
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TokenTune: Dual-Level Utility Estimation for
Scalable Data Selection in Instruction Tuning

Anonymous authors
Paper under double-blind review

Abstract

Recent studies indicate that data quality is more important than quantity for fine-
tuning of large language models (LLMs). However, existing data selection methods
face two key limitations. First, they lack an effective utility estimation function:
sample-level utility computes the score for entire examples but ignores which to-
kens are actually useful, while token-level methods drop tokens with multiple valid
answers and thus remove valuable learning signals. Second, these methods are
inefficient because they require full-dataset inference to compute utilities, making
them prohibitively expensive at scale. To address these challenges, we propose
TokenTune, an efficient data selection framework for instruction tuning. The key
idea of TokenTune is a dual-level utility function that operates at both the token
and sample levels. At the token level, it identifies learnable tokens that still pro-
vide strong gradient signals and multi-answer tokens that preserve diversity under
incomplete supervision. At the sample level, it derives a utility score directly
from token signals, avoiding redundant full-dataset inference. To further scale,
TokenTune employs a two-stage design. In the selection stage, a multi-armed
bandit adaptively prioritizes informative clusters, from which high-utility samples
are chosen using the sample-level score. In the training stage, the token-level
utility guides gated optimization: learnable tokens strengthen supervision, while
multi-answer tokens preserve diversity. Extensive experiments across 7 bench-
marks show that TokenTune significantly outperforms state-of-the-art methods,
improving average performance by +3.8% while using only 5% of the full training
data and reducing overall training time by 8-10×.

1 Introduction

Instruction tuning has emerged as a powerful paradigm to improve the performance and alignment of
large language models (LLMs) by fine-tuning them on instruction–response pairs (Sun et al., 2024;
Li et al., 2024b; Chang et al., 2024). Recent studies show that data quality, rather than sheer quantity,
is crucial for substantial performance gains (Zhou et al., 2023; Albalak et al.). This insight has
motivated a growing line of work on data selection methods, which aim to identify and prioritize
informative subsets of training data automatically. So far, most existing approaches have operated
at the sample level (Li et al., 2024a; Han et al.; Lin et al., 2025), where each instruction–response
pair is treated as a single unit with one utility score. However, this sample-level-only selection
evaluates each example as a whole and ignores variation among its tokens. In practice, a sample with
a high overall score may still contain many uninformative or noisy tokens, which weaken gradient
signals and waste the limited training budget. To mitigate this limitation, recent work has shifted
toward token-level-only selection (Pang et al., 2025), aiming to remove noisy tokens within samples.
Token-level filtering cleans up noisy tokens but does not capture whether the remaining content still
forms a meaningful and instructive example. As a result, it may mistakenly discard globally valuable
samples whose usefulness emerges only when the full context is preserved.

This predicament leads to our research question: Can we design a unified framework that unifies the
strengths of token-level granularity and sample-level context to better select high-quality data?

Intuitive Dual-Level Selection Approaches. As shown in Figure 1, there are two intuitive methods
to achieve this goal. Sample-to-Token (S2T) first selects samples and then cleans tokens within the
chosen subset, whereas Token-to-Sample (T2S) reverses this order by first scoring tokens and then

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

valuable tokens

Data Pool Clustering

Latency: Performance:(c) TokenTune

token

level

dual-level selection

sample

level

compose

raw tokens noisy tokens

Final Subset

3

Figure 1: Comparison of different data selection paradigms. (a) Sample-to-Token (S2T) and (b)
Token-to-Sample (T2S) represent straightforward combinations of sample- and token-level selection.
Both require two-stage estimation, leading to higher latency and suboptimal performance. (c) Our
TokenTune achieves dual-level selection without redundant inference by composing sample utilities
directly from token signals and leveraging clustering-based scheduling.
aggregating them to estimate sample utility. However, although these strategies can achieve effective
selection, they still expose several unresolved challenges in terms of efficiency and generalization.

Challenges. First, while dual-level scoring improves selection quality, it incurs significant com-
putational overhead since it requires computing utility at both the sample and token levels. This
effectively doubles the computational cost per example (C1). Second, even if redundant scoring
is avoided, computing utility for all samples in a large-scale dataset is still prohibitively expensive.
We term this issue as scalability challenges (C2). If we can focus scoring only on a small set of
promising samples, we can significantly accelerate the overall selection process without compromis-
ing performance. Third, once a high-quality subset with valuable tokens is selected, the standard
supervised fine-tuning (SFT) paradigm typically applies cross-entropy loss uniformly across all the
selected tokens. However, this loss function assumes that each token position has only one correct
answer, represented by a one-hot target distribution. In instruction tuning, many output positions
admit multiple plausible candidate tokens. Treating such multi-answer tokens as only one correct
answer can penalize valid alternatives, causing the model to overfit to single references and reducing
its ability to generate diverse outputs. This challenge comprises two key aspects: (1) how to identify
multi-answer tokens during selection (C3.1), and (2) how to optimize these multi-answer tokens with
a more flexible supervision strategy than hard one-hot cross-entropy (C3.2).

Our Methodology. To tackle the above challenges, we propose TokenTune, a dual-level framework
for efficient and generalizable data selection. At its core, TokenTune proposes an effective dual-level
utility function operates at both the token and sample level. At the token level, it introduces two
complementary indicators to identify learnable tokens and multi-answer tokens (addressing C3.1), At
the sample level, it derives a sample utility score directly from these token-level signals, avoiding re-
dundant sample scoring process (addressing C1). To ensure scalability (C2) and generalization (C3),
TokenTune employs a two-stage pipeline built upon this dual-level utility function. In the selection
stage, TokenTune integrates a multi-armed bandit scheduler that adaptively prioritizes informative
clusters, focusing utility scoring process on high-utility subsets of the data pool (addressing C2). In
the training stage, a gated optimization strategy is proposed to route tokens into distinct optimization
objectives. Specifically, TokenTune uses cross-entropy loss for learnable tokens to provide strong
and reliable supervision that guides downstream task learning, while utilizing self-distillation on
multi-answer tokens to maintain output diversity (addressing C3.2).

Contributions. This paper makes the following contributions:

• We propose TokenTune, which combines a multi-armed bandit scheduler for scalable and
informative sample selection with a token-aware gated optimization strategy that routes different
token types to distinct training objectives. (Section 2)

• We design a dual-level utility function that jointly operates at the token and sample levels.
It leverages token-level indicators (learning gain for learnable tokens and answer uncertainty

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: An Overview of TokenTune.

for multi-answer tokens) and derives sample-level utilities directly from these signals, avoiding
redundant inference. (Section 2.2)

• We provide theoretical insights of TokenTune, showing why our token-level indicators capture
learnable and uncertain tokens, why their aggregation yields effective sample-level selection, and
why uncertainty-aware objectives improve training robustness. (Section 3)

• Extensive experiments across diverse benchmarks show that TokenTune significantly outper-
forms state-of-the-art methods, improving average model performance by approximately 3.8%
while using only 5% of the training data and reducing overall training time by 8-10×. (Section 4)

2 TokenTune

2.1 TokenTune Overview
Core Components of TokenTune. TokenTune has three core components: ❶ a dual-level
utility function that jointly captures token- and sample-level utilities by leveraging token indicators
and deriving sample-level scores without redundant inference; ❷ an adaptive MAB scheduler that
partitions the data pool into clusters and uses a multi-armed bandit to prioritize promising regions
for scalable selection; and ❸ a token-aware gated optimization strategy that differentiates token roles
during training, assigning cross-entropy to learnable tokens, self-distillation to multi-answer tokens,
and suppressing uninformative tokens.

As shown in Figure 2, TokenTune follows a two-stage process. Stage 1 adaptively selects high-
utility samples by first clustering the pool, then applying the bandit to focus on promising clusters,
and finally conducting dual-level utility estimation within them. Stage 2 finetunes on the selected
subset with token-aware gated optimization, ensuring that retained signals—both learnable and
multi-answer—contribute effectively to training.

2.2 Dual-Level Utility Function
TokenTune introduces a dual-level utility function that operates at both the token and sample levels,
enabling fine-grained token filtering while simultaneously guiding principled sample selection.

2.2.1 Token-Level Utility Function

…

Logits

Vocab

Base Model Reference Model

…

Logits

Vocab

(a) Learnable Tokens (b) Uncertainty Tokens

…

Logits

Vocab

(c) Uninformative Tokens

Reference Answer

Figure 3: Different Types of Tokens.

Our token-level utility function are designed to
answer a simple question: Given a limited train-
ing budget, on which tokens does an additional
update yield the largest marginal improvement?

To this end, we follow two principles: (i) we
would like to prioritize tokens whose further
training is expected to produce a large reduction
in loss per token, so that each gradient update is
spent where it is most effective. (ii) Among such tokens, we want to distinguish between those that
are under-learned but consistent (single correct answer) and those that are inherently multi-answer
(several plausible outputs), since the latter should not be forced into a single hard label.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To accomplish these principles, it involves two key components: a utility function that quantifies
token informativeness, and principled decision boundaries that distinguish among the categories.

Utility Function: Measuring What Matters in Tokens. To quantify token informativeness, we
define a utility function with two complementary components, namely Learning Gain (LG) and
Answer Uncertainty (AU).
Definition 2.1 (❶ Learning Gain (LG)). LG quantifies how much a token stands to benefit from
further training. Formally, given sample xi with ni tokens {xi,1, . . . , xi,ni}, yi,j the target token at
position (i, j). For a model with parameters θ, we define its token-level loss at (i, j) as

ℓθ(xi,j) := − log pθ(yi,j | xi) (1)

Given a reference model θref and the current model θ0, the learning gain at token (i, j) is defined
as Learning Gain LG(xi,j). LG measures whether a token remains learnable:

LG(xi,j) := ∆ℓ(xi,j) = ℓ0(xi,j)− ℓref(xi,j) (2)

where ℓref and ℓ0 denote token-level losses under the reference and current model. A largeLG(xi,j)
indicates that the token remains difficult and thus provides meaningful gradient signal, whereas a
small value suggests it has already been mastered by model.
Definition 2.2 (❷ Answer Uncertainty (AU)). Some tokens are inherently ambiguous, admit-
ting multiple plausible answers. To identify such cases, we model predictive uncertainty with
an evidential Dirichlet distribution. For a token position (i, j) with target token xi,j , let
z(xi,j) = (z1(xi,j), . . . , zK(xi,j)) denote the pre-softmax logits over the vocabulary produced
by the model. We first map logits to non-negative evidence and obtain Dirichlet parameters
α(xi,j) = (α1(xi,j), . . . , αK(xi,j)). We then define the answer uncertainty at (i, j) as the ex-
pected predictive entropy of the categorical distribution p drawn from this Dirichlet:

AU(xi,j) := Ep∼Dir(α(xi,j)+1)

[
−

K∑
k=1

pk log pk
]
, (3)

where 1 is the all-ones vector. Using standard properties of the Dirichlet distribution, this expectation
admits the following closed-form expression in terms of the digamma function:

αk(xi,j) = max(0, zk(xi,j)) + 1, α0(xi,j) =

K∑
k=1

αk(xi,j),

AU(xi,j) = −
K∑

k=1

αk(xi,j)

α0(xi,j)

(
ψ(αk(xi,j) + 1)− ψ(α0(xi,j) + 1)

)
,

(4)

whereψ(·) is the digamma function. A high value ofAU(xi,j) indicates strong evidence for multiple
plausible outputs at position (i, j), suggesting that such tokens should not be optimized with hard
labels. In Appendix A.1 and Appendix J.2, we have explain why AU captures inherently multi-answer
tokens. Please refer to this part for more details.

Decision Boundaries: From Token Scores to Token Labels.

ŷi,j =


1, if LG(xi,j) > τLG,

2, if LG(xi,j) ≤ τLG and AU(xi,j) > τAU ,

0, otherwise,
(5)

where τLG and τAU are predefined thresholds. Here, ŷi,j = 1 indicates that the token will be routed
to a strong supervision objective, ŷi,j = 2 indicates routing to a distillation-based objective, and
ŷi,j = 0 corresponds to suppression during training.

2.2.2 Sample-Level Utility Function

A key challenge in model-aware data selection is how to aggregate fine-grained token-level utilities
into a reliable sample-level score. Many existing methods repeatedly run the model over the entire
dataset to estimate per-sample gains, which becomes computationally prohibitive at scale.

Our goal is to construct a sample-level utility that (i) reflects how much training on a sample is
expected to improve the model per token, so that scores are comparable across samples of different

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

lengths, (ii) is directly induced from the token-level learning gains LG(xi,j) rather than introducing
a separate heuristic at the sample level, and (iii) requires no additional forward passes beyond those
already used to compute token losses.

