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Abstract

Recent studies indicate that data quality is more important than quantity for fine-
tuning of large language models (LLMs). However, existing data selection methods
face two key limitations. First, they lack an effective utility estimation function:
sample-level utility computes the score for entire examples but ignores which to-
kens are actually useful, while token-level methods drop tokens with multiple valid
answers and thus remove valuable learning signals. Second, these methods are
inefficient because they require full-dataset inference to compute utilities, making
them prohibitively expensive at scale. To address these challenges, we propose
TokenTune, an efficient data selection framework for instruction tuning. The key
idea of TokenTune is a dual-level utility function that operates at both the token
and sample levels. At the token level, it identifies learnable tokens that still pro-
vide strong gradient signals and multi-answer tokens that preserve diversity under
incomplete supervision. At the sample level, it derives a utility score directly
from token signals, avoiding redundant full-dataset inference. To further scale,
TokenTune employs a two-stage design. In the selection stage, a multi-armed
bandit adaptively prioritizes informative clusters, from which high-utility samples
are chosen using the sample-level score. In the training stage, the token-level
utility guides gated optimization: learnable tokens strengthen supervision, while
multi-answer tokens preserve diversity. Extensive experiments across 7 bench-
marks show that TokenTune significantly outperforms state-of-the-art methods,
improving average performance by +3.8% while using only 5% of the full training
data and reducing overall training time by 8-10×.

1 Introduction

Instruction tuning has emerged as a powerful paradigm to improve the performance and alignment of
large language models (LLMs) by fine-tuning them on instruction–response pairs (Sun et al., 2024;
Li et al., 2024b; Chang et al., 2024). Recent studies show that data quality, rather than sheer quantity,
is crucial for substantial performance gains (Zhou et al., 2023; Albalak et al.). This insight has
motivated a growing line of work on data selection methods, which aim to identify and prioritize
informative subsets of training data automatically. So far, most existing approaches have operated
at the sample level (Li et al., 2024a; Han et al.; Lin et al., 2025), where each instruction–response
pair is treated as a single unit with one utility score. However, this sample-level-only selection
evaluates each example as a whole and ignores variation among its tokens. In practice, a sample with
a high overall score may still contain many uninformative or noisy tokens, which weaken gradient
signals and waste the limited training budget. To mitigate this limitation, recent work has shifted
toward token-level-only selection (Pang et al., 2025), aiming to remove noisy tokens within samples.
Token-level filtering cleans up noisy tokens but does not capture whether the remaining content still
forms a meaningful and instructive example. As a result, it may mistakenly discard globally valuable
samples whose usefulness emerges only when the full context is preserved.

This predicament leads to our research question: Can we design a unified framework that unifies the
strengths of token-level granularity and sample-level context to better select high-quality data?

Intuitive Dual-Level Selection Approaches. As shown in Figure 1, there are two intuitive methods
to achieve this goal. Sample-to-Token (S2T) first selects samples and then cleans tokens within the
chosen subset, whereas Token-to-Sample (T2S) reverses this order by first scoring tokens and then
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Figure 1: Comparison of different data selection paradigms. (a) Sample-to-Token (S2T) and (b)
Token-to-Sample (T2S) represent straightforward combinations of sample- and token-level selection.
Both require two-stage estimation, leading to higher latency and suboptimal performance. (c) Our
TokenTune achieves dual-level selection without redundant inference by composing sample utilities
directly from token signals and leveraging clustering-based scheduling.
aggregating them to estimate sample utility. However, although these strategies can achieve effective
selection, they still expose several unresolved challenges in terms of efficiency and generalization.

Challenges. First, while dual-level scoring improves selection quality, it incurs significant com-
putational overhead since it requires computing utility at both the sample and token levels. This
effectively doubles the computational cost per example (C1). Second, even if redundant scoring
is avoided, computing utility for all samples in a large-scale dataset is still prohibitively expensive.
We term this issue as scalability challenges (C2). If we can focus scoring only on a small set of
promising samples, we can significantly accelerate the overall selection process without compromis-
ing performance. Third, once a high-quality subset with valuable tokens is selected, the standard
supervised fine-tuning (SFT) paradigm typically applies cross-entropy loss uniformly across all the
selected tokens. However, this loss function assumes that each token position has only one correct
answer, represented by a one-hot target distribution. In instruction tuning, many output positions
admit multiple plausible candidate tokens. Treating such multi-answer tokens as only one correct
answer can penalize valid alternatives, causing the model to overfit to single references and reducing
its ability to generate diverse outputs. This challenge comprises two key aspects: (1) how to identify
multi-answer tokens during selection (C3.1), and (2) how to optimize these multi-answer tokens with
a more flexible supervision strategy than hard one-hot cross-entropy (C3.2).

Our Methodology. To tackle the above challenges, we propose TokenTune, a dual-level framework
for efficient and generalizable data selection. At its core, TokenTune proposes an effective dual-level
utility function operates at both the token and sample level. At the token level, it introduces two
complementary indicators to identify learnable tokens and multi-answer tokens (addressing C3.1), At
the sample level, it derives a sample utility score directly from these token-level signals, avoiding re-
dundant sample scoring process (addressing C1). To ensure scalability (C2) and generalization (C3),
TokenTune employs a two-stage pipeline built upon this dual-level utility function. In the selection
stage, TokenTune integrates a multi-armed bandit scheduler that adaptively prioritizes informative
clusters, focusing utility scoring process on high-utility subsets of the data pool (addressing C2). In
the training stage, a gated optimization strategy is proposed to route tokens into distinct optimization
objectives. Specifically, TokenTune uses cross-entropy loss for learnable tokens to provide strong
and reliable supervision that guides downstream task learning, while utilizing self-distillation on
multi-answer tokens to maintain output diversity (addressing C3.2).

Contributions. This paper makes the following contributions:

• We propose TokenTune, which combines a multi-armed bandit scheduler for scalable and
informative sample selection with a token-aware gated optimization strategy that routes different
token types to distinct training objectives. (Section 2)

• We design a dual-level utility function that jointly operates at the token and sample levels.
It leverages token-level indicators (learning gain for learnable tokens and answer uncertainty
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Figure 2: An Overview of TokenTune.

for multi-answer tokens) and derives sample-level utilities directly from these signals, avoiding
redundant inference. (Section 2.2)

• We provide theoretical insights of TokenTune, showing why our token-level indicators capture
learnable and uncertain tokens, why their aggregation yields effective sample-level selection, and
why uncertainty-aware objectives improve training robustness. (Section 3)

• Extensive experiments across diverse benchmarks show that TokenTune significantly outper-
forms state-of-the-art methods, improving average model performance by approximately 3.8%
while using only 5% of the training data and reducing overall training time by 8-10×. (Section 4)

2 TokenTune

2.1 TokenTune Overview
Core Components of TokenTune. TokenTune has three core components: ❶ a dual-level
utility function that jointly captures token- and sample-level utilities by leveraging token indicators
and deriving sample-level scores without redundant inference; ❷ an adaptive MAB scheduler that
partitions the data pool into clusters and uses a multi-armed bandit to prioritize promising regions
for scalable selection; and ❸ a token-aware gated optimization strategy that differentiates token roles
during training, assigning cross-entropy to learnable tokens, self-distillation to multi-answer tokens,
and suppressing uninformative tokens.

As shown in Figure 2, TokenTune follows a two-stage process. Stage 1 adaptively selects high-
utility samples by first clustering the pool, then applying the bandit to focus on promising clusters,
and finally conducting dual-level utility estimation within them. Stage 2 finetunes on the selected
subset with token-aware gated optimization, ensuring that retained signals—both learnable and
multi-answer—contribute effectively to training.

2.2 Dual-Level Utility Function
TokenTune introduces a dual-level utility function that operates at both the token and sample levels,
enabling fine-grained token filtering while simultaneously guiding principled sample selection.

2.2.1 Token-Level Utility Function

…

Logits

Vocab

Base Model Reference Model

…

Logits

Vocab

(a) Learnable Tokens (b) Uncertainty Tokens

…

Logits

Vocab

(c) Uninformative Tokens

Reference Answer

Figure 3: Different Types of Tokens.

Our token-level utility function are designed to
answer a simple question: Given a limited train-
ing budget, on which tokens does an additional
update yield the largest marginal improvement?

To this end, we follow two principles: (i) we
would like to prioritize tokens whose further
training is expected to produce a large reduction
in loss per token, so that each gradient update is
spent where it is most effective. (ii) Among such tokens, we want to distinguish between those that
are under-learned but consistent (single correct answer) and those that are inherently multi-answer
(several plausible outputs), since the latter should not be forced into a single hard label.
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To accomplish these principles, it involves two key components: a utility function that quantifies
token informativeness, and principled decision boundaries that distinguish among the categories.

Utility Function: Measuring What Matters in Tokens. To quantify token informativeness, we
define a utility function with two complementary components, namely Learning Gain (LG) and
Answer Uncertainty (AU).
Definition 2.1 (❶ Learning Gain (LG)). LG quantifies how much a token stands to benefit from
further training. Formally, given sample xi with ni tokens {xi,1, . . . , xi,ni}, yi,j the target token at
position (i, j). For a model with parameters θ, we define its token-level loss at (i, j) as

ℓθ(xi,j) := − log pθ(yi,j | xi) (1)

Given a reference model θref and the current model θ0, the learning gain at token (i, j) is defined
as Learning Gain LG(xi,j). LG measures whether a token remains learnable:

LG(xi,j) := ∆ℓ(xi,j) = ℓ0(xi,j)− ℓref(xi,j) (2)

where ℓref and ℓ0 denote token-level losses under the reference and current model. A largeLG(xi,j)
indicates that the token remains difficult and thus provides meaningful gradient signal, whereas a
small value suggests it has already been mastered by model.
Definition 2.2 (❷ Answer Uncertainty (AU)). Some tokens are inherently ambiguous, admit-
ting multiple plausible answers. To identify such cases, we model predictive uncertainty with
an evidential Dirichlet distribution. For a token position (i, j) with target token xi,j , let
z(xi,j) = (z1(xi,j), . . . , zK(xi,j)) denote the pre-softmax logits over the vocabulary produced
by the model. We first map logits to non-negative evidence and obtain Dirichlet parameters
α(xi,j) = (α1(xi,j), . . . , αK(xi,j)). We then define the answer uncertainty at (i, j) as the ex-
pected predictive entropy of the categorical distribution p drawn from this Dirichlet:

AU(xi,j) := Ep∼Dir(α(xi,j)+1)

[
−

K∑
k=1

pk log pk
]
, (3)

where 1 is the all-ones vector. Using standard properties of the Dirichlet distribution, this expectation
admits the following closed-form expression in terms of the digamma function:

αk(xi,j) = max(0, zk(xi,j)) + 1, α0(xi,j) =

K∑
k=1

αk(xi,j),

AU(xi,j) = −
K∑

k=1

αk(xi,j)

α0(xi,j)

(
ψ(αk(xi,j) + 1)− ψ(α0(xi,j) + 1)

)
,

(4)

whereψ(·) is the digamma function. A high value ofAU(xi,j) indicates strong evidence for multiple
plausible outputs at position (i, j), suggesting that such tokens should not be optimized with hard
labels. In Appendix A.1 and Appendix J.2, we have explain why AU captures inherently multi-answer
tokens. Please refer to this part for more details.

