
Learning Action Translator for Meta Reinforcement
Learning on Sparse-Reward Tasks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Meta reinforcement learning (meta-RL) aims to learn a policy solving a set of1

training tasks simultaneously and quickly adapting to new tasks. It requires massive2

amounts of data drawn from training tasks to infer the common structure shared3

among tasks. Without heavy reward engineering, the sparse rewards in long-horizon4

tasks exacerbate the problem of sample efficiency in meta-RL. Another challenge5

in meta-RL is the discrepancy of difficulty level among tasks, which might cause6

one easy task dominating learning of the shared policy and thus preclude policy7

adaptation to new tasks. In this work, we introduce a novel objective function to8

learn an action translator among training tasks. We theoretically verify that value9

of the transferred policy with the action translator can be close to the value of the10

source policy. We propose to combine the action translator with context-based11

meta-RL algorithms for better data collection and more efficient exploration during12

meta-training. Our approach of policy transfer empirically improves the sample13

efficiency and performance of meta-RL algorithms on sparse-reward tasks.14

1 Introduction15

Deep reinforcement learning (DRL) methods achieved remarkable success in solving complex16

tasks[15, 26, 24]. While conventional DRL methods learn an individual policy for each task, meta17

reinforcement learning (meta-RL) algorithms [7, 4, 14] learn the shared structure across a distribution18

of tasks so that the agent can quickly adapt to unseen related tasks in the test phase. Unlike most19

of the existing meta-RL approaches working on tasks with dense rewards, we instead focus on20

the sparse-reward training tasks which are more common in real-world scenarios without access to21

carefully designed reward functions in the environments. Recent works in meta-RL propose off-policy22

algorithms [21, 5] and model-based algorithms [17, 16, 12, 25] to improve the sample efficiency in23

meta-training procedures. However, it still remains challenging to efficiently solve multiple tasks24

that require reasoning over long horizons with sparse rewards. In these tasks, the scarcity of positive25

rewards exacerbates the issue of sample efficiency which plagues meta-RL algorithms and makes26

exploration difficult due to lack of guidance signals.27

Intuitively, we hope that solving one task facilitates learning of other related tasks since the training28

tasks share a common structure. However, it is often not the case in practice [23, 19]. Previous works29

[30, 36] point out that detrimental gradient interference might cause an imbalance in policy learning30

on multiple tasks. Policy distillation[30] and gradient projection[36] are developed in meta-RL31

algorithms to alleviate this issue. However, in our sparse-reward setting, this issue might become32

more severe because it is hard to explore each task to obtain meaningful gradient signals for policy33

updates. Good performance in one task does not automatically help exploration on the other tasks34

since the agent lacks positive rewards on the other tasks to learn from.35

Submitted to NeurIPS 2021 Deep Reinforcement Learning workshop. Do not distribute.

In this work, we aim to fully exploit the highly-rewarding transitions occasionally discovered by the36

agent in the exploration. The good experiences in one task should not only improve the policy on this37

task but also benefit the policy on other tasks to drive deeper exploration.38

Source Tasks Target Tasks

Select better
Policy

Action
Translator

Source
Policy

Learned Policy

=

Transferred
Policy

Figure 1: Illustration of our policy transfer. Size of
arrows represents avg. episode reward of learned or
transferred policy on target tasks. Different colors
indicate different tasks.

Specifically, once the agent learns from the suc-39

cessful trajectories in one training task, we transfer40

the good policy in this task to other tasks to get41

more positive rewards on other training tasks. In42

Fig. 1, if the learned policy ⇡ performs better on43

task T (2) than other tasks, then our goal is to trans-44

fer the good policy ⇡(·, T (2)) to other tasks T (1)45

and T (3). To enable such transfer, we propose to46

learn an action translator among multiple training47

tasks. The objective function forces the translated48

action to behave on the target task similarly to49

the source action on the source task. We theoret-50

ically show that the transferred policy with this51

action translator can achieve a value on the target52

task close to the value of the source policy on the53

source task. We consider the policy transfer for54

any pair of source and target tasks in the training task distribution (see the colored arrows in Fig. 1).55

The agent executes actions following the transferred policy if the transferred policy attains higher56

rewards than the learned policy on the target task in recent episodes. This approach enables the57

agent to leverage relevant data from multiple training tasks, encourages the learned policy to perform58

similarly well on multiple training tasks, and thus leads to better performance when applying the59

well-trained policy to test tasks.60

We summarize our contributions: (1) We introduce a novel objective function to transfer any policy61

from a source Markov Decision Process (MDP) to a target MDP. We prove a theoretical guarantee62

that the transferred policy can achieve expected return on the target MDP close to the source policy63

on the source MDP, where the difference in expected return is (approximately) upper bounded by our64

loss function with a constant multiplicative factor. (2) We develop an off-policy RL algorithm called65

Meta-RL with Context-conditioned Action Translator (MCAT), applying a policy transfer mechanism66

in meta-RL to help exploration across multiple sparse-rewards tasks. (3) We empirically demonstrate67

the effectiveness of MCAT on a variety of simulated control tasks with MuJoCo physics engine[31],68

showing that policy transfer improves the performance of context-based meta-RL algorithms.69

2 Method70

In this section, we first describe our approach to learn a context encoder capturing the task features71

and learn a forward dynamics model predicting next state distribution given the task context (Sec. 2.2).72