Formally, recall that for sample xi = {xi,1, . . . , xi,ni} and target tokens yi,j , we defined in Eq. 2 the
token-level learning gain

LG(xi,j) := ∆ℓ(xi,j) = ℓref(xi,j)− ℓ0(xi,j),

where ℓref and ℓ0 are the token losses under the reference and current model, respectively. For
notational convenience, we write

∆ℓi,j := ∆ℓ(xi,j), bi,j := ℓ0(xi,j) > 0.

We first define a per-token utility density

ρi,j :=
∆ℓi,j
bi,j

, (6)

which normalizes the learning gain at (i, j) by its baseline loss. Here bi,j is simply the token-level
loss under the current model. Under cross-entropy, this loss is − log pθ0(yi,j | xi): tokens with large
bi,j are those to which the model assigns low probability (i.e., it is still uncertain or often wrong),
while tokens with small bi,j are already well mastered. We therefore interpret bi,j as the current
difficulty of token (i, j). The density ρi,j then normalizes the learning gain at (i, j) by its baseline
loss. Intuitively, ρi,j measures how much additional loss reduction we obtain relative to the current
difficulty of this token, i.e., the loss improvement per unit difficulty. For any subset of positions
S ⊆ {1, . . . , ni}, the sample-level utility function is defined as the weighted average of the token
densities:

Ui(S) :=

∑
j∈S ∆ℓi,j∑
j∈S bi,j

=
∑
j∈S

wi,j(S) ρi,j , wi,j(S) :=
bi,j∑
t∈S bi,t

, (7)

wherewi,j(S) is a normalized weight over tokens in S. In practice, we choose S as the set of top-k%
tokens in xi ranked by ρi,j , and use the resulting Ui(S) as the sample-level score USample

k (xi) for
data selection. This construction reuses the token-level LG signals and does not require any extra
inference beyond the losses already computed during training. We provide a more detailed derivation
and discussion in Appendix J.3.

2.3 Adaptive Data Selection via MAB-Integrated Scheduler
To efficiently scale TokenTune to large datasets, we integrate the Multi-Armed Bandit (MAB)
algorithm with our dual-level utility estimation. This scheduler adaptively explores clusters while
exploiting token- and sample-level signals, ensuring both data quality and diversity. The procedure
consists of four steps.

Step 1: MAB-Driven Cluster Selection. We first partition the data pool D into k clusters
{C1, . . . , Ck}. To avoid evaluating every sample exhaustively, we employ the Upper Confidence
Bound (UCB) algorithm to prioritize clusters with the highest expected gain. At iteration t, the
cluster score of Ci and the selected cluster are defined as:

CSi(t) = Īi(t) + γ

√√√√2 ln
(∑k

j=1 T (Cj , t)
)

T (Ci, t)
, C∗(t) = argmax

i
CSi(t), (8)

where Īi(t) is the average influence score of samples in Ci up to round t, T (Ci, t) is the number of
times Ci has been sampled, and γ balances exploration and exploitation.

Step 2: Valuable Token Detection with Token-Level Utility. Within the selected cluster C∗(t),
we compute token-level utility scores, including Learning Gain (LG) (Eq. 2) and Answer Uncer-
tainty (AU) (Eq. 18). Tokens are then categorized as learnable, ambiguous, or uninformative using
thresholds (τLG, τAU).

Step 3: Sample Selection with Sample-Level Utility. To connect token-level informativeness with
sample-level data valuation, we compute the Sample Utility Function (Eq. 7). Only samples with
the highest sample utility scores in C∗(t) are selected for training, ensuring that retained samples
provide maximal learning signal under a limited computational budget.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 4: Cluster Score Updates for Next Round. Once the subset is selected, we update the average
influence score of cluster Ci based in these samples as:

Īi(t+ 1) =
Īi(t)T (Ci, t) +

∑
x∈Si

U
Sample
k (x)

T (Ci, t) + |Si|
, (9)

where Si is the subset of selected samples fromCi at iteration t. This update refinesCSi(t), allowing
the MAB scheduler to balance exploitation of high-quality clusters with exploration of under-visited
ones in future rounds.

2.4 Token-Aware Training with Gated Optimization
The dual-level utility function not only enables efficient sample selection but also assigns each token
a categorical label ŷi,j (Eq. 5), indicating whether it is learnable (ŷi,j = 1), ambiguous (ŷi,j = 2),
or uninformative (ŷi,j = 0). To exploit this decomposition during training, we propose a gated
optimization strategy that routes tokens into distinct objectives based on their labels. This ensures
that learnable tokens provide strong supervision, ambiguous tokens contribute through uncertainty-
aware distillation, and uninformative tokens are suppressed to avoid noise amplification.

Cross-Entropy Loss for Learnable Tokens. Tokens labeled as ŷi,j = 1 are directly optimized with
standard cross-entropy loss:

LCE =
1∑

j 1[ŷi,j = 1]

ni∑
j=1

1[ŷi,j = 1]
(
− log pθ(yi,j | xi)

)
, (10)

ensuring that informative tokens continue to drive effective parameter updates.

Self-Distillation Loss for Ambiguous Tokens. Tokens labeled as ŷi,j = 2 are inherently ambiguous
and thus optimized via masked self-distillation. Using a softened teacher distribution with tempera-
ture T > 0. Formally, let zθ(x) ∈ RV be the logits, pθ = softmax(zθ). For token position (i, j), let
the teacher give a distribution qi,j ∈ ∆V−1 and the ground-truth token be Yi,j ∼ qi,j (multi-answer
tokens correspond to high-entropy qi,j). We compute the distillation loss as

LSD =
T 2∑

j 1[ŷi,j = 2]

ni∑
j=1

1[ŷi,j = 2] (−
V∑
v=1

q(v) log pθ(v) + const(q)). (11)

Final Training Objective. Uninformative tokens (ŷi,j = 0) are masked out and do not contribute
to optimization. The overall objective combines cross-entropy and self-distillation with a balancing
coefficient λ ∈ [0, 1]:

L = λLCE + (1− λ)LSD. (12)

3 Theoretical Analysis

3.1 Why AU Captures Multi-Answer Tokens
• Theorems A.1–A.3 show that when the model has multiple strong next-token candidates (evidence

concentrated on m ≥ 2 tokens and relatively evenly split), AU is provably large.
• Conversely, Propositions A.4–A.5 exclude the main confound: if all candidates are uniformly

weak (small s), AU must be small, and if AU is large, the evidence must be spread across at least
two candidates in non-negligible shares. Together, these results justify the use of AU as a detector
of tokens with multiple correct answers.

3.2 Why Top-k LG-density Tokens Maximizes the Sample utility

We define the top-k sample utility score USample
k (xi) in Appendix A.6. By Proposition 3.2,

USample
k (xi) upper-bounds (and typically strictly improves over) the full-token ratio that also counts

tokens with small or negative densities (e.g., high-AU but low-LG positions). Selecting the global
top-Ksamples byUSample

k (xi) maximizes the expected loss reduction per unit baseline (training budget)
under our additive approximation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proposition 3.1 (Trimming low-density tokens increases sample utility). Fix i and a nonempty S.
If there exists j⋆ ∈ S with ρi,j⋆ < Ui(S), then Ui(S \ {j⋆}) > Ui(S). More generally, for any
T ⊆ S consisting only of indices with ρi,j ≥ Ui(S), one has Ui(T) ≥ Ui(S), with strict inequality
if at least one strict inequality ρi,j > Ui(S) holds in T .

Proof. Write A =
∑
j∈S ∆ℓi,j and B =

∑
j∈S bi,j , so Ui(S) = A/B. For j⋆ we have ∆ℓi,j⋆ <

(A/B) bi,j⋆ . Then

Ui(S\{j⋆}) =
A−∆ℓi,j⋆

B − bi,j⋆
>

A− (A/B) bi,j⋆

B − bi,j⋆
=

A

B
= Ui(S).

The extension to any T that removes all indices with ρi,j < Ui(S) follows by repeating argument. □
Proposition 3.2 (Top-k by density maximizes sample utility at fixed budget). Fix k ∈ {1, . . . , ni}.
Among all S ⊆ {1, . . . , ni} with |S| = k, Ui(S) is maximized by taking the k indices with the largest
densities ρi,j = ∆ℓi,j/bi,j . See Proposition A.8 in Appendix A for a detailed proof.

In particular,
Ui(top-k ρ) ≥ Ui({1, . . . , ni}) (the full-token utility).

3.3 Why Knowledge Distillation Loss (KD) for High AU Tokens and Cross-Entropy
Loss (CE) for High LG Tokens Can Perform Best?

Let zθ(x) ∈ RV be the logits, pθ = softmax(zθ). For token position (i, j), let the teacher give a
distribution qi,j ∈ ∆V−1 and the ground-truth token be Yi,j ∼ qi,j (multi-answer tokens correspond
to high-entropy qi,j).

• (a) The CE gradient coincides with the KD gradient in expectation, but CE introduces additional
sampling noise whose variance grows with how spread out q is, whereas KD has no sampling
noise; see Lemma A.9.

• (b) With a sufficiently small step size, a smaller gradient covariance implies a larger expected
decrease in the underlying smooth risk; see Lemma A.10.

Theorem 3.3 (AU-high tokens: KD yields strictly larger expected decrease than CE). Fix (i, j) and
assume Jθ ̸= 0. Consider one SGD step on this token with either CE (using a hard label Y ∼ qi,j)
or KD (using the full qi,j). Under Lemma A.9 and Lemma A.10, for any step size η ∈ (0, 1

L],

E
[
∆RKD

]
≥ E

[
∆RCE

]
,

with strict inequality whenever qi,j has positive entropy (i.e., AU(xi,j) > 0). Here ∆RKD and
∆RCE denote the one-step decrease of the same risk R under KD and CE updates, respectively.
Proposition 3.4 (LG-high tokens: CE is never worse than the all-CE baseline). Let E be the set of
LG-high tokens and A the set of AU-high tokens (disjoint). The all-CE baseline optimizes

Lall-CE(θ) =
∑

(i,j)∈E∪A

LCE(pθ, Yi,j).

Here CE baseline refers to the all–cross-entropy training scheme: for the given set of tokens, we
always use hard labels and CE, with no KD anywhere.

The proposed mix uses CE on E and KD on A:

Lmix(θ) =
∑

(i,j)∈E

LCE(pθ, Yi,j) + λ
∑

(i,j)∈A

LKD(pθ, qi,j) (λ > 0).

Let ∆Rall-CE and ∆Rmix denote the one-step decrease of the underlying smooth risk R(θ) under
the all-CE baseline and our mixed scheme, respectively, using the same step size η ∈ (0, 1

L]. For
tokens in E, both methods use CE and thus have identical per-step behavior. For tokens in A, by
Theorem 3.3, the mixed scheme has no smaller and typically strictly larger expected loss decrease
than the all-CE baseline. Therefore, per SGD step,

E[∆Rmix] ≥ E[∆Rall-CE],

with strict inequality if A contains at least one positive-entropy (AU-high) token.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 Experiment

4.1 Experimental Setups

Datasets. To investigate data selection across various scenarios and demonstrate the robustness
of TokenTune, we use two distinct data pools: (1) Tulu3 (Lambert et al., 2024): A large-scale,
real- world SFT dataset presented by Ai2, containing million-level records across a wide variety of
subjects, including mathematics, programming, and user dialogues. (2) Openhermes2.5: A dataset
with over 1 million data points, sourced from 16 distinct origins, including MetaMath (Yu et al.,
2023), CamelAI (Li et al., 2023) and others.
Benchmarks and Metrics. To comprehensively evaluate the efficacy of TokenTune, we evaluate
TokenTune on three leaderbords, including OpenLLM Leaderboards, ALpacaEval and MT-Bench.
For OpenLLM Leaderboards, we adopt seven tasks, including TyDiQA (Clark et al., 2020), Hel-
laSwag (Zellers et al., 2019), ARC-C (Clark et al., 2018), BoolQ (Clark et al., 2019), GSM8K (Cobbe
et al., 2021), HumanEval (Chen et al., 2021) and LogiQA (Liu et al., 2020).
Baselines. We study several existing state-of-the-art methods as our baselines for data selection,
including Full Data, Random Selection (Xia et al., 2024b), TokenClean (Pang et al., 2025),
RHO (Lin et al., 2024), IFD (Li et al., 2024b), Instag (Lu et al.), Entropy (Xia et al., 2024b),
SelectIT (Liu et al., 2024a), Token Length (TL) (Xia et al., 2024b), ZIP (Yin et al., 2024),
CaR (Ge et al., 2024), Deita (Liu et al., 2024b), LEAD (Lin et al., 2025).
Implementation Details of TokenTune. We evaluate TokenTune using three foundational models
(LLAMA-3.1-8B, Mistral-7B and Qwen2-7B) and utilize Low-Rank Adaption (LoRA) Hu et al.
(2022) for parameter-efficient fine-tuning. The maximum learning rate is set as 2 × 10−5 with a
linear decay schedule, and the batch size is 8. We also fix the maximum input sequence length to
2080. Models are trained for 1 epoch on 4 A800 GPUs.

