

000 TOKENTUNE: DUAL-LEVEL UTILITY ESTIMATION FOR 001 SCALABLE DATA SELECTION IN INSTRUCTION TUNING 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Recent studies indicate that data quality is more important than quantity for fine-
011 tuning of large language models (LLMs). However, existing data selection methods
012 face two key limitations. First, they lack an effective utility estimation function:
013 *sample-level* utility computes the score for entire examples but ignores which to-
014 kens are actually useful, while *token-level* methods drop tokens with multiple valid
015 answers and thus remove valuable learning signals. Second, these methods are
016 inefficient because they require full-dataset inference to compute utilities, making
017 them prohibitively expensive at scale. To address these challenges, we propose
018 TOKENTUNE, an efficient data selection framework for instruction tuning. The key
019 idea of TOKENTUNE is a dual-level utility function that operates at both the token
020 and sample levels. At the token level, it identifies learnable tokens that still pro-
021 vide strong gradient signals and multi-answer tokens that preserve diversity under
022 incomplete supervision. At the sample level, it derives a utility score directly
023 from token signals, *avoiding redundant full-dataset inference*. To further scale,
024 TOKENTUNE employs a two-stage design. In the selection stage, a multi-armed
025 bandit adaptively prioritizes informative clusters, from which high-utility samples
026 are chosen using the sample-level score. In the training stage, the token-level
027 utility guides gated optimization: learnable tokens strengthen supervision, while
028 multi-answer tokens preserve diversity. Extensive experiments across 7 bench-
029 marks show that TOKENTUNE significantly outperforms state-of-the-art methods,
030 improving average performance by +3.8% while using only 5% of the full training
031 data and reducing overall training time by 8-10×.
032

033 1 INTRODUCTION 034

035 Instruction tuning has emerged as a powerful paradigm to improve the performance and alignment of
036 large language models (LLMs) by fine-tuning them on instruction–response pairs (Sun et al., 2024;
037 Li et al., 2024b; Chang et al., 2024). Recent studies show that data quality, rather than sheer quantity,
038 is crucial for substantial performance gains (Zhou et al., 2023; Albalak et al.). This insight has
039 motivated a growing line of work on **data selection methods**, which aim to identify and prioritize
040 informative subsets of training data automatically. So far, most existing approaches have operated
041 at the *sample level* (Li et al., 2024a; Han et al.; Lin et al., 2025), where each instruction–response
042 pair is treated as a single unit with one utility score. However, this **sample-level-only selection**
043 evaluates each example as a whole and ignores variation among its tokens, which *weaken gradient*
044 *signals and waste the limited training budget*. To mitigate this limitation, recent work has shifted
045 toward **token-level-only selection** (Pang et al., 2025), aiming to remove noisy tokens within samples.
046 Token-level filtering cleans up noisy tokens but does not capture whether the remaining content still
047 forms a meaningful and instructive example. As a result, it may mistakenly discard globally valuable
048 samples whose usefulness emerges only when the full context is preserved.
049

050 This predicament leads to our research question: *Can we design a unified framework that unifies the*
051 *strengths of token-level granularity and sample-level context to better select high-quality data?*

052 **Intuitive Dual-Level Selection Approaches.** As shown in Figure 1, there are two intuitive methods
053 to achieve this goal. SAMPLE-TO-TOKEN (S2T) first selects samples and then cleans tokens within the
chosen subset, whereas TOKEN-TO-SAMPLE (T2S) reverses this order by first scoring tokens and then

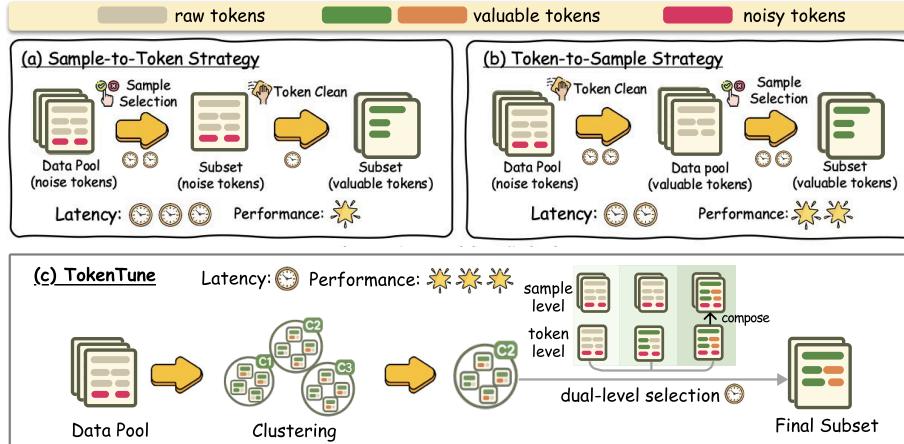


Figure 1: Comparison of different data selection paradigms. (a) Sample-to-Token (S2T) and (b) Token-to-Sample (T2S) represent straightforward combinations of sample- and token-level selection. Both require two-stage estimation, leading to higher latency and suboptimal performance. (c) Our TokenTune achieves dual-level selection without redundant inference by composing sample utilities directly from token signals and leveraging clustering-based scheduling.

aggregating them to estimate sample utility. However, although these strategies can achieve *effective* selection, they still expose several unresolved **challenges** in terms of *efficiency* and *generalization*.

Challenges. **First**, while dual-level scoring improves selection quality, it incurs significant computational overhead since it requires computing utility at both the sample and token levels. This effectively doubles the computational cost per example (**C1**). **Second**, even if redundant scoring is avoided, computing utility for all samples in a large-scale dataset is still prohibitively expensive. We term this issue as *scalability* challenges (**C2**). If we can focus scoring only on a small set of promising samples, we can significantly accelerate the overall selection process without compromising performance. **Third**, once a high-quality subset with valuable tokens is selected, the standard supervised fine-tuning (SFT) paradigm typically applies cross-entropy loss uniformly across all the selected tokens. However, this loss function assumes that each token position has only one correct answer, represented by a one-hot target distribution. In instruction tuning, many output positions admit multiple plausible candidate tokens. Treating such multi-answer tokens as only one correct answer can penalize valid alternatives, causing the model to overfit to single references and reducing its ability to generate diverse outputs. This challenge comprises two key aspects: (1) how to *identify multi-answer tokens* during selection (**C3.1**), and (2) how to *optimize these multi-answer tokens* with a more flexible supervision strategy than hard one-hot cross-entropy (**C3.2**).

Our Methodology. To tackle the above challenges, we propose **TOKENTUNE**, a dual-level framework for efficient and generalizable data selection. At its core, **TOKENTUNE** proposes an effective dual-level utility function operates at both the token and sample level. At the token level, it introduces two complementary indicators to identify learnable tokens and multi-answer tokens (addressing **C3.1**). At the sample level, it derives a sample utility score directly from these token-level signals, avoiding redundant sample scoring process (addressing **C1**). To ensure scalability (**C2**) and generalization (**C3**), **TOKENTUNE** employs a two-stage pipeline built upon this dual-level utility function. In the selection stage, **TOKENTUNE** integrates a multi-armed bandit scheduler that adaptively prioritizes informative clusters, focusing utility scoring process on high-utility subsets of the data pool (addressing **C2**). In the training stage, a gated optimization strategy is proposed to route tokens into distinct optimization objectives. Specifically, **TOKENTUNE** uses cross-entropy loss for learnable tokens to provide strong and reliable supervision that guides downstream task learning, while utilizing self-distillation on multi-answer tokens to maintain output diversity (addressing **C3.2**).

Contributions. This paper makes the following contributions:

- We propose **TOKENTUNE**, which combines a multi-armed bandit scheduler for scalable and informative sample selection with a token-aware gated optimization strategy that routes different token types to distinct training objectives. (Section 2)
- We design a dual-level utility function that jointly operates at the token and sample levels. It leverages token-level indicators (*learning gain* for learnable tokens and *answer uncertainty*

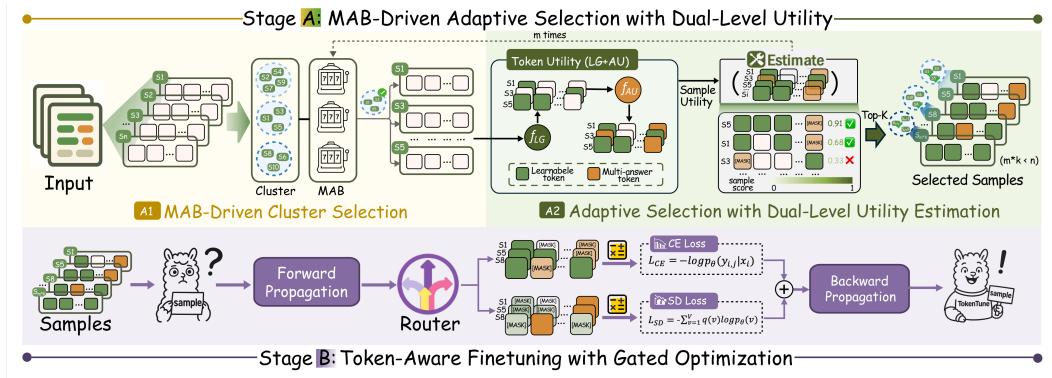


Figure 2: An Overview of TOKENTUNE.

for multi-answer tokens) and derives sample-level utilities directly from these signals, avoiding redundant inference. (Section 2.2)

- We provide theoretical insights of TOKENTUNE, showing why our token-level indicators capture learnable and uncertain tokens, why their aggregation yields effective sample-level selection, and why uncertainty-aware objectives improve training robustness. (Section 3)
- Extensive experiments across diverse benchmarks show that TOKENTUNE significantly outperforms state-of-the-art methods, improving average model performance by approximately 3.8% while using only 5% of the training data and reducing overall training time by 8-10x. (Section 4)

2 TOKENTUNE

2.1 TOKENTUNE OVERVIEW

Core Components of TOKENTUNE. TOKENTUNE has three core components: ① a *dual-level utility function* that jointly captures token- and sample-level utilities by leveraging token indicators and deriving sample-level scores without redundant inference; ② an *adaptive MAB scheduler* that partitions the data pool into clusters and uses a multi-armed bandit to prioritize promising regions for scalable selection; and ③ a *token-aware gated optimization* strategy that differentiates token roles during training, assigning cross-entropy to learnable tokens, self-distillation to multi-answer tokens, and suppressing uninformative tokens.

As shown in Figure 2, TOKENTUNE follows a two-stage process. **Stage 1** adaptively selects high-utility samples by first clustering the pool, then applying the bandit to focus on promising clusters, and finally conducting dual-level utility estimation within them. **Stage 2** finetunes on the selected subset with token-aware gated optimization, ensuring that retained signals—both learnable and multi-answer—contribute effectively to training.

2.2 DUAL-LEVEL UTILITY FUNCTION

TOKENTUNE introduces a dual-level utility function that operates at both the token and sample levels, enabling fine-grained token filtering while simultaneously guiding principled sample selection.

2.2.1 TOKEN-LEVEL UTILITY FUNCTION

Our token-level utility function are designed to answer a simple question: *Given a limited training budget, on which tokens does an additional update yield the largest marginal improvement?*

To this end, we follow two principles: (i) we would like to prioritize tokens whose further training is expected to produce a large reduction in loss *per token*, so that each gradient update is spent where it is most effective. (ii) Among such tokens, we want to distinguish between those that are *under-learned but consistent* (single correct answer) and those that are *inherently multi-answer* (several plausible outputs), since the latter should not be forced into a single hard label.

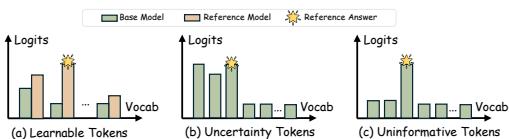


Figure 3: Different Types of Tokens.

To accomplish these principles, it involves two key components: a utility function that quantifies token informativeness, and principled decision boundaries that distinguish among the categories.

Utility Function: Measuring What Matters in Tokens. To quantify token informativeness, we define a utility function with two complementary components, namely *Learning Gain (LG)* and *Answer Uncertainty (AU)*.

Definition 2.1 (1 Learning Gain (LG)). *LG* quantifies how much a token stands to benefit from further training. Formally, given sample x_i with n_i tokens $\{x_{i,1}, \dots, x_{i,n_i}\}$, $y_{i,j}$ the target token at position (i, j) . For a model with parameters θ , we define its token-level loss at (i, j) as

$$\ell_\theta(x_{i,j}) := -\log p_\theta(y_{i,j} | x_i) \quad (1)$$

Given a reference model θ_{ref} and the current model θ_0 , the *learning gain* at token (i, j) is defined as Learning Gain $LG(x_{i,j})$. *LG* measures whether a token remains learnable:

$$LG(x_{i,j}) := \Delta\ell(x_{i,j}) = \ell_0(x_{i,j}) - \ell_{ref}(x_{i,j}) \quad (2)$$

where ℓ_{ref} and ℓ_0 denote token-level losses under the reference and current model. A large $LG(x_{i,j})$ indicates that the token remains difficult and thus provides meaningful gradient signal, whereas a small value suggests it has already been mastered by model.

Definition 2.2 (2 Answer Uncertainty (AU)). Some tokens are inherently ambiguous, admitting multiple plausible answers. To identify such cases, we model predictive uncertainty with an evidential Dirichlet distribution. For a token position (i, j) with target token $x_{i,j}$, let $\mathbf{z}(x_{i,j}) = (z_1(x_{i,j}), \dots, z_K(x_{i,j}))$ denote the pre-softmax logits over the vocabulary produced by the model. We first map logits to non-negative evidence and obtain Dirichlet parameters $\boldsymbol{\alpha}(x_{i,j}) = (\alpha_1(x_{i,j}), \dots, \alpha_K(x_{i,j}))$. We then define the answer uncertainty at (i, j) as the *expected predictive entropy* of the categorical distribution \mathbf{p} drawn from this Dirichlet:

$$AU(x_{i,j}) := \mathbb{E}_{\mathbf{p} \sim \text{Dir}(\boldsymbol{\alpha}(x_{i,j}) + \mathbf{1})} \left[-\sum_{k=1}^K p_k \log p_k \right], \quad (3)$$

where $\mathbf{1}$ is the all-ones vector. Using standard properties of the Dirichlet distribution, this expectation admits the following closed-form expression in terms of the digamma function:

$$\begin{aligned} \alpha_k(x_{i,j}) &= \max(0, z_k(x_{i,j})) + 1, \quad \alpha_0(x_{i,j}) = \sum_{k=1}^K \alpha_k(x_{i,j}), \\ AU(x_{i,j}) &= -\sum_{k=1}^K \frac{\alpha_k(x_{i,j})}{\alpha_0(x_{i,j})} \left(\psi(\alpha_k(x_{i,j}) + 1) - \psi(\alpha_0(x_{i,j}) + 1) \right), \end{aligned} \quad (4)$$

where $\psi(\cdot)$ is the digamma function. A high value of $AU(x_{i,j})$ indicates strong evidence for multiple plausible outputs at position (i, j) , suggesting that such tokens should not be optimized with hard labels. In Appendix A.1 and Appendix J.2, we have explain why AU captures inherently multi-answer tokens. Please refer to this part for more details.

