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Abstract

Synthesizing high-quality tabular data is an important topic in many data science
tasks, ranging from dataset augmentation to privacy protection. However, develop-
ing expressive generative models for tabular data is challenging due to its inherent
heterogeneous data types, complex inter-correlations, and intricate column-wise
distributions. In this paper, we introduce TABDIFF, a joint diffusion framework
that models all multi-modal distributions of tabular data in one model. Our key
innovation is the development of a joint continuous-time diffusion process for
numerical and categorical data, where we propose feature-wise learnable diffusion
processes to counter the high disparity of different feature distributions. TABDIFF
is parameterized by a transformer handling different input types, and the entire
framework can be efficiently optimized in an end-to-end fashion. We further intro-
duce a multi-modal stochastic sampler to automatically correct the accumulated
decoding error during sampling, and propose classifier-free guidance for condi-
tional missing column value imputation. Comprehensive experiments on seven
datasets demonstrate that TABDIFF achieves superior average performance over
existing competitive baselines across all eight metrics, with up to 22.5% improve-
ment over the state-of-the-art model on pair-wise column correlation estimations.
Code is available at https://github.com/MinkaiXu/TabDiff.

1 Introduction

Tabular data is ubiquitous in various databases, and developing effective generative models for it
is a fundamental problem in many data processing and analysis tasks, ranging from training data
augmentation (Fonseca & Bacao, 2023), data privacy protection (Assefa et al., 2021; Hernandez et al.,
2022), to missing value imputation (You et al., 2020; Zheng & Charoenphakdee, 2022). With versatile
synthetic tabular data that share the same format and statistical properties as the existing dataset, we
are able to completely replace real data in a workflow or supplement the data to enhance its utility,
which makes it easier to share and use. The capability of anonymizing data and enlarging sample size
without compromising the overall data quality enables it to revolutionize the field of data science.
Unlike image data, which comprises pure continuous pixel values with local spatial correlations,
or text data, which comprises tokens that share the same dictionary space, tabular data features
have much more complex and varied distributions (Xu et al., 2019; Borisov et al., 2023), making
it challenging to learn joint probabilities across multiple columns. More specifically, such inherent
heterogeneity leads to obstacles from two aspects: 1) typical tabular data often contains multi-modal
data types, i.e., continuous (e.g., numerical features) and discrete (e.g., categorical features) variables;
2) within the same feature type, features do not share the exact same data property because of the
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different meaning they represent, resulting in different column-wise marginal distributions (even after
normalizing them into same value ranges).

In recent years, numerous deep generative models have been proposed for tabular data generation
with autoregressive models (Borisov et al., 2023), VAEs (Liu et al., 2023), and GANs (Xu et al.,
2019) in the past few years. Though they have notably improved the generation quality compared
to traditional machine learning generation techniques such as resampling (Chawla et al., 2002), the
generated data quality is still far from satisfactory due to limited model capacity. Recently, with the
rapid progress in diffusion models (Song & Ermon, 2019; Ho et al., 2020; Rombach et al., 2022),
researchers have been actively exploring extending this powerful framework to tabular data (Kim
et al., 2022; Kotelnikov et al., 2023; Zhang et al., 2024). For example, Zheng & Charoenphakdee
(2022); Zhang et al. (2024) transform all features into a latent continuous space via various encoding
techniques and apply Gaussian diffusion there, while Kotelnikov et al. (2023); Lee et al. (2023)
combine discrete-time continuous and discrete diffusion processes (Austin et al., 2021) to deal with
numerical and categorical features separately. However, prior methods are trapped in sub-optimal
performance due to additional encoding overhead or imperfect discrete-time diffusion modeling, and
none of them consider the feature-wise distribution heterogeneity issue in a multi-modal framework.

In this paper, we present TABDIFF, a novel and principled multi-modal diffusion framework for
tabular data generation. TABDIFF perturbs numerical and categorical features with a joint diffusion
process, and learns a single model to simultaneously denoising all modalities. Our key innovation is
the development of multi-modal feature-wise learnable diffusion processes to counteract the high
heterogeneity across different feature distributions. Such feature-specific learnable noise schedules
enable the model to optimally allocate the model capacity to different features in the training phase.
Besides, it encourages the model to capture the inherent correlations during sampling since the model
can denoise different features in a flexible order based on the learned schedule. We parameterize
TABDIFF with a transformer operating on different input types and optimize the entire framework
efficiently in an end-to-end fashion. The framework is trained with a continuous-time limit of evidence
lower bound. To reduce the decoding error during denoising sampling, we design a multi-modal
stochastic sampler that automatically corrects the accumulated decoding error during sampling. In
addition, we highlight that TABDIFF can also be applied to conditional generation tasks such as
missing column imputation, and we further introduce classifier-free guidance technique to improve
the conditional generation quality.

TABDIFF enjoys several notable advantages: 1) our model learns the joint distribution in the original
data space with an expressive continuous-time diffusion framework; 2) the framework is sensitive to
varying feature marginal distribution and can adaptively reason about feature-specific information
and pair-wise correlations. We conduct comprehensive experiments to evaluate TABDIFF against
state-of-the-art methods across seven widely adopted tabular synthesis benchmarks. Results show that
TABDIFF consistently outperforms previous methods over eight distinct evaluation metrics, with up
to 22.5% improvement over the state-of-the-art model on pair-wise column correlation estimations,
suggesting our superior generative capacity on mixed-type tabular data.

2 Method

2.1 Overview

Notation. For a given mixed-type tabular dataset T , we denote the number of numerical features and
categorical features as Mnum and Mcat, respectively. The dataset is represented as a collection of
data entries T = {x} = {[xnum,xcat]}, where each entry x is a concatenated vector consisting of
its numerical features xnum and categorical features xcat. We represent the numerical features as a
Mnum dimensional vector xnum ∈ RMnum and denote the i-th feature as (xnum)i ∈ R. We represent
each categorical column with Cj finite categories as a one-hot column vector (xcat)j ∈ {0, 1}(Cj+1),
with an extra dimension dedicated to the [MASK] state. The (Cj + 1)-th category corresponds to the
special [MASK] state and we use m ∈ {0, 1}K as the one-hot vector for it. In addition, we define
Cat(·;π) as the categorical distribution over K classes with probabilities given by π ∈ ∆K , where
∆K is the K-simplex.

Different from common data types such as images and text, developing generative models for tabular
data is challenging as the distribution is determined by multi-modal data. We therefore propose
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Figure 1: A high-level overview of TABDIFF. TABDIFF operates by normalizing numerical columns
and converting categorical columns into one-hot vectors with an extra [MASK] class. Joint forward
diffusion processes are applied to all modalities with each column’s noise rate controlled by learnable
schedules. New samples are generated via reverse process, with the denoising network gradually
denoising x1 into x0 and then applying the inverse transform to recover the original format.