4.2 Exp-1: Overall Performance

We first evaluate the overall performance of TokenTune against state-of-the-art baselines, using the
same budget of 50K samples, corresponding to 5% of the data pool. Results are reported on two
representative datasets: Tulu3 (Table 1) and Openhermes (Table 4), and performance is evaluated on
the OpenLLM Leaderboard, which include eight benchmarks.

Exp-1.1: Overall Performance on Tulu3. Table 1 reports results on LLaMA3.1-8B and Qwen2-
7B. Overall, TokenTune consistently surpasses strong baselines, confirming its effectiveness.
(1) Consistent Effectiveness across LLMs. TokenTune achieves robust improvements across dif-
ferent architectures. On LLaMA3.1-8B, it reaches 60.28, outperforming TokenTune (58.27) and
Deita (57.51) by +2.01 and +2.77, respectively. A similar trend holds on Qwen2-7B, where To-
kenTune obtains 59.67, again surpassing both sample- and token-level baselines. These results
demonstrate that TokenTune consistently delivers gains regardless of backbone choice.
(2) Small Data, Big Gains. Impressively, TokenTune achieves these results using only 5% of the
data pool, even outperforming the Full Data baseline (59.65). This challenges the assumption
that more data is always better, showing instead that high-quality selection can unlock superior
performance with far smaller subsets.
(3) Superior to State-of-the-art Baselines. Although some baselines show strengths on specific tasks
(e.g., TokenClean on TyDiQA, Deita on BoolQ), they fall short on reasoning-heavy benchmarks
such as GSM8K. In contrast, TokenTune maintains consistently strong results across all tasks, with
notable improvements of +3.45 on GSM8K and +2.77 on TyDiQA. This confirms the robustness and
adaptability of TokenTune in selecting high-utility data across diverse evaluation settings.

4.3 Exp-2: The Efficiency of TokenTune

We evaluate the efficiency of TokenTune compared to baseline methods, with the results primarily
shown in Figure 4 and Figure 5. TokenTune significantly reduces both the inference and training
times, thanks to a dual-level data selection strategy and the use of the MAB scheduler.

Exp-2.1: Performance vs. Latency. We compare performance and inference latency across
different methods, as shown in Figure 4. TokenTune (marked with a star) consistently achieves
the best performance-latency trade-off, occupying the upper-left region of the plot. In addition,
TokenTune delivers up to 5× faster inference time compared to the baselines while maintaining
top performance on all the benchmarks. This confirms that TokenTune not only outperforms

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparison of performance across different benchmarks on the Tulu3 dataset. Green
highlights the remarkable improvements over the Random baseline.

Type Method TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA Avg.

Llama3.1-8B

Base
Base 22.80 59.92 50.82 82.18 50.31 69.28 26.51 51.69

Full Data 54.31 58.57 49.18 83.48 66.08 80.34 25.58 59.65
Random 46.96 60.14 51.34 82.80 51.98 73.75 27.91 56.41

Token-Level TokenClean 52.91 61.82 54.00 82.18 51.00 77.31 28.22 58.21
RHO 48.02 60.09 53.61 81.04 51.00 73.42 26.67 56.26

Sample-Level

IFD 38.55 60.35 49.87 82.21 57.04 71.60 26.36 55.14
ZIP 52.32 60.11 50.65 82.83 53.83 70.02 24.81 56.37

Entropy 45.72 60.35 49.87 82.21 57.04 75.02 26.36 56.65
Instag 44.97 60.66 50.39 84.34 58.80 75.50 26.67 57.33
CaR 46.01 59.97 50.73 83.91 54.06 73.98 27.44 56.59
TL 48.76 60.53 50.39 82.52 51.99 73.12 27.44 56.39

SelectIT 44.44 60.21 52.89 83.29 56.37 72.19 27.94 56.76
Deita 44.81 60.74 52.11 82.86 57.35 74.60 30.08 57.51

Dual-Level TokenTune (Ours) 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28

Qwen2-7B
Base Random 48.18 57.02 49.01 83.13 76.88 75.43 31.32 60.14

Token-Level TokenClean 45.21 57.01 52.88 84.65 76.57 77.48 31.12 60.70
RHO 44.18 56.82 50.07 81.89 75.42 76.94 30.01 59.33

Sample-Level

ZIP 50.31 59.02 48.49 85.21 76.03 75.27 30.85 60.74
Entropy 50.01 57.43 45.14 83.84 76.92 74.18 29.96 59.64
Instag 50.99 58.99 49.44 84.31 76.80 75.98 27.75 60.61
CaR 50.33 58.55 46.17 83.01 77.87 75.31 30.70 60.28
TL 43.84 59.04 43.76 83.60 77.11 76.14 31.01 59.21

SelectIT 47.18 58.02 44.75 82.18 76.17 74.62 30.71 59.09
Deita 46.72 59.17 49.01 83.76 78.25 77.01 33.02 60.99

Dual-Level TokenTune (Ours) 52.42 59.39 52.80 85.45 80.63 77.44 33.80 63.13

0 50 100 150 200
Latency (h)

54

56

58

60

Pe
rfo

rm
an

ce
 (%

)

GSM8K

0 50 100 150 200
Latency (h)

40

45

50

55

Pe
rfo

rm
an

ce
 (%

)

TydiQA

0 50 100 150 200
Latency (h)

60.5

61.0

61.5

Pe
rfo

rm
an

ce
 (%

)

HellaSwag

0 50 100 150 200
Latency (h)

50

51

52

53

54

Pe
rfo

rm
an

ce
 (%

)

ARC-C

0 50 100 150 200
Latency (h)

82.5

83.0

83.5

84.0

84.5

Pe
rfo

rm
an

ce
 (%

)

BoolQ

0 50 100 150 200
Latency (h)

70

72

74

76

Pe
rfo

rm
an

ce
 (%

)

HumanEval

0 50 100 150 200
Latency (h)

26

28

30

Pe
rfo

rm
an

ce
 (%

)

LogiQA

0 50 100 150 200
Latency (h)

56

58

60

Pe
rfo

rm
an

ce
 (%

)

AVG.

SelectIT Deita IFD ZIP Entropy Ours

Figure 4: Comparison of Performance (y-axis) and Latency (x-axis) on different selection methods.

traditional methods in terms of model performance but also significantly reduces inference latency,
making it a highly efficient solution for data selection and instruction tuning.
Exp-2.2: Analysis of Latency Composition. We evaluate the latency composition of TokenTune
by comparing inference time and training time across different data selection methods. The results,
shown in Figure 5, reveal that TokenTune reduces both inference and training times significantly,
outperforming baseline methods. This demonstrates that TokenTune effectively balances compu-
tational efficiency and model performance, making it a scalable solution for large-scale instruction
tuning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Ablation study of TokenTune across multiple benchmarks. “SD” denotes self-distillation
loss, “TokUtility” denotes token-level influence score, “SamUtility” denotes sample-level influence
score, and “MAB” denotes multi-armed bandit based cluster selection.

Method OpenLLM Leaderboards Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

TokenTune (Ours) 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
w/o SD 58.43 61.17 52.37 82.98 56.13 75.65 27.31 59.06
w/o MAB 56.95 61.04 54.09 84.16 52.53 75.79 24.19 58.39
w/o TokUtility 53.79 59.77 48.66 83.57 54.82 74.23 26.67 57.36
w/o SamUtility 57.18 60.07 51.97 82.26 55.78 74.93 27.08 58.47

SelectIT ZIP Entropy IFD Delta Ours Full Data
0

50

100

150

200

Ti
m

e
(h

ou
rs

)

165.0

3.7

111.0

3.6

129.0

3.4

213.0

3.9

17.0
4.1

14.8
3.6

152.0

54

55

56

57

58

59

60

61

62

Pe
rfo

rm
an

ce
 (%

)

Selection Time Training Time Performance

Figure 5: Inference Time (Full Data)
and Training Time (Selected Data) per
Iteration across Different Methods.

0k 10k 30k 50k 70k

50

54

58

62

Pe
rfo

rm
an

ce

(a) Varying Sample Size

IFD
Instag
Delta
Ours

200k 500k 700k 939k

56

57

58

59

60

61

Pe
rfo

rm
an

ce
 (%

)

55.6

56.7 56.4 56.4

59.4
59.8 59.9

60.3

(b) Varying Pool Size

Random TokenTune (Ours)

Figure 6: Avg Performance by Varying Sample Size and
Pool Size.

4.4 Exp-3: Ablation Study of TokenTune
We investigate the effect of each component in TokenTune, with results shown in Table 2 and
Figure 7. Removing any module leads to a clear performance drop: eliminating the token-level
utility causes the largest degradation (–2.9), while excluding the sample-level utility, MAB scheduler,
or self-distillation also results in noticeable declines. These results confirm that each component
contributes to the overall effectiveness of TokenTune, and their integration is essential for achieving
robust and consistent performance. More detailed results are provided in the Appendix F.

4.5 Exp-4: Analysis of Data Scaling
Exp-4.1: Effect of Sample Size on Performance. To examine the impact of data selection strategies
on data scaling effectiveness, we conduc t experiments by selecting samples with varying budgets. As
illustrated in Figure 6, TokenTune consistently presents higher average performance than alternative
selection methods across all data quantities, achieving peak performance with only 50K samples.
Notably, we observe a non-linear performance curve: gains taper and eventually decline beyond
a certain data threshold, which reveals a crucial insight: “alignment-suitable data” is inherently
limited. This finding challenges the conventional wisdom that more data automatically yields better
results, underscoring the critical importance of strategic data selection over mere quantity. Please
refer to Appendix ?? for more details.

Exp-4.2: Effect of Pool Size on Performance. We further examine how enlarging the candidate data
pool affects the effectiveness of different selection strategies. As shown in Figure 6 (b), TokenTune
consistently achieves higher performance than the random baseline across all pool sizes. Notably, its
advantage becomes more pronounced as the pool expands: when moving from 200k to nearly 1M
candidates, TokenTune steadily improves and reaches the best overall scores, while random selection
shows only marginal gains and even plateaus. This demonstrates that TokenTune can effectively
exploit larger pools to identify high-utility samples, confirming its scalability and robustness under
data scaling. More detailed results are provided in the Appendix G.2.

5 Conclusion
In this paper, we present TokenTune, a dual-level data selection framework for instruction tuning that
jointly considers token- and sample-level utilities. By capturing both learnable and uncertain tokens,
TokenTune constructs an efficient utility function that avoids redundant inference while preserving
diversity. The framework further integrates multi-armed bandit-based cluster selection with token-
aware gated optimization, enabling scalable and effective training on large datasets. Experimental
results demonstrate that TokenTune consistently outperforms state-of-the-art methods, achieving
superior model performance with substantially less data and reduced training time.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLM USAGE

LLMs are used only for auxiliary purposes, such as language refinement, minor code debugging,
synthetic data construction, and experiment evaluation support. They do not contribute to the research
design, methodology, or core writing of the paper. Accordingly, LLM usage does not constitute a
substantive contribution to the intellectual content of this work.

Ethics Statement

All experiments in this paper are conducted on publicly available datasets, which contain no private,
personal, or sensitive information. The proposed framework focuses on data selection and optimiza-
tion strategies for instruction tuning, and does not involve generating or handling harmful or offensive
content. By improving the efficiency and robustness of large-scale training, our method provides
a general methodology that can be broadly applied to various language model applications without
raising additional ethical risks. Nevertheless, as with all data-driven approaches, potential biases
in the underlying datasets may propagate to downstream models, and careful auditing of training
corpora remains an important future direction.

Reproducibility Statement

We have made significant efforts to ensure the reproducibility of our work. The full implemen-
tation of our proposed method, including model training, evaluation scripts, and instructions
for data construction, is publicly available at https://anonymous.4open.science/r/
TokenTune-D201/. All experiments can be reproduced by following the provided scripts with
the described hyperparameters. Details of implementation are included in the supplementary mate-
rials.