Decision Boundaries: From Token Scores to Token Labels.

$$\hat{y}_{i,j} = \begin{cases} 1, & \text{if } LG(x_{i,j}) > \tau_{LG}, \\ 2, & \text{if } LG(x_{i,j}) \leq \tau_{LG} \text{ and } AU(x_{i,j}) > \tau_{AU}, \\ 0, & \text{otherwise,} \end{cases} \quad (5)$$

where τ_{LG} and τ_{AU} are predefined thresholds. Here, $\hat{y}_{i,j} = 1$ indicates that the token will be routed to a strong supervision objective, $\hat{y}_{i,j} = 2$ indicates routing to a distillation-based objective, and $\hat{y}_{i,j} = 0$ corresponds to suppression during training.

2.2.2 SAMPLE-LEVEL UTILITY FUNCTION

A key challenge in model-aware data selection is how to aggregate fine-grained token-level utilities into a reliable sample-level score. Many existing methods repeatedly run the model over the entire dataset to estimate per-sample gains, which becomes computationally prohibitive at scale.

Our goal is to construct a sample-level utility that (i) reflects how much training on a sample is expected to improve the model *per token*, so that scores are comparable across samples of different

lengths, (ii) is directly induced from the token-level learning gains $LG(x_{i,j})$ rather than introducing a separate heuristic at the sample level, and (iii) requires *no additional* forward passes beyond those already used to compute token losses.

Formally, recall that for sample $x_i = \{x_{i,1}, \dots, x_{i,n_i}\}$ and target tokens $y_{i,j}$, we defined in Eq. 2 the token-level learning gain

$$LG(x_{i,j}) := \Delta\ell(x_{i,j}) = \ell_{\text{ref}}(x_{i,j}) - \ell_0(x_{i,j}),$$

where ℓ_{ref} and ℓ_0 are the token losses under the reference and current model, respectively. For notational convenience, we write

$$\Delta\ell_{i,j} := \Delta\ell(x_{i,j}), \quad b_{i,j} := \ell_0(x_{i,j}) > 0.$$

We first define a *per-token utility density*

$$\rho_{i,j} := \frac{\Delta\ell_{i,j}}{b_{i,j}}, \quad (6)$$

which normalizes the learning gain at (i, j) by its baseline loss. Here $b_{i,j}$ is simply the token-level loss under the current model. Under cross-entropy, this loss is $-\log p_{\theta_0}(y_{i,j} | x_i)$: tokens with large $b_{i,j}$ are those to which the model assigns low probability (i.e., it is still uncertain or often wrong), while tokens with small $b_{i,j}$ are already well mastered. We therefore interpret $b_{i,j}$ as the current *difficulty* of token (i, j) . The density $\rho_{i,j}$ then normalizes the learning gain at (i, j) by its baseline loss. Intuitively, $\rho_{i,j}$ measures how much additional loss reduction we obtain relative to the current difficulty of this token, i.e., the loss improvement per unit difficulty. For any subset of positions $S \subseteq \{1, \dots, n_i\}$, the *sample-level utility function* is defined as the weighted average of the token densities:

$$U_i(S) := \frac{\sum_{j \in S} \Delta\ell_{i,j}}{\sum_{j \in S} b_{i,j}} = \sum_{j \in S} w_{i,j}(S) \rho_{i,j}, \quad w_{i,j}(S) := \frac{b_{i,j}}{\sum_{t \in S} b_{i,t}}, \quad (7)$$

where $w_{i,j}(S)$ is a normalized weight over tokens in S . In practice, we choose S as the set of top- $k\%$ tokens in x_i ranked by $\rho_{i,j}$, and use the resulting $U_i(S)$ as the sample-level score $U_k^{\text{Sample}}(x_i)$ for data selection. This construction reuses the token-level LG signals and does not require any extra inference beyond the losses already computed during training. We provide a more detailed derivation and discussion in Appendix J.3.

2.3 ADAPTIVE DATA SELECTION VIA MAB-INTEGRATED SCHEDULER

To efficiently scale TOKENTUNE to large datasets, we integrate the Multi-Armed Bandit (MAB) algorithm with our dual-level utility estimation. This scheduler adaptively explores clusters while exploiting token- and sample-level signals, ensuring both data quality and diversity. The procedure consists of four steps.

Step 1: MAB-Driven Cluster Selection. We first partition the data pool D into k clusters $\{C_1, \dots, C_k\}$. To avoid evaluating every sample exhaustively, we employ the Upper Confidence Bound (UCB) algorithm to prioritize clusters with the highest expected gain. At iteration t , the cluster score of C_i and the selected cluster are defined as:

$$CS_i(t) = \bar{I}_i(t) + \gamma \sqrt{\frac{2 \ln \left(\sum_{j=1}^k T(C_j, t) \right)}{T(C_i, t)}}, \quad C^*(t) = \arg \max_i CS_i(t), \quad (8)$$

where $\bar{I}_i(t)$ is the average influence score of samples in C_i up to round t , $T(C_i, t)$ is the number of times C_i has been sampled, and γ balances exploration and exploitation.

Step 2: Valuable Token Detection with Token-Level Utility. Within the selected cluster $C^*(t)$, we compute token-level utility scores, including *Learning Gain* (LG) (Eq. 2) and *Answer Uncertainty* (AU) (Eq. 18). Tokens are then categorized as learnable, ambiguous, or uninformative using thresholds (τ_{LG}, τ_{AU}) .

Step 3: Sample Selection with Sample-Level Utility. To connect token-level informativeness with sample-level data valuation, we compute the *Sample Utility Function* (Eq. 7). Only samples with the highest sample utility scores in $C^*(t)$ are selected for training, ensuring that retained samples provide maximal learning signal under a limited computational budget.

270 **Step 4: Cluster Score Updates for Next Round.** Once the subset is selected, we update the average
 271 influence score of cluster C_i based in these samples as:
 272

$$273 \quad \bar{I}_i(t+1) = \frac{\bar{I}_i(t) T(C_i, t) + \sum_{x \in S_i} U_k^{\text{Sample}}(x)}{T(C_i, t) + |S_i|}, \quad (9)$$

274 where S_i is the subset of selected samples from C_i at iteration t . This update refines $CS_i(t)$, allowing
 275 the MAB scheduler to balance exploitation of high-quality clusters with exploration of under-visited
 276 ones in future rounds.
 277

279 2.4 TOKEN-AWARE TRAINING WITH GATED OPTIMIZATION

280 The dual-level utility function not only enables efficient sample selection but also assigns each token
 281 a categorical label $\hat{y}_{i,j}$ (Eq. 5), indicating whether it is learnable ($\hat{y}_{i,j} = 1$), ambiguous ($\hat{y}_{i,j} = 2$),
 282 or uninformative ($\hat{y}_{i,j} = 0$). To exploit this decomposition during training, we propose a gated
 283 optimization strategy that routes tokens into distinct objectives based on their labels. This ensures
 284 that learnable tokens provide strong supervision, ambiguous tokens contribute through uncertainty-
 285 aware distillation, and uninformative tokens are suppressed to avoid noise amplification.
 286

287 **Cross-Entropy Loss for Learnable Tokens.** Tokens labeled as $\hat{y}_{i,j} = 1$ are directly optimized with
 288 standard cross-entropy loss:

$$289 \quad L_{\text{CE}} = \frac{1}{\sum_j \mathbf{1}[\hat{y}_{i,j} = 1]} \sum_{j=1}^{n_i} \mathbf{1}[\hat{y}_{i,j} = 1] (-\log p_{\theta}(y_{i,j} | x_i)), \quad (10)$$

292 ensuring that informative tokens continue to drive effective parameter updates.

293 **Self-Distillation Loss for Ambiguous Tokens.** Tokens labeled as $\hat{y}_{i,j} = 2$ are inherently ambiguous
 294 and thus optimized via masked self-distillation. Using a softened teacher distribution with tempera-
 295 ture $T > 0$. Formally, let $z_{\theta}(x) \in \mathbb{R}^V$ be the logits, $p_{\theta} = \text{softmax}(z_{\theta})$. For token position (i, j) , let
 296 the teacher give a distribution $q_{i,j} \in \Delta^{V-1}$ and the ground-truth token be $Y_{i,j} \sim q_{i,j}$ (multi-answer
 297 tokens correspond to high-entropy $q_{i,j}$). We compute the distillation loss as
 298

$$299 \quad L_{\text{SD}} = \frac{T^2}{\sum_j \mathbf{1}[\hat{y}_{i,j} = 2]} \sum_{j=1}^{n_i} \mathbf{1}[\hat{y}_{i,j} = 2] \left(-\sum_{v=1}^V q(v) \log p_{\theta}(v) + \text{const}(q) \right). \quad (11)$$

302 **Final Training Objective.** Uninformative tokens ($\hat{y}_{i,j} = 0$) are masked out and do not contribute
 303 to optimization. The overall objective combines cross-entropy and self-distillation with a balancing
 304 coefficient $\lambda \in [0, 1]$:

$$305 \quad L = \lambda L_{\text{CE}} + (1 - \lambda) L_{\text{SD}}. \quad (12)$$

3 THEORETICAL ANALYSIS

3.1 WHY AU CAPTURES MULTI-ANSWER TOKENS

- 311 Theorems A.1–A.3 show that when the model has *multiple strong* next-token candidates (evidence
 312 concentrated on $m \geq 2$ tokens and relatively evenly split), AU is provably large.
- 313 Conversely, Propositions A.4–A.5 exclude the main confound: if all candidates are uniformly
 314 weak (small s), AU must be small, and if AU is large, the evidence must be spread across at least
 315 two candidates in non-negligible shares. Together, these results justify the use of AU as a detector
 316 of tokens with **multiple correct answers**.

3.2 WHY TOP- k LG-DENSITY TOKENS MAXIMIZES THE SAMPLE UTILITY

318 We define the top- k sample utility score $U_k^{\text{Sample}}(x_i)$ in Appendix A.6. By Proposition 3.2,
 319 $U_k^{\text{Sample}}(x_i)$ upper-bounds (and typically strictly improves over) the full-token ratio that also counts
 320 tokens with small or negative densities (e.g., high-AU but low-LG positions). Selecting the global
 321 top- K_{samples} by $U_k^{\text{Sample}}(x_i)$ maximizes the expected loss reduction per unit baseline (training budget)
 322 under our additive approximation.

324 **Proposition 3.1** (Trimming low-density tokens increases sample utility). Fix i and a nonempty S .
 325 If there exists $j^* \in S$ with $\rho_{i,j^*} < U_i(S)$, then $U_i(S \setminus \{j^*\}) > U_i(S)$. More generally, for any
 326 $T \subseteq S$ consisting only of indices with $\rho_{i,j} \geq U_i(S)$, one has $U_i(T) \geq U_i(S)$, with strict inequality
 327 if at least one strict inequality $\rho_{i,j} > U_i(S)$ holds in T .

328 *Proof.* Write $A = \sum_{j \in S} \Delta\ell_{i,j}$ and $B = \sum_{j \in S} b_{i,j}$, so $U_i(S) = A/B$. For j^* we have $\Delta\ell_{i,j^*} <$
 329 $(A/B) b_{i,j^*}$. Then

$$331 \quad U_i(S \setminus \{j^*\}) = \frac{A - \Delta\ell_{i,j^*}}{B - b_{i,j^*}} > \frac{A - (A/B) b_{i,j^*}}{B - b_{i,j^*}} = \frac{A}{B} = U_i(S).$$

334 The extension to any T that removes all indices with $\rho_{i,j} < U_i(S)$ follows by repeating argument. \square

335 **Proposition 3.2** (Top- k by density maximizes sample utility at fixed budget). Fix $k \in \{1, \dots, n_i\}$.
 336 Among all $S \subseteq \{1, \dots, n_i\}$ with $|S| = k$, $U_i(S)$ is maximized by taking the k indices with the largest
 337 densities $\rho_{i,j} = \Delta\ell_{i,j}/b_{i,j}$. See [Proposition A.8 in Appendix A](#) for a detailed proof.

338 In particular,

$$339 \quad U_i(\text{top-}k \rho) \geq U_i(\{1, \dots, n_i\}) \quad (\text{the full-token utility}).$$

341 3.3 WHY KNOWLEDGE DISTILLATION LOSS (KD) FOR HIGH AU TOKENS AND CROSS-ENTROPY 342 LOSS (CE) FOR HIGH LG TOKENS CAN PERFORM BEST?

343 Let $z_\theta(x) \in \mathbb{R}^V$ be the logits, $p_\theta = \text{softmax}(z_\theta)$. For token position (i, j) , let the teacher give a
 344 distribution $q_{i,j} \in \Delta^{V-1}$ and the ground-truth token be $Y_{i,j} \sim q_{i,j}$ (multi-answer tokens correspond
 345 to high-entropy $q_{i,j}$).

- 347 • (a) The CE gradient coincides with the KD gradient *in expectation*, but CE introduces additional
 348 sampling noise whose variance grows with how spread out q is, whereas KD has no sampling
 349 noise; see [Lemma A.9](#).
- 350 • (b) With a sufficiently small step size, a *smaller gradient covariance* implies a *larger* expected
 351 decrease in the underlying smooth risk; see [Lemma A.10](#).

352 **Theorem 3.3** (AU-high tokens: KD yields strictly larger expected decrease than CE). Fix (i, j) and
 353 assume $J_\theta \neq 0$. Consider one SGD step on this token with either CE (using a hard label $Y \sim q_{i,j}$)
 354 or KD (using the full $q_{i,j}$). Under [Lemma A.9](#) and [Lemma A.10](#), for any step size $\eta \in (0, \frac{1}{L}]$,

$$356 \quad \mathbb{E}[\Delta R^{\text{KD}}] \geq \mathbb{E}[\Delta R^{\text{CE}}],$$

357 with strict inequality whenever $q_{i,j}$ has positive entropy (i.e., $AU(x_{i,j}) > 0$). Here ΔR^{KD} and
 358 ΔR^{CE} denote the one-step decrease of the same risk R under KD and CE updates, respectively.

359 **Proposition 3.4** (LG-high tokens: CE is never worse than the all-CE baseline). Let E be the set of
 360 LG-high tokens and A the set of AU-high tokens (disjoint). The all-CE baseline optimizes

$$362 \quad \mathcal{L}_{\text{all-CE}}(\theta) = \sum_{(i,j) \in E \cup A} L^{\text{CE}}(p_\theta, Y_{i,j}).$$

364 Here **CE baseline** refers to the all-cross-entropy training scheme: for the given set of tokens, we
 365 always use hard labels and CE, with no KD anywhere.