Decision Boundaries: From Token Scores to Token Labels.

ŷi,j =


1, if LG(xi,j) > τLG,

2, if LG(xi,j) ≤ τLG and AU(xi,j) > τAU ,

0, otherwise,
(5)

where τLG and τAU are predefined thresholds. Here, ŷi,j = 1 indicates that the token will be routed
to a strong supervision objective, ŷi,j = 2 indicates routing to a distillation-based objective, and
ŷi,j = 0 corresponds to suppression during training.

2.2.2 Sample-Level Utility Function

A key challenge in model-aware data selection is how to aggregate fine-grained token-level utilities
into a reliable sample-level score. Many existing methods repeatedly run the model over the entire
dataset to estimate per-sample gains, which becomes computationally prohibitive at scale.

Our goal is to construct a sample-level utility that (i) reflects how much training on a sample is
expected to improve the model per token, so that scores are comparable across samples of different
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lengths, (ii) is directly induced from the token-level learning gains LG(xi,j) rather than introducing
a separate heuristic at the sample level, and (iii) requires no additional forward passes beyond those
already used to compute token losses.

Formally, recall that for sample xi = {xi,1, . . . , xi,ni} and target tokens yi,j , we defined in Eq. 2 the
token-level learning gain

LG(xi,j) := ∆ℓ(xi,j) = ℓref(xi,j)− ℓ0(xi,j),

where ℓref and ℓ0 are the token losses under the reference and current model, respectively. For
notational convenience, we write

∆ℓi,j := ∆ℓ(xi,j), bi,j := ℓ0(xi,j) > 0.

We first define a per-token utility density

ρi,j :=
∆ℓi,j
bi,j

, (6)

which normalizes the learning gain at (i, j) by its baseline loss. Here bi,j is simply the token-level
loss under the current model. Under cross-entropy, this loss is − log pθ0(yi,j | xi): tokens with large
bi,j are those to which the model assigns low probability (i.e., it is still uncertain or often wrong),
while tokens with small bi,j are already well mastered. We therefore interpret bi,j as the current
difficulty of token (i, j). The density ρi,j then normalizes the learning gain at (i, j) by its baseline
loss. Intuitively, ρi,j measures how much additional loss reduction we obtain relative to the current
difficulty of this token, i.e., the loss improvement per unit difficulty. For any subset of positions
S ⊆ {1, . . . , ni}, the sample-level utility function is defined as the weighted average of the token
densities:

Ui(S) :=

∑
j∈S ∆ℓi,j∑
j∈S bi,j

=
∑
j∈S

wi,j(S) ρi,j , wi,j(S) :=
bi,j∑
t∈S bi,t

, (7)

wherewi,j(S) is a normalized weight over tokens in S. In practice, we choose S as the set of top-k%
tokens in xi ranked by ρi,j , and use the resulting Ui(S) as the sample-level score USample

k (xi) for
data selection. This construction reuses the token-level LG signals and does not require any extra
inference beyond the losses already computed during training. We provide a more detailed derivation
and discussion in Appendix J.3.

2.3 Adaptive Data Selection via MAB-Integrated Scheduler
To efficiently scale TokenTune to large datasets, we integrate the Multi-Armed Bandit (MAB)
algorithm with our dual-level utility estimation. This scheduler adaptively explores clusters while
exploiting token- and sample-level signals, ensuring both data quality and diversity. The procedure
consists of four steps.

Step 1: MAB-Driven Cluster Selection. We first partition the data pool D into k clusters
{C1, . . . , Ck}. To avoid evaluating every sample exhaustively, we employ the Upper Confidence
Bound (UCB) algorithm to prioritize clusters with the highest expected gain. At iteration t, the
cluster score of Ci and the selected cluster are defined as:

CSi(t) = Īi(t) + γ

√√√√2 ln
(∑k

j=1 T (Cj , t)
)

T (Ci, t)
, C∗(t) = argmax

i
CSi(t), (8)

where Īi(t) is the average influence score of samples in Ci up to round t, T (Ci, t) is the number of
times Ci has been sampled, and γ balances exploration and exploitation.

Step 2: Valuable Token Detection with Token-Level Utility. Within the selected cluster C∗(t),
we compute token-level utility scores, including Learning Gain (LG) (Eq. 2) and Answer Uncer-
tainty (AU) (Eq. 18). Tokens are then categorized as learnable, ambiguous, or uninformative using
thresholds (τLG, τAU ).

Step 3: Sample Selection with Sample-Level Utility. To connect token-level informativeness with
sample-level data valuation, we compute the Sample Utility Function (Eq. 7). Only samples with
the highest sample utility scores in C∗(t) are selected for training, ensuring that retained samples
provide maximal learning signal under a limited computational budget.
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Step 4: Cluster Score Updates for Next Round. Once the subset is selected, we update the average
influence score of cluster Ci based in these samples as:

Īi(t+ 1) =
Īi(t)T (Ci, t) +

∑
x∈Si

U
Sample
k (x)

T (Ci, t) + |Si|
, (9)

where Si is the subset of selected samples fromCi at iteration t. This update refinesCSi(t), allowing
the MAB scheduler to balance exploitation of high-quality clusters with exploration of under-visited
ones in future rounds.

2.4 Token-Aware Training with Gated Optimization
The dual-level utility function not only enables efficient sample selection but also assigns each token
a categorical label ŷi,j (Eq. 5), indicating whether it is learnable (ŷi,j = 1), ambiguous (ŷi,j = 2),
or uninformative (ŷi,j = 0). To exploit this decomposition during training, we propose a gated
optimization strategy that routes tokens into distinct objectives based on their labels. This ensures
that learnable tokens provide strong supervision, ambiguous tokens contribute through uncertainty-
aware distillation, and uninformative tokens are suppressed to avoid noise amplification.

Cross-Entropy Loss for Learnable Tokens. Tokens labeled as ŷi,j = 1 are directly optimized with
standard cross-entropy loss:

LCE =
1∑

j 1[ŷi,j = 1]

ni∑
j=1

1[ŷi,j = 1]
(
− log pθ(yi,j | xi)

)
, (10)

ensuring that informative tokens continue to drive effective parameter updates.

Self-Distillation Loss for Ambiguous Tokens. Tokens labeled as ŷi,j = 2 are inherently ambiguous
and thus optimized via masked self-distillation. Using a softened teacher distribution with tempera-
ture T > 0. Formally, let zθ(x) ∈ RV be the logits, pθ = softmax(zθ). For token position (i, j), let
the teacher give a distribution qi,j ∈ ∆V−1 and the ground-truth token be Yi,j ∼ qi,j (multi-answer
tokens correspond to high-entropy qi,j). We compute the distillation loss as

LSD =
T 2∑

j 1[ŷi,j = 2]

ni∑
j=1

1[ŷi,j = 2] (−
V∑
v=1

q(v) log pθ(v) + const(q)). (11)

Final Training Objective. Uninformative tokens (ŷi,j = 0) are masked out and do not contribute
to optimization. The overall objective combines cross-entropy and self-distillation with a balancing
coefficient λ ∈ [0, 1]:

L = λLCE + (1− λ)LSD. (12)

3 Theoretical Analysis

3.1 Why AU Captures Multi-Answer Tokens
• Theorems A.1–A.3 show that when the model has multiple strong next-token candidates (evidence

concentrated on m ≥ 2 tokens and relatively evenly split), AU is provably large.
• Conversely, Propositions A.4–A.5 exclude the main confound: if all candidates are uniformly

weak (small s), AU must be small, and if AU is large, the evidence must be spread across at least
two candidates in non-negligible shares. Together, these results justify the use of AU as a detector
of tokens with multiple correct answers.

3.2 Why Top-k LG-density Tokens Maximizes the Sample utility

We define the top-k sample utility score USample
k (xi) in Appendix A.6. By Proposition 3.2,

USample
k (xi) upper-bounds (and typically strictly improves over) the full-token ratio that also counts

tokens with small or negative densities (e.g., high-AU but low-LG positions). Selecting the global
top-Ksamples byUSample

k (xi) maximizes the expected loss reduction per unit baseline (training budget)
under our additive approximation.
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Proposition 3.1 (Trimming low-density tokens increases sample utility). Fix i and a nonempty S.
If there exists j⋆ ∈ S with ρi,j⋆ < Ui(S), then Ui(S \ {j⋆}) > Ui(S). More generally, for any
T ⊆ S consisting only of indices with ρi,j ≥ Ui(S), one has Ui(T ) ≥ Ui(S), with strict inequality
if at least one strict inequality ρi,j > Ui(S) holds in T .

Proof. Write A =
∑
j∈S ∆ℓi,j and B =

∑
j∈S bi,j , so Ui(S) = A/B. For j⋆ we have ∆ℓi,j⋆ <

(A/B) bi,j⋆ . Then

Ui(S\{j⋆}) =
A−∆ℓi,j⋆

B − bi,j⋆
>

A− (A/B) bi,j⋆

B − bi,j⋆
=

A

B
= Ui(S).

The extension to any T that removes all indices with ρi,j < Ui(S) follows by repeating argument. □
Proposition 3.2 (Top-k by density maximizes sample utility at fixed budget). Fix k ∈ {1, . . . , ni}.
Among all S ⊆ {1, . . . , ni} with |S| = k, Ui(S) is maximized by taking the k indices with the largest
densities ρi,j = ∆ℓi,j/bi,j . See Proposition A.8 in Appendix A for a detailed proof.

In particular,
Ui(top-k ρ) ≥ Ui({1, . . . , ni}) (the full-token utility).

3.3 Why Knowledge Distillation Loss (KD) for High AU Tokens and Cross-Entropy
Loss (CE) for High LG Tokens Can Perform Best?

Let zθ(x) ∈ RV be the logits, pθ = softmax(zθ). For token position (i, j), let the teacher give a
distribution qi,j ∈ ∆V−1 and the ground-truth token be Yi,j ∼ qi,j (multi-answer tokens correspond
to high-entropy qi,j).

• (a) The CE gradient coincides with the KD gradient in expectation, but CE introduces additional
sampling noise whose variance grows with how spread out q is, whereas KD has no sampling
noise; see Lemma A.9.

• (b) With a sufficiently small step size, a smaller gradient covariance implies a larger expected
decrease in the underlying smooth risk; see Lemma A.10.

Theorem 3.3 (AU-high tokens: KD yields strictly larger expected decrease than CE). Fix (i, j) and
assume Jθ ̸= 0. Consider one SGD step on this token with either CE (using a hard label Y ∼ qi,j)
or KD (using the full qi,j). Under Lemma A.9 and Lemma A.10, for any step size η ∈ (0, 1

L ],

E
[
∆RKD

]
≥ E

[
∆RCE

]
,

with strict inequality whenever qi,j has positive entropy (i.e., AU(xi,j) > 0). Here ∆RKD and
∆RCE denote the one-step decrease of the same risk R under KD and CE updates, respectively.
Proposition 3.4 (LG-high tokens: CE is never worse than the all-CE baseline). Let E be the set of
LG-high tokens and A the set of AU-high tokens (disjoint). The all-CE baseline optimizes

Lall-CE(θ) =
∑

(i,j)∈E∪A

LCE(pθ, Yi,j).