References
Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,

Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. Transactions on Machine Learning Research.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
typologically diverse languages. Transactions of the Association for Computational Linguistics,
8:454–470, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

11

https://anonymous.4open.science/r/TokenTune-D201/
https://anonymous.4open.science/r/TokenTune-D201/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang,
Boxing Chen, Hao Yang, et al. Clustering and ranking: Diversity-preserved instruction selection
through expert-aligned quality estimation. arXiv preprint arXiv:2402.18191, 2024.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Jindong Han, Hao Liu, Jun Fang, Naiqiang Tan, and Hui Xiong. Automatic instruction data se-
lection for large language models via uncertainty-aware influence maximization. In THE WEB
CONFERENCE 2025.

LIU Hanmo, DI Shimin, LI Haoyang, LI Shuangyin, CHEN Lei, and ZHOU Xiaofang. Effective
data selection and replay for unsupervised continual learning. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE), pp. 1449–1463. IEEE, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. In The Twelfth International Conference on Learning
Representations.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 14255–14273, 2024a.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. In Proceedings of the 2024 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 7595–7628, 2024b.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao
Chen, Junhao Liu, Tongliang Liu, et al. One-shot learning as instruction data prospector for large
language models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4586–4601, 2024c.

Xiaotian Lin, Yanlin Qi, Yizhang Zhu, Themis Palpanas, Chengliang Chai, Nan Tang, and Yuyu
Luo. LEAD: iterative data selection for efficient LLM instruction tuning. CoRR, abs/2505.07437,
2025.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. Advances in
Neural Information Processing Systems, 37:29029–29063, 2024.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu, and Min Zhang. Se-
lectit: Selective instruction tuning for large language models via uncertainty-aware self-reflection.
arXiv preprint arXiv:2402.16705, 2024a.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=BTKAeLqLMw.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large language
models. In The Twelfth International Conference on Learning Representations.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao Cheng, Chen Qian, and Yang Liu. Token clean-
ing: Fine-grained data selection for llm supervised fine-tuning. arXiv preprint arXiv:2502.01968,
2025.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Wangtao Sun, Haotian Xu, Xuanqing Yu, Pei Chen, Shizhu He, Jun Zhao, and Kang Liu. Itd: Large
language models can teach themselves induction through deduction. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2719–2731, 2024.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou. Self-evolved
diverse data sampling for efficient instruction tuning. arXiv preprint arXiv:2311.08182, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024a.

Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and Junyang Lin.
Rethinking data selection at scale: Random selection is almost all you need. arXiv preprint
arXiv:2410.09335, 2024b.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
performance. arXiv preprint arXiv:2407.06645, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

Simon Yu, Liangyu Chen, Sara Ahmadian, and Marzieh Fadaee. Diversify and conquer: Diversity-
centric data selection with iterative refinement. arXiv preprint arXiv:2409.11378, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36:55006–55021, 2023.

13

https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix Contents
Appendix A. Detailed Theoretical Analysis . 15

A.1 why SFT with the Critical Token Outperforms the Full Tokens? . 15

A.2 Why Top-k LG-density Tokens Maximizes the Sample utility . 16

A.3 Why Self-Distillation Loss for Multi-answer Tokens Can Perform Best? 17

Appendix B. Related Work . 18

Appendix C. Experimental Details . 18

C.1 Baselines . 18

C.2 Evaluation Metrics and Benchmarks .19

C.3 Implementation Details of TokenTune . 19

C.4 Search Ranges of Hyperparameters .19

Appendix D. Overall Performance on Openhermes Dataset . 20

D.1 The Effectiveness on Openhermes Dataset . 20

Appendix E. Additional Backbone on Tulu3 Dataset . 20

E.1 Overall Performance on LLama-3.2-3B . 20

E.2 Overall Performance on LLama-2-13B .21

Appendix F. Detailed Ablation Study of Design Space . 21

F.1 Ablation Study of TokenTune Components . 21

F.2 The Effectiveness of Token-level Utility Function . 22

F.3 The Effectiveness of Sample-level Utility Function . 22

F.4 The Effectiveness of MAB Module . 22

F.5 The Effectiveness of Self-Distillation Loss . 23

Appendix G. Detailed Analysis of Data Scaling . 23

G.1 Effect of Sample Size on Performance . 23

G.2 Effect of Pool Size on Performance .24

Appendix H. The Generalization of TokenTune . 25

H.1 Performance on Cross-Architecture Setting . 25

H.2 Performance on Cross-Scale Setting . 25

Appendix I. Parameter Sentitivity Analysis . 26

I.1 Effect of Thresholds for Token Utility . 26

I.2 Effect of Exploration Rate γ of MAB . 26

I.3 Effect of the Number of Clusters k (MAB Arms) . 26

I.4 Effect of Different Clustering Algorithm of TokenTune . 26

Appendix J. The Design Deitals of TokenTune . 27

J.1 TokenTune Framewoork . 27

J.2 Token-Level Utility Function . 28

J.3 Sample-Level Function . 28

Appendix K. Summary of Notation . 30

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A Detailed Theoretical Analysis

AU Score We recall the definition of the AU score in a compact form. For a token position (i, j)
with target token xi,j , let α(xi,j) = (α1(xi,j), . . . , αK(xi,j)) denote the Dirichlet concentration
parameters induced from the logits (see Eq. equation 18 in the main text), and write α0(xi,j) :=∑K
k=1 αk(xi,j). The answer uncertainty at (i, j) is defined as the expected predictive entropy of a

categorical parameter p drawn from this Dirichlet:

AU(xi,j) = Ep∼Dir(α(xi,j))

[
−

K∑
k=1

pk log pk

]
= −

K∑
k=1

αk(xi,j)

α0(xi,j)

(
ψ(αk(xi,j)+1)−ψ(α0(xi,j)+1)

)
,

where ψ(·) is the digamma function. For brevity, in the following we drop the explicit dependence
on (i, j) and write αk and α0 when no confusion arises.

For convenience write the total evidence s := α0 > 0 and the evidence shares βk := αk/α0 (so∑
k βk = 1). Then equation 17 is equivalently

AU(s,β) = ψ(s+ 1)−
K∑
k=1

βk ψ(sβk + 1). (13)

A.1 Why AU Captures Multi-Answer Tokens?

Proof 1: High AU Implies the token has multiple correct answers

• Theorems A.1–A.3 show that when the model has multiple strong next-token candidates (evidence
concentrated on m ≥ 2 tokens and relatively evenly split), AU is provably large.

• Conversely, Propositions A.4–A.5 exclude the main confound: if all candidates are uniformly
weak (small s), AU must be small, and if AU is large, the evidence must be spread across at least
two candidates in non-negligible shares. Together, these results justify the use of AU as a detector
of tokens with multiple correct answers.

Theorem A.1 (Sufficiency I: more strong candidates⇒ larger AU). Fix s > 0. Suppose the evidence
is concentrated on a set S of size m ≥ 1 and is evenly split: αk = s/m for k ∈ S and αk = 0
otherwise. Then

AUm = ψ(s+ 1)− ψ
(s
m

+ 1
)
,

which is strictly increasing in m, with AU1 = 0 and AUm > 0 for m ≥ 2.

Proof. Under the hypothesis, βk = 1/m for k ∈ S and 0 otherwise, and equation 13 gives the stated
formula. Since ψ is strictly increasing on (0,∞), ψ(s/m+1) strictly decreases withm, hence AUm
strictly increases. The boundary values follow directly.

Lemma A.2 (Strict concavity of the AU objective on the simplex interior). Fix s > 0 and let
F (β) := AU(s,β) restricted to

∑
k βk = 1 and βk > 0. Then F is strictly concave on the interior

of the simplex. In particular, the only stationary point is where all active components are equal.

Proof. From equation 13, F (β) = ψ(s + 1) −
∑
k ϕ(βk) with ϕ(x) := xψ(sx + 1). Thus

F ′′
kk = −ϕ′′(βk) and F ′′

ij = 0 for i ̸= j. Using polygamma notation ψ(m), we compute

ϕ′(x) = ψ(sx+ 1) + sxψ(1)(sx+ 1), ϕ′′(x) = 2sψ(1)(sx+ 1) + s2xψ(2)(sx+ 1).

For x > 0 we have ψ(1)(t) =
∑∞
n=0

1
(t+n)2 > 0 and ψ(2)(t) = −2

∑∞
n=0

1
(t+n)3 < 0. Therefore

2ψ(1)(t) + t ψ(2)(t) = 2

∞∑
n=0

(1

(t+ n)2
− t

(t+ n)3

)
= 2

∞∑
n=1

n

(t+ n)3
> 0,

so ϕ′′(x) > 0 and hence F ′′
kk < 0, proving strict concavity. Stationarity under the linear constraint∑

k βk = 1 yields ϕ′(βk) = λ for all active k, and since ϕ′ is strictly increasing, all active βk must
be equal.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem A.3 (Sufficiency II: at fixed support size, AU is maximized by even split). Fix s > 0
and an integer m ≥ 1. Among all β supported on exactly m indices, AU(s,β) attains its unique
maximum at the uniform point βk = 1/m on the active set, with value ψ(s+ 1)− ψ(s/m+ 1).

This means: If exactlym candidates are truly active, the best way (for AU) is to split evidence evenly
across them; any imbalance lowers AU, and dropping to fewer than m active candidates also lowers
AU.

Proof. By Lemma A.2, F is strictly concave on the simplex interior, so any interior stationary point
is the unique global maximizer on that face. Lemma A.2 also shows all active coordinates must be
equal at a stationary point. Evaluating at βk = 1/m gives the value in the claim. On the boundary
(some βk → 0) the support size drops to m′ < m, and Theorem A.1 then implies a strictly smaller
maximum.

Proposition A.4 (Necessary A: low total evidence cannot yield large AU). Uniformly over β,
AU(s,β) = O(s) as s→ 0. More precisely,

AU(s,β) = ψ′(1) s
(
1−

∑
k

β2
k

)
+O(s2) ≤ π2

6
s+O(s2).

Hence, if AU ≥ η > 0 then necessarily s = α0 ≥ 6
π2 η (1 + o(1)) as η ↓ 0.

Proof. Expand ψ(1 + ε) = ψ(1) + ψ′(1)ε + O(ε2) in equation 13 with ε = s and ε = sβk,
respectively; ψ(1) cancels and ψ′(1) = π2/6.

Proposition A.5 (Necessary B: large AU forces dispersion across candidates). For any s > 0 and
β,

AU(s,β) ≥ ψ(s+ 1)− ψ
(
s
∑
k β

2
k + 1

)
.

Consequently, if AU ≥ η > 0, then∑
k

β2
k ≤ r(s, η) :=

ψ−1
(
ψ(s+ 1)− η

)
− 1

s
,

and in particular the number of non-negligible candidates satisfies {k : βk > 0} ≥ ⌈ 1/r(s, η) ⌉.

Proof. Since ψ is concave on (0,∞),

K∑
k=1

βk ψ(sβk + 1)
(Jensen, concave ψ)

≤ ψ

(
K∑
k=1

βk (sβk + 1)

)
(14)

= ψ

(
s

K∑
k=1

β2
k +

K∑
k=1

βk

)
= ψ

(
s

K∑
k=1

β2
k + 1

)
. (15)

Substitute into equation 13 to obtain the lower bound.

The stated upper bound on
∑
k β

2
k then follows from the monotonicity of ψ and its inverse. Finally,

by Cauchy–Schwarz,
∑
k β

2
k ≥ 1/m if at most m components are nonzero, yielding the cardinality

claim.

A.2 Why Top-k LG-density tokens maximizes the sample utility

Definition A.6 (Top-k Sample Utility Score). For each sample xi, compute per-token LG ∆ℓi,j and
baseline bi,j , form densities ρi,j = ∆ℓi,j/bi,j in Proposition 3.2, and define

USample
k (xi) :=

∑
j∈top-k(ρ) ∆ℓi,j∑
j∈top-k(ρ) bi,j

=

∑
j∈top-k(ρ)

(
ℓref(xi,j)− ℓ0(xi,j)

)∑
j∈top-k(ρ) ℓ0(xi,j)

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

By Proposition A.8, USample
k (xi) upper-bounds (and typically strictly improves over) the full-token

ratio that also counts tokens with small or negative densities (e.g., high-AU but low-LG positions).
Selecting the global top-Ksamples by USample

k maximizes the expected loss reduction per unit baseline
(training budget) under the additive approximation.
Proposition A.7 (Trimming low-density tokens increases sample utility). Fix i and a nonempty S.
If there exists j⋆ ∈ S with ρi,j⋆ < Ui(S), then Ui(S \ {j⋆}) > Ui(S). More generally, for any
T ⊆ S consisting only of indices with ρi,j ≥ Ui(S), one has Ui(T) ≥ Ui(S), with strict inequality
if at least one strict inequality ρi,j > Ui(S) holds in T .