366 The proposed mix uses CE on E and KD on A :

$$368 \quad \mathcal{L}_{\text{mix}}(\theta) = \sum_{(i,j) \in E} L^{\text{CE}}(p_\theta, Y_{i,j}) + \lambda \sum_{(i,j) \in A} L^{\text{KD}}(p_\theta, q_{i,j}) \quad (\lambda > 0).$$

371 Let $\Delta R^{\text{all-CE}}$ and ΔR^{mix} denote the one-step decrease of the underlying smooth risk $R(\theta)$ under
 372 the all-CE baseline and our mixed scheme, respectively, using the same step size $\eta \in (0, \frac{1}{L}]$. For
 373 tokens in E , both methods use CE and thus have identical per-step behavior. For tokens in A , by
 374 [Theorem 3.3](#), the mixed scheme has no smaller and typically strictly larger expected loss decrease
 375 than the all-CE baseline. Therefore, per SGD step,

$$376 \quad \mathbb{E}[\Delta R^{\text{mix}}] \geq \mathbb{E}[\Delta R^{\text{all-CE}}],$$

377 with strict inequality if A contains at least one positive-entropy (AU-high) token.

378

4 EXPERIMENT

379

4.1 EXPERIMENTAL SETUPS

380 **Datasets.** To investigate data selection across various scenarios and demonstrate the robustness
 381 of TOKENTUNE, we use two distinct data pools: **(1) Tulu3** (Lambert et al., 2024): A large-scale,
 382 real-world SFT dataset presented by Ai2, containing million-level records across a wide variety of
 383 subjects, including mathematics, programming, and user dialogues. **(2) Openhermes2.5:** A dataset
 384 with over 1 million data points, sourced from 16 distinct origins, including MetaMath (Yu et al.,
 385 2023), CamelAI (Li et al., 2023) and others.

386 **Benchmarks and Metrics.** To comprehensively evaluate the efficacy of TOKENTUNE, we evaluate
 387 TOKENTUNE on three leaderboards, including OpenLLM Leaderboards, ALpacaEval and MT-Bench.
 388 For OpenLLM Leaderboards, we adopt seven tasks, including TyDiQA (Clark et al., 2020), Hel-
 389 laSwag (Zellers et al., 2019), ARC-C (Clark et al., 2018), BoolQ (Clark et al., 2019), GSM8K (Cobbe
 390 et al., 2021), HumanEval (Chen et al., 2021) and LogiQA (Liu et al., 2020).

391 **Baselines.** We study several existing state-of-the-art methods as our baselines for data selection,
 392 including FULL DATA, RANDOM SELECTION (Xia et al., 2024b), TOKENCLEAN (Pang et al., 2025),
 393 RHO (Lin et al., 2024), IFD (Li et al., 2024b), INSTAG (Lu et al.), ENTROPY (Xia et al., 2024b),
 394 SELECTIT (Liu et al., 2024a), TOKEN LENGTH (TL) (Xia et al., 2024b), ZIP (Yin et al., 2024),
 395 CAR (Ge et al., 2024), DEITA (Liu et al., 2024b), LEAD (Lin et al., 2025).

396 **Implementation Details of TOKENTUNE.** We evaluate TOKENTUNE using three foundational models
 397 (LLAMA-3.1-8B, Mistral-7B and Qwen2-7B) and utilize Low-Rank Adaption (LoRA) Hu et al.
 398 (2022) for parameter-efficient fine-tuning. The maximum learning rate is set as 2×10^{-5} with a
 399 linear decay schedule, and the batch size is 8. We also fix the maximum input sequence length to
 400 2080. Models are trained for 1 epoch on 4 A800 GPUs.

402

4.2 EXP-1: OVERALL PERFORMANCE

403 We first evaluate the overall performance of TOKENTUNE against state-of-the-art baselines, using the
 404 same budget of 50K samples, corresponding to 5% of the data pool. Results are reported on two
 405 representative datasets: Tulu3 (Table 1) and Openhermes (Table 4), and performance is evaluated on
 406 the OpenLLM Leaderboard, which include eight benchmarks.

407 **Exp-1.1: Overall Performance on Tulu3.** Table 1 reports results on LLaMA3.1-8B and Qwen2-
 408 7B. Overall, TOKENTUNE consistently surpasses strong baselines, confirming its effectiveness.

409 **(1) Consistent Effectiveness across LLMs.** TOKENTUNE achieves robust improvements across dif-
 410 ferent architectures. On LLaMA3.1-8B, it reaches 60.28, outperforming TOKENTUNE (58.27) and
 411 Deita (57.51) by +2.01 and +2.77, respectively. A similar trend holds on Qwen2-7B, where To-
 412 KENTUNE obtains 59.67, again surpassing both sample- and token-level baselines. These results
 413 demonstrate that TOKENTUNE consistently delivers gains regardless of backbone choice.

414 **(2) Small Data, Big Gains.** Impressively, TOKENTUNE achieves these results using only 5% of the
 415 data pool, even outperforming the FULL DATA baseline (59.65). This challenges the assumption
 416 that more data is always better, showing instead that high-quality selection can unlock superior
 417 performance with far smaller subsets.

418 **(3) Superior to State-of-the-art Baselines.** Although some baselines show strengths on specific tasks
 419 (e.g., TokenClean on TyDiQA, Deita on BoolQ), they fall short on reasoning-heavy benchmarks
 420 such as GSM8K. In contrast, TOKENTUNE maintains consistently strong results across all tasks, with
 421 notable improvements of +3.45 on GSM8K and +2.77 on TyDiQA. This confirms the robustness and
 422 adaptability of TOKENTUNE in selecting high-utility data across diverse evaluation settings.

423

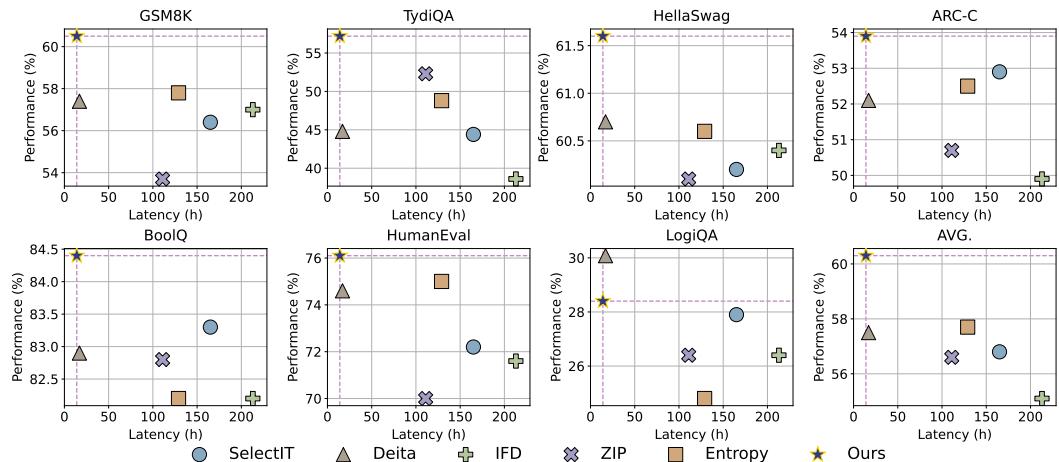
4.3 EXP-2: THE EFFICIENCY OF TOKENTUNE

424 We evaluate the efficiency of TOKENTUNE compared to baseline methods, with the results primarily
 425 shown in Figure 4 and Figure 5. TOKENTUNE significantly reduces both the inference and training
 426 times, thanks to a dual-level data selection strategy and the use of the MAB scheduler.

427 **Exp-2.1: Performance vs. Latency.** We compare performance and inference latency across
 428 different methods, as shown in Figure 4. TOKENTUNE (marked with a star) consistently achieves
 429 the best performance-latency trade-off, occupying the upper-left region of the plot. In addition,
 430 TOKENTUNE delivers up to **5x faster inference time** compared to the baselines while maintaining
 431 top performance on all the benchmarks. This confirms that TOKENTUNE not only outperforms

432
433 Table 1: Comparison of performance across different benchmarks on the Tulu3 dataset. Green
434 highlights the remarkable improvements over the Random baseline.

Type	Method	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	Avg.
Llama3.1-8B									
Base	Base	22.80	59.92	50.82	82.18	50.31	69.28	26.51	51.69
	Full Data	54.31	58.57	49.18	83.48	66.08	80.34	25.58	59.65
	Random	46.96	60.14	51.34	82.80	51.98	73.75	27.91	56.41
Token-Level	TokenClean	52.91	61.82	54.00	82.18	51.00	77.31	28.22	58.21
	RHO	48.02	60.09	53.61	81.04	51.00	73.42	26.67	56.26
Sample-Level	IFD	38.55	60.35	49.87	82.21	57.04	71.60	26.36	55.14
	ZIP	52.32	60.11	50.65	82.83	53.83	70.02	24.81	56.37
	Entropy	45.72	60.35	49.87	82.21	57.04	75.02	26.36	56.65
	Instag	44.97	60.66	50.39	84.34	58.80	75.50	26.67	57.33
	CaR	46.01	59.97	50.73	83.91	54.06	73.98	27.44	56.59
	TL	48.76	60.53	50.39	82.52	51.99	73.12	27.44	56.39
	SelectIT	44.44	60.21	52.89	83.29	56.37	72.19	27.94	56.76
	Deita	44.81	60.74	52.11	82.86	57.35	74.60	30.08	57.51
Dual-Level	TOKENTUNE (Ours)	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
Qwen2-7B									
Base	Random	48.18	57.02	49.01	83.13	76.88	75.43	31.32	60.14
Token-Level	TokenClean	45.21	57.01	52.88	84.65	76.57	77.48	31.12	60.70
	RHO	44.18	56.82	50.07	81.89	75.42	76.94	30.01	59.33
Sample-Level	ZIP	50.31	59.02	48.49	85.21	76.03	75.27	30.85	60.74
	Entropy	50.01	57.43	45.14	83.84	76.92	74.18	29.96	59.64
	Instag	50.99	58.99	49.44	84.31	76.80	75.98	27.75	60.61
	CaR	50.33	58.55	46.17	83.01	77.87	75.31	30.70	60.28
	TL	43.84	59.04	43.76	83.60	77.11	76.14	31.01	59.21
	SelectIT	47.18	58.02	44.75	82.18	76.17	74.62	30.71	59.09
	Deita	46.72	59.17	49.01	83.76	78.25	77.01	33.02	60.99
Dual-Level	TOKENTUNE (Ours)	52.42	59.39	52.80	85.45	80.63	77.44	33.80	63.13



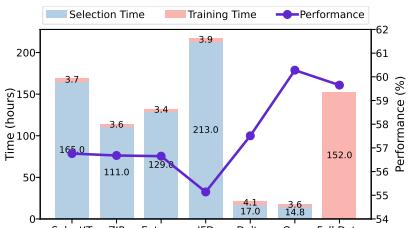
462
463 Figure 4: Comparison of Performance (y-axis) and Latency (x-axis) on different selection methods.
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480 traditional methods in terms of model performance but also significantly reduces inference latency,
481 making it a highly efficient solution for data selection and instruction tuning.

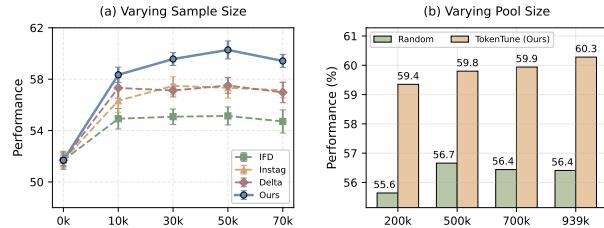
482 **Exp-2.2: Analysis of Latency Composition.** We evaluate the latency composition of TOKENTUNE
483 by comparing inference time and training time across different data selection methods. The results,
484 shown in Figure 5, reveal that TOKENTUNE reduces both inference and training times significantly,
485 outperforming baseline methods. This demonstrates that TOKENTUNE effectively balances compu-
486 tational efficiency and model performance, making it a scalable solution for large-scale instruction
487 tuning tasks.

486
 487
 488
 489
 490 Table 2: Ablation study of TOKENTUNE across multiple benchmarks. “SD” denotes self-distillation
 491 loss, “TokUtility” denotes token-level influence score, “SamUtility” denotes sample-level influence
 492 score, and “MAB” denotes multi-armed bandit based cluster selection.
 493
 494
 495

Method	OpenLLM Leaderboards							Avg.
	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
TOKENTUNE (Ours)	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
w/o SD	58.43	61.17	52.37	82.98	56.13	75.65	27.31	59.06
w/o MAB	56.95	61.04	54.09	84.16	52.53	75.79	24.19	58.39
w/o TokUtility	53.79	59.77	48.66	83.57	54.82	74.23	26.67	57.36
w/o SamUtility	57.18	60.07	51.97	82.26	55.78	74.93	27.08	58.47



504
 505 Figure 5: Inference Time (Full Data)
 506 and Training Time (Selected Data) per
 507 Iteration across Different Methods.



508
 509 Figure 6: Avg Performance by Varying Sample Size and
 510 Pool Size.

511 4.4 EXP-3: ABLATION STUDY OF TOKENTUNE

512 We investigate the effect of each component in TOKENTUNE, with results shown in Table 2 and
 513 Figure 7. Removing any module leads to a clear performance drop: eliminating the token-level
 514 utility causes the largest degradation (~2.9), while excluding the sample-level utility, MAB scheduler,
 515 or self-distillation also results in noticeable declines. These results confirm that each component
 516 contributes to the overall effectiveness of TOKENTUNE, and their integration is essential for achieving
 517 robust and consistent performance. [More detailed results are provided in the Appendix F](#).

518 4.5 EXP-4: ANALYSIS OF DATA SCALING

519 **Exp-4.1: Effect of Sample Size on Performance.** To examine the impact of data selection strategies
 520 on data scaling effectiveness, we conduct experiments by selecting samples with varying budgets. As
 521 illustrated in Figure 6, TOKENTUNE consistently presents higher average performance than alternative
 522 selection methods across all data quantities, achieving peak performance with only 50K samples.
 523 Notably, we observe a non-linear performance curve: gains taper and eventually decline beyond
 524 a certain data threshold, which reveals a crucial insight: “alignment-suitable data” is inherently
 525 limited. This finding challenges the conventional wisdom that more data automatically yields better
 526 results, underscoring the critical importance of strategic data selection over mere quantity. Please
 527 refer to Appendix ?? for more details.

528 **Exp-4.2: Effect of Pool Size on Performance.** We further examine how enlarging the candidate data
 529 pool affects the effectiveness of different selection strategies. As shown in Figure 6 (b), TOKENTUNE
 530 consistently achieves higher performance than the random baseline across all pool sizes. Notably, its
 531 advantage becomes more pronounced as the pool expands: when moving from 200k to nearly 1M
 532 candidates, TOKENTUNE steadily improves and reaches the best overall scores, while random selection
 533 shows only marginal gains and even plateaus. This demonstrates that TOKENTUNE can effectively
 534 exploit larger pools to identify high-utility samples, confirming its scalability and robustness under
 535 data scaling. [More detailed results are provided in the Appendix G.2](#).

536 5 CONCLUSION

537 In this paper, we present TOKENTUNE, a dual-level data selection framework for instruction tuning that
 538 jointly considers token- and sample-level utilities. By capturing both learnable and uncertain tokens,
 539 TOKENTUNE constructs an efficient utility function that avoids redundant inference while preserving
 540 diversity. The framework further integrates multi-armed bandit-based cluster selection with token-
 541 aware gated optimization, enabling scalable and effective training on large datasets. Experimental
 542 results demonstrate that TOKENTUNE consistently outperforms state-of-the-art methods, achieving
 543 superior model performance with substantially less data and reduced training time.