TABDIFF, a unified generative model for modeling the joint distribution p(x) using a continuous-time
diffusion framework. TABDIFF can learn the distribution from finite samples and generate faithful,
diverse, and novel samples unconditionally. We provide a high-level overview in Figure 1, which
includes a forward diffusion process and a reverse generative process, both defined in continuous time.
The diffusion process gradually adds noise to data, and the generative process learns to recover the
data from prior noise distribution with neural networks parameterized by θ. In the following sections,
we elaborate on how we develop the unified diffusion framework with learnable noise schedules and
perform training and sampling in practice.

2.2 Multi-Modal Diffusion Framework

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are likelihood-
based generative models that learn the data distribution via forward and reverse Markov processes.
Our goal is to develop a principled diffusion model for generating mixed-type tabular data that
faithfully mimics the statistical distribution of the real dataset. Our framework TABDIFF is designed
to directly operate on the data space and naturally handle each tabular column in its built-in datatype.
TABDIFF is built on a hybrid forward process that gradually injects noise to numerical and categorical
data types separately with different diffusion schedules σnum and σcat. Let {xt : t ∼ [0, 1]} denote
a sequence of data in the diffusion process indexed by a continuous time variable t ∈ [0, 1], where
x0 ∼ p0 are i.i.d. samples from real data distribution and x1 ∼ p1 are pure noise from prior
distribution. The hybrid forward diffusion process can be then represented as:

q(xt | x0) = q (xnum
t | xnum

0 ,σnum(t)) · q
(
xcat
t | xcat

0 ,σcat(t)
)
. (1)

Then the true reverse process can be represented as the joint posterior:

q(xs|xt,x0) = q(xnum
s |xt,x0) · q(xcat

s |xt,x0), (2)

where s and t are two arbitrary timesteps that 0 < s < t < 1. We aim to learn a denoising model
pθ(xs|xt) to match the true posterior. In the following, we discuss the detailed formulations of
diffusion processes for continuous and categorical features in separate manners. To enhance clarity,
we omit the superscripts on xnum and xcat when the inclusion is unnecessary for understanding.

Gaussian Diffusion for Numerical Features. In this paper, we model the forward diffusion for
continuous features xnum as a stochastic differential equation (SDE) dx = f(x, t)dt + g(t)dw,
with f(·, t) : RMnum → RMnum being the drift coefficient, g(·) : R → R being the diffusion
coefficient, and w being the standard Wiener process (Song et al., 2021; Karras et al., 2022). The
revere generation process solves the probability flow ordinary differential equation (ODE) dx =[
f(x, t)− 1

2g(t)
2∇x log pt(x)

]
dt, where ∇x log pt(x) is the score function of pt(x). In this paper,
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we use the Variance Exploding formulation with f(·, t) = 0 and g(t) =
√

2[ ddtσ
num(t)]σnum(t),

which yields the forward process :
xnum
t = xnum

0 + σnum(t)ϵ, ϵ ∼ N (0, IMnum). (3)
And the reversal can then be formulated accordingly as:

dxnum = −[ d
dt

σnum(t)]σnum(t)∇x log pt(x
num)dt. (4)

In TABDIFF, we train the diffusion model µθ to jointly denoise the numerical and categorical
features. We use µnum

θ to denote numerical part of the denoising model output, and train the model
via optimizing the denoising loss:

Lnum(θ, ρ) = Ex0∼p(x0)Et∼U [0,1]Eϵ∼N (0,I) ∥µnum
θ (xt, t)− ϵ∥22 . (5)

Masked Diffusion for Categorical Features, For categorical features, we take inspiration from
the recent progress on discrete state-space diffusion for language modeling (Austin et al., 2021; Shi
et al., 2024; Sahoo et al., 2024). The forward diffusion process is defined as a masking (absorbing)
process that smoothly interpolates between the data distribution Cat(·;x) and the target distribution
Cat(·;m), where all probability mass are assigned on the [MASK] state:

q(xt|x0) = Cat(xt;αtx0 + (1− αt)m). (6)
αt ∈ [0, 1] is a strictly decreasing function of t, with α0 ≈ 1 and α1 ≈ 0. It represents the
probability for the real data x0 to be masked at time step t. By the time t = 1, all inputs are
masked with probability 1. In practice this schedule is parameterized by αt = exp(−σcat(t)), where
σcat(t) : [0, 1]→ R+ is a strictly increasing function. Such forward process entails the step transition
probabilities q(xt|xs) = cat(xt;αt|sxs + (1− αt|s)m), where αt|s = αt/αs. Under the hood, this
transition means that at each diffusion step, the data will be perturbed to the [MASK] state with a
probability of (1− αt|s), and remains there until t = 1 if perturbed.

Similar to numerical features, in the reverse denoising process for categorical ones, the diffusion
model µθ aims to progressively unmask each column from the ‘masked’ state. The true posterior
distribution conditioned on x0 has the close form of:

q(xs|xt,x0) =

{
Cat(xs;xt) xt ̸= m,

Cat
(
xs;

(1−αs)m+(αs−αt)x0

1−αt

)
xt = m.

(7)

We introduce the denoising network µcat
θ (xt, t) : C × [0, 1]→ ∆C to estimate x0, through which

we can approximate the unknown true posterior as:

pθ(x
cat
s |xcat

t ) =

{
Cat(xcat

s ;xcat
t ) xcat

t ̸= m,

Cat
(
xcat
s ;

(1−αs)m+(αs−αt)µ
cat
θ (xt,t)

1−αt

)
xt = m,

(8)

which implied that at each reverse step, we have a probability of (αs−αt)/(1−αt) to recover x0, and
once being recovered, xt stays fixed for the remainder of the process. Extensive works (Kingma et al.,
2021; Shi et al., 2024) have shown that increasing discretization resolution can help approximate
tighter evidence lower bound (ELBO). Therefore, we resort to optimizing the likelihood bound Lcat
under continuous time limit:

Lcat(θ, k) = Eq

∫ t=1

t=0

α′
t

1− αt
log⟨µcat

θ (xt, t),x
cat
0 ⟩dt, (9)

where α′
t is the first order derivative of αt.