Then we introduce an objective function to train an action translator so that the translated action on73

the target task behaves equivalently to the source action on the source task. The action translator can74

be conditioned on the task contexts and thus it can transfer a good policy from any arbitrary source75

task to any other target task in the training set (Sec. 2.3). Finally, we propose to combine the action76

translator with a context-based meta-RL algorithm to transfer the good policy from any one task to77

the others. During meta-training, this policy transfer approach helps exploit the good experiences78

encountered on any one task and benefits the data collection and further policy optimization on other79

sparse-reward tasks (Sec. 2.4). Fig. 2 provides an overview of our approach MCAT.80

2.1 Problem Formulation81

Following meta-RL formulation in previous work [4, 14, 21], we assume a distribution of tasks82

p(T) and each task is a Markov decision process (MDP) defined as a tuple (S,A, p, r, �, ⇢0) with83

state space S , action space A, transition function p(s0|s, a), reward function r(s, a, s0), discount-84

ing factor �, and initial state distribution ⇢0. We can alternatively define the reward function85

as r(s, a) =
P

s02S p(s0|s, a)r(s, a, s0). In context-based meta-RL algorithms, we learn a policy86

⇡(·|s(i)t , z
(i)
t) shared for any task T (i) ⇠ p(T), where t denotes the timestep in an episode, i denotes87

the index of a task, the context variable z
(i)
t 2 Z captures contextual information on the task MDP88

2

(e) Select action
according to better
policy(or H), take

transition in tasks

(a) Learning context model, forward model with forward loss

Replay
Buffer

Context
Encoder

C

Forward
Model

F

Latent Context

(c) Learning action translator with transfer loss

Action
Translat

or H
Context

Context

Source

Target
Forward
Model

F

push transition data
into the replay buffer

Context
Encoder

C

Context Embedding
z

(b) Learning context model with contrastive loss

(d) Learning context-conditioned actor and critic

Context
Encoder

C

Latent Context Critic Q
Actor .

Connecting states in temporal order

Sampling batch data from buffer

Forward calculation through functions

Back-propagation through neural
networks

Legend:

Figure 2: Overview of MCAT. (a) We use forward dynamics prediction loss to train the context encoder C
and forward model F . (b) We regularize the context encoder C with the contrastive loss, so context vectors of
transition segments from the same task cluster together. (c) With fixed C and F , we learn the action translator
H for any pair of source task T (j) and target task T (i). The action translator aims to generate action ã

(i) on
the target task leading to the same next state s

(j)
t+1 as the source action a

(j)
t on the source task. (d) With fixed

C, we learn the critic Q and actor ⇡ conditioning on the context feature. We remark that these components
C,F,H,Q,⇡ are trained alternatively not jointly and this fact facilitates the learning process. (e) If the agent
is interacting with the environment on task T (i), we compare learned policy ⇡(s, z(i)) and transferred policy
H(s,⇡(s, z(j)), z(j), z(i)), which transfers a good policy ⇡(s, z(j)) on source task T (j) to target task T (i). We
select actions according to the policy with higher average episode rewards in the recent episodes. Transition data
are pushed into the buffer.

and Z is the space of context vectors. The context variable is inferred from the history transitions on89

task T (i). The shared policy is optimized to maximize its value V ⇡(T (i)) = E
⇢(i)
0 ,⇡,p(i) [

P1
t=0 �

t
r
(i)
t]90

on each training task T (i). Following prior works in meta-RL [38, 16, 17, 42, 12], we study tasks91

with the same state space, action space, reward function but varying dynamics functions. Importantly,92

we focus on more challenging setting of sparse rewards. Our goal is to learn a shared policy robust to93

the dynamic changes and generalizable to unseen tasks.94

2.2 Learning Context & Forward Model95

In order to capture the knowledge about any task T (i), we leverage a context encoder96

C : SK ⇥AK ! Z , where K is the number of past steps used to infer the context. Related ideas have97

been explored by [21, 42, 12]. In Fig. 2a, given K past transitions (s(i)t�K , a
(i)
t�K , · · · , s(i)t�1, a

(i)
t�1),98

context encoder C produces the latent context z(i)t = C(s(i)t�K , a
(i)
t�K , · · · , s(i)t�2, a

(i)
t�2, s

(i)
t�1, a

(i)
t�1).99

We train the context encoder C and forward dynamics F with an objective function to predict the100

forward dynamics in future transitions s(i)t+m (1 m M) within M future steps. The state predic-101

tion in multiple future steps drives latent context embeddings z(i)t to be temporally consistent. The102

learned context encoder tends to capture dynamics-specific, contextual information (e.g. environment103

physics parameters). Formally, we minimize the negative log-likelihood of observing the future states104

under dynamics prediction.105

Lforw = �
MX

m=1

logF (s(i)t+m|s(i)t+m�1, a
(i)
t+m�1, z

(i)
t). (1)

Additionally, given trajectory segments from the same task, we require their context embeddings to106

be similar, whereas the contexts of history transitions from different tasks should be distinct (Fig. 2b).107

We propose a contrastive loss [10] to constrain embeddings within a small distance for positive pairs108

(i.e. samples from the same task) and push embeddings apart with a distance greater than a margin109

3

value m for negative pairs (i.e. samples from different tasks). z(i)t1 , z(j)t2 denote context embeddings110

of two trajectory samples from T (i), T (j). The contrastive loss function is defined as:111