540 **LLM USAGE**
541542 LLMs are used only for auxiliary purposes, such as language refinement, minor code debugging,
543 synthetic data construction, and experiment evaluation support. They do not contribute to the research
544 design, methodology, or core writing of the paper. Accordingly, LLM usage does not constitute a
545 substantive contribution to the intellectual content of this work.546
547 **ETHICS STATEMENT**
548549 All experiments in this paper are conducted on publicly available datasets, which contain no private,
550 personal, or sensitive information. The proposed framework focuses on data selection and optimization
551 strategies for instruction tuning, and does not involve generating or handling harmful or offensive
552 content. By improving the efficiency and robustness of large-scale training, our method provides
553 a general methodology that can be broadly applied to various language model applications without
554 raising additional ethical risks. Nevertheless, as with all data-driven approaches, potential biases
555 in the underlying datasets may propagate to downstream models, and careful auditing of training
556 corpora remains an important future direction.557
558 **REPRODUCIBILITY STATEMENT**
559560 We have made significant efforts to ensure the reproducibility of our work. The full implementa-
561 tion of our proposed method, including model training, evaluation scripts, and instructions
562 for data construction, is publicly available at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/TokenTune-D201/)
563 TokenTune-D201/. All experiments can be reproduced by following the provided scripts with
564 the described hyperparameters. Details of implementation are included in the supplementary mate-
565 rials.566
567 **REFERENCES**
568569 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
570 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
571 for language models. *Transactions on Machine Learning Research*.572 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
573 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM*
574 *Transactions on Intelligent Systems and Technology*, 15(3):1–45, 2024.575 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
576 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
577 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.578 Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
579 Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
580 gpt? Ilm-scale data valuation with influence functions. *arXiv preprint arXiv:2405.13954*, 2024.581 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
582 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
583 *arXiv:1905.10044*, 2019.584 Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
585 and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
586 typologically diverse languages. *Transactions of the Association for Computational Linguistics*,
587 8:454–470, 2020.588 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
589 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
590 *arXiv preprint arXiv:1803.05457*, 2018.

594 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 595 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
 596 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

597

598 Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang,
 599 Boxing Chen, Hao Yang, et al. Clustering and ranking: Diversity-preserved instruction selection
 600 through expert-aligned quality estimation. *arXiv preprint arXiv:2402.18191*, 2024.

601

602 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
 603 In *International conference on machine learning*, pp. 2242–2251. PMLR, 2019.

604

605 Jindong Han, Hao Liu, Jun Fang, Naiqiang Tan, and Hui Xiong. Automatic instruction data se-
 606 lection for large language models via uncertainty-aware influence maximization. In *THE WEB
 607 CONFERENCE 2025*.

608

609 LIU Hanmo, DI Shimin, LI Haoyang, LI Shuangyin, CHEN Lei, and ZHOU Xiaofang. Effective
 610 data selection and replay for unsupervised continual learning. In *2024 IEEE 40th International
 Conference on Data Engineering (ICDE)*, pp. 1449–1463. IEEE, 2024.

611

612 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 613 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

614

615 Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
 616 in lora-tuned llms and diffusion models. In *The Twelfth International Conference on Learning
 Representations*.

617

618 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 619 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 620 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

621

622 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
 623 municative agents for "mind" exploration of large language model society. *Advances in Neural
 Information Processing Systems*, 36:51991–52008, 2023.

624

625 Ming Li, Yong Zhang, Shuai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
 626 Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. In *Proceedings
 627 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 Papers)*, pp. 14255–14273, 2024a.

628

629 Ming Li, Yong Zhang, Zhitao Li, Juhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
 630 Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
 631 selection for instruction tuning. In *Proceedings of the 2024 Conference of the North Ameri-
 632 can Chapter of the Association for Computational Linguistics: Human Language Technologies
 633 (Volume 1: Long Papers)*, pp. 7595–7628, 2024b.

634

635 Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao
 636 Chen, Junhao Liu, Tongliang Liu, et al. One-shot learning as instruction data prospector for large
 637 language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 638 Linguistics (Volume 1: Long Papers)*, pp. 4586–4601, 2024c.

639

640 Xiaotian Lin, Yanlin Qi, Yizhang Zhu, Themis Palpanas, Chengliang Chai, Nan Tang, and Yuyu
 641 Luo. LEAD: iterative data selection for efficient LLM instruction tuning. *CorR*, abs/2505.07437,
 2025.

642

643 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
 644 Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. *Advances in
 645 Neural Information Processing Systems*, 37:29029–29063, 2024.

646

647 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
 648 challenge dataset for machine reading comprehension with logical reasoning. *arXiv preprint
 649 arXiv:2007.08124*, 2020.

648 Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu, and Min Zhang. Se-
 649 lectit: Selective instruction tuning for large language models via uncertainty-aware self-reflection.
 650 *arXiv preprint arXiv:2402.16705*, 2024a.

651 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
 652 alignment? a comprehensive study of automatic data selection in instruction tuning. In *The Twelfth
 653 International Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=BTKAeLqLMw>.

654 Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
 655 Jingren Zhou. #instag: Instruction tagging for analyzing supervised fine-tuning of large language
 656 models. In *The Twelfth International Conference on Learning Representations*.

657 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
 658 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint
 659 arXiv:2309.04564*, 2023.

660 Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao Cheng, Chen Qian, and Yang Liu. Token clean-
 661 ing: Fine-grained data selection for llm supervised fine-tuning. *arXiv preprint arXiv:2502.01968*,
 662 2025.

663 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 664 approach. In *International Conference on Learning Representations*, 2018.

665 Wangtao Sun, Haotian Xu, Xuanqing Yu, Pei Chen, Shizhu He, Jun Zhao, and Kang Liu. Itd: Large
 666 language models can teach themselves induction through deduction. In *Proceedings of the 62nd
 667 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 668 2719–2731, 2024.

669 Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou. Self-evolved
 670 diverse data sampling for efficient instruction tuning. *arXiv preprint arXiv:2311.08182*, 2023.

671 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 672 Selecting influential data for targeted instruction tuning. *arXiv preprint arXiv:2402.04333*, 2024a.

673 Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and Junyang Lin.
 674 Rethinking data selection at scale: Random selection is almost all you need. *arXiv preprint
 675 arXiv:2410.09335*, 2024b.

676 Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
 677 Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
 678 performance. *arXiv preprint arXiv:2407.06645*, 2024.

679 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
 680 Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
 681 questions for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

682 Simon Yu, Liangyu Chen, Sara Ahmadian, and Marzieh Fadaee. Diversify and conquer: Diversity-
 683 centric data selection with iterative refinement. *arXiv preprint arXiv:2409.11378*, 2024.

684 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 685 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

686 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 687 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information
 688 Processing Systems*, 36:55006–55021, 2023.

689

690

691

692

693

694

695

696

697

698

699

700

701

702 Appendix Contents

704 Appendix A. Detailed Theoretical Analysis	15
705 A.1 why SFT with the Critical Token Outperforms the Full Tokens?	15
706 A.2 Why Top-k LG-density Tokens Maximizes the Sample utility	16
707 A.3 Why Self-Distillation Loss for Multi-answer Tokens Can Perform Best?	17
709 Appendix B. Related Work	18
710 Appendix C. Experimental Details	18
711 C.1 Baselines	18
712 C.2 Evaluation Metrics and Benchmarks	19
713 C.3 Implementation Details of TOKENTUNE	19
714 C.4 Search Ranges of Hyperparameters	19
716 Appendix D. Overall Performance on Openhermes Dataset	20
717 D.1 The Effectiveness on Openhermes Dataset	20
719 Appendix E. Additional Backbone on Tulu3 Dataset	20
720 E.1 Overall Performance on Llama-3.2-3B	20
721 E.2 Overall Performance on Llama-2-13B	21
723 Appendix F. Detailed Ablation Study of Design Space	21
724 F.1 Ablation Study of TOKENTUNE Components	21
725 F.2 The Effectiveness of Token-level Utility Function	22
726 F.3 The Effectiveness of Sample-level Utility Function	22
727 F.4 The Effectiveness of MAB Module	22
728 F.5 The Effectiveness of Self-Distillation Loss	23
729 Appendix G. Detailed Analysis of Data Scaling	23
730 G.1 Effect of Sample Size on Performance	23
731 G.2 Effect of Pool Size on Performance	24
733 Appendix H. The Generalization of TOKENTUNE	25
734 H.1 Performance on Cross-Architecture Setting	25
735 H.2 Performance on Cross-Scale Setting	25
737 Appendix I. Parameter Senthitivity Analysis	26
738 I.1 Effect of Thresholds for Token Utility	26
739 I.2 Effect of Exploration Rate γ of MAB	26
740 I.3 Effect of the Number of Clusters k (MAB Arms)	26
741 I.4 Effect of Different Clustering Algorithm of TOKENTUNE	26
743 Appendix J. The Design Deitals of TOKENTUNE	27
744 J.1 TOKENTUNE Framework	27
745 J.2 Token-Level Utility Function	28
746 J.3 Sample-Level Function	28
747 Appendix K. Summary of Notation	30

756 A DETAILED THEORETICAL ANALYSIS
757

758 **AU Score** We recall the definition of the AU score in a compact form. For a token position (i, j)
759 with target token $x_{i,j}$, let $\alpha(x_{i,j}) = (\alpha_1(x_{i,j}), \dots, \alpha_K(x_{i,j}))$ denote the Dirichlet concentration
760 parameters induced from the logits (see Eq. equation 18 in the main text), and write $\alpha_0(x_{i,j}) :=$
761 $\sum_{k=1}^K \alpha_k(x_{i,j})$. The answer uncertainty at (i, j) is defined as the expected predictive entropy of a
762 categorical parameter \mathbf{p} drawn from this Dirichlet:
763

$$764 \text{AU}(x_{i,j}) = \mathbb{E}_{\mathbf{p} \sim \text{Dir}(\alpha(x_{i,j}))} \left[-\sum_{k=1}^K p_k \log p_k \right] = -\sum_{k=1}^K \frac{\alpha_k(x_{i,j})}{\alpha_0(x_{i,j})} \left(\psi(\alpha_k(x_{i,j})+1) - \psi(\alpha_0(x_{i,j})+1) \right),$$

765 where $\psi(\cdot)$ is the digamma function. For brevity, in the following we drop the explicit dependence
766 on (i, j) and write α_k and α_0 when no confusion arises.
767

768 For convenience write the total evidence $s := \alpha_0 > 0$ and the evidence shares $\beta_k := \alpha_k/\alpha_0$ (so
769 $\sum_k \beta_k = 1$). Then equation 17 is equivalently
770

$$772 \text{AU}(s, \beta) = \psi(s+1) - \sum_{k=1}^K \beta_k \psi(s\beta_k + 1). \quad (13)$$

773 A.1 WHY AU CAPTURES MULTI-ANSWER TOKENS?
774775 **Proof 1: High AU Implies the token has multiple correct answers**

776 • Theorems A.1–A.3 show that when the model has *multiple strong* next-token candidates (evidence
777 concentrated on $m \geq 2$ tokens and relatively evenly split), AU is provably large.
778 • Conversely, Propositions A.4–A.5 exclude the main confound: if all candidates are uniformly
779 weak (small s), AU must be small, and if AU is large, the evidence must be spread across at least
780 two candidates in non-negligible shares. Together, these results justify the use of AU as a detector
781 of tokens with **multiple correct answers**.
782

783 **Theorem A.1** (Sufficiency I: more strong candidates \Rightarrow larger AU). *Fix $s > 0$. Suppose the evidence
784 is concentrated on a set S of size $m \geq 1$ and is evenly split: $\alpha_k = s/m$ for $k \in S$ and $\alpha_k = 0$
785 otherwise. Then*

$$786 \text{AU}_m = \psi(s+1) - \psi\left(\frac{s}{m} + 1\right),$$

787 which is strictly increasing in m , with $\text{AU}_1 = 0$ and $\text{AU}_m > 0$ for $m \geq 2$.
788

789 *Proof.* Under the hypothesis, $\beta_k = 1/m$ for $k \in S$ and 0 otherwise, and equation 13 gives the stated
790 formula. Since ψ is strictly increasing on $(0, \infty)$, $\psi(s/m+1)$ strictly decreases with m , hence AU_m
791 strictly increases. The boundary values follow directly. \square

792 **Lemma A.2** (Strict concavity of the AU objective on the simplex interior). *Fix $s > 0$ and let
793 $F(\beta) := \text{AU}(s, \beta)$ restricted to $\sum_k \beta_k = 1$ and $\beta_k > 0$. Then F is strictly concave on the interior
794 of the simplex. In particular, the only stationary point is where all active components are equal.*

795 *Proof.* From equation 13, $F(\beta) = \psi(s+1) - \sum_k \phi(\beta_k)$ with $\phi(x) := x \psi(sx+1)$. Thus
796 $F''_{kk} = -\phi''(\beta_k)$ and $F''_{ij} = 0$ for $i \neq j$. Using polygamma notation $\psi^{(m)}$, we compute
797

$$801 \phi'(x) = \psi(sx+1) + sx \psi^{(1)}(sx+1), \quad \phi''(x) = 2s \psi^{(1)}(sx+1) + s^2 x \psi^{(2)}(sx+1).$$

802 For $x > 0$ we have $\psi^{(1)}(t) = \sum_{n=0}^{\infty} \frac{1}{(t+n)^2} > 0$ and $\psi^{(2)}(t) = -2 \sum_{n=0}^{\infty} \frac{1}{(t+n)^3} < 0$. Therefore
803

$$804 2\psi^{(1)}(t) + t \psi^{(2)}(t) = 2 \sum_{n=0}^{\infty} \left(\frac{1}{(t+n)^2} - \frac{t}{(t+n)^3} \right) = 2 \sum_{n=1}^{\infty} \frac{n}{(t+n)^3} > 0,$$

805 so $\phi''(x) > 0$ and hence $F''_{kk} < 0$, proving strict concavity. Stationarity under the linear constraint
806 $\sum_k \beta_k = 1$ yields $\phi'(\beta_k) = \lambda$ for all active k , and since ϕ' is strictly increasing, all active β_k must
807 be equal. \square

810 **Theorem A.3** (Sufficiency II: at fixed support size, AU is maximized by even split). *Fix $s > 0$ and an integer $m \geq 1$. Among all β supported on exactly m indices, $\text{AU}(s, \beta)$ attains its unique maximum at the uniform point $\beta_k = 1/m$ on the active set, with value $\psi(s+1) - \psi(s/m+1)$.*

814 This means: If exactly m candidates are truly active, the best way (for AU) is to split evidence evenly
815 across them; any imbalance lowers AU, and dropping to fewer than m active candidates also lowers
816 AU.