Here CE baseline refers to the all–cross-entropy training scheme: for the given set of tokens, we
always use hard labels and CE, with no KD anywhere.

The proposed mix uses CE on E and KD on A:

Lmix(θ) =
∑

(i,j)∈E

LCE(pθ, Yi,j) + λ
∑

(i,j)∈A

LKD(pθ, qi,j) (λ > 0).

Let ∆Rall-CE and ∆Rmix denote the one-step decrease of the underlying smooth risk R(θ) under
the all-CE baseline and our mixed scheme, respectively, using the same step size η ∈ (0, 1

L ]. For
tokens in E, both methods use CE and thus have identical per-step behavior. For tokens in A, by
Theorem 3.3, the mixed scheme has no smaller and typically strictly larger expected loss decrease
than the all-CE baseline. Therefore, per SGD step,

E[∆Rmix] ≥ E[∆Rall-CE],

with strict inequality if A contains at least one positive-entropy (AU-high) token.

7
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4 Experiment

4.1 Experimental Setups

Datasets. To investigate data selection across various scenarios and demonstrate the robustness
of TokenTune, we use two distinct data pools: (1) Tulu3 (Lambert et al., 2024): A large-scale,
real- world SFT dataset presented by Ai2, containing million-level records across a wide variety of
subjects, including mathematics, programming, and user dialogues. (2) Openhermes2.5: A dataset
with over 1 million data points, sourced from 16 distinct origins, including MetaMath (Yu et al.,
2023), CamelAI (Li et al., 2023) and others.
Benchmarks and Metrics. To comprehensively evaluate the efficacy of TokenTune, we evaluate
TokenTune on three leaderbords, including OpenLLM Leaderboards, ALpacaEval and MT-Bench.
For OpenLLM Leaderboards, we adopt seven tasks, including TyDiQA (Clark et al., 2020), Hel-
laSwag (Zellers et al., 2019), ARC-C (Clark et al., 2018), BoolQ (Clark et al., 2019), GSM8K (Cobbe
et al., 2021), HumanEval (Chen et al., 2021) and LogiQA (Liu et al., 2020).
Baselines. We study several existing state-of-the-art methods as our baselines for data selection,
including Full Data, Random Selection (Xia et al., 2024b), TokenClean (Pang et al., 2025),
RHO (Lin et al., 2024), IFD (Li et al., 2024b), Instag (Lu et al.), Entropy (Xia et al., 2024b),
SelectIT (Liu et al., 2024a), Token Length (TL) (Xia et al., 2024b), ZIP (Yin et al., 2024),
CaR (Ge et al., 2024), Deita (Liu et al., 2024b), LEAD (Lin et al., 2025).
Implementation Details of TokenTune. We evaluate TokenTune using three foundational models
(LLAMA-3.1-8B, Mistral-7B and Qwen2-7B) and utilize Low-Rank Adaption (LoRA) Hu et al.
(2022) for parameter-efficient fine-tuning. The maximum learning rate is set as 2 × 10−5 with a
linear decay schedule, and the batch size is 8. We also fix the maximum input sequence length to
2080. Models are trained for 1 epoch on 4 A800 GPUs.

4.2 Exp-1: Overall Performance

We first evaluate the overall performance of TokenTune against state-of-the-art baselines, using the
same budget of 50K samples, corresponding to 5% of the data pool. Results are reported on two
representative datasets: Tulu3 (Table 1) and Openhermes (Table 4), and performance is evaluated on
the OpenLLM Leaderboard, which include eight benchmarks.

Exp-1.1: Overall Performance on Tulu3. Table 1 reports results on LLaMA3.1-8B and Qwen2-
7B. Overall, TokenTune consistently surpasses strong baselines, confirming its effectiveness.
(1) Consistent Effectiveness across LLMs. TokenTune achieves robust improvements across dif-
ferent architectures. On LLaMA3.1-8B, it reaches 60.28, outperforming TokenTune (58.27) and
Deita (57.51) by +2.01 and +2.77, respectively. A similar trend holds on Qwen2-7B, where To-
kenTune obtains 59.67, again surpassing both sample- and token-level baselines. These results
demonstrate that TokenTune consistently delivers gains regardless of backbone choice.
(2) Small Data, Big Gains. Impressively, TokenTune achieves these results using only 5% of the
data pool, even outperforming the Full Data baseline (59.65). This challenges the assumption
that more data is always better, showing instead that high-quality selection can unlock superior
performance with far smaller subsets.
(3) Superior to State-of-the-art Baselines. Although some baselines show strengths on specific tasks
(e.g., TokenClean on TyDiQA, Deita on BoolQ), they fall short on reasoning-heavy benchmarks
such as GSM8K. In contrast, TokenTune maintains consistently strong results across all tasks, with
notable improvements of +3.45 on GSM8K and +2.77 on TyDiQA. This confirms the robustness and
adaptability of TokenTune in selecting high-utility data across diverse evaluation settings.

4.3 Exp-2: The Efficiency of TokenTune

We evaluate the efficiency of TokenTune compared to baseline methods, with the results primarily
shown in Figure 4 and Figure 5. TokenTune significantly reduces both the inference and training
times, thanks to a dual-level data selection strategy and the use of the MAB scheduler.

Exp-2.1: Performance vs. Latency. We compare performance and inference latency across
different methods, as shown in Figure 4. TokenTune (marked with a star) consistently achieves
the best performance-latency trade-off, occupying the upper-left region of the plot. In addition,
TokenTune delivers up to 5× faster inference time compared to the baselines while maintaining
top performance on all the benchmarks. This confirms that TokenTune not only outperforms
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Table 1: Comparison of performance across different benchmarks on the Tulu3 dataset. Green
highlights the remarkable improvements over the Random baseline.

Type Method TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA Avg.

Llama3.1-8B

Base
Base 22.80 59.92 50.82 82.18 50.31 69.28 26.51 51.69

Full Data 54.31 58.57 49.18 83.48 66.08 80.34 25.58 59.65
Random 46.96 60.14 51.34 82.80 51.98 73.75 27.91 56.41

Token-Level TokenClean 52.91 61.82 54.00 82.18 51.00 77.31 28.22 58.21
RHO 48.02 60.09 53.61 81.04 51.00 73.42 26.67 56.26

Sample-Level

IFD 38.55 60.35 49.87 82.21 57.04 71.60 26.36 55.14
ZIP 52.32 60.11 50.65 82.83 53.83 70.02 24.81 56.37

Entropy 45.72 60.35 49.87 82.21 57.04 75.02 26.36 56.65
Instag 44.97 60.66 50.39 84.34 58.80 75.50 26.67 57.33
CaR 46.01 59.97 50.73 83.91 54.06 73.98 27.44 56.59
TL 48.76 60.53 50.39 82.52 51.99 73.12 27.44 56.39

SelectIT 44.44 60.21 52.89 83.29 56.37 72.19 27.94 56.76
Deita 44.81 60.74 52.11 82.86 57.35 74.60 30.08 57.51

Dual-Level TokenTune (Ours) 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28

Qwen2-7B
Base Random 48.18 57.02 49.01 83.13 76.88 75.43 31.32 60.14

Token-Level TokenClean 45.21 57.01 52.88 84.65 76.57 77.48 31.12 60.70
RHO 44.18 56.82 50.07 81.89 75.42 76.94 30.01 59.33

Sample-Level

ZIP 50.31 59.02 48.49 85.21 76.03 75.27 30.85 60.74
Entropy 50.01 57.43 45.14 83.84 76.92 74.18 29.96 59.64
Instag 50.99 58.99 49.44 84.31 76.80 75.98 27.75 60.61
CaR 50.33 58.55 46.17 83.01 77.87 75.31 30.70 60.28
TL 43.84 59.04 43.76 83.60 77.11 76.14 31.01 59.21

SelectIT 47.18 58.02 44.75 82.18 76.17 74.62 30.71 59.09
Deita 46.72 59.17 49.01 83.76 78.25 77.01 33.02 60.99

Dual-Level TokenTune (Ours) 52.42 59.39 52.80 85.45 80.63 77.44 33.80 63.13
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Figure 4: Comparison of Performance (y-axis) and Latency (x-axis) on different selection methods.

traditional methods in terms of model performance but also significantly reduces inference latency,
making it a highly efficient solution for data selection and instruction tuning.
Exp-2.2: Analysis of Latency Composition. We evaluate the latency composition of TokenTune
by comparing inference time and training time across different data selection methods. The results,
shown in Figure 5, reveal that TokenTune reduces both inference and training times significantly,
outperforming baseline methods. This demonstrates that TokenTune effectively balances compu-
tational efficiency and model performance, making it a scalable solution for large-scale instruction
tuning tasks.
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Table 2: Ablation study of TokenTune across multiple benchmarks. “SD” denotes self-distillation
loss, “TokUtility” denotes token-level influence score, “SamUtility” denotes sample-level influence
score, and “MAB” denotes multi-armed bandit based cluster selection.

Method OpenLLM Leaderboards Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

TokenTune (Ours) 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
w/o SD 58.43 61.17 52.37 82.98 56.13 75.65 27.31 59.06
w/o MAB 56.95 61.04 54.09 84.16 52.53 75.79 24.19 58.39
w/o TokUtility 53.79 59.77 48.66 83.57 54.82 74.23 26.67 57.36
w/o SamUtility 57.18 60.07 51.97 82.26 55.78 74.93 27.08 58.47
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Figure 5: Inference Time (Full Data)
and Training Time (Selected Data) per
Iteration across Different Methods.
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4.4 Exp-3: Ablation Study of TokenTune
We investigate the effect of each component in TokenTune, with results shown in Table 2 and
Figure 7. Removing any module leads to a clear performance drop: eliminating the token-level
utility causes the largest degradation (–2.9), while excluding the sample-level utility, MAB scheduler,
or self-distillation also results in noticeable declines. These results confirm that each component
contributes to the overall effectiveness of TokenTune, and their integration is essential for achieving
robust and consistent performance. More detailed results are provided in the Appendix F.

4.5 Exp-4: Analysis of Data Scaling
Exp-4.1: Effect of Sample Size on Performance. To examine the impact of data selection strategies
on data scaling effectiveness, we conduc t experiments by selecting samples with varying budgets. As
illustrated in Figure 6, TokenTune consistently presents higher average performance than alternative
selection methods across all data quantities, achieving peak performance with only 50K samples.
Notably, we observe a non-linear performance curve: gains taper and eventually decline beyond
a certain data threshold, which reveals a crucial insight: “alignment-suitable data” is inherently
limited. This finding challenges the conventional wisdom that more data automatically yields better
results, underscoring the critical importance of strategic data selection over mere quantity. Please
refer to Appendix ?? for more details.