2.3 Training with Adaptively Learnable Noise Schedules

Tabular data is inherently highly heterogeneous of mixed numerical and categorical data types, and
mixed feature distributions within each data type. Therefore, unlike pixels that share a similar
distribution across three RGB channels and word tokens that share the exact same vocabulary space,
each column (feature) of the table has its own specific marginal distributions, which requires the
model to amortize its capacity adaptively across different features. We propose to adaptively learn
a more fine-grained noise schedule for each feature respectively. To balance the trade-off between
the learnable noise schedule’s flexibility and robustness, we design two function families: the power
mean numerical schedule and the log-linear categorical schedule.
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Algorithm 1 Training
1: repeat
2: Sample x0 ∼ p0(x)
3: Sample t ∼ U(0, 1)
4: Sample ϵnum ∼ N (0, IM num)
5: xnum

t = xnum
0 + σnum(t)ϵnum

6: αt = exp(−σcat(t))
7: Sample xcat

t ∼ q(xt|x0,αt)
from Eq. (6)

8: xt ← CONCAT(xnum
t ,xcat

t )
9: Take gradient descent step on

∇θ,ρ,kLTABDIFF

10: until converged

Power-mean schedule for numerical features. For
the numerical noise schedule σnum(t) in Eq. (3), we de-
fine σnum(t) = [σnum

ρi
(t)], with ρi being a learnable pa-

rameter for individual numerical features. For ∀i ∈
{1, · · · ,Mnum}, we have σnum

ρi
(t) as:

σnum
ρi

(t) =

(
σ

1
ρi

min + t(σ
1
ρi
max − σ

1
ρi

min)

)ρi

. (10)

Log-linear schedule for categorical features. Similarly,
for the categorical noise schedule σcat(t) in Section 2.2,
we define σcat(t) = [σcat

kj
(t)], with ki being a learnable

parameter for individual categorical features. For ∀j ∈
{1, · · · ,Mcat}, we have σcat

kj
(t) as:

σcat
kj
(t) = − log(1− tkj ). (11)

In practice, we fix the same initial and final noise levels across all numerical features so that
σnum
i (0) = σmin and σnum

i (1) = σmax for ∀i ∈ {1, · · · ,Mnum}. We similarly bound the initial and
final noise levels for the categorical features, as detailed in Appendix A.3.1. This enables us to
constrain the freedom of schedules and thus stabilize the training.

Joint objective function. We update Mnum +Mcat parameters ρ1, · · · , ρMnum and k1, · · · , kMcat via
backpropagation without the need of modifying the loss function. Consolidating Lnum and Lcat, we
have the total loss L with two weight terms λnum and λcat as:

LTABDIFF(θ, ρ, k) = λnumLnum(θ, ρ) + λcatLcat(θ, k)

= Et∼U(0,1)E(xt,x0)∼q(xt,x0)

(
λnum ∥µnum

θ (xt, t)− ϵ∥22 +
λcat α

′
t

1− αt
log⟨µcat

θ (xt, t),x
cat
0 ⟩

)
.

(12)
With the forward process defined in Eq. (3) and Eq. (6), we present the detailed training procedure in
Algorithm 1. Here, we sample a continuous time step t from a uniform distribution U(0, 1) and then
perturb numerical and categorical features with their respective noise schedules based on this same
time index. Then, we input the concatenated xnum

t and xcat
t into the model and take gradient on the

joint loss function defined in Eq. (12).

2.4 Sampling with Backward Stochastic Sampler

Algorithm 2 Sampling

1: Sample xnum
T ∼ N (0, IM num), xcat

T = m
2: for t = T to 1 do
3: Sample ϵnum ∼ N (0, IM num)
4: γt = 1/T , t+ ← t+ γtt

5: xnum
t+ ← xnum

t +
√
σnum(t+)2 − σnum(t)2ϵ

6: Sample xcat
t+ ∼ q

(
xcat
t+ |x

cat
t ,

)
from Eq. (6)

7: xt+ = [xnum
t+ ,xcat

t+ ]
8: dxnum = (xnum

t+ − µθ(xt+ , t
+))/σnum(t+)

9: xnum
t−1 ← xnum

t+ + (σnum(t− 1)− σnum(t+))dxnum

10: Sample xcat
t−1 ∼ pθ(x

cat
t−1|xcat

t+) from Eq. (8)
11: end for
12: return xnum

0 ,xcat
0

One notable property of the joint sam-
pling process is that the intermediate
decoded categorical feature will not be
updated anymore during sampling (see
Eq. (8)). However, as tabular data
are highly structured with complicated
inter-column correlations, we expect
the model to correct the error during
sampling. To this end, we introduce a
novel stochastic sampler by restarting
the backward process with an additional
forward process at each denoising step.
Related work on continuous diffusions
Karras et al. (2022); Xu et al. (2023) has
shown that incorporating such stochas-
ticity can yield better generation quality. We extend such intuition to both numerical and categorical
features in tabular generation. At each sampling step t, we first add a small time increment to the
current time step t to t+ = t+γtt according to a factor γt, and then perform the intermediate forward
sampling between t+ and t by joint diffusion process Equations (3) and (6). From the increased-noise
sample xt+ , we solve the ODE backward for xnum and xcat from t+ to t− 1, respectively, with a
single update. This framework enables self-correction by randomly perturbing decoded features in
the forward step. We summarize the sampling framework in Algorithm 2, and provide the ablation
study for the stochastic sampler in Section 4.3.
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2.5 Classifier-free Guidance Conditional Generation

TABDIFF can also be extended as a conditional generative model, which is important in many tasks
such as missing value imputation. Let y = {[ynum,ycat]} be the collection of provided properties in
tabular data, containing both categorical and numerical features, and let x denote the missing interest
features in this section. Imputation means we want to predict x = {[xnum,xcat]} conditioned on y.
TABDIFF can be freely extended to conditional generation by only conducting denoising sampling
for xt, while keeping other given features yt fixed as y.

Previous works on diffusion models (Dhariwal & Nichol, 2021) show that conditional generation
quality can be further improved with a guidance classifier/regressor p(y | x). However, training
the guidance classifier becomes challenging when x is a high-dimensional discrete object, and
existing methods typically handle this by relaxing x as continuous (Vignac et al., 2023). Inspired
by the classifier-free guidance (CFG) framework (Ho & Salimans, 2022) developed for continuous
diffusion, we propose a unified CFG framework that eliminates the need for a classifier and handles
multi-modal x and y effectively. The guided conditional sample distribution is given by p̃θ(xt|y) ∝
pθ(xt|y)pθ(y|xt)

ω , where ω > 0 controls strength of the guidance. Applying Bayes’ Rule, we get

p̃θ(xt|y) ∝ pθ(xt|y)pθ(y|xt)
ω = pθ(xt|y)

(
pθ(xt|y)p(y)

pθ(xt)

)ω

=
pθ(xt|y)ω+1

pθ(xt)ω
p(y)ω. (13)

We drop p(y) for it does no depend on θ. Taking the logarithm of the probabilities, we obtain,
log p̃θ(xt|y) = (1 + ω) log pθ(xt|y)− ω log pθ(xt), (14)

which implies the following changes in the sampling steps. For the numerical features, µnum
θ (xt, t) is

replaced by the interpolation of the conditional and unconditional estimates (Ho & Salimans, 2022):
µ̃num

θ (xt, y, t) = (1 + ω)µnum
θ (xt, y, t)− ωµnum

θ (xt, t). (15)
And for the categorical features, we instead predict x0 with p̃θ(x

cat
s |xcat

t ,y), satisfying
log p̃θ(x

cat
s |xcat

t ,y) = (1 + ω) log pθ(x
cat
s |xcat

t ,y)− ω log pθ(x
cat
s |xcat

t ). (16)
The guided probability utilizes the original unconditional model and requires only an additional small
model for modeling the missing value distribution, i.e., µnum

θ (xt, t) and pθ(x
cat
s |xcat

t ). We provide
empirical results for CFG sampling in Appendix B.2.

