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ABSTRACT

Previous studies have typically assumed that large language models are unable to
accurately perform arithmetic operations, particularly multiplication of >8 digits,
and operations involving decimals and fractions, without the use of calculator tools.
This paper aims to challenge this misconception. With sufficient training data,
a 2 billion-parameter language model can accurately perform multi-digit arith-
metic operations with almost 100% accuracy without data leakage, significantly
surpassing GPT-4 (whose multi-digit multiplication accuracy is only 4.3%). We
also demonstrate that our MathGLM, fine-tuned from GLM-10B on a dataset with
additional multi-step arithmetic operations and math problems described in text,
achieves similar performance to GPT-4 on a 5,000-samples Chinese math problem
test set.

1 INTRODUCTION

MathGLM-10M MathGLM-100M MathGLM-500M MathGLM-2B

Figure 1: Accuracy scores across various LLMs like GPT-4 and ChatGPT, as well as a series of
MathGLM models on the generated test dataset for the arithmetic tasks. Among the different model
scales, MathGLM consistently achieves superior performance.

Large language models (LLMs) have demonstrated remarkable ability in handling a variety of
downstream tasks in the NLP domain (Brown et al., 2020; Chowdhery et al., 2022; Zeng et al.,
2022; Thoppilan et al., 2022; Zhang et al., 2022b; Scao et al., 2022). Pioneering models, such as
GPT-4 (OpenAI, 2023) and ChatGPT (OpenAI), have been trained on massive amounts of text data,
enabling them to generate coherent and contextually relevant responses. Their ability to understand
and generate text makes them highly versatile for various NLP tasks. Moreover, LLMs have been
leveraged for other assignments, involving areas of mathematics (Cobbe et al., 2021; Lewkowycz
et al., 2022) and science (Taylor et al., 2022). Nevertheless, despite the impressive capabilities across
diverse NLP tasks, GPT-4 might not exhibit the same level of proficiency in mathematical reasoning,
including arithmetic tasks and Chinese math word problems.

In the context of arithmetic tasks, a prevailing assumption is that LLMs struggle with accurately
executing complex arithmetic operations, especially pronounced in cases involving multiplication
of numbers exceeding 8 digits, and operations entailing decimals and fractions. To eliminate these
misconceptions, we embark on an investigation to assess the arithmetic ability of LLMs. Specifically,
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we focus on the capability of LLMs in performing complex arithmetic operations. As a result, we
propose MathGLM, a powerful model meticulously crafted to impeccably execute an extensive
spectrum of complex arithmetic operations, achieving the best performance compared to leading
LLMs such as GPT-4 (See Figure 1). These operations contain singular actions like addition,
subtraction, multiplication, division, and exponentiation, as well as the mixing of these operations
employing brackets. When these operations are performed individually, without being combined
with any other operation, we refer to them as “1-atomic operation”. Importantly, MathGLM has the
capability to adeptly tackle arithmetic operations that involve a variety of numerical forms, including
integers, decimals, fractions, percentages, and even negative numbers.

To attain the remarkable performance exhibited by MathGLM in arithmetic tasks, we utilize a step-
by-step strategy to construct an arithmetic dataset that serves as the foundation for MathGLM’s
pre-training. This dataset is designed to encompass a wide spectrum of arithmetic operations,
spanning from straightforward 1-atomic operation to more complex 9-atomic operations. By adopting
this step-by-step strategy, MathGLM learns to handle both simple and intricate arithmetic expressions,
which empowers it to accurately perform calculations even for operations involving multiplication
of numbers greater than 8 digits, and those with decimals and fractions. Moreover, we incorporate
the concept of curriculum learning to further augment the capabilities of MathGLM. By gradually
increasing the complexity of the arithmetic expressions, MathGLM progressively enhances its
capacity to tackle operations involving numbers spanning up to 12 digits. This stands in contrast to
the common assumption that large language models struggle with such complex arithmetic tasks.
The results demonstrate that MathGLM’s arithmetic performance surpasses even the most robust
LLMs like GPT-4. Specifically, MathGLM achieves an impressive accuracy of 93.03% on the test
dataset containing complex mixed operations. In contrast, GPT-4 only manages a meager 18.84%
accuracy on the same dataset.