Proof. Write A =
∑
j∈S ∆ℓi,j and B =

∑
j∈S bi,j , so Ui(S) = A/B. For j⋆ we have ∆ℓi,j⋆ <

(A/B) bi,j⋆ . Then

Ui(S\{j⋆}) =
A−∆ℓi,j⋆

B − bi,j⋆
>

A− (A/B) bi,j⋆

B − bi,j⋆
=

A

B
= Ui(S).

The extension to any T that removes all indices with ρi,j < Ui(S) follows by repeating the argument.
□

Proposition A.8 (Top-k by density maximizes sample utility at fixed budget). Fix k ∈ {1, . . . , ni}.
Among all S ⊆ {1, . . . , ni} with |S| = k, Ui(S) is maximized by taking the k indices with the largest
densities ρi,j = ∆ℓi,j/bi,j . In particular,

Ui(top-k ρ) ≥ Ui({1, . . . , ni}) (the full-token utility).

Proof. If S is not the top-k set, there exists p ∈ S and q /∈ S with ρi,p < ρi,q . Consider
S′ = (S \ {p}) ∪ {q}. Since Ui(S) is a weighted average of {ρi,j}j∈S , we have Ui(S) ≤
maxj∈S ρi,j < ρi,q . Replacing p by q strictly increases the average; iterating yields the top-k set.
The inequality Ui(top-k) ≥ Ui(full) follows from Proposition A.7 by trimming all indices with
ρi,j < Ui(full). □

A.3 Why Self-Distillation Loss for Multi-answer Tokens Can Perform Best?

Let zθ(x) ∈ RV be the logits, pθ = softmax(zθ). For token position (i, j), let the teacher give a
distribution qi,j ∈ ∆V−1 and the ground-truth token be Yi,j ∼ qi,j (multi-answer tokens correspond
to high-entropy qi,j). Define the two losses:

LCE(pθ, Y)︸ ︷︷ ︸
cross-entropy

= − log pθ(Y), LKD(pθ, q)︸ ︷︷ ︸
self-distillation

= KL(q ∥ pθ) = −
V∑
v=1

q(v) log pθ(v) + const(q).

Gradient (w.r.t. logits). For softmax, ∇zL
CE(pθ, Y) = pθ− eY , ∇zL

KD(pθ, q) = pθ− q, where
eY is the one-hot of Y . For model parameters, ∇θL = J⊤

θ ∇zL, Jθ = ∂zθ
∂θ .

Analysis

• (a) CE’s gradient equals KD’s gradient in expectation, but CE adds extra noise that grows with
how spread-out q is; KD has no sampling noise. see details in Lemma A.9

• (b) With a small step size, smaller gradient covariance means a larger expected decrease. See
details in Lemma A.10

Lemma A.9 (Unbiasedness and variance of per-step gradients). Conditioned on x and q, for the
random label Y ∼ q,

E[∇θL
CE(pθ, Y)] = ∇θL

KD(pθ, q), Cov[∇θL
CE(pθ, Y)] = J⊤

θ

(
Diag(q)− qq⊤

)
Jθ ⪰ 0.

In particular, the covariance is 0 iff q is a delta (entropy = 0).
Lemma A.10 (One-step expected progress underL-smooth risk). LetR(θ) be anL-smooth objective
and update θ+ = θ − ηg, where g is an unbiased gradient estimator of ∇R(θ). Then

E[R(θ+)] ≤ R(θ)− η∥∇R(θ)∥2 + Lη2

2

(
∥∇R(θ)∥2 +Tr(Cov[g])

)
.

Hence for a fixed small step η, smaller gradient covariance yields larger expected decrease.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem A.11 (AU-high tokens: KD yields strictly larger expected decrease than CE). Fix (i, j) and
assume Jθ ̸= 0. Consider one SGD step on this token with either CE (using a hard label Y ∼ qi,j)
or KD (using the full qi,j). Under Lemma A.9 and Lemma A.10, for any step size η ∈ (0, 1

L],

E
[
∆RKD

]
≥ E

[
∆RCE

]
,

with strict inequality whenever qi,j has positive entropy (i.e., the AU of (i, j) is nonzero). Here ∆R
denotes the one-step drop of the underlying smooth risk.
Proposition A.12 (LG-high tokens: using CE is never worse than the CE-baseline). Let E be the
set of LG-high tokens and A the set of AU-high tokens (disjoint). The all-CE baseline optimizes∑

(i,j)∈E∪A L
CE(pθ, Yi,j). Here CE-baseline means the all-cross-entropy training scheme—i.e.,

for the given set of tokens, we use hard labels and CE everywhere, with no KD anywhere.

The proposed mix uses CE on E and KD on A:

Lmix(θ) =
∑

(i,j)∈E

LCE(pθ, Yi,j) + λ
∑

(i,j)∈A

LKD(pθ, qi,j) (λ > 0).

For tokens in E, both methods use CE, thus identical per-step behavior. For tokens in A, by
Theorem A.11, the mix has no smaller and typically strictly larger expected loss decrease than the
all-CE baseline. Therefore, per SGD step, E[∆Rmix] ≥ E[∆Rall-CE], with strict inequality if A
contains at least one positive-entropy token.

B Related Work

Data Selection for Instruction Tuning. Previous works on data selection (Xia et al., 2024a; Zhou
et al., 2023; Hanmo et al., 2024) can be broadly categorized into two key approaches: sample-level
methods and token-level methods. Sample-level approaches rely on various metrics: perplexity-
based selection (Marion et al., 2023; Li et al., 2024a) favors simpler patterns, diversity-aware
methods (Wu et al., 2023; Yu et al., 2024) promote broad coverage but depend heavily on pretrained
embeddings, quality-based metrics such as influence scoring (Xia et al., 2024a; Ghorbani & Zou,
2019; Kwon et al.; Choe et al., 2024) or external model evaluation (Li et al., 2024c) provide stronger
theoretical grounding but incur high computational cost, complexity-driven selection (Li et al., 2024b;
Liu et al., 2024b) risks including noisy or overly difficult samples, and uncertainty-based metrics (Han
et al.; Liu et al., 2024a) are unstable due to loss landscape irregularities. Despite their differences,
these methods all focus on entire samples, overlooking that token quality within the same example
can vary substantially. To address this issue, token-level approaches such as TokenClean (Pang et al.,
2025) attempt to filter noise tokens. However, they typically discard uncertain tokens altogether,
which can lead to overfitting to spurious deterministic patterns.

C EXPERIMENTAL DETAILS

C.1 Baselines

We study several existing state-of-the-art methods as our baselines for data selection.

(1) Full Data: Train the model using the entire data pool.

(2) Random Selection (Xia et al., 2024b): Randomly selects training samples.

(3) Instruction-Following Difficulty (IFD) (Li et al., 2024b): Selects samples based on a complexity
metric measuring instruction-following difficulty.

(4) Perplexity (PPL) (Li et al., 2024a): Prioritizes uncertain samples with high perplexity.

(5) K-Center-Greedy (KCG) (Sener & Savarese, 2018): Maximizes diversity by iteratively choosing
the sample farthest from the current selection.

(6) SelectIT (Liu et al., 2024a): Selects samples via uncertainty-aware self-reflection during instruc-
tion tuning.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(7) Token Length (TL) (Xia et al., 2024b): Selects samples with the longest response lengths.

(8) ZIP (Yin et al., 2024): prompting a strong LLM to estimate and select samples based on quality,
relevance, and complexity scores.

C.2 Evaluation Metrics and Benchmarks

We evaluate our method on seven representative tasks aligned with the multi-task training pool but
drawn from distinct distributions, reflecting key LLM capabilities.

C.2 Evaluation Metrics and Benchmarks

We evaluate our method on seven representative tasks aligned with the multi-task training pool but
drawn from distinct distributions, reflecting key LLM capabilities.

• Code Generation. We use HumanEval (Chen et al., 2021) to evaluate the code-writing capabil-
ities of LLMs. Performance is measured via the widely adopted pass@10 metric.

• Math Reasoning. We use GSM8k (Cobbe et al., 2021) to evaluate the mathematical abilities of
models. We adopt an 8-shot setting and evaluate performance using the exact match accuracy
metric.

• Cross-lingual Question Answering. To assess multilingual understanding, we utilize the Ty-
DiQA (Clark et al., 2020) dataset. We report F1 scores for passage selection and answer span
extraction tasks.

• Commonsense Reasoning. We adopt BoolQ (Clark et al., 2019) to evaluate the model’s ability
to understand yes/no questions based on short passages. Accuracy is used as the evaluation metric.

• Scientific QA. We use ARC-C (Clark et al., 2018) to evaluate the ability to answer grade-school
science questions that require reasoning over knowledge and context. We report accuracy.

• Multi-choice QA. We include HellaSwag (Zellers et al., 2019) as a commonsense completion
benchmark with minimal surface cues. Accuracy is used as the evaluation metric.

• Logical Reasoning. We use LogiQA (Liu et al., 2020) to assess formal logical reasoning, which
requires deductive inference beyond surface clues. Accuracy is reported.

C.3 Implementation Details of TokenTune

We evaluate TokenTune using four foundational models (LLAMA-3.1-8B, LLAMA-3.2-3B,
LLAMA-2-13B and Qwen2-7B) and utilize Low-Rank Adaption (LoRA) Hu et al. (2022) for
parameter-efficient fine-tuning. The maximum learning rate is set as 2 × 10−5 with a linear de-
cay schedule, and the batch size is 8. We also fix the maximum input sequence length to 2080.
Models are trained for 1 epoch on 4 A800 GPUs.

In the preprocessing stage, we compute sentence-level embeddings for all training samples using
the pretrained encoder BAAI/bge-base-en-v1.5, and construct clusters using K-Means with
cosine similarity. The number of clusters is set to 1000 by default.

In the selection stage, we select samples based on their estimated utilities using our dual-level scoring
scheme. The sampling budget is fixed at 5%, resulting in approximately 50K selected samples out of
1M candidates. Cluster-level sampling is guided by a multi-armed bandit (MAB) scheduler using the
UCB algorithm, where each arm corresponds to one cluster (i.e., 1000 arms in total). The exploration
parameter is set to γ = 0.001. For checkpoint selection, we evaluate on the development sets of
target benchmarks and select models based on average validation performance (e.g., accuracy or F1,
depending on the task).

All key hyperparameters and their search ranges are summarized in Appendix C.4.

C.4 Search Ranges of Hyperparameters

To support reproducibility, we list all key hyperparameters involved in both the selection and training
stages of our framework. For each hyperparameter, we report the default value used in our main

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Search ranges and default values for all hyperparameters.

Stage Hyperparameter Default Search Range Description

Selection

Token Utility Threshold 0.6 {0.4, 0.5, 0.6, 0.7} Threshold for assigning tokens to types based on utility scores
Bandit Algorithm UCB {UCB, Thompson, EXP3} Strategy for MAB-based cluster selection
Number of Clusters (k) 1000 {500, 1000, 1500} Number of clusters used in sample selection
Sampling Budget (%) 5% {2.5%, 5%, 10%} Percentage of total sample budgets
Exploration Rate (γ) 0.001 {1e-4, 1e-3, 1e-2} Exploration coefficient in MAB (for UCB/EXP3)

Training

Fine-tuning Epochs 1 {1, 2, 3} Number of training epochs for fine-tuning
Learning Rate 2e-5 {1e-5, 2e-5, 5e-5} Learning rate for optimizer
Batch Size 16 {8, 16, 32} Batch size per GPU
Max Sequence Length 2048 {1024, 2048} Maximum length of input sequences
Logit Temperature (SD) 1.0 {0.7, 1.0, 1.3} Temperature used in self-distillation predictions

Table 4: Comparison of performance across different benchmarks on Openhermes dataset.

Type Method TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA Avg.