3 Related Work

Recent studies have developed different generative models for tabular data, including VAE-based
methods, TVAE (Xu et al., 2019), and GAN (Generative Adversarial Networks)-based methods,
CTGAN (Xu et al., 2019). These methods usually lack sufficient model expressivity for complicated
data distribution. Recently, diffusion models have shown powerful generative ability for diverse data
types and thus have been adopted by many tabular generation methods. Kotelnikov et al. (2023); Lee
et al. (2023) designed separate discrete-time diffusion processes (Austin et al., 2021) for numerical
and categorical features separately. However, they built their diffusion processes on discrete time
steps, which have been proven to yield a looser ELBO estimation and thus lead to sub-optimal
generation quality (Song et al., 2021; Kingma et al., 2021). To tackle such a problem caused by
limited discretization of diffusion processes and push it to a continuous time framework, Zheng &
Charoenphakdee (2022); Zhang et al. (2024) transform features into a latent continuous space via
various encoding techniques, since advanced diffusion models are mainly designed for continuous
random variables with Gaussian perturbation and thus cannot directly handle tabular data. However,
it has shown that these solutions either are trapped with sub-optimal performance due to encoding
overhead or cannot capture complex co-occurrence patterns of different modalities because of the
indirect modeling and low model capacity. In summary, none of existing methods have explored
the powerful multi-modal diffusion framework in the continuous-time limit and explicitly tackle the
feature-wise heterogeneity issue in the multi-modal diffusion process.

4 Experiments

4.1 Experimental Setups

Datasets. We conduct experiments on seven real-world tabular datasets – Adult, Default, Shoppers,
Magic, Faults, Beijing, News, and Diabetes – each containing both numerical and categorical
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Table 1: Performance comparison of TABDIFF’s against baselines across key metrics. Each column
represents the mean performance with std. on each metric across seven datasets. Bold Face highlights
the best score for each metric.

Methods Shape↓ Trend↓ α-Precision↑ β-Recall↑ Detection↑ MLE div↓
CTGAN 15.99±4.72 16.36±15.72 82.40±13.19 23.11±10.45 64.44±10.72 23.73±39.80

TVAE 15.97±16.26 16.43±16.82 75.85±28.99 25.32±10.00 52.50±31.13 20.15±27.89

GOGGLE 17.91±18.07 28.18±25.33 70.82±26.24 9.78±6.62 33.79±34.33 42.06±51.94

GReaT 14.20±14.71 40.52±46.25 80.87±8.12 42.86±4.42 51.18±12.41 13.31±23.03

STaSy 7.72±7.01 7.77±6.43 88.91±2.98 42.32±8.66 60.83±10.98 10.95±21.64

CoDi 21.56±21.59 23.23±23.35 84.29±11.75 27.12± 34.35±32.21 30.18±32.01

TabDDPM 16.93±19.47 11.95±13.44 72.48±43.18 35.44±26.17 70.44±44.19 11.95±16.88

TabSyn 1.35±1.44 2.33±2.39 97.86±1.58 46.77±8.30 91.56±15.27 6.7810.54

TABDIFF 1.17±1.26 1.80±1.85 98.22±1.35 49.40±6.62 97.87±2.34 5.71±12.27

Improv. 13.32% 22.64% 0.37% 5.62% 6.89% 15.8%
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Figure 2: Visualization of the marginal densities of the generated data in comparison to the real data.
Top and Middle: individual numerical column; Bottom: individual categorical column.

attributes. In addition, each dataset has an inherent machine-learning task, either classification or
regression. Detailed profiles of the datasets are presented in Appendix A.1.

Baselines. We compare the proposed TABDIFF with eight popular synthetic tabular data generation
methods that are categorized into four groups: 1) GAN-based method: CTGAN (Xu et al., 2019); 2)
VAE-based methods: TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023); 3) Autoregressive
Language Model: GReaT (Borisov et al., 2023); 4) Diffusion-based methods: STaSy (Kim et al.,
2023), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov et al., 2023) and TabSyn (Zhang et al., 2024).

Evaluation Methods. Following the previous methods (Zhang et al., 2024), we evaluate the quality
of the synthetic data using eight distinct metrics categorized into three groups – 1) Fidelity: Shape,
Trend, α-Precision, β-Recall, and Detection assess how well the synthetic data can faithfully recover
the ground-truth data distribution; 2) Downstream tasks: Machine learning efficiency (MLE) and
missing value imputation reveal the models’ potential to power downstream tasks; 3) Privacy: The
Distance to Closest Records (DCR) score evaluates the level of privacy protection by measuring how
closely the synthetic data resembles the training data.

Implementation Details. All reported experiment results are the average of 20 random sampled
synthetic data generated by the best-validated models. Additional implementation details, such as the
hardware/software information as well as hyperparameter settings, are in Appendix C.

4.2 Results

In Table 1, we compare TABDIFF to the baselines across the six chosen metrics. For each metric,
we report the average score with standard deviation across the seven datasets. As shown in the table,
TABDIFF yields significant improvement over the competitive baselines on all the metrics. Notably,
even on Shape and Trend, where the state-of-the-art (SOTA) performance is already extremely high
with little room for improvement, TABDIFF still achieved over 10% performance boost. Such superior
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Method Shape Trend

TABSYN 1.35 2.33

TABDIFF-Fix.+Det. 1.39 2.29
TABDIFF-Fix.+Sto. 1.20 1.93
TABDIFF-Learn.+Det. 1.24 1.92
TABDIFF-Learn.+Sto. 1.17 1.80

Table 2: Ablation Studies on the stochastic
sampler and learnable noise schedules.
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Figure 4: The adaptively learnable noise schedules
reduce training loss.
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Figure 3: Pair-wise correlation heatmaps. Values
represent the error rate (the lighter, the better).

ability to capture the shapes and trends of the orig-
inal data distribution can also be visualized in Fig-
ures 2 and 3, where we see TABDIFF’s samples
match most closely with the real data’s density
curves and correlation matrices. In addition, TAB-
DIFF improves upon the SOTA on MLE, demon-
strating its ability to generate synthetic data that
can power learning of downstream tasks. These
results thoroughly demonstrate TABDIFF’s strong
capacity in modeling multi-modal joint distribu-
tions. Due to space limits, we defer the discussion
of the privacy metric (DCR score), missing value
imputation, and detailed per-dataset results to Ap-
pendix B.

4.3 Ablation Studies

Stochastic Sampler. We conduct ablation studies to assess the effectiveness of the stochastic
sampler, discussed in Section 2.4. The results are presented in Table 2. We use ‘Det.’ and ‘Sto.’
as abbreviations for deterministic and stochastic samplers. The deterministic sampler refers to
the conventional diffusion backward process described in Song et al. (2021); Karras et al. (2022),
consisting of a series of deterministic ODE steps. According to Table 2, under both fixed and learnable
noise schedules, TABDIFF with the stochastic sampler consistently outperforms the deterministic
sampler on the fidelity metrics Shape and Trend, regardless of whether learnable noise schedules are
enabled. These confirm the efficacy of additional stochasticity in reducing decoding errors during
backward diffusion sampling.