Exp-4.2: Effect of Pool Size on Performance. We further examine how enlarging the candidate data
pool affects the effectiveness of different selection strategies. As shown in Figure 6 (b), TokenTune
consistently achieves higher performance than the random baseline across all pool sizes. Notably, its
advantage becomes more pronounced as the pool expands: when moving from 200k to nearly 1M
candidates, TokenTune steadily improves and reaches the best overall scores, while random selection
shows only marginal gains and even plateaus. This demonstrates that TokenTune can effectively
exploit larger pools to identify high-utility samples, confirming its scalability and robustness under
data scaling. More detailed results are provided in the Appendix G.2.

5 Conclusion
In this paper, we present TokenTune, a dual-level data selection framework for instruction tuning that
jointly considers token- and sample-level utilities. By capturing both learnable and uncertain tokens,
TokenTune constructs an efficient utility function that avoids redundant inference while preserving
diversity. The framework further integrates multi-armed bandit-based cluster selection with token-
aware gated optimization, enabling scalable and effective training on large datasets. Experimental
results demonstrate that TokenTune consistently outperforms state-of-the-art methods, achieving
superior model performance with substantially less data and reduced training time.
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LLM USAGE

LLMs are used only for auxiliary purposes, such as language refinement, minor code debugging,
synthetic data construction, and experiment evaluation support. They do not contribute to the research
design, methodology, or core writing of the paper. Accordingly, LLM usage does not constitute a
substantive contribution to the intellectual content of this work.

Ethics Statement

All experiments in this paper are conducted on publicly available datasets, which contain no private,
personal, or sensitive information. The proposed framework focuses on data selection and optimiza-
tion strategies for instruction tuning, and does not involve generating or handling harmful or offensive
content. By improving the efficiency and robustness of large-scale training, our method provides
a general methodology that can be broadly applied to various language model applications without
raising additional ethical risks. Nevertheless, as with all data-driven approaches, potential biases
in the underlying datasets may propagate to downstream models, and careful auditing of training
corpora remains an important future direction.

Reproducibility Statement

We have made significant efforts to ensure the reproducibility of our work. The full implemen-
tation of our proposed method, including model training, evaluation scripts, and instructions
for data construction, is publicly available at https://anonymous.4open.science/r/
TokenTune-D201/. All experiments can be reproduced by following the provided scripts with
the described hyperparameters. Details of implementation are included in the supplementary mate-
rials.
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A Detailed Theoretical Analysis

AU Score We recall the definition of the AU score in a compact form. For a token position (i, j)
with target token xi,j , let α(xi,j) = (α1(xi,j), . . . , αK(xi,j)) denote the Dirichlet concentration
parameters induced from the logits (see Eq. equation 18 in the main text), and write α0(xi,j) :=∑K
k=1 αk(xi,j). The answer uncertainty at (i, j) is defined as the expected predictive entropy of a

categorical parameter p drawn from this Dirichlet:

AU(xi,j) = Ep∼Dir(α(xi,j))

[
−

K∑
k=1

pk log pk

]
= −

K∑
k=1

αk(xi,j)

α0(xi,j)

(
ψ(αk(xi,j)+1)−ψ(α0(xi,j)+1)

)
,

where ψ(·) is the digamma function. For brevity, in the following we drop the explicit dependence
on (i, j) and write αk and α0 when no confusion arises.

For convenience write the total evidence s := α0 > 0 and the evidence shares βk := αk/α0 (so∑
k βk = 1). Then equation 17 is equivalently

AU(s,β) = ψ(s+ 1)−
K∑
k=1

βk ψ(sβk + 1). (13)

A.1 Why AU Captures Multi-Answer Tokens?

Proof 1: High AU Implies the token has multiple correct answers

• Theorems A.1–A.3 show that when the model has multiple strong next-token candidates (evidence
concentrated on m ≥ 2 tokens and relatively evenly split), AU is provably large.

• Conversely, Propositions A.4–A.5 exclude the main confound: if all candidates are uniformly
weak (small s), AU must be small, and if AU is large, the evidence must be spread across at least
two candidates in non-negligible shares. Together, these results justify the use of AU as a detector
of tokens with multiple correct answers.

Theorem A.1 (Sufficiency I: more strong candidates⇒ larger AU). Fix s > 0. Suppose the evidence
is concentrated on a set S of size m ≥ 1 and is evenly split: αk = s/m for k ∈ S and αk = 0
otherwise. Then

AUm = ψ(s+ 1)− ψ
( s
m

+ 1
)
,

which is strictly increasing in m, with AU1 = 0 and AUm > 0 for m ≥ 2.

Proof. Under the hypothesis, βk = 1/m for k ∈ S and 0 otherwise, and equation 13 gives the stated
formula. Since ψ is strictly increasing on (0,∞), ψ(s/m+1) strictly decreases withm, hence AUm
strictly increases. The boundary values follow directly.

Lemma A.2 (Strict concavity of the AU objective on the simplex interior). Fix s > 0 and let
F (β) := AU(s,β) restricted to

∑
k βk = 1 and βk > 0. Then F is strictly concave on the interior

of the simplex. In particular, the only stationary point is where all active components are equal.

Proof. From equation 13, F (β) = ψ(s + 1) −
∑
k ϕ(βk) with ϕ(x) := xψ(sx + 1). Thus

F ′′
kk = −ϕ′′(βk) and F ′′

ij = 0 for i ̸= j. Using polygamma notation ψ(m), we compute

ϕ′(x) = ψ(sx+ 1) + sxψ(1)(sx+ 1), ϕ′′(x) = 2sψ(1)(sx+ 1) + s2xψ(2)(sx+ 1).

For x > 0 we have ψ(1)(t) =
∑∞
n=0

1
(t+n)2 > 0 and ψ(2)(t) = −2

∑∞
n=0

1
(t+n)3 < 0. Therefore

2ψ(1)(t) + t ψ(2)(t) = 2

∞∑
n=0

( 1

(t+ n)2
− t

(t+ n)3

)
= 2

∞∑
n=1

n

(t+ n)3
> 0,

so ϕ′′(x) > 0 and hence F ′′
kk < 0, proving strict concavity. Stationarity under the linear constraint∑

k βk = 1 yields ϕ′(βk) = λ for all active k, and since ϕ′ is strictly increasing, all active βk must
be equal.
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Theorem A.3 (Sufficiency II: at fixed support size, AU is maximized by even split). Fix s > 0
and an integer m ≥ 1. Among all β supported on exactly m indices, AU(s,β) attains its unique
maximum at the uniform point βk = 1/m on the active set, with value ψ(s+ 1)− ψ(s/m+ 1).

This means: If exactlym candidates are truly active, the best way (for AU) is to split evidence evenly
across them; any imbalance lowers AU, and dropping to fewer than m active candidates also lowers
AU.

Proof. By Lemma A.2, F is strictly concave on the simplex interior, so any interior stationary point
is the unique global maximizer on that face. Lemma A.2 also shows all active coordinates must be
equal at a stationary point. Evaluating at βk = 1/m gives the value in the claim. On the boundary
(some βk → 0) the support size drops to m′ < m, and Theorem A.1 then implies a strictly smaller
maximum.

Proposition A.4 (Necessary A: low total evidence cannot yield large AU). Uniformly over β,
AU(s,β) = O(s) as s→ 0. More precisely,

AU(s,β) = ψ′(1) s
(
1−

∑
k

β2
k

)
+O(s2) ≤ π2

6
s+O(s2).

Hence, if AU ≥ η > 0 then necessarily s = α0 ≥ 6
π2 η (1 + o(1)) as η ↓ 0.

Proof. Expand ψ(1 + ε) = ψ(1) + ψ′(1)ε + O(ε2) in equation 13 with ε = s and ε = sβk,
respectively; ψ(1) cancels and ψ′(1) = π2/6.

Proposition A.5 (Necessary B: large AU forces dispersion across candidates). For any s > 0 and
β,

AU(s,β) ≥ ψ(s+ 1)− ψ
(
s
∑
k β

2
k + 1

)
.

Consequently, if AU ≥ η > 0, then∑
k

β2
k ≤ r(s, η) :=

ψ−1
(
ψ(s+ 1)− η

)
− 1

s
,

and in particular the number of non-negligible candidates satisfies {k : βk > 0} ≥ ⌈ 1/r(s, η) ⌉.

Proof. Since ψ is concave on (0,∞),

K∑
k=1

βk ψ(sβk + 1)
(Jensen, concave ψ)

≤ ψ

(
K∑
k=1

βk (sβk + 1)

)
(14)

= ψ

(
s

K∑
k=1

β2
k +

K∑
k=1

βk

)
= ψ

(
s

K∑
k=1

β2
k + 1

)
. (15)

Substitute into equation 13 to obtain the lower bound.

The stated upper bound on
∑
k β

2
k then follows from the monotonicity of ψ and its inverse. Finally,

by Cauchy–Schwarz,
∑
k β

2
k ≥ 1/m if at most m components are nonzero, yielding the cardinality

claim.

A.2 Why Top-k LG-density tokens maximizes the sample utility

Definition A.6 (Top-k Sample Utility Score). For each sample xi, compute per-token LG ∆ℓi,j and
baseline bi,j , form densities ρi,j = ∆ℓi,j/bi,j in Proposition 3.2, and define

USample
k (xi) :=

∑
j∈top-k(ρ) ∆ℓi,j∑
j∈top-k(ρ) bi,j

=

∑
j∈top-k(ρ)

(
ℓref(xi,j)− ℓ0(xi,j)

)∑
j∈top-k(ρ) ℓ0(xi,j)

.
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By Proposition A.8, USample
k (xi) upper-bounds (and typically strictly improves over) the full-token

ratio that also counts tokens with small or negative densities (e.g., high-AU but low-LG positions).
Selecting the global top-Ksamples by USample

k maximizes the expected loss reduction per unit baseline
(training budget) under the additive approximation.
Proposition A.7 (Trimming low-density tokens increases sample utility). Fix i and a nonempty S.
If there exists j⋆ ∈ S with ρi,j⋆ < Ui(S), then Ui(S \ {j⋆}) > Ui(S). More generally, for any
T ⊆ S consisting only of indices with ρi,j ≥ Ui(S), one has Ui(T ) ≥ Ui(S), with strict inequality
if at least one strict inequality ρi,j > Ui(S) holds in T .

Proof. Write A =
∑
j∈S ∆ℓi,j and B =

∑
j∈S bi,j , so Ui(S) = A/B. For j⋆ we have ∆ℓi,j⋆ <

(A/B) bi,j⋆ . Then

Ui(S\{j⋆}) =
A−∆ℓi,j⋆

B − bi,j⋆
>

A− (A/B) bi,j⋆

B − bi,j⋆
=

A

B
= Ui(S).

The extension to any T that removes all indices with ρi,j < Ui(S) follows by repeating the argument.
□

Proposition A.8 (Top-k by density maximizes sample utility at fixed budget). Fix k ∈ {1, . . . , ni}.
Among all S ⊆ {1, . . . , ni} with |S| = k, Ui(S) is maximized by taking the k indices with the largest
densities ρi,j = ∆ℓi,j/bi,j . In particular,

Ui(top-k ρ) ≥ Ui({1, . . . , ni}) (the full-token utility).