Lcont = i=jkz(i)t1 � z
(j)
t2 k2 + i 6=j max(0,m� kz(i)t1 � z

(j)
t2 k) (2)

where is indicator function. During meta-training, recent transitions on each task T (i) are stored in112

a buffer B(i) for off-policy learning. We randomly sample a fairly large batch of trajectory segments113

from B(i), and average their context embeddings to output task feature z
(i). z(i) is representative114

for embeddings on task T (i) and distinctive from features z
(l) and z

(j) for other tasks. We note115

the learned embedding maintains the similarity across tasks. z
(i) is closer to z

(l) than to z
(j) if116

task T (i) is more akin to T (l). We utilize task features for action translation across multiple tasks.117

Appendix D.5 presents the effect of this auxiliary loss Lcont.118

2.3 Learning Action Translator119

Suppose that transition data s
(j)
t , a

(j)
t , s

(j)
t+1 behave well on task T (j). We aim to learn an action120

translator H : S ⇥A⇥ Z ⇥ Z ! A. ã(i) = H(s(j)t , a
(j)
t , z

(j)
, z

(i)) translates the proper action a
(j)
t121

from source task T (j) to target task T (i). In Fig. 2c, if we start from the same state s
(j)
t on both122

source and target tasks, the translated action ã
(i) on target task should behave equivalently to the123

source action a
(j)
t on the source task. Thus, the next state s

(i)
t+1 ⇠ p

(i)(s(j)t , ã
(i)) produced from the124

transferred action ã
(i) on the target task should be close to the real next state s

(j)
t+1 gathered on the125

source task. The objective function of training the action translator H is to maximize the probability126

of getting next state s
(j)
t+1 under the next state distribution s

(i)
t+1 ⇠ p

(i)(s(j)t , ã
(i)) on the target task.127

Because the transition function p
(i)(s(j)t , ã

(i)) is unavailable and might be not differentiable, we use128

the forward dynamics model F (·|s(j)t , ã
(i)
, z

(i)) to approximate the transition function. We formulate129

objective function for action translator H as:130

Ltrans = � logF (s(j)t+1|s
(j)
t , ã

(i)
, z

(i)) (3)

where ã
(i) = H(s(j)t , a

(j)
t , z

(j)
, z

(i)). We assume to start from the same initial state, the action131

translator is to find the action on the target task so as to reach the same next state as the source action132

on the source task. This intuition to learn the action translator is analogous to learn inverse dynamic133

model across two tasks.134

With a well-trained action translator conditioning on task features z(j) and z
(i), we transfer the good135

deterministic policy ⇡(s, z(j)) from any source task T (j) to any target task T (i). When encountering136

a state s(i) on T (i), we query a good action a
(j) = ⇡(s(i), z(j)) which will lead to a satisfactory next137

state with high return on the source task. Then H translates this good action a
(j) on the source task138

to action ã
(i) = H(s(i), a(j), z(j), z(i)) on the target task. Executing the translated action ã

(i) moves139

the agent to a next state on the target task similarly to the good action on the source task. Therefore,140

transferred policy H(s(i),⇡(s(i), z(j)), z(i), z(j)) can behave similarly to source policy ⇡(s, z(j)).141

Sec. 5.1 demonstrates the performance of transferred policy in a variety of environments. Our policy142

transfer mechanism is related to the action correspondence discussed in [41]. We extend their policy143

transfer approach across two domains to multiple domains(tasks) and theoretically validate learning144

of action translator in Sec. 3.145

2.4 Combining with Context-based Meta-RL146

MCAT follows standard off-policy meta-RL algorithms to learn a deterministic policy ⇡(st, z
(i)
t)147

and a value function Q(st, at, z
(i)
t), conditioning on the latent task context variable z

(i)
t . In the148

meta-training process, using data sampled from B, we train the context model C and dynamics model149

F with Lforw and Lcont to accurately predict the next state (Fig. 2a 2b). With the fixed context150

encoder C and dynamics model F , the action translator H is optimized to minimize Ltrans (Fig. 2c).151

Then, with the fixed C, we train the context-conditioned policy ⇡ and value function Q according152

to LRL (Fig. 2d). In experiments, we use the objective function LRL from TD3 algorithm [8]. On153

sparse-reward tasks where exploration is challenging, the agent might luckily find transitions with154

high rewards on one task T (j), and hence the policy learning on this task might be easier than other155

tasks. If the learned policy ⇡ performs better on one task T (j) than another task T (i), we consider156

4

the policy transferred from T (j) to T (i). At a state s
(i), we employ the action translator to get a157

potentially good action H(s(i),⇡(s(i), z(j)), z(j), z(i)) on target task T (i). As illustrated in Fig. 2e158

and Fig. 1, in the recent episodes, if the transferred policy earns higher scores than the learned policy159

⇡(s(i), z(i)) on the target task, we follow the translated actions on target task T (i) to gather transition160

data in the current episode. These data with better returns are pushed into the replay buffer B(i)161

and produce more positive signals for policy learning in the sparse-reward setting. These transition162

samples help enhance the quality of ⇡ on T (i) after policy update with off-policy RL algorithms.163

As described in Sec. 2.3, our action translator H allows policy transfer across any pair of tasks.164

Therefore, with the policy transfer mechanism, the learned policy on each task might benefit from165

good experiences and policies on any other tasks. See pseudo-code of MCAT in Appendix B.166