818 *Proof.* By Lemma A.2, F is strictly concave on the simplex interior, so any interior stationary point
819 is the unique global maximizer on that face. Lemma A.2 also shows all active coordinates must be
820 equal at a stationary point. Evaluating at $\beta_k = 1/m$ gives the value in the claim. On the boundary
821 (some $\beta_k \rightarrow 0$) the support size drops to $m' < m$, and Theorem A.1 then implies a strictly smaller
822 maximum. \square

823 **Proposition A.4** (Necessary A: low total evidence cannot yield large AU). *Uniformly over β ,*
824 $\text{AU}(s, \beta) = O(s)$ as $s \rightarrow 0$. *More precisely,*

$$826 \quad \text{AU}(s, \beta) = \psi'(1) s \left(1 - \sum_k \beta_k^2 \right) + O(s^2) \leq \frac{\pi^2}{6} s + O(s^2).$$

828 Hence, if $\text{AU} \geq \eta > 0$ then necessarily $s = \alpha_0 \geq \frac{6}{\pi^2} \eta (1 + o(1))$ as $\eta \downarrow 0$.

831 *Proof.* Expand $\psi(1 + \varepsilon) = \psi(1) + \psi'(1)\varepsilon + O(\varepsilon^2)$ in equation 13 with $\varepsilon = s$ and $\varepsilon = s\beta_k$,
832 respectively; $\psi(1)$ cancels and $\psi'(1) = \pi^2/6$. \square

833 **Proposition A.5** (Necessary B: large AU forces dispersion across candidates). *For any $s > 0$ and*
834 β ,

$$835 \quad \text{AU}(s, \beta) \geq \psi(s+1) - \psi\left(s \sum_k \beta_k^2 + 1\right).$$

836 Consequently, if $\text{AU} \geq \eta > 0$, then

$$838 \quad \sum_k \beta_k^2 \leq r(s, \eta) := \frac{\psi^{-1}(\psi(s+1) - \eta) - 1}{s},$$

841 and in particular the number of non-negligible candidates satisfies $\{k : \beta_k > 0\} \geq \lceil 1/r(s, \eta) \rceil$.

843 *Proof.* Since ψ is concave on $(0, \infty)$,

$$846 \quad \sum_{k=1}^K \beta_k \psi(s\beta_k + 1) \stackrel{\text{(Jensen, concave } \psi)}{\leq} \psi\left(\sum_{k=1}^K \beta_k (s\beta_k + 1)\right) \quad (14)$$

$$849 \quad = \psi\left(s \sum_{k=1}^K \beta_k^2 + \sum_{k=1}^K \beta_k\right) = \psi\left(s \sum_{k=1}^K \beta_k^2 + 1\right). \quad (15)$$

852 Substitute into equation 13 to obtain the lower bound.

854 The stated upper bound on $\sum_k \beta_k^2$ then follows from the monotonicity of ψ and its inverse. Finally,
855 by Cauchy–Schwarz, $\sum_k \beta_k^2 \geq 1/m$ if at most m components are nonzero, yielding the cardinality
856 claim. \square

858 A.2 WHY TOP-K LG-DENSITY TOKENS MAXIMIZES THE SAMPLE UTILITY

860 **Definition A.6** (Top-k Sample Utility Score). For each sample x_i , compute per-token LG $\Delta\ell_{i,j}$ and
861 baseline $b_{i,j}$, form densities $\rho_{i,j} = \Delta\ell_{i,j}/b_{i,j}$ in Proposition 3.2, and define

$$862 \quad U_k^{\text{Sample}}(x_i) := \frac{\sum_{j \in \text{top-}k(\rho)} \Delta\ell_{i,j}}{\sum_{j \in \text{top-}k(\rho)} b_{i,j}} = \frac{\sum_{j \in \text{top-}k(\rho)} (\ell_{\text{ref}}(x_{i,j}) - \ell_0(x_{i,j}))}{\sum_{j \in \text{top-}k(\rho)} \ell_0(x_{i,j})}.$$

864 By Proposition A.8, $U_k^{\text{Sample}}(x_i)$ upper-bounds (and typically strictly improves over) the full-token
 865 ratio that also counts tokens with small or negative densities (e.g., high-AU but low-LG positions).
 866 Selecting the global top- K_{samples} by U_k^{Sample} maximizes the expected loss reduction per unit baseline
 867 (training budget) under the additive approximation.

868 **Proposition A.7** (Trimming low-density tokens increases sample utility). *Fix i and a nonempty S .
 869 If there exists $j^* \in S$ with $\rho_{i,j^*} < U_i(S)$, then $U_i(S \setminus \{j^*\}) > U_i(S)$. More generally, for any
 870 $T \subseteq S$ consisting only of indices with $\rho_{i,j} \geq U_i(S)$, one has $U_i(T) \geq U_i(S)$, with strict inequality
 871 if at least one strict inequality $\rho_{i,j} > U_i(S)$ holds in T .*

872 *Proof.* Write $A = \sum_{j \in S} \Delta\ell_{i,j}$ and $B = \sum_{j \in S} b_{i,j}$, so $U_i(S) = A/B$. For j^* we have $\Delta\ell_{i,j^*} < (A/B) b_{i,j^*}$. Then

$$U_i(S \setminus \{j^*\}) = \frac{A - \Delta\ell_{i,j^*}}{B - b_{i,j^*}} > \frac{A - (A/B) b_{i,j^*}}{B - b_{i,j^*}} = \frac{A}{B} = U_i(S).$$

873 The extension to any T that removes all indices with $\rho_{i,j} < U_i(S)$ follows by repeating the argument.
 874 \square

875 **Proposition A.8** (Top- k by density maximizes sample utility at fixed budget). *Fix $k \in \{1, \dots, n_i\}$.
 876 Among all $S \subseteq \{1, \dots, n_i\}$ with $|S| = k$, $U_i(S)$ is maximized by taking the k indices with the largest
 877 densities $\rho_{i,j} = \Delta\ell_{i,j}/b_{i,j}$. In particular,*

$$U_i(\text{top-}k \rho) \geq U_i(\{1, \dots, n_i\}) \quad (\text{the full-token utility}).$$

878 *Proof.* If S is not the top- k set, there exists $p \in S$ and $q \notin S$ with $\rho_{i,p} < \rho_{i,q}$. Consider
 879 $S' = (S \setminus \{p\}) \cup \{q\}$. Since $U_i(S)$ is a weighted average of $\{\rho_{i,j}\}_{j \in S}$, we have $U_i(S) \leq$
 880 $\max_{j \in S} \rho_{i,j} < \rho_{i,q}$. Replacing p by q strictly increases the average; iterating yields the top- k set.
 881 The inequality $U_i(\text{top-}k) \geq U_i(\text{full})$ follows from Proposition A.7 by trimming all indices with
 882 $\rho_{i,j} < U_i(\text{full})$. \square

883 A.3 WHY SELF-DISTILLATION LOSS FOR MULTI-ANSWER TOKENS CAN PERFORM BEST?

884 Let $z_\theta(x) \in \mathbb{R}^V$ be the logits, $p_\theta = \text{softmax}(z_\theta)$. For token position (i, j) , let the teacher give a
 885 distribution $q_{i,j} \in \Delta^{V-1}$ and the ground-truth token be $Y_{i,j} \sim q_{i,j}$ (multi-answer tokens correspond
 886 to high-entropy $q_{i,j}$). Define the two losses:

$$887 \underbrace{L^{\text{CE}}(p_\theta, Y)}_{\text{cross-entropy}} = -\log p_\theta(Y), \quad \underbrace{L^{\text{KD}}(p_\theta, q)}_{\text{self-distillation}} = \text{KL}(q \parallel p_\theta) = -\sum_{v=1}^V q(v) \log p_\theta(v) + \text{const}(q).$$

888 **Gradient (w.r.t. logits).** For softmax, $\nabla_z L^{\text{CE}}(p_\theta, Y) = p_\theta - e_Y$, $\nabla_z L^{\text{KD}}(p_\theta, q) = p_\theta - q$, where
 889 e_Y is the one-hot of Y . For model parameters, $\nabla_\theta L = J_\theta^\top \nabla_z L$, $J_\theta = \frac{\partial z_\theta}{\partial \theta}$.

890 Analysis

891 • (a) CE’s gradient equals KD’s gradient *in expectation*, but CE adds extra noise that grows with
 892 how spread-out q is; KD has no sampling noise. see details in Lemma A.9
 893 • (b) With a small step size, *smaller gradient covariance* means a *larger* expected decrease. See
 894 details in Lemma A.10

895 **Lemma A.9** (Unbiasedness and variance of per-step gradients). *Conditioned on x and q , for the
 896 random label $Y \sim q$,*

$$897 \mathbb{E}[\nabla_\theta L^{\text{CE}}(p_\theta, Y)] = \nabla_\theta L^{\text{KD}}(p_\theta, q), \quad \text{Cov}[\nabla_\theta L^{\text{CE}}(p_\theta, Y)] = J_\theta^\top (\text{Diag}(q) - qq^\top) J_\theta \succeq 0.$$

898 *In particular, the covariance is 0 iff q is a delta (entropy = 0).*

899 **Lemma A.10** (One-step expected progress under L -smooth risk). *Let $R(\theta)$ be an L -smooth objective
 900 and update $\theta^+ = \theta - \eta g$, where g is an unbiased gradient estimator of $\nabla R(\theta)$. Then*

$$901 \mathbb{E}[R(\theta^+)] \leq R(\theta) - \eta \|\nabla R(\theta)\|^2 + \frac{L\eta^2}{2} \left(\|\nabla R(\theta)\|^2 + \text{Tr}(\text{Cov}[g]) \right).$$

902 *Hence for a fixed small step η , smaller gradient covariance yields larger expected decrease.*

918 **Theorem A.11** (AU-high tokens: KD yields strictly larger expected decrease than CE). *Fix (i, j) and*
 919 *assume $J_\theta \neq 0$. Consider one SGD step on this token with either CE (using a hard label $Y \sim q_{i,j}$)*
 920 *or KD (using the full $q_{i,j}$). Under Lemma A.9 and Lemma A.10, for any step size $\eta \in (0, \frac{1}{L}]$,*

$$\mathbb{E}[\Delta R_{\text{KD}}] \geq \mathbb{E}[\Delta R_{\text{CE}}],$$

923 *with strict inequality whenever $q_{i,j}$ has positive entropy (i.e., the AU of (i, j) is nonzero). Here ΔR*
 924 *denotes the one-step drop of the underlying smooth risk.*

926 **Proposition A.12** (LG-high tokens: using CE is never worse than the CE-baseline). *Let E be the*
 927 *set of LG-high tokens and A the set of AU-high tokens (disjoint). The **all-CE** baseline optimizes*
 928 *$\sum_{(i,j) \in E \cup A} L^{\text{CE}}(p_\theta, Y_{i,j})$. Here **CE-baseline** means the all-cross-entropy training scheme—i.e.,*
 929 *for the given set of tokens, we use hard labels and CE everywhere, with no KD anywhere.*

930 *The proposed mix uses CE on E and KD on A :*

$$\mathcal{L}_{\text{mix}}(\theta) = \sum_{(i,j) \in E} L^{\text{CE}}(p_\theta, Y_{i,j}) + \lambda \sum_{(i,j) \in A} L^{\text{KD}}(p_\theta, q_{i,j}) \quad (\lambda > 0).$$

934 *For tokens in E , both methods use CE, thus identical per-step behavior. For tokens in A , by*
 935 *Theorem A.11, the mix has no smaller and typically strictly larger expected loss decrease than the*
 936 *all-CE baseline. Therefore, per SGD step, $\mathbb{E}[\Delta R_{\text{mix}}] \geq \mathbb{E}[\Delta R_{\text{all-CE}}]$, with strict inequality if A*
 937 *contains at least one positive-entropy token.*

B RELATED WORK

942 **Data Selection for Instruction Tuning.** Previous works on data selection (Xia et al., 2024a; Zhou
 943 et al., 2023; Hanmo et al., 2024) can be broadly categorized into two key approaches: sample-level
 944 methods and token-level methods. Sample-level approaches rely on various metrics: perplexity-
 945 based selection (Marion et al., 2023; Li et al., 2024a) favors simpler patterns, diversity-aware
 946 methods (Wu et al., 2023; Yu et al., 2024) promote broad coverage but depend heavily on pretrained
 947 embeddings, quality-based metrics such as influence scoring (Xia et al., 2024a; Ghorbani & Zou,
 948 2019; Kwon et al.; Choe et al., 2024) or external model evaluation (Li et al., 2024c) provide stronger
 949 theoretical grounding but incur high computational cost, complexity-driven selection (Li et al., 2024b;
 950 Liu et al., 2024b) risks including noisy or overly difficult samples, and uncertainty-based metrics (Han
 951 et al.; Liu et al., 2024a) are unstable due to loss landscape irregularities. Despite their differences,
 952 these methods all focus on entire samples, overlooking that token quality within the same example
 953 can vary substantially. To address this issue, token-level approaches such as TokenClean (Pang et al.,
 954 2025) attempt to filter noise tokens. However, they typically discard uncertain tokens altogether,
 955 which can lead to overfitting to spurious deterministic patterns.

C EXPERIMENTAL DETAILS

C.1 BASELINES

960 We study several existing state-of-the-art methods as our baselines for data selection.

961 (1) Full Data: Train the model using the entire data pool.

963 (2) Random Selection (Xia et al., 2024b): Randomly selects training samples.

965 (3) Instruction-Following Difficulty (IFD) (Li et al., 2024b): Selects samples based on a complexity
 966 metric measuring instruction-following difficulty.

967 (4) Perplexity (PPL) (Li et al., 2024a): Prioritizes uncertain samples with high perplexity.

969 (5) K-Center-Greedy (KCG) (Sener & Savarese, 2018): Maximizes diversity by iteratively choosing
 970 the sample farthest from the current selection.

971 (6) SelectIT (Liu et al., 2024a): Selects samples via uncertainty-aware self-reflection during instruc-
 972 tion tuning.

972 (7) Token Length (TL) (Xia et al., 2024b): Selects samples with the longest response lengths.
 973

974 (8) ZIP (Yin et al., 2024): prompting a strong LLM to estimate and select samples based on quality,
 975 relevance, and complexity scores.

976 **C.2 EVALUATION METRICS AND BENCHMARKS**

978 We evaluate our method on seven representative tasks aligned with the multi-task training pool but
 979 drawn from distinct distributions, reflecting key LLM capabilities.
 980

981 **C.2 EVALUATION METRICS AND BENCHMARKS**

982 We evaluate our method on seven representative tasks aligned with the multi-task training pool but
 983 drawn from distinct distributions, reflecting key LLM capabilities.

- 984 • **Code Generation.** We use HUMANEval (Chen et al., 2021) to evaluate the code-writing capabilities
 985 of LLMs. Performance is measured via the widely adopted `pass@10` metric.
- 986 • **Math Reasoning.** We use GSM8K (Cobbe et al., 2021) to evaluate the mathematical abilities of
 987 models. We adopt an 8-shot setting and evaluate performance using the *exact match accuracy*
 988 metric.
- 989 • **Cross-lingual Question Answering.** To assess multilingual understanding, we utilize the Ty-
 990 DiQA (Clark et al., 2020) dataset. We report *F1 scores* for passage selection and answer span
 991 extraction tasks.
- 992 • **Commonsense Reasoning.** We adopt BoolQ (Clark et al., 2019) to evaluate the model’s ability
 993 to understand yes/no questions based on short passages. Accuracy is used as the evaluation metric.
- 994 • **Scientific QA.** We use ARC-C (Clark et al., 2018) to evaluate the ability to answer grade-school
 995 science questions that require reasoning over knowledge and context. We report accuracy.
- 996 • **Multi-choice QA.** We include HELLASWAG (Zellers et al., 2019) as a commonsense completion
 997 benchmark with minimal surface cues. Accuracy is used as the evaluation metric.
- 998 • **Logical Reasoning.** We use LogiQA (Liu et al., 2020) to assess formal logical reasoning, which
 999 requires deductive inference beyond surface clues. Accuracy is reported.

