 1/(2*C)
# entropy_decrease: parameter that control the scale of the

imbalance

import numpy as np
prob_vec = np.ones(num_classes) / num_classes
% introduction of slight imbalance
prob_vec = prob_vec - (1/num_classes) * np.arange(num_classes) *

lambda
prob_vec /= prob_vec.sum()
prob_vec = prob_vec**entropy_decrease / (prob_vec**

entropy_decrease).sum()

# we shuffle the vector so for each experiments the imbalance is
not the same

np.random.seed(config.seed)
np.random.shuffle(prob_vec)

for task_indef in range(num_tasks):
selected_classes = np.random.choice(np.arange(10), p=prob_vec

, size=2, replace=False)
# the we can create the task and train the model
[...]

Figure 15: Pseudo-Code to control the distribution imbalance in classes.

H COMPUTE

This project was realized with the use of internal clusters. Each run was performed with a single
GPU, mostly NVIDIA GeForce RTX 2070, Quadro RTX 8000, and Tesla V100-SXM2-32GB. The
total amount of time required for the runs is 202 days.

I ARCHITECTURES NEURAL NETWORK FIRST EXPERIMENT

Architecture of the convolutional neural network used in Sec.3.

import torch.nn as nn

relu = nn.ReLU()
conv1 = nn.Conv2d(1, 10, kernel_size=5)
conv2 = nn.Conv2d(10, 20, kernel_size=5)
maxpool2 = nn.MaxPool2d(kernel_size=2)
fc1 = nn.Linear(320, 50)
head = nn.Linear(50, 10)

# Forward pass with pytorch
# x dimension is [1,28,28]
x = relu(maxpool2(conv1(x)))
x = relu(maxpool2(conv2(x)))
x = relu(fc1(x))
x = head(x)

Figure 16: Pseudocode describing the architecture used for experiments in Sec.3
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J FORGETTING

In long task sequences it becomes difficult and costly to track the forgetting on all tasks seen so far,
hence we estimate forgetting by looking locally how learning a new task makes the model forget the
one just before. We calculate local forgetting, which is the amount of forgetting in a task induced by
learning the next task. Note: we only compute forgetting with non-overlapping classes between two
tasks.

Flocal(t) =
1

N − C

∑
j /∈Yt

At,y=j −At−1,y=j (1)

With Yt the set of classes in task t and At,y=j the accuracy realized on class j at task t. Flocal(t)
averages the forgetting generated in classes that are not in the current task. Then, total forgetting F
averages local forgetting on tasks seen to far and is computed as:

F =
1

T − 1

T∑
i=1

Flocal(t) (2)

K ACCUMULATION AND IID
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Figure 17: We simulate situation closer to IID training by changing the epochs number per task (top)
(lower is closed to iid) 3and growing batch size (bottom). Getting closer to the IID setting does not
necessarily lead to better performance.

As discussed in Section 4.3, on a fixed number of epochs, increasing the batch size brings the training
closer to IID training, while for a fixed batch size, growing the number of epochs per task makes
the training further from IID. In this section, we investigate whether scenarios closer to IID training
provide better performance. Growing the number of epochs or decreasing the batch size have the
same impact: both increase the number of gradient steps within a task. There are, therefore, two
forces that oppose each other, learning the current task and forgetting the past ones. On average, the
algorithm should learn more about the current task than forget about the past ones to expect to be
able to converge to a global solution.

Setting: In this setting, we experiment with CIFAR10 with 2 classes per task. Then we vary (1) the
batch sizes and (2) the number of epochs per task to evaluate if a minimum number of epochs with a
maximum batch size (the closest to IID training) maximizes performance.

Results: Fig. 17 (right) shows that the decrease in batch size during one epoch, i.e., getting further
away from the IID training, increases the knowledge accumulation speed and final performance. We
hypothesize that this result is due to a higher number of gradient steps for a smaller batch size. If
that was the case, experiments with different batch sizes would lead to the same accuracy, but with a
diverse number of tasks. However, in Fig. 17 (right), a larger batch size leads to a lower accuracy,
which discards the hypothesis. Hence, in this experiment, moving further from IID training performs
better, which is counterintuitive. An explanation for this is that, at the beginning of a task, knowledge
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accumulation is superior to the knowledge degradation caused by forgetting. Therefore, training
longer on each task improves the final knowledge accumulation. In the same way, Fig. 17 (left) shows
that increasing the number of epochs per task accelerates knowledge accumulation in the number of
tasks seen. However, if we grow the number of epochs to a certain point, the knowledge accumulation
slows down. This figure shows that there is a trade-off to find in terms of number of gradient steps to
converge faster and better.

To conclude, this experiment shows that training in settings that are as close as possible to IID (low
number of gradient steps per task) does not always improve knowledge accumulation speed and
performance.

L INFLUENCE OF EXACT DATA REPETITION

In most of our experimentation, when a class reappears, the exact same data is fed to the model. In
this experiments, we want to investigate the influence of this. We compare training with exact same
data and with data modified by random data augmentation.
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Figure 18: TinyImagenet 50/5, 1 epoch per task: Addition of random augmentation at each task with
various severity. The augmentation slows down knowledge accumulation but does not prevent .
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Figure 19: TinyImagenet 50/5, 5 epochs per task: when growing the number of epochs per task, the a
slight data augmentation improves results of exact data repetition.

Setting: We use the augmentations proposed in Hendrycks & Dietterich (2019) that simulate common
perturbation and corruption proposed in images. At each task, a new augmentation is selected and
applied with severity 1. We selected our augmentation among, “no corruption”, “gaussian noise”,
“shot noise”, “impulse noise”, “speckle noise”, “gaussian blur”, “defocus blur”, “motion blur”, “zoom
blur”, “fog”, “snow”, “spatter”, “contrast”, “brightness”, “saturate”, “elastic transform” and “glass
blur”. The minimized the chance of having the same exact data several times, and the augmentation
applied to the data is variate and significant. We use a subset of 50 of the TinyImagenet dataset with
5 classes per task.
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Results: Our results are presented in Fig. 20. It shows that the augmentation applied to each image
to minimize the chances of having the exact same images does not compromise the accumulation
of knowledge. Moreover, Fig. 19 shows that when growing the number of epochs per task, the
augmentation can improve performance over exact data repetition.

M FREQUENCY OF OCCURRENCE VS CLASS ACCURACY
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Figure 20: Lower bound the model learn at 80% accuracy and forgets directly after, Upperbound
the model learnd up to 80% each task and never forget after. This representation helps to

understand the continual learning capabilities of models at each frequency of re-occurence. Each
point is the expected performance for a given probability given the model on three different seeds.

To understand better how model learn and forgets, we can analyze the expected performance for
various frequency of occurrence.

Setting: Our goal is to better understand continual learning capabilities of models and algorithms by
representing the expected performance on each class versus frequency of occurrence. In this setting,
we train on CIFAR100 dataset with SGD (lr = 0.1,momentum = 0) on one epoch per task. All
classes have a different probability to be sampled when building a task. We use wide resnet model to
show that this representation helps to disentangle models capabilities.

Results: The results of this experiments, show that we can differentiate models off different
capabilities through this lens. This representation helps to describe capabilities of models or optimizer
and better understand final performance. We also propose to plot the behaviour of a model that would
catastrophically forget or a model that perfectly remember assuming a performance of 80% on each
class when training on it.
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