Proof. If S is not the top-k set, there exists p ∈ S and q /∈ S with ρi,p < ρi,q . Consider
S′ = (S \ {p}) ∪ {q}. Since Ui(S) is a weighted average of {ρi,j}j∈S , we have Ui(S) ≤
maxj∈S ρi,j < ρi,q . Replacing p by q strictly increases the average; iterating yields the top-k set.
The inequality Ui(top-k) ≥ Ui(full) follows from Proposition A.7 by trimming all indices with
ρi,j < Ui(full). □

A.3 Why Self-Distillation Loss for Multi-answer Tokens Can Perform Best?

Let zθ(x) ∈ RV be the logits, pθ = softmax(zθ). For token position (i, j), let the teacher give a
distribution qi,j ∈ ∆V−1 and the ground-truth token be Yi,j ∼ qi,j (multi-answer tokens correspond
to high-entropy qi,j). Define the two losses:

LCE(pθ, Y )︸ ︷︷ ︸
cross-entropy

= − log pθ(Y ), LKD(pθ, q)︸ ︷︷ ︸
self-distillation

= KL(q ∥ pθ) = −
V∑
v=1

q(v) log pθ(v) + const(q).

Gradient (w.r.t. logits). For softmax, ∇zL
CE(pθ, Y ) = pθ− eY , ∇zL

KD(pθ, q) = pθ− q, where
eY is the one-hot of Y . For model parameters, ∇θL = J⊤

θ ∇zL, Jθ = ∂zθ
∂θ .

Analysis

• (a) CE’s gradient equals KD’s gradient in expectation, but CE adds extra noise that grows with
how spread-out q is; KD has no sampling noise. see details in Lemma A.9

• (b) With a small step size, smaller gradient covariance means a larger expected decrease. See
details in Lemma A.10

Lemma A.9 (Unbiasedness and variance of per-step gradients). Conditioned on x and q, for the
random label Y ∼ q,

E[∇θL
CE(pθ, Y )] = ∇θL

KD(pθ, q), Cov[∇θL
CE(pθ, Y )] = J⊤

θ

(
Diag(q)− qq⊤

)
Jθ ⪰ 0.

In particular, the covariance is 0 iff q is a delta (entropy = 0).
Lemma A.10 (One-step expected progress underL-smooth risk). LetR(θ) be anL-smooth objective
and update θ+ = θ − ηg, where g is an unbiased gradient estimator of ∇R(θ). Then

E[R(θ+)] ≤ R(θ)− η∥∇R(θ)∥2 + Lη2

2

(
∥∇R(θ)∥2 +Tr(Cov[g])

)
.

Hence for a fixed small step η, smaller gradient covariance yields larger expected decrease.
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Theorem A.11 (AU-high tokens: KD yields strictly larger expected decrease than CE). Fix (i, j) and
assume Jθ ̸= 0. Consider one SGD step on this token with either CE (using a hard label Y ∼ qi,j)
or KD (using the full qi,j). Under Lemma A.9 and Lemma A.10, for any step size η ∈ (0, 1

L ],

E
[
∆RKD

]
≥ E

[
∆RCE

]
,

with strict inequality whenever qi,j has positive entropy (i.e., the AU of (i, j) is nonzero). Here ∆R
denotes the one-step drop of the underlying smooth risk.
Proposition A.12 (LG-high tokens: using CE is never worse than the CE-baseline). Let E be the
set of LG-high tokens and A the set of AU-high tokens (disjoint). The all-CE baseline optimizes∑

(i,j)∈E∪A L
CE(pθ, Yi,j). Here CE-baseline means the all-cross-entropy training scheme—i.e.,

for the given set of tokens, we use hard labels and CE everywhere, with no KD anywhere.

The proposed mix uses CE on E and KD on A:

Lmix(θ) =
∑

(i,j)∈E

LCE(pθ, Yi,j) + λ
∑

(i,j)∈A

LKD(pθ, qi,j) (λ > 0).

For tokens in E, both methods use CE, thus identical per-step behavior. For tokens in A, by
Theorem A.11, the mix has no smaller and typically strictly larger expected loss decrease than the
all-CE baseline. Therefore, per SGD step, E[∆Rmix] ≥ E[∆Rall-CE], with strict inequality if A
contains at least one positive-entropy token.

B Related Work

Data Selection for Instruction Tuning. Previous works on data selection (Xia et al., 2024a; Zhou
et al., 2023; Hanmo et al., 2024) can be broadly categorized into two key approaches: sample-level
methods and token-level methods. Sample-level approaches rely on various metrics: perplexity-
based selection (Marion et al., 2023; Li et al., 2024a) favors simpler patterns, diversity-aware
methods (Wu et al., 2023; Yu et al., 2024) promote broad coverage but depend heavily on pretrained
embeddings, quality-based metrics such as influence scoring (Xia et al., 2024a; Ghorbani & Zou,
2019; Kwon et al.; Choe et al., 2024) or external model evaluation (Li et al., 2024c) provide stronger
theoretical grounding but incur high computational cost, complexity-driven selection (Li et al., 2024b;
Liu et al., 2024b) risks including noisy or overly difficult samples, and uncertainty-based metrics (Han
et al.; Liu et al., 2024a) are unstable due to loss landscape irregularities. Despite their differences,
these methods all focus on entire samples, overlooking that token quality within the same example
can vary substantially. To address this issue, token-level approaches such as TokenClean (Pang et al.,
2025) attempt to filter noise tokens. However, they typically discard uncertain tokens altogether,
which can lead to overfitting to spurious deterministic patterns.

C EXPERIMENTAL DETAILS

C.1 Baselines

We study several existing state-of-the-art methods as our baselines for data selection.

(1) Full Data: Train the model using the entire data pool.

(2) Random Selection (Xia et al., 2024b): Randomly selects training samples.

(3) Instruction-Following Difficulty (IFD) (Li et al., 2024b): Selects samples based on a complexity
metric measuring instruction-following difficulty.

(4) Perplexity (PPL) (Li et al., 2024a): Prioritizes uncertain samples with high perplexity.

(5) K-Center-Greedy (KCG) (Sener & Savarese, 2018): Maximizes diversity by iteratively choosing
the sample farthest from the current selection.

(6) SelectIT (Liu et al., 2024a): Selects samples via uncertainty-aware self-reflection during instruc-
tion tuning.
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(7) Token Length (TL) (Xia et al., 2024b): Selects samples with the longest response lengths.

(8) ZIP (Yin et al., 2024): prompting a strong LLM to estimate and select samples based on quality,
relevance, and complexity scores.

C.2 Evaluation Metrics and Benchmarks

We evaluate our method on seven representative tasks aligned with the multi-task training pool but
drawn from distinct distributions, reflecting key LLM capabilities.

C.2 Evaluation Metrics and Benchmarks

We evaluate our method on seven representative tasks aligned with the multi-task training pool but
drawn from distinct distributions, reflecting key LLM capabilities.

• Code Generation. We use HumanEval (Chen et al., 2021) to evaluate the code-writing capabil-
ities of LLMs. Performance is measured via the widely adopted pass@10 metric.

• Math Reasoning. We use GSM8k (Cobbe et al., 2021) to evaluate the mathematical abilities of
models. We adopt an 8-shot setting and evaluate performance using the exact match accuracy
metric.

• Cross-lingual Question Answering. To assess multilingual understanding, we utilize the Ty-
DiQA (Clark et al., 2020) dataset. We report F1 scores for passage selection and answer span
extraction tasks.

• Commonsense Reasoning. We adopt BoolQ (Clark et al., 2019) to evaluate the model’s ability
to understand yes/no questions based on short passages. Accuracy is used as the evaluation metric.

• Scientific QA. We use ARC-C (Clark et al., 2018) to evaluate the ability to answer grade-school
science questions that require reasoning over knowledge and context. We report accuracy.

• Multi-choice QA. We include HellaSwag (Zellers et al., 2019) as a commonsense completion
benchmark with minimal surface cues. Accuracy is used as the evaluation metric.

• Logical Reasoning. We use LogiQA (Liu et al., 2020) to assess formal logical reasoning, which
requires deductive inference beyond surface clues. Accuracy is reported.

C.3 Implementation Details of TokenTune

We evaluate TokenTune using four foundational models (LLAMA-3.1-8B, LLAMA-3.2-3B,
LLAMA-2-13B and Qwen2-7B) and utilize Low-Rank Adaption (LoRA) Hu et al. (2022) for
parameter-efficient fine-tuning. The maximum learning rate is set as 2 × 10−5 with a linear de-
cay schedule, and the batch size is 8. We also fix the maximum input sequence length to 2080.
Models are trained for 1 epoch on 4 A800 GPUs.

In the preprocessing stage, we compute sentence-level embeddings for all training samples using
the pretrained encoder BAAI/bge-base-en-v1.5, and construct clusters using K-Means with
cosine similarity. The number of clusters is set to 1000 by default.

In the selection stage, we select samples based on their estimated utilities using our dual-level scoring
scheme. The sampling budget is fixed at 5%, resulting in approximately 50K selected samples out of
1M candidates. Cluster-level sampling is guided by a multi-armed bandit (MAB) scheduler using the
UCB algorithm, where each arm corresponds to one cluster (i.e., 1000 arms in total). The exploration
parameter is set to γ = 0.001. For checkpoint selection, we evaluate on the development sets of
target benchmarks and select models based on average validation performance (e.g., accuracy or F1,
depending on the task).

All key hyperparameters and their search ranges are summarized in Appendix C.4.

C.4 Search Ranges of Hyperparameters

To support reproducibility, we list all key hyperparameters involved in both the selection and training
stages of our framework. For each hyperparameter, we report the default value used in our main
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Table 3: Search ranges and default values for all hyperparameters.

Stage Hyperparameter Default Search Range Description

Selection

Token Utility Threshold 0.6 {0.4, 0.5, 0.6, 0.7} Threshold for assigning tokens to types based on utility scores
Bandit Algorithm UCB {UCB, Thompson, EXP3} Strategy for MAB-based cluster selection
Number of Clusters (k) 1000 {500, 1000, 1500} Number of clusters used in sample selection
Sampling Budget (%) 5% {2.5%, 5%, 10%} Percentage of total sample budgets
Exploration Rate (γ) 0.001 {1e-4, 1e-3, 1e-2} Exploration coefficient in MAB (for UCB/EXP3)

Training

Fine-tuning Epochs 1 {1, 2, 3} Number of training epochs for fine-tuning
Learning Rate 2e-5 {1e-5, 2e-5, 5e-5} Learning rate for optimizer
Batch Size 16 {8, 16, 32} Batch size per GPU
Max Sequence Length 2048 {1024, 2048} Maximum length of input sequences
Logit Temperature (SD) 1.0 {0.7, 1.0, 1.3} Temperature used in self-distillation predictions

Table 4: Comparison of performance across different benchmarks on Openhermes dataset.

Type Method TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA Avg.