1000 **C.3 IMPLEMENTATION DETAILS OF TOKENTUNE**

1001 We evaluate TOKENTUNE using four foundational models (LLAMA-3.1-8B, LLAMA-3.2-3B,
 1002 LLAMA-2-13B and Qwen2-7B) and utilize Low-Rank Adaption (LoRA) Hu et al. (2022) for
 1003 parameter-efficient fine-tuning. The maximum learning rate is set as 2×10^{-5} with a linear de-
 1004 cay schedule, and the batch size is 8. We also fix the maximum input sequence length to 2080.
 1005 Models are trained for 1 epoch on 4 A800 GPUs.

1006 In the **preprocessing stage**, we compute sentence-level embeddings for all training samples using
 1007 the pretrained encoder `BAAI/bge-base-en-v1.5`, and construct clusters using K-Means with
 1008 cosine similarity. The number of clusters is set to 1000 by default.

1009 In the **selection stage**, we select samples based on their estimated utilities using our dual-level scoring
 1010 scheme. The sampling budget is fixed at 5%, resulting in approximately 50K selected samples out of
 1011 1M candidates. Cluster-level sampling is guided by a multi-armed bandit (MAB) scheduler using the
 1012 UCB algorithm, where each arm corresponds to one cluster (*i.e.*, 1000 arms in total). The exploration
 1013 parameter is set to $\gamma = 0.001$. For checkpoint selection, we evaluate on the development sets of
 1014 target benchmarks and select models based on average validation performance (*e.g.*, accuracy or F1,
 1015 depending on the task).

1016 All key hyperparameters and their search ranges are summarized in Appendix C.4.

1017 **C.4 SEARCH RANGES OF HYPERPARAMETERS**

1018 To support reproducibility, we list all key hyperparameters involved in both the selection and training
 1019 stages of our framework. For each hyperparameter, we report the default value used in our main

Table 3: Search ranges and default values for all hyperparameters.

Stage	Hyperparameter	Default	Search Range	Description
Selection	Token Utility Threshold	0.6	{0.4, 0.5, 0.6, 0.7}	Threshold for assigning tokens to types based on utility scores
	Bandit Algorithm	UCB	{UCB, Thompson, EXP3}	Strategy for MAB-based cluster selection
	Number of Clusters (k)	1000	{500, 1000, 1500}	Number of clusters used in sample selection
	Sampling Budget (%)	5%	{2.5%, 5%, 10%}	Percentage of total sample budgets
	Exploration Rate (γ)	0.001	{1e-4, 1e-3, 1e-2}	Exploration coefficient in MAB (for UCB/EXP3)
Training	Fine-tuning Epochs	1	{1, 2, 3}	Number of training epochs for fine-tuning
	Learning Rate	2e-5	{1e-5, 2e-5, 5e-5}	Learning rate for optimizer
	Batch Size	16	{8, 16, 32}	Batch size per GPU
	Max Sequence Length	2048	{1024, 2048}	Maximum length of input sequences
	Logit Temperature (SD)	1.0	{0.7, 1.0, 1.3}	Temperature used in self-distillation predictions

Table 4: Comparison of performance across different benchmarks on Openhermes dataset.

Type	Method	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	Avg.
Llama3.1-8B									
Base	Base	22.80	59.92	50.82	82.18	50.31	69.28	26.51	51.69
	Random	49.44	59.31	51.75	82.16	58.27	71.98	27.46	62.15
Sample-Level	IFD	41.97	60.21	52.45	82.89	52.45	69.80	27.75	55.36
	ZIP	47.82	60.33	53.32	84.84	52.76	71.39	27.91	56.91
	Entropy	51.45	60.41	50.04	83.17	56.74	72.49	26.05	57.19
	Instag	47.21	60.31	52.28	83.19	60.76	72.50	26.82	62.71
	TL	46.61	60.89	52.71	83.14	54.36	73.36	28.53	57.09
	SelectIT	49.15	60.33	52.49	83.94	60.03	70.79	27.91	57.81
	Deita	42.50	60.80	51.85	83.17	54.59	72.92	29.77	60.97
Dual-Level	TOKENTUNE (Ours)	53.56	61.49	52.63	85.05	65.62	74.69	28.37	65.51

experiments and the range considered in sensitivity studies or tuning. These values are summarized in Table 3.

D OVERALL PERFORMANCE ON OPENHERMES DATASET

D.1 THE EFFECTIVENESS ON OPENHERMES DATASET

As illustrated in Table 4, TOKENTUNE demonstrates impressive performance on the Openhermes dataset as well, surpassing all state-of-the-art baselines. On the LLaMA3.1-8B model, TOKENTUNE achieves an average score of 65.51, outpacing the best baseline, Deita (60.97), by a significant margin of +4.54. While some baselines such as SelectIT excel in specific tasks like PPL on Qwen2-7B, TOKENTUNE consistently maintains top-tier performance across various benchmarks. Notably, on the challenging HumanEval benchmark for code generation, TOKENTUNE demonstrates superior robustness, achieving higher performance than all other methods. These results further confirm TOKENTUNE’s ability to perform well across diverse models and benchmarks, emphasizing its consistent and scalable effectiveness for data selection and instruction tuning.

E ADDITIONAL BACKBONE ON TULU3 DATASET

A central question for data selection methods is whether the observed gains persist when scaling the backbone model size up or down. To assess the robustness and generality of our approach, we conduct additional experiments on two representative LLaMA-family models: a smaller model (LLaMA-3.2-3B) and a larger one (LLaMA-2-13B). All fine-tuning and evaluation settings follow the main experimental protocol.

E.1 OVERALL PERFORMANCE ON LLAMA-3.2-3B

Table 5 reports the performance on seven benchmarks when finetuning LLaMA-3.2-3B with different data selection strategies. Despite the reduced capacity of the 3B model, our method achieves the highest average score (48.84) and consistently outperforms strong baselines such as DS2, Deita, ZIP, and TL across diverse tasks including TyDiQA, BoolQ, GSM8K, and HumanEval.

1080 Table 5: Comparison of data selection methods on LLaMA3.2-3B across multiple benchmarks.
1081

Method	Benchmark							Average
	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
Base	32.67	55.10	42.20	73.01	28.48	50.11	22.17	43.39
Random	38.96	55.21	41.95	73.68	29.01	57.13	24.51	45.78
DS2	39.96	55.31	44.27	74.86	29.94	55.71	23.72	46.25
Deita	31.07	55.74	42.89	75.60	32.47	56.90	24.34	45.57
ZIP	41.60	55.05	41.69	75.79	28.02	53.08	23.26	45.50
Entropy	40.01	54.37	41.12	74.36	28.62	55.62	23.91	45.43
Instag	37.02	55.40	42.46	72.85	30.76	56.17	24.50	45.59
CaR	38.87	54.99	41.95	76.28	30.93	56.63	25.89	46.51
TL	39.87	54.73	42.62	74.09	29.01	57.01	23.98	45.90
ours	49.13	55.55	43.58	77.95	32.39	59.06	24.19	48.84

1094 Table 6: Comparison of data selection methods on LLaMA-2-13B across multiple benchmarks.
1095

Method	Benchmark							Average
	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
Base	31.20	60.01	47.72	80.91	24.12	31.22	25.89	43.01
Random	35.96	60.29	48.75	82.09	32.01	39.61	28.68	46.77
DS2	36.11	60.36	50.90	81.93	21.36	38.37	25.43	44.92
Deita	34.86	60.95	49.01	82.21	28.87	40.88	26.82	46.23
ZIP	40.08	60.21	50.65	82.80	26.19	36.49	27.13	46.22
Entropy	42.37	60.63	48.14	81.99	27.48	37.82	26.93	46.48
Instag	37.03	60.46	48.92	82.06	28.43	39.04	27.91	46.26
CaR	37.55	60.22	47.98	82.06	30.55	44.57	31.63	47.79
TL	41.26	60.47	49.53	82.37	34.16	34.16	28.06	46.52
ours	44.86	60.79	50.71	82.01	31.73	44.02	28.07	48.88

1109
1110 These results demonstrate that our selection mechanism remains highly effective even in the low-
1111 capacity regime, highlighting the robustness of our dual-level selection strategy. The consistent
1112 gains also suggest that self-distillation on multi-answer tokens enhances generalization, enabling the
1113 model to make better use of informative supervision even under limited capacity.

1115 E.2 OVERALL PERFORMANCE ON LLaMA-2-13B

1116
1117 In this experiment, we present the results for LLaMA-2-13B, a substantially larger and more capable
1118 model. Table 6 shows the results on LLaMA-2-13B across seven benchmarks. Our method achieves
1119 the best performance across all reported tasks, consistently outperforming strong baselines such as
1120 DS2, Deita, ZIP, and TL. The improvements are particularly pronounced on reasoning and knowledge-
1121 intensive tasks such as ARC-C, BoolQ, and GSM8K. This further confirms that the proposed design
1122 principles generalize effectively across the model-scaling spectrum, from small to large backbones.

1124 F DETAILED ABLATION STUDY

1126 F.1 ABLATION STUDY OF TOKENTUNE COMPONENTS.

1128
1129 We conduct a detailed ablation study to examine the contribution of each component in TOKENTUNE,
1130 with results reported in Table 2 and Figure 7. The findings show that removing any module leads
1131 to a noticeable degradation in performance. In particular, discarding the token-level utility causes
1132 the largest drop (-2.9 on average), highlighting its central role in identifying informative tokens.
1133 Similarly, eliminating the sample-level utility, multi-armed bandit scheduler, or self-distillation loss
also results in consistent declines. These results confirm that all components are indispensable and
that their integration is crucial for achieving robust improvements across diverse benchmarks.

1134
1135 Table 7: Performance of different replacement strategies in the Token Utility module.
1136

Module	Replace Strategy	Benchmark Performance							Avg.
		TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
Token Utility (LG+AU)	LG+AU	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
	LG + Entropy	57.01	61.58	52.37	83.76	57.73	74.14	25.58	58.88
	LDP+ AU	56.72	60.17	52.02	83.79	57.16	73.94	26.19	58.57
	LDP + Entropy	48.14	61.09	52.41	82.42	55.79	74.01	24.91	56.97

1141
1142 Table 8: Performance of Sample Utility with/without normalization.
1143

Module	Replace Strategy	Benchmark Performance							Avg.
		TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
Sample Utility	Norm.	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
	w/o Norm.	57.15	61.47	51.97	83.66	55.44	72.43	25.58	58.24

1144 F.2 THE EFFECTIVENESS OF TOKEN-LEVEL UTILITY FUNCTION

1145 To validate the design choices in our Token-Level Utility Function, we conduct a controlled ablation
1146 study comparing our full method (LG + AU) against several alternative strategies: (1) replacing LG
1147 with loss delta under noisy perturbations (LDP), and (2) replacing AU with Entropy. The results are
1148 shown in Table 7.1149 **LG Compared to LDP.** We replace LG with Noisy Loss (i.e., loss delta under perturbations) while
1150 keeping the AU component fixed. As shown in Table 6, this substitution consistently degrades
1151 performance across all benchmarks (e.g., average score drops from 60.28 to 58.57). This supports
1152 our design choice of using LG, which estimates the expected utility of tokens more efficiently and
1153 reliably. Unlike LDP, which primarily captures sensitivity to input noise and lacks awareness of the
1154 model’s current learning dynamics, LG reflects the model’s evolving uncertainty in a forward-only
1155 manner. It effectively prioritizes tokens that are expected to provide the most generalizable learning
1156 signal, without incurring the high computational cost of adversarial perturbations.
11571158 **AU Compared to Entropy.** We also evaluate the effect of replacing AU with standard entropy,
1159 keeping the LG component fixed. This substitution again leads to a noticeable performance drop
1160 (from 60.28 to 58.88), confirming the unique advantages of AU. This is because while entropy
1161 measures the flatness of the output distribution, it fails to distinguish between true ambiguity and
1162 model uncertainty due to low confidence. In contrast, AU explicitly targets multi-answer positions,
1163 which refer to tokens where the model assigns high probability to multiple plausible continuations,
1164 thereby capturing a semantically meaningful form of ambiguity. As a result, AU more precisely
1165 identifies tokens suitable for self-distillation, enhancing generalization during fine-tuning.
1166

1167 F.3 THE EFFECTIVENESS OF SAMPLE-LEVEL UTILITY FUNCTION

1168 To evaluate the role of normalization in sample-level utility estimation, we conduct an ablation study
1169 comparing two variants: one with score normalization and one without. The normalization procedure
1170 adjusts raw sample utility scores to eliminate biases introduced by sequence length. As shown in
1171 Table 8, removing normalization results in a consistent performance drop across all benchmarks, with
1172 the average score declining from 60.28 to 58.24. These results further confirm that normalization
1173 plays a crucial role in mitigating length-induced bias. It ensures that the selection process emphasizes
1174 samples that are dense in learning signal, rather than those that are simply shorter or easier to fit,
1175 thereby enhancing the overall effectiveness of fine-tuning.
1176

1177 F.4 THE EFFECTIVENESS OF MAB MODULE

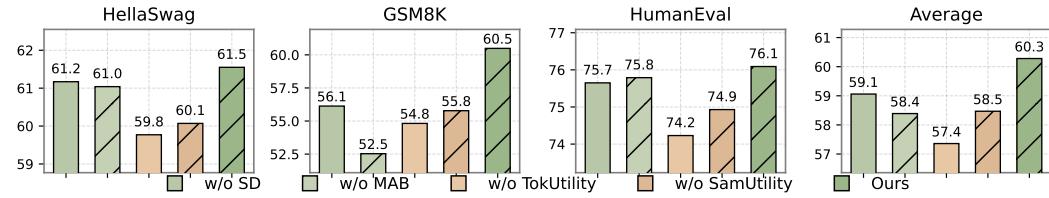
1178 To assess the contribution of the Multi-Armed Bandit (MAB) module in our data selection pipeline,
1179 we conduct an ablation comparing three widely used bandit algorithms: UCB, Thompson Sampling,
1180 and EXP3. The goal is to examine whether the observed performance gains are specific to the choice
1181 of bandit strategy or stem from the general idea of bandit-based adaptive selection.
11821183 As shown in Table 9, all three methods yield similar overall performance, with average scores ranging
1184 from 60.00 to 60.28. This indicates that our improvements are not tied to a particular bandit algorithm.
1185

1188
1189 Table 9: Comparison of different MAB algorithms and clustering methods.
1190

Module	Replace Strategy	Benchmark Performance							Avg.
		TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
MAB	UCB	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
	Thompson	57.21	61.47	53.86	83.98	58.97	77.12	27.41	60.00
	EXP3	58.19	61.52	53.92	83.97	59.18	76.09	27.62	60.07
Cluster	Kmeans	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
	DBSCAN	57.93	61.07	54.17	83.26	57.82	76.48	27.95	59.81
	GMM	56.14	61.53	54.89	84.23	59.25	76.92	28.30	60.18

1195
1196
1197 Table 10: Ablation on self-distillation loss (SD) in token-level training.
1198

Module	Replace Strategy	Benchmark Performance							Avg.
		TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
SD Loss	CE (LG) + SD (AU)	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
	CE (LG+AU)	57.13	61.32	52.19	82.47	55.72	75.42	26.81	58.72

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Figure 7: Ablation Study of TOKENTUNE.