3 Theoretical Analysis167

In this section, we theoretically support our objective function (Equation 3) to learn the action168

translator. Given s on two MDPs with the same state and action space, we define that action a
(i)169

on T (i) is equivalent to action a
(j) on T (j) if the actions yielding exactly the same next state170

distribution and reward, i.e. p(i)(·|s, a(i)) = p
(j)(·|s, a(j)) and r

(i)(s, a(i)) = r
(j)(s, a(j)) . Ideally,171

the equivalent action always exists on the target MDP T (i) for any state-action pair on the source172

MDP T (j) and there exists an action translator function H : S ⇥A ! A to identify the exact173

equivalent action. Starting from state s, the translated action ã = H(s, a) on the task T (i) generates174

reward and next state distribution the same as action a on the task T (j) (i.e. ãBsa). Then any175

deterministic policy ⇡
(j) on the source task T (j) can be perfectly transferred to the target task T (i)176

with ⇡
(i)(s) = H(s,⇡(j)(s)). The value of the policy ⇡

(j) on the source task T (j) is equal to the177

value of transferred policy ⇡
(i) on the target task T (i).178

Without the assumption of existence of a perfect correspondence for each action, given two179

deterministic policies ⇡
(j) on T (j) and ⇡

(i) on T (i), we prove that the difference in policy180

value is upper bounded by a scalar d
1�� depending on L1-distance between reward functions181

|r(i)(s,⇡(i)(s))� r
(j)(s,⇡(j)(s))| and total-variation distance between next state distributions182

DTV (p(i)(·|s,⇡(i)(s)), p(j)(·|s,⇡(j)(s))). Theory (Theorem 1) and proof are in Appendix A.183

For a special case where reward function r(s, a, s0) only depends on the current state s and next state184

s
0, the upper bound of policy value difference is only related to the distance in next state distributions.185

Proposition 1. Let T (i) = {S,A, p
(i)
, r

(i)
, �, ⇢0} and T (j) = {S,A, p

(j)
, r

(j)
, �, ⇢0} be two MDPs186

sampled from the distribution of tasks p(T). ⇡
(i) is a deterministic policy on T (i) and ⇡

(j) is a187

deterministic policy on T (j). Assume the reward function only depends on the state and next state188

r
(i)(s, a(i), s0) = r

(j)(s, a(j), s0) = r(s, s0) . Let M = sups2S,s02S |r(s, s0) + �V
⇡(i)

(s0, T (i))|189

and d = sups2S 2MDTV (p(i)(·|s,⇡(i)(s)), p(j)(·|s,⇡(j)(s))). 8s 2 S , we have190 ���V ⇡(i)

(s, T (i))� V
⇡(j)

(s, T (j))
���

d

1� �
(4)

According to Proposition 1, if we can optimize action translator H to minimize d for policy ⇡
(j) and191

⇡
(i)(s) = H(s,⇡(j)(s)), the value of the transferred policy ⇡

(i) on the target task can be close to the192

value of source policy ⇡
(j). In many real-world scenarios, especially sparse-reward tasks, the reward193

heavily depends on the state and next state instead of action. For example, robots running forward re-194

ceive rewards according to their velocity (i.e. the location difference between the current and next state195

within one step); robot arms manipulating various objects earn positive rewards only when they are in196

the target positions. Thus, our approach focuses on the cases with reward functions approximately as197

r(s, s0) under the assumption of Proposition 1. For any state s 2 S , we minimize the total-variation198

distance between two next state distributions DTV (p(i)(·|st,⇡(i)(st)), p(j)(·|st,⇡(j)(st))). Besides,199

we discuss the policy transfer for tasks with a general reward function in Appendix C.3.200

In practice, we approximate the unknown transition function p
(i)(·|st,⇡(i)(st)) on target MDP with201

a forward model F (·|st,⇡(i)(st)), which assumes a Gaussian distribution for next state prediction.202

There is no closed-form solution of DTV between two Gaussian distributions and DTV is related with203

Kullback–Leibler (KL) divergence DKL by the inequality DTV (pkq)2 DKL(pkq) [20]. Thus,204

we instead consider minimizing DKL between two next state distributions. With real data of next205

states s
(j)
t+1 drawn from p

(j)(·|st,⇡(j)(st)) on the source MDP, we further convert DKL between206

two Gaussian distributions to Ltrans = � logF (s(j)t+1|st,⇡(i)(st)), i.e. the negative log-likelihood of207

5

observing the next state s
(j)
t+1 under the approximated distribution F (·|st,⇡(i)(st)). Experiments in208

Sec. 5.1 suggest that this objective function works well for policy transfer across two MDPs. Sec. 2.3209

explains the motivation behind Ltrans (Equation 3) to learn an action translator among multiple210

MDPs instead of only two MDPs.211

4 Related Work212

Context-based Meta-RL Meta reinforcement learning has been extensively studied in the literature213

[7, 27, 28, 34] with many works developing the context-based approaches [21, 22, 13]. Duan214

et al. [4], Wang et al. [33], Fakoor et al. [5] employ recurrent neural networks to encode context215

transitions and formulate the policy conditioning on the context variables. The objective function216

of maximizing expected return trains the context encoder and policy jointly. Rakelly et al. [21]217

leverage a permutation-invariant encoder to aggregate experiences as probabilistic context variables218

and optimizes it with variational inference. The posterior sampling is beneficial for exploration on219

sparse-reward tasks in the adaptation phase, but there is access to dense rewards during training220

phase. Lee et al. [12], Seo et al. [25] trains the context encoder with forward dynamics prediction.221