Adaptively Learnable Noise Schedule. Next, we perform ablation studies to evaluate the effective-
ness of our adaptively learnable noise schedules, discussed in Section 2.3. We compare the model
with learnable schedules against the model with non-learnable noise schedules, where the noise
parameters for numerical features are fixed to ρi ≡ 7, ∀i in Eq. (10) and, for numerical features, fixed
to kj ≡ 1,∀j in Eq. (11). We refer to these models as ‘Learn.’ and ‘Fix.’, respectively. According to
the results in Table 2, the learnable noise schedules substantially improve performance, particularly in
Trend and regardless of whether the stochastic sampler is enabled. Furthermore, we closely examine
the training process of both models on the Adult dataset by plotting their changes of training loss in
Figure 4. According to the figure, the learnable schedules (orange curves) significantly reduce both
numerical and categorical losses in Eq. (12).

5 Conclusion
In this paper, we have introduced TABDIFF, a multi-modal diffusion framework for generating
high-quality synthetic data. TABDIFF combines a hybrid diffusion process to handle numerical and
categorical features in their native formats. To address the disparate distributions of features and their
interrelationships, we further introduced several key innovations, including learnable column-wise
noise schedules and the stochastic sampler. We conducted extensive experiments using a diverse set
of datasets and metrics, comprehensively comparing TABDIFF with existing approaches. The results
demonstrate TABDIFF’s superior capacity in learning the original data distribution and generating
faithful and diverse synthetic data to power downstream tasks.
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A Detailed Experiment Setups

A.1 Datasets

We use seven tabular datasets from UCI Machine Learning Repository1: Adult, Default, Shoppers,
Magic, Beijing, News, and Diabetes, where each tabular dataset is associated with a machine-learning
task. Classification: Adult, Default, Magic, Shoppers, and Diabetes. Regression: Beijing and News.
The statistics of the datasets are presented in Table 3.

Table 3: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat
stands for the number of categorical columns. # Max Cat stands for the number of categories of the
categorical column with the most categories.

Dataset # Rows # Num # Cat # Max Cat # Train # Validation # Test Task

Adult 48, 842 6 9 42 28, 943 3, 618 16, 281 Classification
Default 30, 000 14 11 11 24, 000 3, 000 3, 000 Classification
Shoppers 12, 330 10 8 20 9, 864 1, 233 1, 233 Classification
Magic 19, 019 10 1 2 15, 215 1, 902 1, 902 Classification
Beijing 43, 824 7 5 31 35, 058 4, 383 4, 383 Regression
News 39, 644 46 2 7 31, 714 3, 965 3, 965 Regression
Diabetes 101, 766 9 27 716 61, 059 2, 0353 20, 354 Classification

A.2 Metrics

A.2.1 Shape and Trend

Shape and Trend are proposed by SDMetrics2. They are used to measure the column-wise density
estimation performance and pair-wise column correlation estimation performance, respectively. Shape
uses Kolmogorov-Sirnov Test (KST) for numerical columns and the Total Variation Distance (TVD)
for categorical columns to quantify column-wise density estimation. Trend uses Pearson correlation
for numerical columns and contingency similarity for categorical columns to quantify pair-wise
correlation.

Shape. Kolmogorov-Sirnov Test (KST): Given two (continuous) distributions pr(x) and ps(x) (r
denotes real and s denotes synthetic), KST quantifies the distance between the two distributions using
the upper bound of the discrepancy between two corresponding Cumulative Distribution Functions
(CDFs):

KST = sup
x
|Fr(x)− Fs(x)|, (17)

where Fr(x) and Fs(x) are the CDFs of pr(x) and ps(x), respectively:

F (x) =

∫ x

−∞
p(x)dx. (18)

Total Variation Distance: TVD computes the frequency of each category value and expresses it as a
probability. Then, the TVD score is the average difference between the probabilities of the categories:

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (19)

where ω describes all possible categories in a column Ω. R(·) and S(·) denotes the real and synthetic
frequencies of these categories.

Trend. Pearson Correlation Coefficient: The Pearson correlation coefficient measures whether two
continuous distributions are linearly correlated and is computed as:

ρx,y =
Cov(x, y)

σxσy
, (20)

1https://archive.ics.uci.edu/datasets
2https://docs.sdv.dev/sdmetrics
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where x and y are two continuous columns. Cov is the covariance, and σ is the standard deviation.

Then, the performance of correlation estimation is measured by the average differences between the
real data’s correlations and the synthetic data’s corrections:

Pearson Score =
1

2
Ex,y|ρR(x, y)− ρS(x, y)|, (21)

where ρR(x, y) and ρS(x, y)) denotes the Pearson correlation coefficient between column x and
column y of the real data and synthetic data, respectively. As ρ ∈ [−1, 1], the average score is divided
by 2 to ensure that it falls in the range of [0, 1], then the smaller the score, the better the estimation.

Contingency similarity: For a pair of categorical columns A and B, the contingency similarity score
computes the difference between the contingency tables using the Total Variation Distance. The
process is summarized by the formula below:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (22)

where α and β describe all the possible categories in column A and column B, respectively. Rα,β

and Sα,β are the joint frequency of α and β in the real data and synthetic data, respectively.

A.2.2 α-Precision and β-Recall

Following Liu et al. (2023) and Alaa et al. (2022), we adopt the α-Precision and β-Recall proposed
in Alaa et al. (2022), two sample-level metric quantifying how faithful the synthetic data is. In
general, α-Precision evaluates the fidelity of synthetic data – whether each synthetic example comes
from the real-data distribution, β-Recall evaluates the coverage of the synthetic data, e.g., whether
the synthetic data can cover the entire distribution of the real data (In other words, whether a real data
sample is close to the synthetic data.)

A.2.3 Detection

The detection measures the difficulty of detecting the synthetic data from the real data when they are
mixed. We use the classifer-two-sample-test (C2ST) implemented by SDMetrics, where a logistic
regression model plays the role of a detector.

A.2.4 Machine Learning Efficiency

In MLE, each dataset is first split into the real training and testing set. The generative models are
learned on the real training set. After training, a synthetic set of equivalent size is sampled.

The performance of synthetic data on MLE tasks is evaluated based on the divergence of test scores
using the real and synthetic training data. Therefore, we first train the machine learning model on
the real training set, split into training and validation sets with a 8 : 1 ratio. The classifier/regressor
is trained on the training set, and the optimal hyperparameter setting is selected according to the
performance on the validation set. After the optimal hyperparameter setting is obtained, the corre-
sponding classifier/regressor is retrained on the training set and evaluated on the real testing set. The
performance of synthetic data is obtained in the same way.