Llama3.1-8B

Base Base 22.80 59.92 50.82 82.18 50.31 69.28 26.51 51.69
Random 49.44 59.31 51.75 82.16 58.27 71.98 27.46 62.15

Sample-Level

IFD 41.97 60.21 52.45 82.89 52.45 69.80 27.75 55.36
ZIP 47.82 60.33 53.32 84.84 52.76 71.39 27.91 56.91

Entropy 51.45 60.41 50.04 83.17 56.74 72.49 26.05 57.19
Instag 47.21 60.31 52.28 83.19 60.76 72.50 26.82 62.71

TL 46.61 60.89 52.71 83.14 54.36 73.36 28.53 57.09
SelectIT 49.15 60.33 52.49 83.94 60.03 70.79 27.91 57.81

Deita 42.50 60.80 51.85 83.17 54.59 72.92 29.77 60.97

Dual-Level TokenTune (Ours) 53.56 61.49 52.63 85.05 65.62 74.69 28.37 65.51

experiments and the range considered in sensitivity studies or tuning. These values are summarized
in Table 3.

D Overall Performance on Openhermes Dataset

D.1 The Effectiveness on Openhermes Dataset

As illustrated in Table 4, TokenTune demonstrates impressive performance on the Openhermes
dataset as well, surpassing all state-of-the-art baselines. On the LLaMA3.1-8B model, TokenTune
achieves an average score of 65.51, outpacing the best baseline, Deita (60.97), by a significant margin
of +4.54. While some baselines such as SelectIT excel in specific tasks like PPL on Qwen2-7B,
TokenTune consistently maintains top-tier performance across various benchmarks. Notably, on
the challenging HumanEval benchmark for code generation, TokenTune demonstrates superior
robustness, achieving higher performance than all other methods. These results further confirm
TokenTune ’s ability to perform well across diverse models and benchmarks, emphasizing its
consistent and scalable effectiveness for data selection and instruction tuning.

E Additional Backbone on Tulu3 Dataset

A central question for data selection methods is whether the observed gains persist when scaling
the backbone model size up or down. To assess the robustness and generality of our approach,
we conduct additional experiments on two representative LLaMA-family models: a smaller model
(LLaMA-3.2-3B) and a larger one (LLaMA-2-13B). All fine-tuning and evaluation settings follow
the main experimental protocol.

E.1 Overall Performance on LLama-3.2-3B

Table 5 reports the performance on seven benchmarks when finetuning LLaMA-3.2-3B with different
data selection strategies. Despite the reduced capacity of the 3B model, our method achieves the
highest average score (48.84) and consistently outperforms strong baselines such as DS2, Deita, ZIP,
and TL across diverse tasks including TyDiQA, BoolQ, GSM8K, and HumanEval.
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Table 5: Comparison of data selection methods on LLaMA3.2-3B across multiple benchmarks.

Method Benchmark Average
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Base 32.67 55.10 42.20 73.01 28.48 50.11 22.17 43.39
Random 38.96 55.21 41.95 73.68 29.01 57.13 24.51 45.78
DS2 39.96 55.31 44.27 74.86 29.94 55.71 23.72 46.25
Deita 31.07 55.74 42.89 75.60 32.47 56.90 24.34 45.57
ZIP 41.60 55.05 41.69 75.79 28.02 53.08 23.26 45.50
Entropy 40.01 54.37 41.12 74.36 28.62 55.62 23.91 45.43
Instag 37.02 55.40 42.46 72.85 30.76 56.17 24.50 45.59
CaR 38.87 54.99 41.95 76.28 30.93 56.63 25.89 46.51
TL 39.87 54.73 42.62 74.09 29.01 57.01 23.98 45.90
ours 49.13 55.55 43.58 77.95 32.39 59.06 24.19 48.84

Table 6: Comparison of data selection methods on LLaMA-2-13B across multiple benchmarks.

Method Benchmark Average
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Base 31.20 60.01 47.72 80.91 24.12 31.22 25.89 43.01
Random 35.96 60.29 48.75 82.09 32.01 39.61 28.68 46.77
DS2 36.11 60.36 50.90 81.93 21.36 38.37 25.43 44.92
Deita 34.86 60.95 49.01 82.21 28.87 40.88 26.82 46.23
ZIP 40.08 60.21 50.65 82.80 26.19 36.49 27.13 46.22
Entropy 42.37 60.63 48.14 81.99 27.48 37.82 26.93 46.48
Instag 37.03 60.46 48.92 82.06 28.43 39.04 27.91 46.26
CaR 37.55 60.22 47.98 82.06 30.55 44.57 31.63 47.79
TL 41.26 60.47 49.53 82.37 34.16 34.16 28.06 46.52
ours 44.86 60.79 50.71 82.01 31.73 44.02 28.07 48.88

These results demonstrate that our selection mechanism remains highly effective even in the low-
capacity regime, highlighting the robustness of our dual-level selection strategy. The consistent
gains also suggest that self-distillation on multi-answer tokens enhances generalization, enabling the
model to make better use of informative supervision even under limited capacity.

E.2 Overall Performance on LLama-2-13B

In this experiment, we present the results for LLaMA-2-13B, a substantially larger and more capable
model. Table 6 shows the results on LLaMA-2-13B across seven benchmarks. Our method achieves
the best performance across all reported tasks, consistently outperforming strong baselines such as
DS2, Deita, ZIP, and TL. The improvements are particularly pronounced on reasoning and knowledge-
intensive tasks such as ARC-C, BoolQ, and GSM8K. This further confirms that the proposed design
principles generalize effectively across the model-scaling spectrum, from small to large backbones.

F Detailed Ablation Study

F.1 Ablation Study of TokenTune Components.

We conduct a detailed ablation study to examine the contribution of each component in TokenTune,
with results reported in Table 2 and Figure 7. The findings show that removing any module leads
to a noticeable degradation in performance. In particular, discarding the token-level utility causes
the largest drop (–2.9 on average), highlighting its central role in identifying informative tokens.
Similarly, eliminating the sample-level utility, multi-armed bandit scheduler, or self-distillation loss
also results in consistent declines. These results confirm that all components are indispensable and
that their integration is crucial for achieving robust improvements across diverse benchmarks.
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Table 7: Performance of different replacement strategies in the Token Utility module.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Token Utility (LG+AU)
LG+AU 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
LG + Entropy 57.01 61.58 52.37 83.76 57.73 74.14 25.58 58.88
LDP+ AU 56.72 60.17 52.02 83.79 57.16 73.94 26.19 58.57
LDP + Entropy 48.14 61.09 52.41 82.42 55.79 74.01 24.91 56.97

Table 8: Performance of Sample Utility with/without normalization.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

Sample Utility Norm. 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
w/o Norm. 57.15 61.47 51.97 83.66 55.44 72.43 25.58 58.24

F.2 The Effectiveness of Token-level Utility Function

To validate the design choices in our Token-Level Utility Function, we conduct a controlled ablation
study comparing our full method (LG + AU) against several alternative strategies: (1) replacing LG
with loss delta under noisy perturbations (LDP), and (2) replacing AU with Entropy. The results are
shown in Table 7.

LG Compared to LDP. We replace LG with Noisy Loss (i.e., loss delta under perturbations) while
keeping the AU component fixed. As shown in Table 6, this substitution consistently degrades
performance across all benchmarks (e.g., average score drops from 60.28 to 58.57). This supports
our design choice of using LG, which estimates the expected utility of tokens more efficiently and
reliably. Unlike LDP, which primarily captures sensitivity to input noise and lacks awareness of the
model’s current learning dynamics, LG reflects the model’s evolving uncertainty in a forward-only
manner. It effectively prioritizes tokens that are expected to provide the most generalizable learning
signal, without incurring the high computational cost of adversarial perturbations.

AU Compared to Entropy. We also evaluate the effect of replacing AU with standard entropy,
keeping the LG component fixed. This substitution again leads to a noticeable performance drop
(from 60.28 to 58.88), confirming the unique advantages of AU. This is because while entropy
measures the flatness of the output distribution, it fails to distinguish between true ambiguity and
model uncertainty due to low confidence. In contrast, AU explicitly targets multi-answer positions,
which refer to tokens where the model assigns high probability to multiple plausible continuations,
thereby capturing a semantically meaningful form of ambiguity. As a result, AU more precisely
identifies tokens suitable for self-distillation, enhancing generalization during fine-tuning.

F.3 The Effectiveness of Sample-level Utility Function

To evaluate the role of normalization in sample-level utility estimation, we conduct an ablation study
comparing two variants: one with score normalization and one without. The normalization procedure
adjusts raw sample utility scores to eliminate biases introduced by sequence length. As shown in
Table 8, removing normalization results in a consistent performance drop across all benchmarks, with
the average score declining from 60.28 to 58.24. These results further confirm that normalization
plays a crucial role in mitigating length-induced bias. It ensures that the selection process emphasizes
samples that are dense in learning signal, rather than those that are simply shorter or easier to fit,
thereby enhancing the overall effectiveness of fine-tuning.

F.4 The Effectiveness of MAB Module

To assess the contribution of the Multi-Armed Bandit (MAB) module in our data selection pipeline,
we conduct an ablation comparing three widely used bandit algorithms: UCB, Thompson Sampling,
and EXP3. The goal is to examine whether the observed performance gains are specific to the choice
of bandit strategy or stem from the general idea of bandit-based adaptive selection.

As shown in Table 9, all three methods yield similar overall performance, with average scores ranging
from 60.00 to 60.28. This indicates that our improvements are not tied to a particular bandit algorithm.
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Table 9: Comparison of different MAB algorithms and clustering methods.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

MAB
UCB 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
Thompson 57.21 61.47 53.86 83.98 58.97 77.12 27.41 60.00
EXP3 58.19 61.52 53.92 83.97 59.18 76.09 27.62 60.07

Cluster
Kmeans 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
DBSCAN 57.93 61.07 54.17 83.26 57.82 76.48 27.95 59.81
GMM 56.14 61.53 54.89 84.23 59.25 76.92 28.30 60.18

Table 10: Ablation on self-distillation loss (SD) in token-level training.

Module Replace Strategy Benchmark Performance Avg.
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

SD Loss CE (LG) + SD (AU) 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
CE (LG+AU) 57.13 61.32 52.19 82.47 55.72 75.42 26.81 58.72
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Figure 7: Ablation Study of TokenTune.

Instead, the key advantage lies in leveraging the exploration–exploitation paradigm to dynamically
prioritize high-utility regions during sample selection. These results validate the robustness and
generality of the MAB module design. The use of bandit-based control helps reduce redundant
computation on low-reward areas and accelerates selection without relying on fine-grained tuning of
the underlying algorithm.

F.5 The Effectiveness of Self-Distillation Loss

To investigate the effect of the self-distillation loss used for multi-answer tokens, we first conduct an
ablation study where the self-distillation (SD) objective is replaced with standard cross-entropy (CE)
loss. This variant removes the distinction between token types and treats all tokens as learnable. As
shown in Table 10, removing self-distillation consistently degrades performance across benchmarks,
especially on HumanEval and GSM8K, with the average score dropping from 60.3 to 58.7. These
results demonstrate that self-distillation plays a critical role in handling multi-answer tokens, which
often admit multiple plausible next-token candidates. Rather than forcing the model to commit to
one specific label using CE loss, self-distillation encourages the model to maintain and refine its own
distribution over plausible answers, allowing it to better generalize under ambiguous supervision.