These model-based meta-RL algorithms assume the reward function is accessible for planning. In the222

sparse-reward setting without ground-truth reward functions, they may struggle to discover non-zero223

rewards and accurately estimating the reward for model-based planning may be problematic as well.224

Policy Transfer in RL Policy transfer studies the knowledge transfer in target tasks given a set225

of source tasks and their expert policies. Policy distillation algorithms [23, 35, 19] minimize the226

divergence of action distributions between the source policy and the learned policy on the target227

task. Along this line of works, Teh et al. [30] create a centroid policy in multi-task reinforcement228

learning and distills the knowledge from the task-specific policies to this centroid policy. Alternatively,229

inter-task mapping between the source and target tasks [43] can assist the policy transfer. Most230

of these works [9, 11, 2] assume existence of correspondence over the state space and learn the231

state mapping between tasks. Recent work [41] learns the state correspondence as well as action232

correspondence with dynamic cycle-consistency loss. Our method differs from this approach, in233

that we enable action translation among multiple tasks with a simpler objective function and learn234

the forward dynamics model with more advanced techniques. Importantly, our approach is novel to235

utilize the policy transfer for any pair of source and target tasks in meta-RL algorithms.236

Bisimulation for States in MDPs Recent works on state representation learning [6, 39, 1] investigate237

the bismilarity metrics for states on MDPs and consider how to learn a representation for states leading238

to almost identical behaviors under the same action in diverse MDPs. In multi-task reinforcement239

learning and meta reinforcement learning problems, Zhang et al. [39, 40] derives transfer and240

generalization bounds based on the task and state similarity. We bound the value of policy transfer241

across tasks and our approach is to establish action equivalence instead of state equivalence.242

5 Experiment243

We design and conduct experiments to answer the following questions:244

• Does the transferred policy perform well on the target task (Tab. 1, Fig. 3)?245

• Can we transfer the good policy for any pair of source and target tasks (Fig. 4)?246

• Does policy transfer improve context-based Meta-RL algorithms (Fig. 5, Tab. 2, Tab. 3)?247

• Is the policy transfer more beneficial when the training tasks have sparser rewards (Tab. 4)?248

Experimental details can be found in Appendix C.249

5.1 Policy Transfer with Fixed Dataset250

We test our proposed action translator with fixed datasets of transitions aggregated from pairs of251

source and target tasks. On MuJoCo environments HalfCheetah and Ant, we create tasks with252

varying dynamics as in [42, 12, 41]. We keep default physics parameters in source tasks and modify253

them to yield noticeable changes in the dynamics for target tasks. On HalfCheetah, the tasks differ254

in the armature. On Ant, we set different legs crippled. A well-performing policy is pre-trained255

on the source task with TD3 algorithm [8] and dense rewards. We then gather training data with256

6

Setting Source policy Transferred policy [41] Transferred policy (Ours)

HalfCheetah 2355.0 3017.1(±44.2) 2937.2(±9.5)

Ant 55.8 97.2(±2.5) 208.1(±8.2)

Cylinder-Mug 0.0 308.1(±75.3) 395.6(±19.4)

Cylinder-Cube 0.0 262.4(±48.1) 446.1(±1.1)

Table 1: Performance of source and transferred policy on target task over 3 runs.

mediocre policies on the source and target tasks. We also include object manipulation tasks on257

MetaWorld benchmark [37]. Operating objects with varied physics properties requires the agent to258

handle different dynamics. The knowledge in grasping and pushing a cylinder might be transferrable259

to tasks of moving a coffee mug or a cube. The agent gets a reward of 1.0 if the object is in the goal260

location. Otherwise, the reward is 0. We use the manually-designed good policy as the source policy261

and collect transition data by adding noise to the action drawn from the good policy.262

As presented in Tab. 1, directly applying a good source policy on the target task performs poorly with263

low episode rewards. We learn dynamics model F on target task with Lforw and action translator264

H with Ltrans. From a single source task to a single target task, the transferred policy with our265

action translator (without conditioning on the task context) yields episode rewards significantly266

better than the source policy on the target task. Fig. 3 visualizes moving paths of robot arms. The267

transferred policy on target task resembles the source policy on source task, while the source policy268

has trouble grasping the coffee mug on target task. Videos of agents’ behavior are on the webpage 1.269

Tab. 1 reports experimental results of baseline [41] transferring the source policy based on action270

correspondence. It proposes to learn an action translator with three loss terms: adversarial loss,271

domain cycle-consistency loss, and dynamic cycle-consistency loss. Our loss Ltrans (Equation 3)272

draws upon an idea analogous to dynamic cycle-consistency though we have a more expressive273

forward model F with context variables. When F is strong and reasonably generalizable, domain274

cycle-consistency loss training the inverse action translator and adversarial loss constraining the275

distribution of translated action may not be necessary. Ours with a simpler objective function is276

competitive with Zhang et al. [41].277

Start
End

(a) Source policy on source task

Start

End

(b) Source policy on target task

Start
End

(c) Transferred policy on target

Figure 3: Moving paths of robot hand according to policies on source
task (soccer shooting a goal) or target task (push a cylinder to a goal).