For math word problems, the Ape210K dataset (Zhao et al., 2020) serves as a comprehensive source
of mathematical challenges, drawing from diverse math word problems across the Internet. This
dataset serves as a valuable resource for training MathGLM, offering a broad spectrum of problem
types for learning. However, a notable characteristic of the original dataset lies in its directly
calculated answers. This straightforward answer presentation might lead to a potential drawback, that
is MathGLM can potentially miss the underlying calculation rules and patterns embedded within the
calculation processes.

To overcome this potential limitation and bolster MathGLM’s proficiency in solving math word prob-
lems, we leverage the step-by-step strategy to reconstruct the Ape210K dataset. By decomposing the
complex arithmetic calculation process into a sequence of sequential steps, MathGLM is empowered
to accurately generate answer for math word problems and significantly enhance the answer accuracy
in comparison to the original one. For instance, MathGLM achieves an impressive absolute gain of
42.29% in answer accuracy as compared to fine-tuning on the original dataset. By fine-tuning from
the GLM-10B, MathGLM’s performance closely aligns with that of GPT-4 when evaluated on a math
word problems dataset comprising 5,000 test cases. This step-by-step strategy provides MathGLM
with a profound understanding of the complex calculation process inherent in math word problems,
enabling MathGLM to grasp the underlying calculation rules and obtain more accurate answers.

Overall, MathGLM excels in both arithmetic tasks and math word problems by leveraging the step-
by-step strategy. Our comprehensive experiments and detailed analysis demonstrate the effectiveness
of MathGLM’s mathematical reasoning compared to GPT-4. These results significantly challenge
the common misconception that LLMs struggle with complex arithmetic tasks, thus unveiling their
remarkable potential to excel in the realm of mathematical reasoning tasks.

2 METHOD

To investigate the efficacy of LLMs in mathematical reasoning, we propose the MathGLM model that
designed with the specific goal of enhancing the performance of LLMs in mathematical reasoning.
Firstly, MathGLM focuses on enhancing its proficiency in accurately executing a comprehensive
range of arithmetic tasks. It accomplishes this by integrating a step-by-step strategy into its archi-
tecture. Instead of straightforwardly calculating the answers to complex arithmetic expressions,
MathGLM employs this strategy to meticulously generate answers step by step. Secondly, MathGLM
leverages the step-by-step strategy to fine-tune a series of GLM models on specific Chinese math-
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ematical problems. By leveraging this strategy, MathGLM enhances its ability to handle complex
mathematical problem-solving tasks.

2.1 LEARNING ON ARITHMETIC TASKS

Arithmetic tasks can be broadly divided into basic arithmetic operations and complex mixing opera-
tions. Basic arithmetic operations encompass fundamental mathematical tasks that revolve around
conducting simple calculations involving two numbers. On the other hand, arithmetic tasks also
encompass the domain of complex mixing operations, which necessitate the skill to manage a com-
bination of diverse arithmetic operations and numerical formats. A comprehensive category of the
learning tasks encompassed by MathGLM is summarized in Table 1.

Table 1: Summary and symbolic expression of arithmetic tasks. In symbolic expression, we represent
a decimal with n-digit integer part and m-digit decimal part as nD.mD. For mixed computing, we
only show a simple mixed symbolic expression.