G Detailed Analysis of Data Scaling

G.1 Detailed Performance of Varying Sample Size

To further study scaling behavior under different training budgets, we evaluate TokenTune and
baselines with varying sample sizes, as shown in Table 4. TokenTune consistently achieves superior
performance across all data budgets, and its advantage is especially evident in low-data regimes (e.g.,
+3.4 points over the best baseline at 10k). Importantly, performance peaks around 50k samples, after
which additional data yields diminishing or even negative returns. This non-linear trend suggests that
alignment-suitable data is inherently limited, and emphasizes that quality-aware selection is more
critical than sheer quantity.
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Table 11: Performance comparison across different sample sizes.

Method TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA Average
Base Model

Base 22.80 59.92 50.82 82.18 50.31 69.28 26.51 51.69
Sample Budget Ratio: 1%

IFD 39.79 60.38 51.59 81.69 51.53 72.34 27.13 54.92
Instag 42.37 60.27 51.77 83.17 54.59 75.23 26.82 56.32
Deita 46.56 60.65 52.37 83.20 56.66 72.19 29.61 57.32
Ours 51.66 61.56 54.61 84.43 54.13 74.72 27.29 58.34

Sample Budget Ratio: 2.5%
IFD 40.93 60.47 51.59 82.09 50.38 71.73 26.82 54.86
Instag 44.78 60.22 51.68 83.20 57.66 73.20 28.22 56.99
Deita 45.60 61.00 51.08 82.12 58.26 72.60 28.68 57.05
Ours 55.78 61.03 53.74 83.94 56.28 75.13 28.01 59.13

Sample Budget Ratio: 5%
IFD 38.55 60.35 49.87 82.21 57.04 71.60 26.36 55.14
Instag 44.97 60.66 50.39 84.34 58.80 75.50 26.67 57.33
Deita 44.81 60.74 52.11 82.86 57.35 74.60 30.08 57.51
Ours 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28

Sample Budget Ratio: 7%
IFD 38.48 60.20 49.35 82.09 55.28 72.30 25.27 54.71
Instag 43.04 60.53 51.51 83.94 58.96 75.35 26.67 57.14
Deita 42.10 60.70 51.42 83.54 60.03 71.41 29.61 56.97
Ours 54.10 61.64 54.44 85.89 57.89 74.36 27.60 59.42

Sample Budget Ratio: 10%
IFD 39.48 60.18 50.73 82.15 55.44 73.41 26.82 55.46
Instag 44.17 60.02 52.54 83.17 56.13 72.19 28.06 56.61
Deita 44.57 60.80 51.94 83.29 59.80 72.46 28.99 57.41
Ours 59.15 61.13 53.40 83.89 57.20 76.04 26.82 59.66
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Figure 8: Performance by Varying Pool Size.

G.2 Detailed Performance of Varying Pool Size

We also examine the effect of enlarging the candidate data pool, with results shown in Figure 6.
TokenTune consistently surpasses the random baseline under all pool sizes, and the margin grows
larger as the pool expands. For example, when increasing from 200k to nearly 1M candidates,
TokenTune steadily improves and achieves the highest overall scores, whereas random selection
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Table 12: PPerformance of different selection methods where utility scores are computed using
LLaMA-3.1-8B and downstream fine-tuning is performed on Qwen2-7B.

Selection Method Benchmark Average
(Backbone: LLaMA3.1-8B) TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA
IFD 47.88 58.96 47.03 83.91 78.56 76.43 30.23 60.43
SelectIT 50.98 58.00 49.78 83.43 76.79 77.49 29.15 60.80
Entropy 46.19 58.48 45.56 85.27 76.92 76.96 28.99 59.77
TL 48.66 59.07 48.75 84.47 77.72 75.26 30.71 60.66
Ours 49.31 59.80 52.89 84.50 78.42 78.24 30.70 61.98

Table 13: Performance of different selection methods where utility scores are computed using GPT2
and downstream fine-tuning is performed on LLaMA-3.1-8B.

Selection Method Benchmark Average
(Backbone: GPT2) TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA
IFD 43.57 60.49 52.89 83.26 55.28 74.07 26.06 56.52
SelectIT 42.73 60.04 53.18 83.14 52.32 73.92 26.35 55.95
Entropy 43.51 60.37 51.94 84.47 51.15 71.52 25.89 55.55
TL 47.48 60.51 50.34 82.49 51.32 73.43 26.74 56.04
Ours 55.83 61.31 53.14 83.97 57.81 75.89 27.99 59.42

quickly plateaus. These results demonstrate that TokenTune effectively leverages larger candidate
pools to extract high-utility subsets, confirming its scalability and robustness in large-scale scenarios.

H The Generalization of TokenTune

H.1 Performance on Cross-Architecture Setting

To evaluate the generality of our selection strategy across model architectures, we conduct experi-
ments under a cross-family setting, where the model used to compute utility scores differs from the
one used for downstream fine-tuning. Specifically, we compute token-level utilities using LLaMA-
3.1-8B, while the selected data is used to fine-tune Qwen2-7B, a model from a different architecture.

As shown in Table 12, our method achieves the best average performance (61.98) across all baselines,
outperforming strong methods such as SelectIT (60.80), and IFD (60.43). The improvement is
consistent across most benchmarks, particularly on ARC-C (+3.11 over TL) and LogiQA (+2.01
over SelectIT), demonstrating the robustness of our utility estimation even when computed from a
mismatched backbone. These results provide strong evidence that our utility scoring mechanism
captures transferable signals of data quality that are not tied to a specific model architecture, validating
its applicability in realistic settings where the scoring model and fine-tuning model may differ.

H.2 Performance on Cross-Scale Setting

To assess whether TokenTune’s utility estimation generalizes across model sizes, we evaluate its
performance under a cross-scale setting, where the model used to compute utility scores is smaller
than the model used for downstream fine-tuning. Specifically, token-level utilities are computed
using a GPT2 model, while the selected data is used to fine-tune a larger Qwen2-7B model.

As shown in Table 13, TokenTune maintains strong performance in this challenging setup, out-
performing all baselines with an average score of 62.09, compared to 60.87 for SelectIT and 60.12
for IFD. The gains are particularly notable on ARC-C (+1.90 over TL) and LogiQA (+2.07 over
SelectIT), indicating that the utility scores produced by a small model remain effective for guiding
the fine-tuning of larger models. This demonstrates TokenTune’s ability to capture scale-invariant
utility signals, validating its applicability in scenarios where computational budget limits the scoring
model size.
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Table 14: Effect of different token utility thresholds on performance.

Threshold Benchmark Performance Average
TyDiQA HellaSwag ARC-C BoolQ GSM8K HumanEval LogiQA

0.7 57.78 61.56 52.54 84.00 58.04 74.54 26.82 59.33
0.6 57.16 61.55 53.92 84.40 60.49 76.09 28.37 60.28
0.5 57.50 61.69 53.57 84.03 57.81 75.93 27.13 59.67
0.4 55.88 61.45 52.89 84.37 57.50 73.52 24.65 58.61

I Parameter Sensitivity Analysis

I.1 Effect of Thresholds for Token Utility

We analyze the impact of varying the token utility threshold, which determines how tokens are
assigned to different training objectives.

As shown in Table 14, threshold choice significantly affects performance. When the threshold is too
high (e.g., 0.7), the model includes noisy or uninformative tokens, which weakens supervision and
degrades performance. Conversely, a threshold that is too low (e.g., 0.4) filters out many informative
tokens that still carry valuable learning signals, leading to under-utilization of training data. The best
performance is achieved at a moderate threshold of 0.6, with an average score of 60.28. Notably,
performance remains relatively stable within the range of 0.5 to 0.7, suggesting that the method is
robust to small variations in threshold, as long as extreme values are avoided.

I.2 Effect of Exploration Rate γ of MAB.

Our approach employs γ to balance the diversity and quality during cluster sampling. As shown in
Table 15, when γ is small, the MAB framework prioritizes high-influence clusters and risks local
optima due to reduced diversity. Conversely, when γ is large, it overemphasizes diversity at the
expense of quality, limiting model performance gains.

Table 15: Performance with varying exploration rate γ.

Exploration Rate γ 0.0005 0.001 0.005 0.01 0.05
Performance (Avg.) 59.02 60.28 59.67 59.04 57.88

I.3 Effect of the Number of Clusters/ MAB Arms k.

In our setup, each arm corresponds to a cluster. We use the Elbow method to guide the choice of
arms/clusters k, which eliminates the need for manual adjustment. The result in Table 16 show that
too few clusters (e.g., k=100) lead to high variance and under-representation of data, while too many
clusters (e.g., k=5000) introduce redundancy and reduce exploration efficiency. A moderate choice
of k=1000 provides the best balance between selection diversity and computational efficiency.

Table 16: Performance with varying number of MAB arms K.

Number of MAB Arms K 100 500 1000 2000 3000 5000
Performance (Avg.) 58.73 58.91 60.28 60.01 59.67 59.04

I.4 Effect of Different Clustering Algorithm of TokenTune.

We compared Agglomerative Clustering, DBSCAN, and K-Means. The results in Table 9 show
minimal differences (59.81–60.28), suggesting that TokenTune is not sensitive to the choice of
clustering algorithm and is robust across methods.
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I.5 Effect of Update Cadence of MAB

We study how the update cadence (i.e., the number of samples selected before refreshing MAB
scores) affects selection quality and downstream performance. We fix the total data selection budget
to 50,000 examples and vary the number of samples selected per iteration. Table 17 summarizes the
results.

Table 17: Sensitivity to the update cadence of MAB. We report the number of samples per iteration,
total number of iterations to reach the fixed budget, and the average performance across benchmarks.

Update Cadence (Sample Ratio / Iter.) #Samples / Iter. #Iterations Avg. Performance
0.5% 250 200 60.12
1% 500 100 60.28
2.5% 1250 40 59.87
5% 2500 20 59.45

We observe that updating UCB scores every 1% of the total budget yields the best average per-
formance. When updates are too infrequent (e.g., every 2.5% or 5%), the accumulated reward
estimates become stale, making the bandit over-exploit early high-reward clusters while neglecting
newly emerging high-utility regions. Since UCB relies on the running average of observed rewards,
delayed updates hinder its ability to adapt, ultimately degrading selection quality. On the other hand,
overly frequent updates (e.g., every 0.5%) bring marginal gains at the cost of increased schedul-
ing overhead. The 1% update cadence provides a favorable trade-off between reward estimation
precision and exploration coverage. Furthermore, the performance remains stable across a reason-
able range (0.5%–2.5%), demonstrating that our method is robust to this hyperparameter in a local
neighborhood.

J The Design Details of TokenTune

J.1 TokenTune Framework: Core Components

TokenTune has three carefully designed core components.

❶ Dual-Level Utility Function. Considering that sample-level data selection methods overlook
token heterogeneity while token-level ones fail to capture holistic sample value, we design a dual-level
utility function that combines fine-grained token informativeness with principled sample selection.
Specifically, it first leverages token-level indicators to capture learnable and uncertain tokens, and
then constructs a sample-level utility by aggregating the token-level utilities over these learnable
tokens, thereby avoiding a second-pass utility computation and reducing the overall annotation cost.