Target
Source

(a) HalfCheetah

Source
Target

(b) Ant

Figure 4: Improvement of transferred
policy over source policy on target tasks.

We extend the action translator to multiple tasks by conditioning H on context variables of source278

and target tasks. We measure the improvement of our transferred policy over the source policy on279

the target tasks. On HalfCheetah tasks T (1) · · · T (5), the armature becomes larger. As the physics280

parameter in the target task deviates more from source task, the advantage of transferred policy tends281

to be more significant (Fig. 4a), because the performance of transferred policy does not drop as much282

as source policy. We remark that the unified action translator is for any pair of source-target tasks. So283

improvements at the diagonal elements might be less than 0%. For each task on Ant (Fig. 4b), we set284

one of its four legs crippled, so any action applied to the crippled leg joints is set as 0. Ideal equivalent285

action does not always exist across tasks with different crippled legs in this setting. Therefore, it is286

impossible to minimize d in Proposition 1 as 0. Nevertheless, the inequality proved in Proposition 1287

still holds and policy transfer empirically shows positive improvement on most source-target pairs.288

5.2 Comparison with Context-based Meta-RL289

We evaluate MCAT combining policy transfer with context-based TD3 in meta-RL problems. The290

action translator is trained dynamically with data maintained in replay buffer and the source policy291

1videos: https://sites.google.com/view/policy-transfer-meta-rl

7

https://sites.google.com/view/policy-transfer-meta-rl

Setting Hopper Size HalfCheetah Armature HalfCheetah Mass Ant Damping Ant Cripple

MQL 1607.5(±327.5) -77.9(±214.2) -413.9(±11.0) 103.1(±35.7) 38.2(±4.0)

PEARL 1755.8(±115.3) -18.8(±69.3) 25.9(±69.2) 73.2(±13.3) 3.5(±2.4)

Distral 1319.8(±162.2) 566.9(±246.7) -29.5(±3.0) 90.5(±28.4) -0.1(±0.7)

HiP-BMDP 1368.3(±150.7) -102.4(±24.9) -74.8(±35.4) 33.1(±6.0) 7.3(±2.6)

MCAT(Ours) 1914.8(±373.2) 2071.5(±447.4) 1771.1(±617.7) 624.6(±218.8) 281.6(±65.6)

Table 2: Episode rewards on test tasks at 2M timesteps.

0.00 0.40 0.80 1.20 1.60 2.00
TLPHstHSs

0

500

1000

1500

2000

Av
Hr

Dg
H

(v
DO

uD
tLR

Q
5H

w
Dr

d

HRSSHr 6LzH (THst)

04L
PHDrO
DLstrDO
HLP-B0DP
0CAT (2urs)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

2000

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah ArmaturH (THst)

0.00 0.40 0.80 1.20 1.60 2.00
TimHstHps

−500

0

500

1000

1500

Av
Hr

ag
H

(v
al

ua
tiR

n
5H

w
ar

d

HalfChHHtah 0ass (THst)

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

100

200

300

400

500

600

Av
er

Dg
e

(v
Dl

uD
tiR

n
5e

w
Dr

d

Ant DDmping (Test)

0.00 0.40 0.80 1.20 1.60 2.00
Timesteps

0

100

200

300

400

Av
er

ag
e

(v
al

ua
tiR

n
Re

w
ar

d

Ant Cripple (Test)

Figure 5: Learning curves of test rewards, averaged over 3 runs. Shadow areas indicate standard error.

keeps being updated. On MuJoCo, we modify environment physics parameters (e.g. size, mass,292

damping) that affect the transition dynamics to design tasks. We predefine a fixed set of physics293

parameters for training tasks and unseen test tasks. In order to test algorithms’ ability in tackling294

difficult tasks, environment rewards are delayed to create sparse-reward RL problems [18, 29]. In295

particular, we accumulate dense rewards over n consecutive steps, and the agent receives the delayed296

feedback every n step or when the episode terminates. To fully exploit the good data collected from297

our transferred policy, we empirically incorporate self-imitation learning [18], which imitates the298

agent’s own successful past experiences to further improve the policy learning in the sparse-reward299

setting. We additionally analyze its effect in Appendix D.4. We compare with several context-based300

meta-RL methods: MQL [5], PEARL [21], Distral [30], and HiP-BMDP [40]. We run experiments of301

these baselines using official implementations which are publicly available. Although the baselines302

perform well on MuJoCo environments with dense rewards, the delayed environment rewards degrade303

policy learning (Tab. 2, Fig. 5) because the rare transitions with positive rewards are not fully exploited.304

In contrast, MCAT shows a substantial advantage in performance and sample complexity on both the305

training tasks and the test tasks. Notably, the performance gap is more significant in more complex306

environments (e.g. HalfCheetah and Ant with higher-dimensional state and sparser rewards).307

5.3 Ablative Study308

Effect of Policy Transfer Our MCAT is implemented by combining context-based TD3, self-309

imitation learning, and policy transfer (PT). We investigate the effect of policy transfer. In Tab. 3.310

MCAT significantly outperforms MCAT w/o PT, because PT facilitates more balanced performance311

across training tasks and hence better generalization to test tasks. This empirically confirms that312

policy transfer is beneficial in meta-RL on sparse-reward tasks.313

Setting Hopper Size HalfCheetah Armature HalfCheetah Mass Ant Damping Ant Cripple

MCAT w/o PT 1497.5(±282.8) 579.1(±527.1) -364.3(±198.5) 187.7(±44.8) 92.4(±72.2)

MCAT 1982.1(±341.5) 1776.8(±680.8) 67.1(±152.9) 211.8(±39.8) 155.7(±65.7)

Improvement(%) 32.3 206.8 118.4 12.8 68.5
Table 3: Mean (± standard error) of test rewards at 1M timesteps. We report improvements brought by PT.