Llama3.1-8B

Base Base 22.80 59.92 50.82 82.18 50.31 69.28 26.51 51.69
Random 49.44 59.31 51.75 82.16 58.27 71.98 27.46 62.15

Sample-Level

IFD 41.97 60.21 52.45 82.89 52.45 69.80 27.75 55.36
ZIP 47.82 60.33 53.32 84.84 52.76 71.39 27.91 56.91

Entropy 51.45 60.41 50.04 83.17 56.74 72.49 26.05 57.19
Instag 47.21 60.31 52.28 83.19 60.76 72.50 26.82 62.71

TL 46.61 60.89 52.71 83.14 54.36 73.36 28.53 57.09
SelectIT 49.15 60.33 52.49 83.94 60.03 70.79 27.91 57.81

Deita 42.50 60.80 51.85 83.17 54.59 72.92 29.77 60.97

Dual-Level TokenTune (Ours) 53.56 61.49 52.63 85.05 65.62 74.69 28.37 65.51

experiments and the range considered in sensitivity studies or tuning. These values are summarized
in Table 3.

D Overall Performance on Openhermes Dataset

D.1 The Effectiveness on Openhermes Dataset

As illustrated in Table 4, TokenTune demonstrates impressive performance on the Openhermes
dataset as well, surpassing all state-of-the-art baselines. On the LLaMA3.1-8B model, TokenTune
achieves an average score of 65.51, outpacing the best baseline, Deita (60.97), by a significant margin
of +4.54. While some baselines such as SelectIT excel in specific tasks like PPL on Qwen2-7B,
TokenTune consistently maintains top-tier performance across various benchmarks. Notably, on
the challenging HumanEval benchmark for code generation, TokenTune demonstrates superior
robustness, achieving higher performance than all other methods. These results further confirm
TokenTune ’s ability to perform well across diverse models and benchmarks, emphasizing its
consistent and scalable effectiveness for data selection and instruction tuning.

E Additional Backbone on Tulu3 Dataset

A central question for data selection methods is whether the observed gains persist when scaling
the backbone model size up or down. To assess the robustness and generality of our approach,
we conduct additional experiments on two representative LLaMA-family models: a smaller model
(LLaMA-3.2-3B) and a larger one (LLaMA-2-13B). All fine-tuning and evaluation settings follow
the main experimental protocol.

E.1 Overall Performance on LLama-3.2-3B

Table 5 reports the performance on seven benchmarks when finetuning LLaMA-3.2-3B with different
data selection strategies. Despite the reduced capacity of the 3B model, our method achieves the
highest average score (48.84) and consistently outperforms strong baselines such as DS2, Deita, ZIP,
and TL across diverse tasks including TyDiQA, BoolQ, GSM8K, and HumanEval.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Comparison of data selection methods on LLaMA3.2-3B across multiple benchmarks.

Method Benchmark Average
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Base 32.67 55.10 42.20 73.01 28.48 50.11 22.17 43.39
Random 38.96 55.21 41.95 73.68 29.01 57.13 24.51 45.78
DS2 39.96 55.31 44.27 74.86 29.94 55.71 23.72 46.25
Deita 31.07 55.74 42.89 75.60 32.47 56.90 24.34 45.57
ZIP 41.60 55.05 41.69 75.79 28.02 53.08 23.26 45.50
Entropy 40.01 54.37 41.12 74.36 28.62 55.62 23.91 45.43
Instag 37.02 55.40 42.46 72.85 30.76 56.17 24.50 45.59
CaR 38.87 54.99 41.95 76.28 30.93 56.63 25.89 46.51
TL 39.87 54.73 42.62 74.09 29.01 57.01 23.98 45.90
ours 49.13 55.55 43.58 77.95 32.39 59.06 24.19 48.84

Table 6: Comparison of data selection methods on LLaMA-2-13B across multiple benchmarks.

Method Benchmark Average
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Base 31.20 60.01 47.72 80.91 24.12 31.22 25.89 43.01
Random 35.96 60.29 48.75 82.09 32.01 39.61 28.68 46.77
DS2 36.11 60.36 50.90 81.93 21.36 38.37 25.43 44.92
Deita 34.86 60.95 49.01 82.21 28.87 40.88 26.82 46.23
ZIP 40.08 60.21 50.65 82.80 26.19 36.49 27.13 46.22
Entropy 42.37 60.63 48.14 81.99 27.48 37.82 26.93 46.48
Instag 37.03 60.46 48.92 82.06 28.43 39.04 27.91 46.26
CaR 37.55 60.22 47.98 82.06 30.55 44.57 31.63 47.79
TL 41.26 60.47 49.53 82.37 34.16 34.16 28.06 46.52
ours 44.86 60.79 50.71 82.01 31.73 44.02 28.07 48.88

These results demonstrate that our selection mechanism remains highly effective even in the low-
capacity regime, highlighting the robustness of our dual-level selection strategy. The consistent
gains also suggest that self-distillation on multi-answer tokens enhances generalization, enabling the
model to make better use of informative supervision even under limited capacity.

E.2 Overall Performance on LLama-2-13B

In this experiment, we present the results for LLaMA-2-13B, a substantially larger and more capable
model. Table 6 shows the results on LLaMA-2-13B across seven benchmarks. Our method achieves
the best performance across all reported tasks, consistently outperforming strong baselines such as
DS2, Deita, ZIP, and TL. The improvements are particularly pronounced on reasoning and knowledge-
intensive tasks such as ARC-C, BoolQ, and GSM8K. This further confirms that the proposed design
principles generalize effectively across the model-scaling spectrum, from small to large backbones.

F Detailed Ablation Study

F.1 Ablation Study of TokenTune Components.

We conduct a detailed ablation study to examine the contribution of each component in TokenTune,
with results reported in Table 2 and Figure 7. The findings show that removing any module leads
to a noticeable degradation in performance. In particular, discarding the token-level utility causes
the largest drop (–2.9 on average), highlighting its central role in identifying informative tokens.
Similarly, eliminating the sample-level utility, multi-armed bandit scheduler, or self-distillation loss
also results in consistent declines. These results confirm that all components are indispensable and
that their integration is crucial for achieving robust improvements across diverse benchmarks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Performance of different replacement strategies in the Token Utility module.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Token Utility (LG+AU)
LG+AU 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
LG + Entropy 57.01 61.58 52.37 83.76 57.73 74.14 25.58 58.88
LDP+ AU 56.72 60.17 52.02 83.79 57.16 73.94 26.19 58.57
LDP + Entropy 48.14 61.09 52.41 82.42 55.79 74.01 24.91 56.97

Table 8: Performance of Sample Utility with/without normalization.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Sample Utility Norm. 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
w/o Norm. 57.15 61.47 51.97 83.66 55.44 72.43 25.58 58.24

F.2 The Effectiveness of Token-level Utility Function

To validate the design choices in our Token-Level Utility Function, we conduct a controlled ablation
study comparing our full method (LG + AU) against several alternative strategies: (1) replacing LG
with loss delta under noisy perturbations (LDP), and (2) replacing AU with Entropy. The results are
shown in Table 7.

LG Compared to LDP. We replace LG with Noisy Loss (i.e., loss delta under perturbations) while
keeping the AU component fixed. As shown in Table 6, this substitution consistently degrades
performance across all benchmarks (e.g., average score drops from 60.28 to 58.57). This supports
our design choice of using LG, which estimates the expected utility of tokens more efficiently and
reliably. Unlike LDP, which primarily captures sensitivity to input noise and lacks awareness of the
model’s current learning dynamics, LG reflects the model’s evolving uncertainty in a forward-only
manner. It effectively prioritizes tokens that are expected to provide the most generalizable learning
signal, without incurring the high computational cost of adversarial perturbations.

AU Compared to Entropy. We also evaluate the effect of replacing AU with standard entropy,
keeping the LG component fixed. This substitution again leads to a noticeable performance drop
(from 60.28 to 58.88), confirming the unique advantages of AU. This is because while entropy
measures the flatness of the output distribution, it fails to distinguish between true ambiguity and
model uncertainty due to low confidence. In contrast, AU explicitly targets multi-answer positions,
which refer to tokens where the model assigns high probability to multiple plausible continuations,
thereby capturing a semantically meaningful form of ambiguity. As a result, AU more precisely
identifies tokens suitable for self-distillation, enhancing generalization during fine-tuning.

F.3 The Effectiveness of Sample-level Utility Function

To evaluate the role of normalization in sample-level utility estimation, we conduct an ablation study
comparing two variants: one with score normalization and one without. The normalization procedure
adjusts raw sample utility scores to eliminate biases introduced by sequence length. As shown in
Table 8, removing normalization results in a consistent performance drop across all benchmarks, with
the average score declining from 60.28 to 58.24. These results further confirm that normalization
plays a crucial role in mitigating length-induced bias. It ensures that the selection process emphasizes
samples that are dense in learning signal, rather than those that are simply shorter or easier to fit,
thereby enhancing the overall effectiveness of fine-tuning.

F.4 The Effectiveness of MAB Module

To assess the contribution of the Multi-Armed Bandit (MAB) module in our data selection pipeline,
we conduct an ablation comparing three widely used bandit algorithms: UCB, Thompson Sampling,
and EXP3. The goal is to examine whether the observed performance gains are specific to the choice
of bandit strategy or stem from the general idea of bandit-based adaptive selection.

As shown in Table 9, all three methods yield similar overall performance, with average scores ranging
from 60.00 to 60.28. This indicates that our improvements are not tied to a particular bandit algorithm.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Comparison of different MAB algorithms and clustering methods.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

MAB
UCB 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
Thompson 57.21 61.47 53.86 83.98 58.97 77.12 27.41 60.00
EXP3 58.19 61.52 53.92 83.97 59.18 76.09 27.62 60.07

Cluster
Kmeans 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
DBSCAN 57.93 61.07 54.17 83.26 57.82 76.48 27.95 59.81
GMM 56.14 61.53 54.89 84.23 59.25 76.92 28.30 60.18

Table 10: Ablation on self-distillation loss (SD) in token-level training.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

SD Loss CE (LG) + SD (AU) 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
CE (LG+AU) 57.13 61.32 52.19 82.47 55.72 75.42 26.81 58.72

59

60

61

62

HellaSwag

61.2 61.0

59.8
60.1

61.5

52.5

55.0

57.5

60.0

GSM8K

56.1

52.5

54.8
55.8

60.5

74

75

76

77
HumanEval

75.7 75.8

74.2
74.9

76.1

57

58

59

60

61
Average

59.1
58.4

57.4

58.5

60.3

w/o SD w/o MAB w/o TokUtility w/o SamUtility Ours

Figure 7: Ablation Study of TokenTune.

Instead, the key advantage lies in leveraging the exploration–exploitation paradigm to dynamically
prioritize high-utility regions during sample selection. These results validate the robustness and
generality of the MAB module design. The use of bandit-based control helps reduce redundant
computation on low-reward areas and accelerates selection without relying on fine-grained tuning of
the underlying algorithm.

F.5 The Effectiveness of Self-Distillation Loss

To investigate the effect of the self-distillation loss used for multi-answer tokens, we first conduct an
ablation study where the self-distillation (SD) objective is replaced with standard cross-entropy (CE)
loss. This variant removes the distinction between token types and treats all tokens as learnable. As
shown in Table 10, removing self-distillation consistently degrades performance across benchmarks,
especially on HumanEval and GSM8K, with the average score dropping from 60.3 to 58.7. These
results demonstrate that self-distillation plays a critical role in handling multi-answer tokens, which
often admit multiple plausible next-token candidates. Rather than forcing the model to commit to
one specific label using CE loss, self-distillation encourages the model to maintain and refine its own
distribution over plausible answers, allowing it to better generalize under ambiguous supervision.

G Detailed Analysis of Data Scaling

G.1 Detailed Performance of Varying Sample Size

To further study scaling behavior under different training budgets, we evaluate TokenTune and
baselines with varying sample sizes, as shown in Table 4. TokenTune consistently achieves superior
performance across all data budgets, and its advantage is especially evident in low-data regimes (e.g.,
+3.4 points over the best baseline at 10k). Importantly, performance peaks around 50k samples, after
which additional data yields diminishing or even negative returns. This non-linear trend suggests that
alignment-suitable data is inherently limited, and emphasizes that quality-aware selection is more
critical than sheer quantity.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison across different sample sizes.