❷ Adaptive Data Selection via MAB-Integrated Scheduler. Evaluating the utility of each sample
and token usually requires repeated model inference, which leads to prohibitive computational cost.
To reduce this overhead and further scale efficiently to large datasets, we first partition the data pool
into semantic clusters. Building on this, we introduce a multi-armed bandit scheduler that adaptively
selects the most promising clusters, and only then applies dual-level utility estimation within each
cluster to select the most informative samples.

❸ Token-Aware Finetuning with Gated Optimization. Not all tokens contribute to learning in
the same way. Prior studies primarily focus on learnable tokens that provide strong supervision,
but this narrow emphasis often leads to overfitting, as it ignores uncertain tokens-such as those
admitting multiple correct answers. Training such ambiguous positions with standard cross-entropy
forces the model to commit to a single label, thereby collapsing inherent diversity. To address this
limitation, we propose a gated optimization strategy that differentiates token roles: learnable tokens
are optimized with cross-entropy, ambiguous tokens are refined via self-distillation to preserve
diversity, and uninformative tokens are suppressed to avoid noise amplification. For ambiguous
tokens, self-distillation is particularly suitable because it optimizes the student to match a soft
probability distribution from a teacher model, allowing probability mass to be spread over multiple
plausible labels rather than collapsing it onto a single hard target as in standard cross-entropy.
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J.2 Token-Level Utility Function

Token-level selection principles. Our token-level utilities are designed to answer a simple question:
given a limited training budget, on which tokens does an additional update yield the largest marginal
improvement? Concretely, we follow two principles: (i) we would like to prioritize tokens whose
further training is expected to produce a large reduction in loss per token, so that each gradient update
is spent where it is most effective; (ii) among such tokens, we want to distinguish between those that
are under-learned but consistent (single correct answer) and those that are inherently multi-answer
(several plausible outputs), since the latter should not be forced into a single hard label.
Definition J.1 (Answer Uncertainty (AU)). Some tokens are inherently ambiguous, admitting multi-
ple plausible answers. To identify such positions, we model predictive uncertainty using an evidential
Dirichlet distribution. For a token position (i, j), let z(xi,j) = (z1(xi,j), . . . , zK(xi,j)) denote the
pre-softmax logits over the vocabulary. We map logits to non-negative evidence and obtain Dirichlet
parameters α(xi,j) = (α1(xi,j), . . . , αK(xi,j)); specifically,

αk(xi,j) = max(0, zk(xi,j)) + 1, α0(xi,j) =

K∑
k=1

αk(xi,j). (16)

We then define the answer uncertainty at (i, j) as the expected predictive entropy of a categorical
distribution p drawn from this Dirichlet:

AU(xi,j) := Ep∼Dir(α(xi,j)+1)

[
−

K∑
k=1

pk log pk
]
, (17)

where 1 is the all-ones vector. Using standard properties of the Dirichlet distribution, this expectation
admits the closed-form expression

AU(xi,j) = −
K∑

k=1

αk(xi,j)

α0(xi,j)

(
ψ(αk(xi,j) + 1)− ψ(α0(xi,j) + 1)

)
, (18)

where ψ(·) is the digamma function.

Interpretation and comparison to entropy. By construction, αk(xi,j) can be interpreted as
evidence supporting token k at position (i, j): large positive logits translate into large pseudo-
counts, while low or negative logits contribute almost no evidence. The total evidence α0(xi,j)
encodes how confident the model is overall, whereas the relative magnitudes of αk indicate whether
this evidence is concentrated on one candidate or dispersed across several.

The quantityAU(xi,j) is the expected entropy of a categorical distribution sampled from the Dirichlet
with parameters α(xi,j) + 1. It becomes large only when (i) the total evidence α0(xi,j) is large
(the model is confident), and (ii) this evidence is distributed over multiple candidates rather than
concentrated on a single one. If the model is unsure and assigns low logits to all tokens, the evidence
vector is small and AU(xi,j) remains moderate despite the softmax distribution being nearly flat; if
the model is confident and sharply focused on a single token, the expected entropy is small. Thus,
high AU(xi,j) specifically indicates confident but multi-modal beliefs, matching principle (ii) for
inherently multi-answer positions.

This also explains why AU is preferable to (temperature-scaled) softmax entropy as an ambiguity
indicator. Entropy depends only on normalized probabilities and cannot distinguish between high
entropy due to lack of knowledge (low evidence spread over many tokens) and high entropy due to
strong evidence for several distinct candidates. AU explicitly couples confidence (total evidence)
and dispersion (how many tokens share it), allowing us to upweight truly multi-answer tokens while
downweighting noisy, low-evidence ones. In our ablations, replacing AU with entropy consistently
degrades performance and selects many low-evidence tokens as “ambiguous”, supporting AU as a
more faithful signal for token-aware training.

J.3 Sample-Level Utility Function

A major drawback of existing model-aware data selection methods is that estimating sample utility
requires repeated inference over the full dataset, leading to prohibitive computational latency at scale.
To overcome this limitation, we build directly on the token-level feature LG = ∆ℓi,j defined in Eq. 2
and construct a sample-level utility function without any additional inference.
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Token-level utility density. For a sample xi = {ti,1, . . . , ti,ni
}, we first define a per-token notion

of utility. Let
∆ℓi,j := ℓref(xi,j)− ℓ0(xi,j), (19)

be the reduction in loss of token (i, j) when we move from the base model to the reference model,
and let

bi,j := ℓ0(xi,j) = − log pθ0(yi,j | xi) (20)
denote the baseline cross-entropy loss of that token under the base model pθ0 . Intuitively, bi,j
measures how difficult this token is for the current model: tokens with large bi,j are ones to which the
model assigns low probability (uncertain or often wrong), while tokens with small bi,j are already
well mastered.

We then define the token-level utility density as

ρi,j :=
∆ℓi,j
bi,j

. (21)

This ratio performs a first normalization: it rescales the raw loss reduction ∆ℓi,j by the baseline
difficulty bi,j and can be interpreted as the loss improvement per unit difficulty of this token. In
particular, ρi,j is comparable across tokens with very different baseline losses, and it is invariant to
any global rescaling of the loss (e.g., when switching between equivalent loss parameterizations).

From tokens to samples. Given any subset of token positions S ⊆ {1, . . . , ni} within a sample,
our goal at the sample level is to measure how much total loss reduction we obtain per unit of total
difficulty budget in S. This leads to the following sample-level utility:

Ui(S) :=

∑
j∈S ∆ℓi,j∑
j∈S bi,j

. (22)

Thus Ui(S) has the same semantics as the per-token density: it is the average loss improvement per
unit of baseline difficulty in S, and is directly comparable across subsets with different lengths and
difficulty profiles.

We can rewrite Ui(S) as a weighted average of token densities:

Ui(S) =
∑
j∈S

wi,j(S) ρi,j , wi,j(S) :=
bi,j∑
t∈S bi,t

. (23)

Here wi,j(S) simply turns the baseline losses into a probability distribution over tokens in S.
Equivalently,

Ui(S) = Ej∼πS [ρi,j ], πS(j) = wi,j(S). (24)
Hence, Ui(S) admits a clear semantic interpretation: it is the expected loss improvement per unit
of difficulty when we pick a token from S with probability proportional to its baseline loss. Tokens
with larger baseline loss occupy a larger share of the total “difficulty budget”

∑
j∈S bi,j and therefore

contribute proportionally more to the sample-level utility, which matches the intuition that harder
tokens are both more costly and have more room for improvement.

Uniqueness of the normalization. Our construction can be seen as the unique sample-level exten-
sion of the token density that satisfies a small set of natural desiderata:

• Consistency with token-level density. When S contains a single token, we require Ui({j}) =
ρi,j = ∆ℓi,j/bi,j .

• Budget-based aggregation. The sample utility should depend on a subset S only through the
aggregate loss reduction

∑
j∈S ∆ℓi,j and the aggregate difficulty

∑
j∈S bi,j , reflecting the idea

that we care about the total improvement given a total difficulty budget.

Under these conditions, any sample-level utility must have the form Ui(S) = g
(∑

j∈S ∆ℓi,j∑
j∈S bi,j

)
for

some scalar function g. The consistency requirement Ui({j}) = ∆ℓi,j/bi,j then forces g(z) = z,
yielding exactly our definition of Ui(S). Therefore, within this natural class of budget-based and
scale-invariant utilities, our normalization is essentially unique.
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Table 18: Summary of main notation used in TokenTune.

Symbol Description

D Full training data pool
xi i-th input sequence (sample)
ni Token length of sample xi
xi,j j-th token in sample xi
yi,j Target token at position (i, j)

θ Model parameters (generic)
θ0 Current / base model parameters
θref Reference (teacher) model parameters
ℓθ(xi,j) Token-level loss under model θ
ℓ0(xi,j) Loss under current model θ0
ℓref(xi,j) Loss under reference model θref
bi,j Baseline loss / difficulty: bi,j = ℓ0(xi,j)
∆ℓi,j Learning gain: ∆ℓi,j = ℓ0(xi,j)− ℓref(xi,j)
LG(xi,j) Learning Gain at token (i, j) (equal to ∆ℓi,j)

z(xi,j) Logits vector at position (i, j)
zk(xi,j) Logit for vocabulary token k at (i, j)
αk(xi,j) Dirichlet evidence for token k at (i, j)
α0(xi,j) Total Dirichlet evidence: α0 =

∑
k αk

AU(xi,j) Answer Uncertainty at token (i, j)

ρi,j Token-level utility density: ρi,j = ∆ℓi,j/bi,j
Ui(S) Sample utility over token subset S ⊆ {1, . . . , ni}
USample

k (xi) Sample utility using top-k% tokens by ρi,j
ŷi,j Token label: 0 (uninformative), 1 (learnable), 2 (ambiguous)
τLG, τAU Thresholds for LG and AU in token labeling

{C1, . . . , CK} Clusters of the data pool D
CSi(t) UCB cluster score of Ci at iteration t
Īi(t) Average influence score of cluster Ci at iteration t
T (Ci, t) Number of times cluster Ci is selected up to t
γ Exploration coefficient in UCB scheduler
Si Selected sample subset from cluster Ci

V Vocabulary size
T Distillation temperature
q(v) Teacher distribution over vocabulary token v
λ Trade-off between CE and distillation losses

Top-k token subset. In practice, not all tokens in a sample carry useful signal: very low-density
tokens may correspond to noise or regions where the reference and base models already largely
agree. To avoid dilution by such tokens, we focus on the subset of top-k% tokens ranked by ρi,j
within each sample. The final sample utility score used by our method is thus

U
Sample
k (xi) :=

∑
j∈top-k(ρ) ∆ℓi,j∑
j∈top-k(ρ) bi,j

=

∑
j∈top-k(ρ)

(
ℓref(xi,j)− ℓ0(xi,j)

)∑
j∈top-k(ρ) ℓ0(xi,j)

. (25)

This quantity can be interpreted as the expected marginal improvement per unit difficulty budget
restricted to the most informative tokens of each sample, providing a stable and comparable notion
of sample utility across examples with widely varying lengths and difficulty.

K Summary of Notation

In this section, we summary the notation that TokenTune used in Table 18.
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