Task Integer Decimal Fraction Percentage Negative Numbers

Addition nD+nD nD.mD+nD.mD (nD/mD)+(nD/mD) nD%+nD% -nD+-nD
Subtraction nD-nD nD.mD-nD.mD (nD/mD)-(nD/mD) nD%-nD% -nD–nD
Multiplication nD*nD nD.mD*nD.mD (nD/mD)*(nD/mD) nD%*nD% -nD*-nD
Division nD/nD nD.mD/nD.mD (nD/mD)/(nD/mD) nD%/nD% -nD/-nD
Exponentiation nDˆnD - - - -nDˆ-nD

Mixed Computing [(nD±nD.mD)*nD%]/-nD

To augment the arithmetic ability of MathGLM, we adopt a decoder-only architecture based on
Transformer (Vaswani et al., 2017) and train it from scratch on our generated arithmetic dataset using
an autoregressive objective.

Arithmetic Dataset. The arithmetic dataset employed for pre-training is meticulously designed
to encompass a comprehensive range of arithmetic tasks. This dataset is thoughtfully designed to
incorporate a variety of operations, including addition, subtraction, multiplication, division, and
exponentiation. Additionally, it encompasses diverse numerical formats such as integers, decimals,
percents, fractions, and negative numbers. This comprehensive dataset is created in various sizes,
ranging from 1 million to 50 million records. Within each of these datasets, individual arithmetic
expressions range from 1 to 9 atomic operations, including mathematical functions such as addition
(+), subtraction (-), multiplication (×), division (/), and exponentiation (ˆ). To aligh with human
calculation habits, a step-by-step strategy is employed in the construction of the arithmetic datasets.
Instead of directly computing the final answer to each complex arithmetic expression, the strategy
breaks down the complex expression into a sequence of simpler steps, progressively generating
answers step by step. This strategy mirrors the process human typically follow when solving complex
arithmetic tasks. By training on such dataset, MathGLM achieves outstanding arithmetic performance
since it learns the underlying calculation rules from the detailed calculation process. Figure 2 provides
some training examples drawn from the arithmetic dataset, illustrating the diversity of arithmetic
tasks and the step-by-step strategy incorporated in the dataset. For a more in-depth exploration of the
specifics of the generated datasets, the details can be found in Appendix A.1.

Models and Training Procedure. Our training efforts encompass 4 distinct types of models,
each characterized by different parameter sizes. The largest model is endowed with 2B parameters,
making it the most powerful in terms of capacity. Following that, we train the second model
with 500M parameters, the third model with 100M parameters and the smallest model with 10M
parameters. Notably, despite the discrepancies in parameter sizes, all models are trained using the
same dataset scale consisting of 50 million training records. A comprehensive overview of the
MathGLM, including its various training parameters and tokenization are presented in Appendix B.1.

For training procedure, we employ the fundamental principle of curriculum learning to effectively
train the MathGLM. The training procedure of MathGLM is initiated using an arithmetic dataset
containing numbers within a range of 5 digits. Following this initial phase, where MathGLM
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7826+855+4919/1050*1362-3673*7531/6726+5633=7826+855+4.6847619047619045*
1362-3673*7531/6726+5633=7826+855+6380.645714285713-3673*7531/6726+5633=
7826+855+6380.645714285713-27661363/6726+5633=7826+855+6380.64571428571
3-4112.602289622361+5633=8681+6380.645714285713-4112.602289622361+5633=1
5061.645714285714-4112.602289622361+5633=10949.043424663352+5633=16582.0
43424663352

674+2939*2987*9430+6994/883-1642/521+2051=674+8778793*9430+6994/883-1642/
521+2051=674+82784017990+6994/883-1642/521+2051=674+82784017990+7.92072
4801812004-1642/521+2051=674+82784017990+7.920724801812004-3.15163147792
70633+2051=82784018664+7.920724801812004-3.1516314779270633+2051=827840
18671.92073-3.1516314779270633+2051=82784018668.7691+2051=82784020719.76
91