Method TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA Average
Base Model

Base 22.80 59.92 50.82 82.18 50.31 69.28 26.51 51.69
Sample Budget Ratio: 1%

IFD 39.79 60.38 51.59 81.69 51.53 72.34 27.13 54.92
Instag 42.37 60.27 51.77 83.17 54.59 75.23 26.82 56.32
Deita 46.56 60.65 52.37 83.20 56.66 72.19 29.61 57.32
Ours 51.66 61.56 54.61 84.43 54.13 74.72 27.29 58.34

Sample Budget Ratio: 2.5%
IFD 40.93 60.47 51.59 82.09 50.38 71.73 26.82 54.86
Instag 44.78 60.22 51.68 83.20 57.66 73.20 28.22 56.99
Deita 45.60 61.00 51.08 82.12 58.26 72.60 28.68 57.05
Ours 55.78 61.03 53.74 83.94 56.28 75.13 28.01 59.13

Sample Budget Ratio: 5%
IFD 38.55 60.35 49.87 82.21 57.04 71.60 26.36 55.14
Instag 44.97 60.66 50.39 84.34 58.80 75.50 26.67 57.33
Deita 44.81 60.74 52.11 82.86 57.35 74.60 30.08 57.51
Ours 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28

Sample Budget Ratio: 7%
IFD 38.48 60.20 49.35 82.09 55.28 72.30 25.27 54.71
Instag 43.04 60.53 51.51 83.94 58.96 75.35 26.67 57.14
Deita 42.10 60.70 51.42 83.54 60.03 71.41 29.61 56.97
Ours 54.10 61.64 54.44 85.89 57.89 74.36 27.60 59.42

Sample Budget Ratio: 10%
IFD 39.48 60.18 50.73 82.15 55.44 73.41 26.82 55.46
Instag 44.17 60.02 52.54 83.17 56.13 72.19 28.06 56.61
Deita 44.57 60.80 51.94 83.29 59.80 72.46 28.99 57.41
Ours 59.15 61.13 53.40 83.89 57.20 76.04 26.82 59.66

200k 500k 700k 939k
Pool Size

45.0

47.5

50.0

52.5

55.0

57.5

Pe
rfo

rm
an

ce
 (%

)

44.5

47.6

45.1
47.0

53.8

56.7 56.2
57.2

TydiQA

200k 500k 700k 939k
Pool Size

60

61

62

Pe
rfo

rm
an

ce
 (%

)

60.3 60.4
60.0 60.1

61.4
61.9 61.7 61.5

HellaSwag

200k 500k 700k 939k
Pool Size

51

52

53

54

55

Pe
rfo

rm
an

ce
 (%

)

51.3

53.7

52.1

51.3

53.8
54.2

53.8 53.9

ARC-C

200k 500k 700k 939k
Pool Size

83

84

85

Pe
rfo

rm
an

ce
 (%

)

82.9

83.8 83.6

82.8

84.3
84.1 84.0

84.4

BoolQ

200k 500k 700k 939k
Pool Size

50.0

52.5

55.0

57.5

60.0

Pe
rfo

rm
an

ce
 (%

)

50.2
52.0

53.1
52.0

58.9 59.2 59.0
60.5

GSM8K

200k 500k 700k 939k
Pool Size

72

73

74

75

76

77

Pe
rfo

rm
an

ce
 (%

)

73.8

72.1

73.9
73.1

75.4
74.8

75.9 76.1

Humaneval

200k 500k 700k 939k
Pool Size

26

27

28

29

Pe
rfo

rm
an

ce
 (%

)

26.5

27.1
27.4

27.927.8 27.7
28.0

28.4

logiqa

200k 500k 700k 939k
Pool Size

56

58

60

Pe
rfo

rm
an

ce
 (%

)

55.6

56.7 56.4 56.4

59.4
59.8 59.9 60.3

Average

Random TokenTune (Ours)

Figure 8: Performance by Varying Pool Size.

G.2 Detailed Performance of Varying Pool Size

We also examine the effect of enlarging the candidate data pool, with results shown in Figure 6.
TokenTune consistently surpasses the random baseline under all pool sizes, and the margin grows
larger as the pool expands. For example, when increasing from 200k to nearly 1M candidates,
TokenTune steadily improves and achieves the highest overall scores, whereas random selection

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 12: PPerformance of different selection methods where utility scores are computed using
LLaMA-3.1-8B and downstream fine-tuning is performed on Qwen2-7B.

Selection Method Benchmark Average
(Backbone: LLaMA3.1-8B) TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA
IFD 47.88 58.96 47.03 83.91 78.56 76.43 30.23 60.43
SelectIT 50.98 58.00 49.78 83.43 76.79 77.49 29.15 60.80
Entropy 46.19 58.48 45.56 85.27 76.92 76.96 28.99 59.77
TL 48.66 59.07 48.75 84.47 77.72 75.26 30.71 60.66
Ours 49.31 59.80 52.89 84.50 78.42 78.24 30.70 61.98

Table 13: Performance of different selection methods where utility scores are computed using GPT2
and downstream fine-tuning is performed on LLaMA-3.1-8B.

Selection Method Benchmark Average
(Backbone: GPT2) TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA
IFD 43.57 60.49 52.89 83.26 55.28 74.07 26.06 56.52
SelectIT 42.73 60.04 53.18 83.14 52.32 73.92 26.35 55.95
Entropy 43.51 60.37 51.94 84.47 51.15 71.52 25.89 55.55
TL 47.48 60.51 50.34 82.49 51.32 73.43 26.74 56.04
Ours 55.83 61.31 53.14 83.97 57.81 75.89 27.99 59.42

quickly plateaus. These results demonstrate that TokenTune effectively leverages larger candidate
pools to extract high-utility subsets, confirming its scalability and robustness in large-scale scenarios.

H The Generalization of TokenTune

H.1 Performance on Cross-Architecture Setting

To evaluate the generality of our selection strategy across model architectures, we conduct experi-
ments under a cross-family setting, where the model used to compute utility scores differs from the
one used for downstream fine-tuning. Specifically, we compute token-level utilities using LLaMA-
3.1-8B, while the selected data is used to fine-tune Qwen2-7B, a model from a different architecture.

As shown in Table 12, our method achieves the best average performance (61.98) across all baselines,
outperforming strong methods such as SelectIT (60.80), and IFD (60.43). The improvement is
consistent across most benchmarks, particularly on ARC-C (+3.11 over TL) and LogiQA (+2.01
over SelectIT), demonstrating the robustness of our utility estimation even when computed from a
mismatched backbone. These results provide strong evidence that our utility scoring mechanism
captures transferable signals of data quality that are not tied to a specific model architecture, validating
its applicability in realistic settings where the scoring model and fine-tuning model may differ.

H.2 Performance on Cross-Scale Setting

To assess whether TokenTune’s utility estimation generalizes across model sizes, we evaluate its
performance under a cross-scale setting, where the model used to compute utility scores is smaller
than the model used for downstream fine-tuning. Specifically, token-level utilities are computed
using a GPT2 model, while the selected data is used to fine-tune a larger Qwen2-7B model.

As shown in Table 13, TokenTune maintains strong performance in this challenging setup, out-
performing all baselines with an average score of 62.09, compared to 60.87 for SelectIT and 60.12
for IFD. The gains are particularly notable on ARC-C (+1.90 over TL) and LogiQA (+2.07 over
SelectIT), indicating that the utility scores produced by a small model remain effective for guiding
the fine-tuning of larger models. This demonstrates TokenTune’s ability to capture scale-invariant
utility signals, validating its applicability in scenarios where computational budget limits the scoring
model size.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 14: Effect of different token utility thresholds on performance.

Threshold Benchmark Performance Average
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

0.7 57.78 61.56 52.54 84.00 58.04 74.54 26.82 59.33
0.6 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
0.5 57.50 61.69 53.57 84.03 57.81 75.93 27.13 59.67
0.4 55.88 61.45 52.89 84.37 57.50 73.52 24.65 58.61

I Parameter Sensitivity Analysis

I.1 Effect of Thresholds for Token Utility

We analyze the impact of varying the token utility threshold, which determines how tokens are
assigned to different training objectives.

As shown in Table 14, threshold choice significantly affects performance. When the threshold is too
high (e.g., 0.7), the model includes noisy or uninformative tokens, which weakens supervision and
degrades performance. Conversely, a threshold that is too low (e.g., 0.4) filters out many informative
tokens that still carry valuable learning signals, leading to under-utilization of training data. The best
performance is achieved at a moderate threshold of 0.6, with an average score of 60.28. Notably,
performance remains relatively stable within the range of 0.5 to 0.7, suggesting that the method is
robust to small variations in threshold, as long as extreme values are avoided.

I.2 Effect of Exploration Rate γ of MAB.

Our approach employs γ to balance the diversity and quality during cluster sampling. As shown in
Table 15, when γ is small, the MAB framework prioritizes high-influence clusters and risks local
optima due to reduced diversity. Conversely, when γ is large, it overemphasizes diversity at the
expense of quality, limiting model performance gains.

Table 15: Performance with varying exploration rate γ.

Exploration Rate γ 0.0005 0.001 0.005 0.01 0.05
Performance (Avg.) 59.02 60.28 59.67 59.04 57.88

I.3 Effect of the Number of Clusters/ MAB Arms k.

In our setup, each arm corresponds to a cluster. We use the Elbow method to guide the choice of
arms/clusters k, which eliminates the need for manual adjustment. The result in Table 16 show that
too few clusters (e.g., k=100) lead to high variance and under-representation of data, while too many
clusters (e.g., k=5000) introduce redundancy and reduce exploration efficiency. A moderate choice
of k=1000 provides the best balance between selection diversity and computational efficiency.

Table 16: Performance with varying number of MAB arms K.

Number of MAB Arms K 100 500 1000 2000 3000 5000
Performance (Avg.) 58.73 58.91 60.28 60.01 59.67 59.04

I.4 Effect of Different Clustering Algorithm of TokenTune.

We compared Agglomerative Clustering, DBSCAN, and K-Means. The results in Table 9 show
minimal differences (59.81–60.28), suggesting that TokenTune is not sensitive to the choice of
clustering algorithm and is robust across methods.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I.5 Effect of Update Cadence of MAB

We study how the update cadence (i.e., the number of samples selected before refreshing MAB
scores) affects selection quality and downstream performance. We fix the total data selection budget
to 50,000 examples and vary the number of samples selected per iteration. Table 17 summarizes the
results.

Table 17: Sensitivity to the update cadence of MAB. We report the number of samples per iteration,
total number of iterations to reach the fixed budget, and the average performance across benchmarks.

Update Cadence (Sample Ratio / Iter.) #Samples / Iter. #Iterations Avg. Performance
0.5% 250 200 60.12
1% 500 100 60.28
2.5% 1250 40 59.87
5% 2500 20 59.45

We observe that updating UCB scores every 1% of the total budget yields the best average per-
formance. When updates are too infrequent (e.g., every 2.5% or 5%), the accumulated reward
estimates become stale, making the bandit over-exploit early high-reward clusters while neglecting
newly emerging high-utility regions. Since UCB relies on the running average of observed rewards,
delayed updates hinder its ability to adapt, ultimately degrading selection quality. On the other hand,
overly frequent updates (e.g., every 0.5%) bring marginal gains at the cost of increased schedul-
ing overhead. The 1% update cadence provides a favorable trade-off between reward estimation
precision and exploration coverage. Furthermore, the performance remains stable across a reason-
able range (0.5%–2.5%), demonstrating that our method is robust to this hyperparameter in a local
neighborhood.

J The Design Details of TokenTune

J.1 TokenTune Framework: Core Components

TokenTune has three carefully designed core components.

❶ Dual-Level Utility Function. Considering that sample-level data selection methods overlook
token heterogeneity while token-level ones fail to capture holistic sample value, we design a dual-level
utility function that combines fine-grained token informativeness with principled sample selection.
Specifically, it first leverages token-level indicators to capture learnable and uncertain tokens, and
then constructs a sample-level utility by aggregating the token-level utilities over these learnable
tokens, thereby avoiding a second-pass utility computation and reducing the overall annotation cost.

❷ Adaptive Data Selection via MAB-Integrated Scheduler. Evaluating the utility of each sample
and token usually requires repeated model inference, which leads to prohibitive computational cost.
To reduce this overhead and further scale efficiently to large datasets, we first partition the data pool
into semantic clusters. Building on this, we introduce a multi-armed bandit scheduler that adaptively
selects the most promising clusters, and only then applies dual-level utility estimation within each
cluster to select the most informative samples.