A.3 Method

A.3.1 Adaptively Learnable Noise Schedule

For numerical stability, we need to bound σmin and σmax within (0, 1). As shown in Eq. (10), our
formulation of the power-mean noise schedule boundaries the noise level in between σmin and σmax.
To make sure that the noise level for numerical features is also bounded, we linearly map t to the
interval [δ, 1− δ], thus recasting Eq. (11) into

σcat
kj

(t) = − log
(
1−

(
(1− δ) · tkj + δ

))
. (23)

B Detailed Experiments Results

In the following sections, we discuss the results of all eight metrics across all seven datasets in detail.
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Table 4: Performance comparison on the error rates (%) of Shape.
Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 16.84± 0.03 16.83±0.04 21.15±0.10 9.81±0.08 21.39±0.05 16.09±0.02 9.82±0.08 15.99
TVAE 14.22±0.08 10.17±0.05 24.51±0.06 8.25±0.06 19.16±0.06 16.62±0.03 18.86±0.13 15.97
GOGGLE 16.97 17.02 22.33 1.90 16.93 25.32 24.92 17.91
GReaT 12.12±0.04 19.94±0.06 14.51±0.12 16.16±0.09 8.25±0.12 OOM OOM 14.20
STaSy 11.29±0.06 5.77±0.06 9.37±0.09 6.29±0.13 6.71±0.03 6.89±0.03 OOM 7.72
CoDi 21.38±0.06 15.77± 0.07 31.84±0.05 11.56±0.26 16.94±0.02 32.27±0.04 21.13±0.25 21.55
TabDDPM 1.75±0.03 1.57± 0.08 2.72±0.13 1.01±0.09 1.30±0.03 78.75±0.01 31.44±0.05 16.93
TABSYN 1 0.81±0.05 1.01±0.08 1.44±0.07 1.03±0.14 1.26±0.05 2.06±0.04 1.85±0.02 1.35

TABDIFF 0.63±0.05 1.24±0.07 1.28±0.09 0.78±0.08 1.03±0.05 2.35±0.03 0.89±0.23 1.17
Improv. 22.2% ↓ 0.0% ↓ 11.11% ↓ 14.29% ↓ 18.25% ↓ 0% ↓ 46.39% ↓ 13.3% ↓
1 TABSYN’s performance is obtained via our reproduction. The results of other baselines except on

Diabetes, are taken from Zhang et al. (2024). The OOM entries are explained in Appendix C.

Table 5: Performance comparison on the error rates (%) of Trend.
Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 20.23±1.20 26.95±0.93 13.08±0.16 7.00±0.19 22.95±0.08 5.37±0.05 18.95±0.34 16.36
TVAE 14.15±0.88 19.50±0.95 18.67±0.38 5.82±0.49 18.01±0.08 6.17±0.09 32.74±0.26 16.44
GOGGLE 45.29 21.94 23.90 9.47 45.94 23.19 27.56 28.18
GReaT 17.59±0.22 70.02±0.12 45.16±0.18 10.23±0.40 59.60±0.55 OOM OOM 44.24
STaSy 14.51±0.25 5.96±0.26 8.49±0.15 6.61±0.53 8.00±0.10 3.07±0.04 OOM 7.77
CoDi 22.49±0.08 68.41±0.05 17.78±0.11 6.53±0.25 7.07±0.15 11.10±0.01 29.21±0.12 23.21
TabDDPM 3.01±0.25 4.89±0.10 6.61±0.16 1.70±0.22 2.71±0.09 13.16±0.11 51.54±0.05 11.95
TABSYN 1.93±0.07 2.81±0.48 2.13±0.10 0.88±0.18 3.13±0.34 1.52±0.03 3.90±0.04 2.33

TABDIFF 1.49±0.16 2.55±0.75 1.74±0.08 0.76±0.12 2.59±0.15 1.28±0.04 2.20±0.16 1.80
Improve. 22.8% ↓ 9.3% ↓ 18.3% ↓ 13.6% ↓ 4.4% ↓ 15.8% ↓ 37.3% ↓ 22.6% ↓

B.1 Data Fidelity

Shape and Trend. We first evaluate the fidelity of synthetic data using the Shape and Trend metrics.
Shape measures the synthetic data’s ability to capture each single column’s marginal density, while
Trend assesses its capacity to replicate the correlation between different columns in the real data.

The detailed results for Shape and Trend metrics, measured across each dataset separately, are
presented in Tables 4 and 5, respectively. On the Shape metric, TABDIFF outperforms all baselines on
five out of seven datasets and surpasses the current state-of-the-art method TABSYN by an average of
13.3%. This demonstrates TABDIFF’s superior performance in maintaining the marginal distribution
of individual attributes across various datasets. Regarding the Trend metric, TABDIFF consistently
outperforms all baselines and surpasses TABSYN by 22.6%. This significant improvement suggests
that TABDIFF is substantially better at capturing column-column relationships than previous methods.
We also highlight TABDIFF’s exceptional performance on the larger, more categorical-heavy dataset
Diabetes, demonstrating our model’s capacity to model datasets with higher dimensionality and
discrete features.

α-precision. We first evaluate TABDIFF on α-Precision score, a metric that measures the quality of
synthetic data. Higher scores indicate the synthetic data is more faithful to the real. We present the
results across all seven datasets in Table 6. TABDIFF achieves the best or second-best performance on
all datasets. Specifically, TABDIFF ranks first with an average α-Precision score of 98.22, surpassing
all other baseline methods.

β-recall. Next, we compare TABDIFF to the baselines on the β-Recall scores, which evaluates
the extent to which synthetic data covers the real data distribution. The results are presented in
Table 7, with a higher score reflecting a more comprehensive coverage of the real data’s feature space.
TABDIFF consistently outperforms or matches the top-performing baselines, achieving the highest
average β-Recall score of 49.40. This indicates that the generated data spans a broad range of the real
distribution. Though some baseline methods attained higher scores on specific datasets, they fail to
demonstrate competitive performance on α-Precision, as models have to trade off fine-grained details
in order to capture a broader range of features.
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Overall, TABDIFF maintains a balance between broad data coverage and preserving fine-grained
details. This balance highlights TABDIFF ’s capability in generating synthetic data that faithfully
captures both the breadth and depth of the original data distribution.

Detection Score (C2ST). Lastly, we assess the fidelity of synthetic data by using the C2ST test, which
evaluates how difficult it is to distinguish the synthetic data from the real data. The results are shown
in Table 8, where a higher score indicates better fidelity. TABDIFF achieves the best performance
on five of seven datasets, outperforming the most competitive baseline model by 6.89% on average.
Notably, TABDIFF excels on Diabetes, which contains many numerous high-cardinality categorical
features (as indicated by # Max Cat in Table 3), showcasing its ability to generate high-quality
categorical data. These results, therefore, demonstrate TABDIFF’s capacity to generate synthetic data
that closely resembles the real data.

Table 6: Comparison of α-Precision scores. Bold Face highlights the best score for each dataset.
Higher scores reflect better performance.