More Sparse Rewards We analyze MCAT when rewards are delayed for different numbers of steps314

(Tab. 4). When rewards are relatively dense (i.e. delay step is 200), during training, the learned policy315

can reach a higher score on each task without the issue of imbalanced performance among multiple316

tasks. MCAT w/o PT and MCAT perform comparably well within the standard error. However, as the317

rewards become more sparse, it requires a longer sequence of correct actions to obtain potentially318

high rewards. Policy learning struggles on some tasks and policy transfer plays an important role319

to exploit the precious good experiences on source tasks. Tab. 4 suggests that policy transfer brings320

more improvement on sparser-reward tasks. In Appendix, we further provide ablative study about321

More Diverse Tasks (D.3), Effect of Self-Imitation Learning (D.4), Effect of Contrastive Loss (D.5),322

and Design Choice of Action Translator (D.6).323

8

Setting Armature Mass

Delay steps 200 350 500 200 350 500

MCAT w/o PT 2583.2(±280.4) 1771.7(±121.9) 579.1(±527.1) 709.6(±386.6) 156.6(±434.9) -364.2(±198.5)

MCAT 2251.8(±556.9) 2004.5(±392.5) 1776.8(±680.8) 666.7(±471.0) 247.8(±176.1) 67.1(±152.9)

Improvement(%) -12.8 13.1 206.9 -6.1 58.2 118.4
Table 4: Test rewards at 1M timestpes averaged over 3 runs, on HalfCheetah with armature / mass changes.

Source Task Target Task Source policy Transferred policy [41] Transferred policy (Ours)

[�0.1, 0.8, 0.2] [0.1, 0.8, 0.2] 947.5 1798.2(± 592.4) 3124.3(± 1042.0)

[�0.1, 0.8, 0.2] [0.05, 0.8, 0.2] 1470.2 1764.0(± 316.3) 1937.1(± 424.5)

[�0.1, 0.8, 0.2] [0.1, 0.8, 0.05] 1040.8 2393.7(± 869.8) 2315.7(± 1061.5)

2-leg HalfCheetah 3-leg HalfCheetah NA 1957.8(±298.4) 2018.2(±50.8)

Table 5: Performance of source and transferred policy on target task, over 3 runs.

6 Discussion324

While the scope of MCAT is for tasks with varying dynamics functions (same as many prior works325

[38, 16, 17, 42, 12]), our theory of policy transfer can be extended and the method can be potentially326

applied on more general cases (1) tasks with varying reward functions (2) tasks with varying state327

spaces and action spaces.328

Following the idea in Sec. 3, on two general MDPs, we are interested in equivalent state-action pairs329

achieving the same reward and transiting to equivalent next states. Similar to Proposition 1, we can330

prove that, on two general MDPs, for two correspondent states s(i) and s
(j), the value difference331

|V ⇡(i)

(s(i), T (i))� V
⇡(j)

(s(j), T (j))| is upper bounded by d
1�� , where d depends on DTV between332

the next state distribution on source task and the probability distribution of correspondent next state333

on target task. As an extension, we learn a state translator jointly with our action translator to capture334

state and action correspondence. Compared with Zhang et al. [41] learning both state and action335

translator, we simplify the objective function training action translator and afford the theoretical336

foundation. For (1) tasks with varying reward functions, we conduct experiments on MetaWorld337

moving the robot arm to a goal location. The reward at each step is inversely proportional to its338

distance from the goal location. We fix a goal location [�0.1, 0.8, 0.2] on source task. We set target339

tasks with distinct goal locations (coordinates [x, y, z] in Tab. 5) and hence with reward functions340

different from source task. Furthermore, we evaluate our approach on 2-leg and 3-leg HalfCheetah.341

We can test our idea on (2) tasks with varying state and action spaces of different dimensions because342

the agents have different numbers of joints on the source and target task. Tab. 5 demonstrates that343

ours with a simpler objective function than the baseline [41] can transfer the source policy to perform344

well on the target task. Details of theorems, proofs, and experiments are in Appendix E. Videos of345

the agents’ behavior are on the webpage1.346

7 Conclusion347

Meta-RL with long-horizon, sparse-reward tasks is challenging because an agent can rarely obtain348

positive rewards, and handling multiple tasks simultaneously requires massive samples from dis-349

tinctive tasks. We propose a simple yet effective objective function to learn an action translator for350

multiple tasks and provide the theoretical ground. We develop a novel algorithm MCAT using the351

action translator for policy transfer to improve the performance of off-policy, context-based meta-RL352

algorithms. We empirically show its efficacy in various environments and verify that our policy353

transfer can offer substantial gains in sample complexity.354

9

References355

[1] R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare. Contrastive behavioral similarity356

embeddings for generalization in reinforcement learning. arXiv preprint arXiv:2101.05265,357

2021.358

[2] H. B. Ammar and M. E. Taylor. Reinforcement learning transfer via common subspaces. In359