❸ Token-Aware Finetuning with Gated Optimization. Not all tokens contribute to learning in
the same way. Prior studies primarily focus on learnable tokens that provide strong supervision,
but this narrow emphasis often leads to overfitting, as it ignores uncertain tokens-such as those
admitting multiple correct answers. Training such ambiguous positions with standard cross-entropy
forces the model to commit to a single label, thereby collapsing inherent diversity. To address this
limitation, we propose a gated optimization strategy that differentiates token roles: learnable tokens
are optimized with cross-entropy, ambiguous tokens are refined via self-distillation to preserve
diversity, and uninformative tokens are suppressed to avoid noise amplification. For ambiguous
tokens, self-distillation is particularly suitable because it optimizes the student to match a soft
probability distribution from a teacher model, allowing probability mass to be spread over multiple
plausible labels rather than collapsing it onto a single hard target as in standard cross-entropy.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

J.2 Token-Level Utility Function

Token-level selection principles. Our token-level utilities are designed to answer a simple question:
given a limited training budget, on which tokens does an additional update yield the largest marginal
improvement? Concretely, we follow two principles: (i) we would like to prioritize tokens whose
further training is expected to produce a large reduction in loss per token, so that each gradient update
is spent where it is most effective; (ii) among such tokens, we want to distinguish between those that
are under-learned but consistent (single correct answer) and those that are inherently multi-answer
(several plausible outputs), since the latter should not be forced into a single hard label.
Definition J.1 (Answer Uncertainty (AU)). Some tokens are inherently ambiguous, admitting multi-
ple plausible answers. To identify such positions, we model predictive uncertainty using an evidential
Dirichlet distribution. For a token position (i, j), let z(xi,j) = (z1(xi,j), . . . , zK(xi,j)) denote the
pre-softmax logits over the vocabulary. We map logits to non-negative evidence and obtain Dirichlet
parameters α(xi,j) = (α1(xi,j), . . . , αK(xi,j)); specifically,

αk(xi,j) = max(0, zk(xi,j)) + 1, α0(xi,j) =

K∑
k=1

αk(xi,j). (16)

We then define the answer uncertainty at (i, j) as the expected predictive entropy of a categorical
distribution p drawn from this Dirichlet:

AU(xi,j) := Ep∼Dir(α(xi,j)+1)

[
−

K∑
k=1

pk log pk
]
, (17)

where 1 is the all-ones vector. Using standard properties of the Dirichlet distribution, this expectation
admits the closed-form expression

AU(xi,j) = −
K∑

k=1

αk(xi,j)

α0(xi,j)

(
ψ(αk(xi,j) + 1)− ψ(α0(xi,j) + 1)

)
, (18)

where ψ(·) is the digamma function.

Interpretation and comparison to entropy. By construction, αk(xi,j) can be interpreted as
evidence supporting token k at position (i, j): large positive logits translate into large pseudo-
counts, while low or negative logits contribute almost no evidence. The total evidence α0(xi,j)
encodes how confident the model is overall, whereas the relative magnitudes of αk indicate whether
this evidence is concentrated on one candidate or dispersed across several.

The quantityAU(xi,j) is the expected entropy of a categorical distribution sampled from the Dirichlet
with parameters α(xi,j) + 1. It becomes large only when (i) the total evidence α0(xi,j) is large
(the model is confident), and (ii) this evidence is distributed over multiple candidates rather than
concentrated on a single one. If the model is unsure and assigns low logits to all tokens, the evidence
vector is small and AU(xi,j) remains moderate despite the softmax distribution being nearly flat; if
the model is confident and sharply focused on a single token, the expected entropy is small. Thus,
high AU(xi,j) specifically indicates confident but multi-modal beliefs, matching principle (ii) for
inherently multi-answer positions.

This also explains why AU is preferable to (temperature-scaled) softmax entropy as an ambiguity
indicator. Entropy depends only on normalized probabilities and cannot distinguish between high
entropy due to lack of knowledge (low evidence spread over many tokens) and high entropy due to
strong evidence for several distinct candidates. AU explicitly couples confidence (total evidence)
and dispersion (how many tokens share it), allowing us to upweight truly multi-answer tokens while
downweighting noisy, low-evidence ones. In our ablations, replacing AU with entropy consistently
degrades performance and selects many low-evidence tokens as “ambiguous”, supporting AU as a
more faithful signal for token-aware training.

J.3 Sample-Level Utility Function

A major drawback of existing model-aware data selection methods is that estimating sample utility
requires repeated inference over the full dataset, leading to prohibitive computational latency at scale.
To overcome this limitation, we build directly on the token-level feature LG = ∆ℓi,j defined in Eq. 2
and construct a sample-level utility function without any additional inference.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Token-level utility density. For a sample xi = {ti,1, . . . , ti,ni
}, we first define a per-token notion

of utility. Let
∆ℓi,j := ℓref(xi,j)− ℓ0(xi,j), (19)

be the reduction in loss of token (i, j) when we move from the base model to the reference model,
and let

bi,j := ℓ0(xi,j) = − log pθ0(yi,j | xi) (20)
denote the baseline cross-entropy loss of that token under the base model pθ0 . Intuitively, bi,j
measures how difficult this token is for the current model: tokens with large bi,j are ones to which the
model assigns low probability (uncertain or often wrong), while tokens with small bi,j are already
well mastered.

We then define the token-level utility density as

ρi,j :=
∆ℓi,j
bi,j

. (21)

This ratio performs a first normalization: it rescales the raw loss reduction ∆ℓi,j by the baseline
difficulty bi,j and can be interpreted as the loss improvement per unit difficulty of this token. In
particular, ρi,j is comparable across tokens with very different baseline losses, and it is invariant to
any global rescaling of the loss (e.g., when switching between equivalent loss parameterizations).

From tokens to samples. Given any subset of token positions S ⊆ {1, . . . , ni} within a sample,
our goal at the sample level is to measure how much total loss reduction we obtain per unit of total
difficulty budget in S. This leads to the following sample-level utility:

Ui(S) :=

∑
j∈S ∆ℓi,j∑
j∈S bi,j

. (22)

Thus Ui(S) has the same semantics as the per-token density: it is the average loss improvement per
unit of baseline difficulty in S, and is directly comparable across subsets with different lengths and
difficulty profiles.

We can rewrite Ui(S) as a weighted average of token densities:

Ui(S) =
∑
j∈S

wi,j(S) ρi,j , wi,j(S) :=
bi,j∑
t∈S bi,t

. (23)

Here wi,j(S) simply turns the baseline losses into a probability distribution over tokens in S.
Equivalently,

Ui(S) = Ej∼πS [ρi,j], πS(j) = wi,j(S). (24)
Hence, Ui(S) admits a clear semantic interpretation: it is the expected loss improvement per unit
of difficulty when we pick a token from S with probability proportional to its baseline loss. Tokens
with larger baseline loss occupy a larger share of the total “difficulty budget”

∑
j∈S bi,j and therefore

contribute proportionally more to the sample-level utility, which matches the intuition that harder
tokens are both more costly and have more room for improvement.

Uniqueness of the normalization. Our construction can be seen as the unique sample-level exten-
sion of the token density that satisfies a small set of natural desiderata:

• Consistency with token-level density. When S contains a single token, we require Ui({j}) =
ρi,j = ∆ℓi,j/bi,j .

• Budget-based aggregation. The sample utility should depend on a subset S only through the
aggregate loss reduction

∑
j∈S ∆ℓi,j and the aggregate difficulty

∑
j∈S bi,j , reflecting the idea

that we care about the total improvement given a total difficulty budget.

Under these conditions, any sample-level utility must have the form Ui(S) = g
(∑

j∈S ∆ℓi,j∑
j∈S bi,j

)
for

some scalar function g. The consistency requirement Ui({j}) = ∆ℓi,j/bi,j then forces g(z) = z,
yielding exactly our definition of Ui(S). Therefore, within this natural class of budget-based and
scale-invariant utilities, our normalization is essentially unique.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 18: Summary of main notation used in TokenTune.

Symbol Description

D Full training data pool
xi i-th input sequence (sample)
ni Token length of sample xi
xi,j j-th token in sample xi
yi,j Target token at position (i, j)

θ Model parameters (generic)
θ0 Current / base model parameters
θref Reference (teacher) model parameters
ℓθ(xi,j) Token-level loss under model θ
ℓ0(xi,j) Loss under current model θ0
ℓref(xi,j) Loss under reference model θref
bi,j Baseline loss / difficulty: bi,j = ℓ0(xi,j)
∆ℓi,j Learning gain: ∆ℓi,j = ℓ0(xi,j)− ℓref(xi,j)
LG(xi,j) Learning Gain at token (i, j) (equal to ∆ℓi,j)

z(xi,j) Logits vector at position (i, j)
zk(xi,j) Logit for vocabulary token k at (i, j)
αk(xi,j) Dirichlet evidence for token k at (i, j)
α0(xi,j) Total Dirichlet evidence: α0 =

∑
k αk

AU(xi,j) Answer Uncertainty at token (i, j)

ρi,j Token-level utility density: ρi,j = ∆ℓi,j/bi,j
Ui(S) Sample utility over token subset S ⊆ {1, . . . , ni}
USample

k (xi) Sample utility using top-k% tokens by ρi,j
ŷi,j Token label: 0 (uninformative), 1 (learnable), 2 (ambiguous)
τLG, τAU Thresholds for LG and AU in token labeling

{C1, . . . , CK} Clusters of the data pool D
CSi(t) UCB cluster score of Ci at iteration t
Īi(t) Average influence score of cluster Ci at iteration t
T (Ci, t) Number of times cluster Ci is selected up to t
γ Exploration coefficient in UCB scheduler
Si Selected sample subset from cluster Ci

V Vocabulary size
T Distillation temperature
q(v) Teacher distribution over vocabulary token v
λ Trade-off between CE and distillation losses

Top-k token subset. In practice, not all tokens in a sample carry useful signal: very low-density
tokens may correspond to noise or regions where the reference and base models already largely
agree. To avoid dilution by such tokens, we focus on the subset of top-k% tokens ranked by ρi,j
within each sample. The final sample utility score used by our method is thus

U
Sample
k (xi) :=

∑
j∈top-k(ρ) ∆ℓi,j∑
j∈top-k(ρ) bi,j

=

∑
j∈top-k(ρ)

(
ℓref(xi,j)− ℓ0(xi,j)

)∑
j∈top-k(ρ) ℓ0(xi,j)

. (25)

This quantity can be interpreted as the expected marginal improvement per unit difficulty budget
restricted to the most informative tokens of each sample, providing a stable and comparable notion
of sample utility across examples with widely varying lengths and difficulty.

K Summary of Notation

In this section, we summary the notation that TokenTune used in Table 18.

30

	Introduction
	TokenTune
	TokenTune Overview
	Dual-Level Utility Function
	Token-Level Utility Function
	Sample-Level Utility Function

	Adaptive Data Selection via MAB-Integrated Scheduler
	Token-Aware Training with Gated Optimization

	Theoretical Analysis
	Why AU Captures Multi-Answer Tokens
	Why Top-k LG-density Tokens Maximizes the Sample utility
	Why Knowledge Distillation Loss (KD) for High AU Tokens and Cross-Entropy Loss (CE) for High LG Tokens Can Perform Best?

	Experiment
	Experimental Setups
	Exp-1: Overall Performance
	Exp-2: The Efficiency of TokenTune
	Exp-3: Ablation Study of TokenTune
	Exp-4: Analysis of Data Scaling

	Conclusion
	Detailed Theoretical Analysis
	Why AU Captures Multi-Answer Tokens?
	Why Top-k LG-density tokens maximizes the sample utility
	Why Self-Distillation Loss for Multi-answer Tokens Can Perform Best?

	Related Work
	EXPERIMENTAL DETAILS
	Baselines
	Evaluation Metrics and Benchmarks
	Implementation Details of TokenTune
	Search Ranges of Hyperparameters

	Overall Performance on Openhermes Dataset
	The Effectiveness on Openhermes Dataset

	Additional Backbone on Tulu3 Dataset
	Overall Performance on LLama-3.2-3B
	Overall Performance on LLama-2-13B

	Detailed Ablation Study
	Ablation Study of TokenTune Components.
	The Effectiveness of Token-level Utility Function
	The Effectiveness of Sample-level Utility Function
	The Effectiveness of MAB Module
	The Effectiveness of Self-Distillation Loss

	Detailed Analysis of Data Scaling
	Detailed Performance of Varying Sample Size
	Detailed Performance of Varying Pool Size

	The Generalization of TokenTune
	Performance on Cross-Architecture Setting
	Performance on Cross-Scale Setting

	Parameter Sensitivity Analysis
	Effect of Thresholds for Token Utility
	Effect of Exploration Rate of MAB.
	Effect of the Number of Clusters/ MAB Arms k.
	Effect of Different Clustering Algorithm of TokenTune.
	Effect of Update Cadence of MAB

	The Design Details of TokenTune
	TokenTune Framework: Core Components
	Token-Level Utility Function
	Sample-Level Utility Function

	Summary of Notation