Methods Adult Default Shoppers Magic Beijing News Diabetes Average Ranking

CTGAN 77.74±0.15 62.08±0.08 76.97±0.39 86.90±0.22 96.27±0.14 96.96±0.17 79.89±0.10 82.40 5
TVAE 98.17±0.17 85.57±0.34 58.19±0.26 86.19±0.48 97.20±0.10 86.41±0.17 19.24±0.15 75.85 7
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 23.09 70.81 9
GReaT 55.79±0.03 85.90±0.17 78.88±0.13 85.46±0.54 98.32±0.22 OOM OOM 80.87 6
STaSy 82.87±0.26 90.48±0.11 89.65±0.25 86.56±0.19 89.16±0.12 94.76±0.33 OOM 88.91 3
CoDi 77.58±0.45 82.38±0.15 94.95±0.35 85.01±0.36 98.13±0.38 87.15±0.12 64.80±0.53 84.29 4
TabDDPM 96.36±0.20 97.59±0.36 88.55±0.68 98.59±0.17 97.93±0.30 0.00±0.00 28.35±0.11 72.48 8
TABSYN 99.39±0.18 98.65±0.23 98.36±0.52 99.42±0.28 97.51±0.24 95.05±0.30 96.61±0.24 97.86 2

TABDIFF 99.02±0.20 98.49±0.28 99.11±0.34 99.47±0.21 98.06±0.24 97.36±0.17 95.69±0.19 98.22 1

Table 7: Comparison of β-Recall scores. Bold Face highlights the best score for each dataset. Higher
scores reflects better results.

Methods Adult Default Shoppers Magic Beijing News Diabetes Average Ranking

CTGAN 30.80±0.20 18.22±0.17 31.80±0.350 11.75±0.20 34.80±0.10 24.97±0.29 9.42±0.26 23.11 8
TVAE 38.87±0.31 23.13±0.11 19.78±0.10 32.44±0.35 28.45±0.08 29.66±0.21 4.92±0.13 25.32 7
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 3.74 9.78 9
GReaT 49.12±0.18 42.04±0.19 44.90±0.17 34.91±0.28 43.34±0.31 OOM OOM 43.34 3
STaSy 29.21±0.34 39.31±0.39 37.24±0.45 53.97±0.57 54.79±0.18 39.42±0.32 OOM 42.32 4
CoDi 9.20±0.15 19.94±0.22 20.82±0.23 50.56±0.31 52.19±0.12 34.40±0.31 2.70±0.06 27.12 6
TabDDPM 47.05±0.25 47.83±0.35 47.79±0.25 48.46±0.42 56.92±0.13 0.00±0.00 0.03±0.01 35.44 5
TABSYN 47.92±0.23 46.45±0.35 49.10±0.60 48.03±0.50 59.15±0.22 43.01±0.28 33.72±0.16 46.77 2

TABDIFF 51.64±0.20 51.09±0.25 49.75±0.64 48.01±0.31 59.63±0.23 42.10±0.32 41.74±0.17 49.40 1

Table 8: Detection score (C2ST) using logistic regression classifier. Higher scores reflect superior
performance.

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947 0.5593 0.6444
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076 0.0487 0.5250
GOGGLE 0.1114 0.5163 0.1418 0.9526 0.4779 0.0745 0.0912 0.3380
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 OOM OOM 0.5118
STaSy 0.4054 0.6814 0.5482 0.6939 0.7922 0.5287 OOM 0.6083
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.0008 0.3435
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.1980 0.7044
TABSYN 0.9910 0.9826 0.9662 0.9960 0.9528 0.9255 0.5953 0.9156

TABDIFF 0.9950 0.9774 0.9843 0.9989 0.9781 0.9308 0.9865 0.9787
Improv. 0.40% ↓ 0.0% ↓ 1.87% ↓ 0.0% ↓ 2.66% ↓ 0.57% ↓ 65.71% ↓ 6.89% ↓

B.2 Performance on Downstream Tasks

Machine Learning Efficiency. A key advantage of high-quality synthetic data is its ability to serve
as an anonymized proxy for real datasets and power effective learning on downstream tasks such as
classification and regression. We measure the synthetic table’s capacity to support downstream task
learning via Machine Learning Efficiency (MLE). Following established protocols (Kim et al., 2023;
Lee et al., 2023; Xu et al., 2019), we first split the real dataset into training and test sets, then train the
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Table 9: Evaluation of MLE (Machine Learning Efficiency): AUC and RMSE are used for classifica-
tion and regression tasks, respectively.

Methods Adult Default Shoppers Magic Beijing News1 Diabetes Average Gap

AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓ AUC ↑ %

Real .927±.000 .770±.005 .926±.001 .946±.001 .423±.003 .842±.002 .704±.002 0.0

CTGAN .886±.002 .696±.005 .875±.009 .855±.006 .902±.019 .880±.016 .569±.004 23.7
TVAE .878±.004 .724±.005 .871±.006 .887±.003 .770±.011 1.01±.016 .594±.009 20.2
GOGGLE .778±.012 .584±.005 .658±.052 .654±.024 1.09±.025 .877±.002 .475±.008 42.1
GReaT .913±.003 .755±.006 .902±.005 .888±.008 .653±.013 OOM OOM 13.3
STaSy .906±.001 .752±.006 .914±.005 .934±.003 .656±.014 .871±.002 OOM 10.9
CoDi .871±.006 .525±.006 .865±.006 .932±.003 .818±.021 1.21±.005 .505±.004 30.2
TabDDPM .907±.001 .758±.004 .918±.005 .935±.003 .592±.011 4.86±3.04 .521±.008 11.95
TABSYN .909±.001 .763±.002 .914±.004 .937±.002 .580±.009 .862±.024 .684±.002 6.78

TABDIFF .912±.002 .763±.005 .921±.004 .936±.003 .555±.013 .866±.021 .689±.016 5.76

Table 10: Performance of TABDIFF in the Missing Value Imputation task. We draw a direct
comparison to the generative approach employed by TABSYN, with the performance of XGBoost
classifiers/regressors included as a reference.

Methods Adult Default Shoppers Magic Beijing News Diabetes Avg. Improv.

AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓ AUC ↑ %

Predicted by XGBoost 92.7 77.0 92.6 94.6 0.423 0.842 70.4 0.0

Impute with TABSYN 93.1 86.7 96.5 91.3 0.386 0.818 66.6 4.99
Impute with TABDIFF + CFG (ω = 0.0) 92.5 91.6 95.7 92.5 0.424 0.828 66.0 3.76
Impute with TABDIFF + CFG (ω = 0.6) 93.2 91.7 96.4 93.0 0.414 0.815 66.9 5.60

given generative model on the real training set. Subsequently, we sample a synthetic dataset of equal
size to the real training set from the models and use it to train an XGBoost Classifier or XGBoost
Regressor (Chen & Guestrin, 2016). Finally, we evaluate these machine learning models against the
real test set to calculate the AUC score and RMSE for classification and regression tasks, respectively.