Instead, the key advantage lies in leveraging the exploration-exploitation paradigm to dynamically prioritize high-utility regions during sample selection. These results validate the robustness and generality of the MAB module design. The use of bandit-based control helps reduce redundant computation on low-reward areas and accelerates selection without relying on fine-grained tuning of the underlying algorithm.

F.5 THE EFFECTIVENESS OF SELF-DISTILLATION LOSS

To investigate the effect of the self-distillation loss used for multi-answer tokens, we first conduct an ablation study where the self-distillation (SD) objective is replaced with standard cross-entropy (CE) loss. This variant removes the distinction between token types and treats all tokens as learnable. As shown in Table 10, removing self-distillation consistently degrades performance across benchmarks, especially on HumanEval and GSM8K, with the average score dropping from 60.3 to 58.7. These results demonstrate that self-distillation plays a critical role in handling multi-answer tokens, which often admit multiple plausible next-token candidates. Rather than forcing the model to commit to one specific label using CE loss, self-distillation encourages the model to maintain and refine its own distribution over plausible answers, allowing it to better generalize under ambiguous supervision.

G DETAILED ANALYSIS OF DATA SCALING

G.1 DETAILED PERFORMANCE OF VARYING SAMPLE SIZE

To further study scaling behavior under different training budgets, we evaluate TOKENTUNE and baselines with varying sample sizes, as shown in Table 4. TOKENTUNE consistently achieves superior performance across all data budgets, and its advantage is especially evident in low-data regimes (e.g., +3.4 points over the best baseline at 10k). Importantly, performance peaks around 50k samples, after which additional data yields diminishing or even negative returns. This non-linear trend suggests that alignment-suitable data is inherently limited, and emphasizes that quality-aware selection is more critical than sheer quantity.

Table 11: Performance comparison across different sample sizes.

Method	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	Average
Base Model								
Base	22.80	59.92	50.82	82.18	50.31	69.28	26.51	51.69
Sample Budget Ratio: 1%								
IFD	39.79	60.38	51.59	81.69	51.53	72.34	27.13	54.92
Instag	42.37	60.27	51.77	83.17	54.59	75.23	26.82	56.32
Deita	46.56	60.65	52.37	83.20	56.66	72.19	29.61	57.32
Ours	51.66	61.56	54.61	84.43	54.13	74.72	27.29	58.34
Sample Budget Ratio: 2.5%								
IFD	40.93	60.47	51.59	82.09	50.38	71.73	26.82	54.86
Instag	44.78	60.22	51.68	83.20	57.66	73.20	28.22	56.99
Deita	45.60	61.00	51.08	82.12	58.26	72.60	28.68	57.05
Ours	55.78	61.03	53.74	83.94	56.28	75.13	28.01	59.13
Sample Budget Ratio: 5%								
IFD	38.55	60.35	49.87	82.21	57.04	71.60	26.36	55.14
Instag	44.97	60.66	50.39	84.34	58.80	75.50	26.67	57.33
Deita	44.81	60.74	52.11	82.86	57.35	74.60	30.08	57.51
Ours	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
Sample Budget Ratio: 7%								
IFD	38.48	60.20	49.35	82.09	55.28	72.30	25.27	54.71
Instag	43.04	60.53	51.51	83.94	58.96	75.35	26.67	57.14
Deita	42.10	60.70	51.42	83.54	60.03	71.41	29.61	56.97
Ours	54.10	61.64	54.44	85.89	57.89	74.36	27.60	59.42
Sample Budget Ratio: 10%								
IFD	39.48	60.18	50.73	82.15	55.44	73.41	26.82	55.46
Instag	44.17	60.02	52.54	83.17	56.13	72.19	28.06	56.61
Deita	44.57	60.80	51.94	83.29	59.80	72.46	28.99	57.41
Ours	59.15	61.13	53.40	83.89	57.20	76.04	26.82	59.66

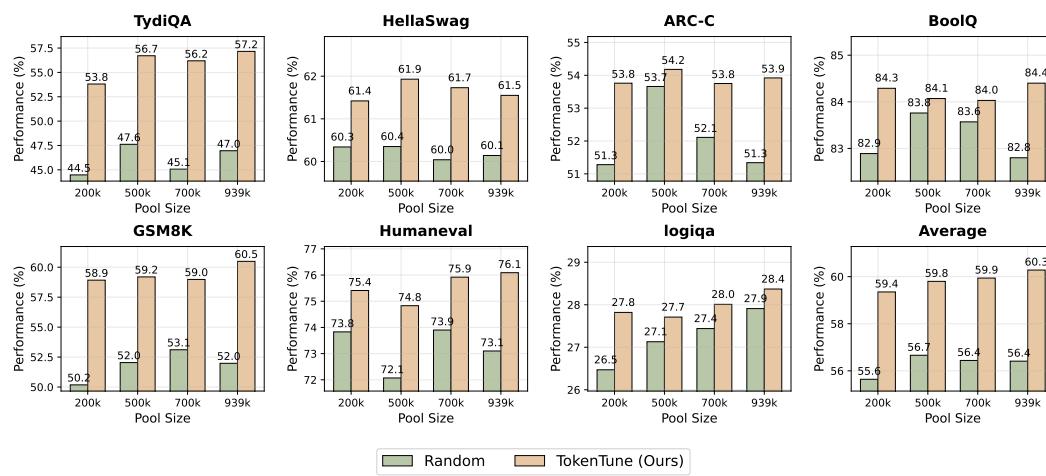


Figure 8: Performance by Varying Pool Size.

G.2 DETAILED PERFORMANCE OF VARYING POOL SIZE

We also examine the effect of enlarging the candidate data pool, with results shown in Figure 6. TOKENTUNE consistently surpasses the random baseline under all pool sizes, and the margin grows larger as the pool expands. For example, when increasing from 200k to nearly 1M candidates, TOKENTUNE steadily improves and achieves the highest overall scores, whereas random selection

1296 Table 12: PPerformance of different selection methods where utility scores are computed using
 1297 LLaMA-3.1-8B and downstream fine-tuning is performed on Qwen2-7B.

Selection Method	Benchmark							Average
	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
(Backbone: LLaMA3.1-8B)								
IFD	47.88	58.96	47.03	83.91	78.56	76.43	30.23	60.43
SelectIT	50.98	58.00	49.78	83.43	76.79	77.49	29.15	60.80
Entropy	46.19	58.48	45.56	85.27	76.92	76.96	28.99	59.77
TL	48.66	59.07	48.75	84.47	77.72	75.26	30.71	60.66
Ours	49.31	59.80	52.89	84.50	78.42	78.24	30.70	61.98

1305
 1306 Table 13: Performance of different selection methods where utility scores are computed using GPT2
 1307 and downstream fine-tuning is performed on LLaMA-3.1-8B.

Selection Method	Benchmark							Average
	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
(Backbone: GPT2)								
IFD	43.57	60.49	52.89	83.26	55.28	74.07	26.06	56.52
SelectIT	42.73	60.04	53.18	83.14	52.32	73.92	26.35	55.95
Entropy	43.51	60.37	51.94	84.47	51.15	71.52	25.89	55.55
TL	47.48	60.51	50.34	82.49	51.32	73.43	26.74	56.04
Ours	55.83	61.31	53.14	83.97	57.81	75.89	27.99	59.42

1315
 1316 quickly plateaus. These results demonstrate that TOKENTUNE effectively leverages larger candidate
 1317 pools to extract high-utility subsets, confirming its scalability and robustness in large-scale scenarios.

H THE GENERALIZATION OF TOKENTUNE

H.1 PERFORMANCE ON CROSS-ARCHITECTURE SETTING

1325 To evaluate the generality of our selection strategy across model architectures, we conduct experiments
 1326 under a cross-family setting, where the model used to compute utility scores differs from the
 1327 one used for downstream fine-tuning. Specifically, we compute token-level utilities using LLaMA-
 1328 3.1-8B, while the selected data is used to fine-tune Qwen2-7B, a model from a different architecture.

1330 As shown in Table 12, our method achieves the best average performance (61.98) across all baselines,
 1331 outperforming strong methods such as SelectIT (60.80), and IFD (60.43). The improvement is
 1332 consistent across most benchmarks, particularly on ARC-C (+3.11 over TL) and LogiQA (+2.01
 1333 over SelectIT), demonstrating the robustness of our utility estimation even when computed from a
 1334 mismatched backbone. These results provide strong evidence that our utility scoring mechanism
 1335 captures transferable signals of data quality that are not tied to a specific model architecture, validating
 1336 its applicability in realistic settings where the scoring model and fine-tuning model may differ.

H.2 PERFORMANCE ON CROSS-SCALE SETTING

1340 To assess whether TOKENTUNE’s utility estimation generalizes across model sizes, we evaluate its
 1341 performance under a cross-scale setting, where the model used to compute utility scores is smaller
 1342 than the model used for downstream fine-tuning. Specifically, token-level utilities are computed
 1343 using a GPT2 model, while the selected data is used to fine-tune a larger Qwen2-7B model.

1344 As shown in Table 13, TOKENTUNE maintains strong performance in this challenging setup, out-
 1345 performing all baselines with an average score of 62.09, compared to 60.87 for SelectIT and 60.12
 1346 for IFD. The gains are particularly notable on ARC-C (+1.90 over TL) and LogiQA (+2.07 over
 1347 SelectIT), indicating that the utility scores produced by a small model remain effective for guiding
 1348 the fine-tuning of larger models. This demonstrates TOKENTUNE’s ability to capture scale-invariant
 1349 utility signals, validating its applicability in scenarios where computational budget limits the scoring
 model size.

Table 14: Effect of different token utility thresholds on performance.

Threshold	Benchmark Performance							Average
	TyDiQA	HellaSwag	ARC-C	BoolQ	GSM8K	HumanEval	LogiQA	
0.7	57.78	61.56	52.54	84.00	58.04	74.54	26.82	59.33
0.6	57.16	61.55	53.92	84.40	60.49	76.09	28.37	60.28
0.5	57.50	61.69	53.57	84.03	57.81	75.93	27.13	59.67
0.4	55.88	61.45	52.89	84.37	57.50	73.52	24.65	58.61

I PARAMETER SENSITIVITY ANALYSIS

I.1 EFFECT OF THRESHOLDS FOR TOKEN UTILITY

We analyze the impact of varying the token utility threshold, which determines how tokens are assigned to different training objectives.

As shown in Table 14, threshold choice significantly affects performance. When the threshold is too high (e.g., 0.7), the model includes noisy or uninformative tokens, which weakens supervision and degrades performance. Conversely, a threshold that is too low (e.g., 0.4) filters out many informative tokens that still carry valuable learning signals, leading to under-utilization of training data. The best performance is achieved at a moderate threshold of 0.6, with an average score of 60.28. Notably, performance remains relatively stable within the range of 0.5 to 0.7, suggesting that the method is robust to small variations in threshold, as long as extreme values are avoided.

I.2 EFFECT OF EXPLORATION RATE γ OF MAB.

Our approach employs γ to balance the diversity and quality during cluster sampling. As shown in Table 15, when γ is small, the MAB framework prioritizes high-influence clusters and risks local optima due to reduced diversity. Conversely, when γ is large, it overemphasizes diversity at the expense of quality, limiting model performance gains.

Table 15: Performance with varying exploration rate γ .

Exploration Rate γ	0.0005	0.001	0.005	0.01	0.05
Performance (Avg.)	59.02	60.28	59.67	59.04	57.88

I.3 EFFECT OF THE NUMBER OF CLUSTERS/ MAB ARMS k .

In our setup, each arm corresponds to a cluster. We use the Elbow method to guide the choice of arms/clusters k , which eliminates the need for manual adjustment. The result in Table 16 show that too few clusters (e.g., $k=100$) lead to high variance and under-representation of data, while too many clusters (e.g., $k=5000$) introduce redundancy and reduce exploration efficiency. A moderate choice of $k=1000$ provides the best balance between selection diversity and computational efficiency.

Table 16: Performance with varying number of MAB arms K .

Number of MAB Arms K	100	500	1000	2000	3000	5000
Performance (Avg.)	58.73	58.91	60.28	60.01	59.67	59.04

I.4 EFFECT OF DIFFERENT CLUSTERING ALGORITHM OF TOKENTUNE.

We compared Agglomerative Clustering, DBSCAN, and K-Means. The results in Table 9 show minimal differences (59.81–60.28), suggesting that TOKENTUNE is not sensitive to the choice of clustering algorithm and is robust across methods.