International Workshop on Adaptive and Learning Agents, pages 21–36. Springer, 2011.360

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.361

Openai gym, 2016.362

[4] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl 2: Fast reinforce-363

ment learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.364

[5] R. Fakoor, P. Chaudhari, S. Soatto, and A. J. Smola. Meta-q-learning. arXiv preprint365

arXiv:1910.00125, 2019.366

[6] N. Ferns, P. Panangaden, and D. Precup. Metrics for finite markov decision processes. In UAI,367

volume 4, pages 162–169, 2004.368

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep369

networks. In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.370

[8] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic371

methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.372

[9] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to373

transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949, 2017.374

[10] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant375

mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern376

Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.377

[11] G. Konidaris and A. Barto. Autonomous shaping: Knowledge transfer in reinforcement learning.378

In Proceedings of the 23rd international conference on Machine learning, pages 489–496, 2006.379

[12] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin. Context-aware dynamics model for generalization380

in model-based reinforcement learning. In International Conference on Machine Learning,381

pages 5757–5766. PMLR, 2020.382

[13] E. Z. Liu, A. Raghunathan, P. Liang, and C. Finn. Explore then execute: Adapting without383

rewards via factorized meta-reinforcement learning. arXiv preprint arXiv:2008.02790, 2020.384

[14] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner.385

arXiv preprint arXiv:1707.03141, 2017.386

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,387

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,388

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through389

deep reinforcement learning. Nature, 2015.390

[16] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to391

adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv preprint392

arXiv:1803.11347, 2018.393

[17] A. Nagabandi, C. Finn, and S. Levine. Deep online learning via meta-learning: Continual394

adaptation for model-based rl. arXiv preprint arXiv:1812.07671, 2018.395

[18] J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning. In International Conference on396

Machine Learning, pages 3878–3887. PMLR, 2018.397

[19] E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer398

reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.399

10

[20] D. Pollard. Asymptopia: an exposition of statistical asymptotic theory, 2000.400

[21] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-reinforcement401

learning via probabilistic context variables. In International conference on machine learning,402

pages 5331–5340. PMLR, 2019.403

[22] H. Ren, Y. Zhu, J. Leskovec, A. Anandkumar, and A. Garg. Ocean: Online task inference404

for compositional tasks with context adaptation. In Conference on Uncertainty in Artificial405

Intelligence, pages 1378–1387. PMLR, 2020.406

[23] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,407

K. Kavukcuoglu, and R. Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.408

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization409

algorithms. arXiv preprint arXiv:1707.06347, 2017.410

[25] Y. Seo, K. Lee, I. Clavera, T. Kurutach, J. Shin, and P. Abbeel. Trajectory-wise multi-411

ple choice learning for dynamics generalization in reinforcement learning. arXiv preprint412

arXiv:2010.13303, 2020.413

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,414

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural415

networks and tree search. nature, 529(7587):484, 2016.416

[27] B. C. Stadie, G. Yang, R. Houthooft, X. Chen, Y. Duan, Y. Wu, P. Abbeel, and I. Sutskever.417

Some considerations on learning to explore via meta-reinforcement learning. arXiv preprint418

arXiv:1803.01118, 2018.419

[28] F. Sung, L. Zhang, T. Xiang, T. Hospedales, and Y. Yang. Learning to learn: Meta-critic420

networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.421

[29] Y. Tang. Self-imitation learning via generalized lower bound q-learning. arXiv preprint422

arXiv:2006.07442, 2020.423

[30] Y. W. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess, and424

R. Pascanu. Distral: Robust multitask reinforcement learning. arXiv preprint arXiv:1707.04175,425

2017.426

[31] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012427

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,428

2012.429

[32] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning430

research, 9(11), 2008.431

[33] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Ku-432

maran, and M. Botvinick. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763,433

2016.434

[34] Z. Xu, H. van Hasselt, and D. Silver. Meta-gradient reinforcement learning. arXiv preprint435

arXiv:1805.09801, 2018.436

[35] H. Yin and S. Pan. Knowledge transfer for deep reinforcement learning with hierarchical437

experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,438

2017.439

[36] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-task440

learning. arXiv preprint arXiv:2001.06782, 2020.441

[37] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A442

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on443

Robot Learning, pages 1094–1100. PMLR, 2020.444

[38] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy445

with online system identification. arXiv preprint arXiv:1702.02453, 2017.446

11

[39] A. Zhang, C. Lyle, S. Sodhani, A. Filos, M. Kwiatkowska, J. Pineau, Y. Gal, and D. Precup.447

Invariant causal prediction for block mdps. In International Conference on Machine Learning,448

pages 11214–11224. PMLR, 2020.449

[40] A. Zhang, S. Sodhani, K. Khetarpal, and J. Pineau. Learning robust state abstractions for450

hidden-parameter block {mdp} s. In International Conference on Learning Representations,451

2020.452

[41] Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang. Learning cross-domain correspondence453

for control with dynamics cycle-consistency. arXiv preprint arXiv:2012.09811, 2020.454

[42] W. Zhou, L. Pinto, and A. Gupta. Environment probing interaction policies. arXiv preprint455

arXiv:1907.11740, 2019.456

[43] Z. Zhu, K. Lin, and J. Zhou. Transfer learning in deep reinforcement learning: A survey. arXiv457

preprint arXiv:2009.07888, 2020.458

12