According to the MLE results presented in Table 9, TABDIFF consistently achieves the best or
second-best performance across all datasets, with the highest average performance outperforming the
most competitive baseline TABSYN by 15.0%. This demonstrates our method’s competitive capacity
to capture and replicate key features of the real data that are most relevant to learning downstream
machine learning tasks. However, while TABDIFF shows strong performance on MLE, we observe
that methods with varying performance on data fidelity metrics might have very close MLE scores.
This suggests that the MLE score evaluated under the current setting may not be a reliable indicator
of data quality. Therefore, we complement MLE with additional data quality metrics beyond Shape
and Trend.

Missing Value Imputation. We further evaluate TABDIFF’s conditional generation capacity through
the Missing Value Imputation task. Following the approach in Zhang et al. (2024), we treat the
inherent classification/regression task of each dataset as an imputation task. Specifically, for each
table, we train generative models on the training set to generate the target column while conditioning
on the remaining columns. The imputation performance is measured by the model’s accuracy in
recovering the target column of the test set. Implementing classifier-free guidance (CFG) for this
task is straightforward. We approximate the conditional model using the unconditioned TABDIFF
trained on all columns from the previous unconditional generation tasks. For the unconditional model,
we train TABDIFF on the target column with a significantly smaller denoising network. Detailed
implementation is provided in Appendix C, and results are presented in Table 10.

As demonstrated, TABDIFF achieves higher imputation accuracy than TABSYN on five out of
seven datasets, with an average improvement of 5.60% over the non-generative XGBoost classifier.
This indicates TABDIFF’s superior capacity for conditional tabular data generation. Moreover, we
empirically demonstrate the efficacy of our CFG framework by showing that the model consistently
performs better with ω = 0.6 compared to ω = 0.0 (which is equivalent to TABDIFF without CFG).
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Table 11: DCR score, which represents the probability that a generated data sample is more similar to
the training set than to the test set. A score closer to 50% is more preferable. Bold Face highlights
the best score for each dataset.

Method Adult Default Shoppers Beijing News Diabetes

STaSy 50.33%±0.19 50.23%±0.09 51.53%±0.16 50.59%±0.29 50.59%±0.14 OOM
CoDi 49.92%±0.18 51.82%±0.26 51.06%±0.18 50.87%±0.11 50.79%±0.23 51.12%±0.19

TabDDPM 51.14%±0.18 52.15%±0.20 63.23%±0.25 80.11%±2.68 79.31% ±0.29 37.76% ±0.23

TABSYN 50.94%±0.17 51.20%±0.18 52.90% ±0.22 50.37%±0.13 50.85% ±0.33 50.62% ±0.28

TABDIFF 50.10 %±0.32 51.11 %±0.36 50.24 % ±0.62 50.50 % ±0.36 51.04 % ±.32 50.43 % ±0.18

B.3 Data Privacy

The ability to protect privacy is another important factor when evaluating synthetic data since we
wish the synthetic data to be uniformly sampled from the data distribution manifold rather than being
copied (or slightly modified) from each individual real data example. In this section, we use the
Distance to Closest Records (DCR) score metric (Zhang et al., 2024), which measures the probability
that a synthetic example’s nearest neighbor is from a holdout v.s. the training set.

Table 11 shows the DCR scores across all datasets. The DCR score represents the probability that a
generated data sample is more similar to the training set than to the test set, with a score closer to
50% being ideal, as it indicates a balance between the similarity to training and test distributions.
Across the datasets, TABDIFF consistently achieves DCR scores near 50%, highlighting its ability to
generalize well while maintaining fidelity to the original data distribution.

C Implementation Details.

We perform our experiment on an Nvidia RTX A4000 GPU with 16G memory and implement
TABDIFF with PyTorch.

Data preprocessing. The raw tabular datasets usually contain missing entries. Thus in the first phase
of preprocessing, we make up these missing values in the same way as existing works (Kotelnikov
et al., 2023; Zhang et al., 2024), with numerical missing values being replaced by the column average
and categorical missing values being treated as a new category. Moreover, the diverse range of
numerical features typically leads to more difficult and unstable training. To counter this, we then
transform the numerical values with the QuantileTransformer3, and recover the original values using
its inverse during sampling.

Data splits. For datasets other than Diabetes, we follow the exact same split as Zhang et al. (2024).
Each dataset is split into the “real” and “test” sets. For the unconditional generation task on which
data fidelity and the imputation task, the models are trained on the “real” set and evaluated on the
“real” set. For the MLE task, the “real” set is further split into a training and validation set, and the
“test” set is used for testing. Finally, for the data privacy measure DCR, the original dataset is equally
split into two halves, with one being treated as the training set and the other as the holdout set.

For Diabetes, we split it into train, validation, and test sets with a ratio of 0.6/0.2/0.2. For the
MLE task. The training and test sets are regarded as the “real” and “test” sets for the unconditional
generation and imputation tasks. For DCR, we apply an equal split.

Architecture of the denoising network. In our implementation, we project each column individually
to a d dimensional vector using a linear layer, ensuring that all columns are treated with the same
importance. We set the embedding size d as 4, matching the size used in Zhang et al. (2024). We then
process these projected vectors with a two-layer transformer, appending positional encodings at the
end. The transformed vectors are then concatenated and passed through a five-layer MLP conditioned
on the time embedding. Finally, the output is obtained by sequentially applying another transformer
followed by a projection layer that recovers the original dimensions. Our denoising network has a
comparable number of parameters as those experimented in TabDDPM (Kotelnikov et al., 2023) and
TABSYN (Zhang et al., 2024), as our shared MLP model accounts for most of the parameters.

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
QuantileTransformer.html
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Hyperparameters Setting. TABDIFF employs the same hyperparameter setting for all datasets. We
train our models for 8000 epochs with the Adam optimizer. The training and sampling batch sizes
are set to 4,096 and 10,000, respectively. Regarding the hyperparameters in TABDIFF, the values
σmin and σmax are set to 0.002 and 80.0, referencing the optimal setting in Karras et al. (2022), and δ
are set to 1e−3. For the loss weightings, we fix λcat to 1.0 and linear decay λnum from 1.0 to 0.0 as
training proceeds.

During inference, we select the checkpoint with the lowest training loss. We observe that our model
achieves the superior performance reported paper with as few as 50 discretization steps (T = 50).

Details on OOMs in experiment result tables:

1. GOOGLE set fixed random seed during sampling in the official codes, and we follow it for
consistency.

2. GReaT cannot be applied on News for maximum length limit.
3. STaSy runs out of memory on Diabetes that has hight cardinality categorical columns
4. TabDDPM cannot produce meaningful content on the News dataset.

Imputation. As mentioned in Appendix B.2, we obtain the unconditional model of the target column
by training TABDIFF on it with a smaller denoising network. For this network, we keep the same
architecture but reduce the number of MLP layers to one.
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