1404 I.5 EFFECT OF UPDATE CADENCE OF MAB
14051406 We study how the update cadence (*i.e.*, the number of samples selected before refreshing MAB
1407 scores) affects selection quality and downstream performance. We fix the total data selection budget
1408 to 50,000 examples and vary the number of samples selected per iteration. Table 17 summarizes the
1409 results.1410 Table 17: Sensitivity to the update cadence of MAB. We report the number of samples per iteration,
1411 total number of iterations to reach the fixed budget, and the average performance across benchmarks.
1412

1414 Update Cadence (Sample Ratio / Iter.)	1415 #Samples / Iter.	1416 #Iterations	1417 Avg. Performance
1415 0.5%	1416 250	1417 200	1418 60.12
1416 1%	1417 500	1418 100	1419 60.28
1417 2.5%	1418 1250	1419 40	1420 59.87
1418 5%	1419 2500	1420 20	1421 59.45

1420 We observe that updating UCB scores every 1% of the total budget yields the best average per-
1421 formance. When updates are too infrequent (*e.g.*, every 2.5% or 5%), the accumulated reward
1422 estimates become stale, making the bandit over-exploit early high-reward clusters while neglecting
1423 newly emerging high-utility regions. Since UCB relies on the running average of observed rewards,
1424 delayed updates hinder its ability to adapt, ultimately degrading selection quality. On the other hand,
1425 overly frequent updates (*e.g.*, every 0.5%) bring marginal gains at the cost of increased schedul-
1426 ing overhead. The 1% update cadence provides a favorable trade-off between reward estimation
1427 precision and exploration coverage. Furthermore, the performance remains stable across a reason-
1428 able range (0.5%–2.5%), demonstrating that our method is robust to this hyperparameter in a local
1429 neighborhood.1430
1431 J THE DESIGN DETAILS OF TOKENTUNE
14321433 J.1 TOKENTUNE FRAMEWORK: CORE COMPONENTS
1434

1435 TOKENTUNE has three carefully designed core components.

1436 **① Dual-Level Utility Function.** Considering that sample-level data selection methods overlook
1437 token heterogeneity while token-level ones fail to capture holistic sample value, we design a dual-level
1438 utility function that combines fine-grained token informativeness with principled sample selection.
1439 Specifically, it first leverages token-level indicators to capture learnable and uncertain tokens, and
1440 then constructs a sample-level utility by aggregating the token-level utilities over these learnable
1441 tokens, thereby avoiding a second-pass utility computation and reducing the overall annotation cost.1442 **② Adaptive Data Selection via MAB-Integrated Scheduler.** Evaluating the utility of each sample
1443 and token usually requires repeated model inference, which leads to prohibitive computational cost.
1444 To reduce this overhead and further scale efficiently to large datasets, we first partition the data pool
1445 into semantic clusters. Building on this, we introduce a multi-armed bandit scheduler that adaptively
1446 **selects** the most promising clusters, and only then applies dual-level utility estimation within each
1447 cluster to select the most informative samples.1448 **③ Token-Aware Finetuning with Gated Optimization.** Not all tokens contribute to learning in
1449 the same way. Prior studies primarily focus on learnable tokens that provide strong supervision,
1450 but this narrow emphasis often leads to overfitting, as it ignores uncertain tokens such as those
1451 admitting multiple correct answers. Training such ambiguous positions with standard cross-entropy
1452 forces the model to commit to a single label, thereby collapsing inherent diversity. To address this
1453 limitation, we propose a gated optimization strategy that differentiates token roles: learnable tokens
1454 are optimized with cross-entropy, ambiguous tokens are refined via self-distillation to preserve
1455 diversity, and uninformative tokens are suppressed to avoid noise amplification. For ambiguous
1456 tokens, self-distillation is particularly suitable because it optimizes the student to match a soft
1457 probability distribution from a teacher model, allowing probability mass to be spread over multiple
1458 plausible labels rather than collapsing it onto a single hard target as in standard cross-entropy.

1458 J.2 TOKEN-LEVEL UTILITY FUNCTION
1459

1460 **Token-level selection principles.** Our token-level utilities are designed to answer a simple question:
1461 *given a limited training budget, on which tokens does an additional update yield the largest marginal*
1462 *improvement?* Concretely, we follow two principles: (i) we would like to prioritize tokens whose
1463 further training is expected to produce a large reduction in loss *per token*, so that each gradient update
1464 is spent where it is most effective; (ii) among such tokens, we want to distinguish between those that
1465 are *under-learned but consistent* (single correct answer) and those that are *inherently multi-answer*
1466 (several plausible outputs), since the latter should not be forced into a single hard label.

1467 **Definition J.1 (Answer Uncertainty (AU)).** Some tokens are inherently ambiguous, admitting multiple
1468 plausible answers. To identify such positions, we model predictive uncertainty using an evidential
1469 Dirichlet distribution. For a token position (i, j) , let $\mathbf{z}(x_{i,j}) = (z_1(x_{i,j}), \dots, z_K(x_{i,j}))$ denote the
1470 pre-softmax logits over the vocabulary. We map logits to non-negative evidence and obtain Dirichlet
1471 parameters $\boldsymbol{\alpha}(x_{i,j}) = (\alpha_1(x_{i,j}), \dots, \alpha_K(x_{i,j}))$; specifically,

$$1472 \quad \alpha_k(x_{i,j}) = \max(0, z_k(x_{i,j})) + 1, \quad \alpha_0(x_{i,j}) = \sum_{k=1}^K \alpha_k(x_{i,j}). \quad (16)$$

1473 We then define the answer uncertainty at (i, j) as the *expected predictive entropy* of a categorical
1474 distribution \mathbf{p} drawn from this Dirichlet:

$$1475 \quad AU(x_{i,j}) := \mathbb{E}_{\mathbf{p} \sim \text{Dir}(\boldsymbol{\alpha}(x_{i,j}) + \mathbf{1})} \left[- \sum_{k=1}^K p_k \log p_k \right], \quad (17)$$

1476 where $\mathbf{1}$ is the all-ones vector. Using standard properties of the Dirichlet distribution, this expectation
1477 admits the closed-form expression

$$1478 \quad AU(x_{i,j}) = - \sum_{k=1}^K \frac{\alpha_k(x_{i,j})}{\alpha_0(x_{i,j})} \left(\psi(\alpha_k(x_{i,j}) + 1) - \psi(\alpha_0(x_{i,j}) + 1) \right), \quad (18)$$

1479 where $\psi(\cdot)$ is the digamma function.

1480 **Interpretation and comparison to entropy.** By construction, $\alpha_k(x_{i,j})$ can be interpreted as
1481 *evidence* supporting token k at position (i, j) : large positive logits translate into large pseudo-
1482 counts, while low or negative logits contribute almost no evidence. The total evidence $\alpha_0(x_{i,j})$
1483 encodes how confident the model is overall, whereas the relative magnitudes of α_k indicate whether
1484 this evidence is concentrated on one candidate or dispersed across several.

1485 The quantity $AU(x_{i,j})$ is the expected entropy of a categorical distribution sampled from the Dirichlet
1486 with parameters $\boldsymbol{\alpha}(x_{i,j}) + \mathbf{1}$. It becomes large only when (i) the total evidence $\alpha_0(x_{i,j})$ is large
1487 (the model is confident), and (ii) this evidence is distributed over multiple candidates rather than
1488 concentrated on a single one. If the model is unsure and assigns low logits to all tokens, the evidence
1489 vector is small and $AU(x_{i,j})$ remains moderate despite the softmax distribution being nearly flat; if
1490 the model is confident and sharply focused on a single token, the expected entropy is small. Thus,
1491 high $AU(x_{i,j})$ specifically indicates *confident but multi-modal* beliefs, matching principle (ii) for
1492 inherently multi-answer positions.

1493 This also explains why AU is preferable to (temperature-scaled) softmax entropy as an ambiguity
1494 indicator. Entropy depends only on normalized probabilities and cannot distinguish between high
1495 entropy due to lack of knowledge (low evidence spread over many tokens) and high entropy due to
1496 strong evidence for several distinct candidates. AU explicitly couples confidence (total evidence)
1497 and dispersion (how many tokens share it), allowing us to upweight truly multi-answer tokens while
1498 downweighting noisy, low-evidence ones. In our ablations, replacing AU with entropy consistently
1499 degrades performance and selects many low-evidence tokens as “ambiguous”, supporting AU as a
1500 more faithful signal for token-aware training.

1501 J.3 SAMPLE-LEVEL UTILITY FUNCTION
1502

1503 A major drawback of existing model-aware data selection methods is that estimating sample utility
1504 requires repeated inference over the full dataset, leading to prohibitive computational latency at scale.
1505 To overcome this limitation, we build directly on the token-level feature $LG = \Delta\ell_{i,j}$ defined in Eq. 2
1506 and construct a sample-level utility function without any additional inference.

1512 **Token-level utility density.** For a sample $x_i = \{t_{i,1}, \dots, t_{i,n_i}\}$, we first define a per-token notion
 1513 of utility. Let

$$1514 \quad \Delta\ell_{i,j} := \ell_{\text{ref}}(x_{i,j}) - \ell_0(x_{i,j}), \quad (19)$$

1515 be the reduction in loss of token (i, j) when we move from the base model to the reference model,
 1516 and let

$$1517 \quad b_{i,j} := \ell_0(x_{i,j}) = -\log p_{\theta_0}(y_{i,j} | x_i) \quad (20)$$

1518 denote the baseline cross-entropy loss of that token under the base model p_{θ_0} . Intuitively, $b_{i,j}$
 1519 measures how *difficult* this token is for the current model: tokens with large $b_{i,j}$ are ones to which the
 1520 model assigns low probability (uncertain or often wrong), while tokens with small $b_{i,j}$ are already
 1521 well mastered.

1522 We then define the token-level utility density as

$$1524 \quad \rho_{i,j} := \frac{\Delta\ell_{i,j}}{b_{i,j}}. \quad (21)$$

1526 This ratio performs a first normalization: it rescales the raw loss reduction $\Delta\ell_{i,j}$ by the baseline
 1527 difficulty $b_{i,j}$ and can be interpreted as the *loss improvement per unit difficulty* of this token. In
 1528 particular, $\rho_{i,j}$ is comparable across tokens with very different baseline losses, and it is invariant to
 1529 any global rescaling of the loss (e.g., when switching between equivalent loss parameterizations).

1530 **From tokens to samples.** Given any subset of token positions $S \subseteq \{1, \dots, n_i\}$ within a sample,
 1531 our goal at the sample level is to measure how much total loss reduction we obtain per unit of *total*
 1532 *difficulty budget* in S . This leads to the following sample-level utility:

$$1534 \quad U_i(S) := \frac{\sum_{j \in S} \Delta\ell_{i,j}}{\sum_{j \in S} b_{i,j}}. \quad (22)$$

1536 Thus $U_i(S)$ has the same semantics as the per-token density: it is the average loss improvement per
 1537 unit of baseline difficulty in S , and is directly comparable across subsets with different lengths and
 1538 difficulty profiles.

1540 We can rewrite $U_i(S)$ as a weighted average of token densities:

$$1541 \quad U_i(S) = \sum_{j \in S} w_{i,j}(S) \rho_{i,j}, \quad w_{i,j}(S) := \frac{b_{i,j}}{\sum_{t \in S} b_{i,t}}. \quad (23)$$

1544 Here $w_{i,j}(S)$ simply turns the baseline losses into a probability distribution over tokens in S .
 1545 Equivalently,

$$1546 \quad U_i(S) = \mathbb{E}_{j \sim \pi_S} [\rho_{i,j}], \quad \pi_S(j) = w_{i,j}(S). \quad (24)$$

1547 Hence, $U_i(S)$ admits a clear semantic interpretation: it is the *expected loss improvement per unit*
 1548 *of difficulty* when we pick a token from S with probability proportional to its baseline loss. Tokens
 1549 with larger baseline loss occupy a larger share of the total “difficulty budget” $\sum_{j \in S} b_{i,j}$ and therefore
 1550 contribute proportionally more to the sample-level utility, which matches the intuition that harder
 1551 tokens are both more costly and have more room for improvement.

1552
 1553 **Uniqueness of the normalization.** Our construction can be seen as the unique sample-level exten-
 1554 sion of the token density that satisfies a small set of natural desiderata:

- 1557 • **Consistency with token-level density.** When S contains a single token, we require $U_i(\{j\}) =$
 1558 $\rho_{i,j} = \Delta\ell_{i,j}/b_{i,j}$.
- 1559 • **Budget-based aggregation.** The sample utility should depend on a subset S only through the
 1560 aggregate loss reduction $\sum_{j \in S} \Delta\ell_{i,j}$ and the aggregate difficulty $\sum_{j \in S} b_{i,j}$, reflecting the idea
 1561 that we care about the total improvement given a total difficulty budget.

1562 Under these conditions, any sample-level utility must have the form $U_i(S) = g\left(\frac{\sum_{j \in S} \Delta\ell_{i,j}}{\sum_{j \in S} b_{i,j}}\right)$ for
 1563 some scalar function g . The consistency requirement $U_i(\{j\}) = \Delta\ell_{i,j}/b_{i,j}$ then forces $g(z) = z$,
 1564 yielding exactly our definition of $U_i(S)$. Therefore, within this natural class of budget-based and
 1565 scale-invariant utilities, our normalization is essentially unique.

Table 18: Summary of main notation used in TOKENTUNE.

Symbol	Description
D	Full training data pool
x_i	i -th input sequence (sample)
n_i	Token length of sample x_i
$x_{i,j}$	j -th token in sample x_i
$y_{i,j}$	Target token at position (i, j)
θ	Model parameters (generic)
θ_0	Current / base model parameters
θ_{ref}	Reference (teacher) model parameters
$\ell_\theta(x_{i,j})$	Token-level loss under model θ
$\ell_0(x_{i,j})$	Loss under current model θ_0
$\ell_{\text{ref}}(x_{i,j})$	Loss under reference model θ_{ref}
$b_{i,j}$	Baseline loss / difficulty: $b_{i,j} = \ell_0(x_{i,j})$
$\Delta\ell_{i,j}$	Learning gain: $\Delta\ell_{i,j} = \ell_0(x_{i,j}) - \ell_{\text{ref}}(x_{i,j})$
$LG(x_{i,j})$	Learning Gain at token (i, j) (equal to $\Delta\ell_{i,j}$)
$\mathbf{z}(x_{i,j})$	Logits vector at position (i, j)
$z_k(x_{i,j})$	Logit for vocabulary token k at (i, j)
$\alpha_k(x_{i,j})$	Dirichlet evidence for token k at (i, j)
$\alpha_0(x_{i,j})$	Total Dirichlet evidence: $\alpha_0 = \sum_k \alpha_k$
$AU(x_{i,j})$	Answer Uncertainty at token (i, j)
$\rho_{i,j}$	Token-level utility density: $\rho_{i,j} = \Delta\ell_{i,j}/b_{i,j}$
$U_i(S)$	Sample utility over token subset $S \subseteq \{1, \dots, n_i\}$
$U_k^{\text{Sample}}(x_i)$	Sample utility using top- k % tokens by $\rho_{i,j}$
$\hat{y}_{i,j}$	Token label: 0 (uninformative), 1 (learnable), 2 (ambiguous)
τ_{LG}, τ_{AU}	Thresholds for LG and AU in token labeling
$\{C_1, \dots, C_K\}$	Clusters of the data pool D
$CS_i(t)$	UCB cluster score of C_i at iteration t
$\bar{I}_i(t)$	Average influence score of cluster C_i at iteration t
$T(C_i, t)$	Number of times cluster C_i is selected up to t
γ	Exploration coefficient in UCB scheduler
S_i	Selected sample subset from cluster C_i
V	Vocabulary size
T	Distillation temperature
$q(v)$	Teacher distribution over vocabulary token v
λ	Trade-off between CE and distillation losses

Top- k token subset. In practice, not all tokens in a sample carry useful signal: very low-density tokens may correspond to noise or regions where the reference and base models already largely agree. To avoid dilution by such tokens, we focus on the subset of top- k % tokens ranked by $\rho_{i,j}$ within each sample. The final sample utility score used by our method is thus

$$U_k^{\text{Sample}}(x_i) := \frac{\sum_{j \in \text{top-}k(\rho)} \Delta\ell_{i,j}}{\sum_{j \in \text{top-}k(\rho)} b_{i,j}} = \frac{\sum_{j \in \text{top-}k(\rho)} (\ell_{\text{ref}}(x_{i,j}) - \ell_0(x_{i,j}))}{\sum_{j \in \text{top-}k(\rho)} \ell_0(x_{i,j})}. \quad (25)$$

This quantity can be interpreted as the *expected marginal improvement per unit difficulty budget* restricted to the most informative tokens of each sample, providing a stable and comparable notion of sample utility across examples with widely varying lengths and difficulty.

K SUMMARY OF NOTATION

In this section, we summary the notation that TOKENTUNE used in Table 18.