[(-4453+9698.9284)*-4992.0]*3575/3238+-4722.991=[5245.928400000001*-4992.0]*35
75/3238+-4722.991=(-5245.928400000001*4992.0)*3575/3238+-4722.991=(-26187674.
572800003)*3575/3238+-4722.991=-26187674.572800003*3575/3238+-4722.991=-261
87674.572800003*3575/3238-4722.991=-93620936597.76001/3238-4722.991=-289131
98.455145154-4722.991=-28917921.446145155

(-8174.1-4561%)/-727.36226-8943=(-8174.1-45.61)/-727.36226-8943=-8219.71/-727.36
226-8943=8219.71/727.36226-8943=11.300710047837788-8943=-8931.699289952163

8689%*-5814*190-6470%/[-5900-(3540%/5945)]=86.89*-5814*190-64.7/[-5900-
(35.4/5945)]=86.89*-5814*190-64.7/
[-5900-0.005954583683767872]=86.89*-5814*190-64.7/-5900.005954583684=-86.89*5
814*190+64.7/5900.005954583684=-505178.46*190+64.7/5900.005954583684=-95983
907.4+64.7/5900.005954583684=-95983907.4+0.010966090627372149=-95983907.38
903391

1+8/1*10+2=1+8*10+2=1+80+2=81+2=83

7/5/8-3=1.4/8-3=0.175-3=-2.825

5+5+8/1*2=5+5+8*2=5+5+16=10+16=26

5/9=0.5555555555555556

6*5*4=30*4=120

5/8=0.625

7*10+6=70+6=76

4+9=13

2+9-8=11-8=3

2-1=1

3/2/7=1.5/7=0.21428571428571427

7*6*4=42*4=168

5*6/10-6*9=30/10-6*9=3-6*9=3-54=-51

2+8/1=2+8=10

6/10=0.6

4+7-1+4-10=11-1+4-10=10+4-10=14-10=4

1/5+9=0.2+9=9.2

9*9=81

Basic arithmetic operations Complex mixing operations

Figure 2: Some examples of the arithmetic training dataset of MathGLM.

attains stable training convergence and demonstrates satisfactory performance on the test dataset,
we introduce curriculum learning to enhance its capabilities. Specifically, we augment the training
data with a new dataset comprising 50,000 records, which encompass numbers spanning from 5 to
12 digits. By incorporating these more challenging examples, MathGLM is encouraged to decipher
the rules associated with arithmetic operations involving large numbers. Such training strategy
allows MathGLM initially tackles simpler examples, progressively advancing towards more complex
challenges. More importantly, such approach empowers MathGLM to improve its ability by learning
from relatively smaller examples, emphasizing the efficiency of MathGLM to handle increasingly
intricate tasks or data patterns.

2.2 LEARNING ON MATH WORD PROBLEMS

Alongside our focus on arithmetic tasks, we train (fine-tune) a series of Transformer-based language
models, named General Language Model (GLM) (Du et al., 2021; Zeng et al., 2022) and their chat
versions to solve math word problems (MWP). Our training leverages the publicly available Chinese
Ape210K dataset, which serves as a valuable resource for training language models on math word
problem-solving tasks. This dataset consists of a vast collection of 210,000 Chinese math problems
at the primary school level, with each problem’s answer calculated directly.

Dataset. To enhance the performance of MathGLM on MWP, we utilize a step-by-step strategy
to reconstruct the Ape210K dataset where the answer of each math problem is calculated step by
step. Figure 3 demonstrate the contrast between the original Ape210K dataset and our reconstructed
version. The newly reconstructed dataset encourages MathGLM to acquire an in-depth understanding
of the underlying calculation rules inherent in solving math word problems. Through this step-wise
process, MathGLM becomes adept at deriving a final, accurate answer for each problem, emphasizing
its ability to harness the complexities of mathematical reasoning. The validation dataset used to
evaluate the effectiveness of MathGLM can be found in Appendix A.2.

Backbone Models. We adopt different variations of the GLM as the backbone to train the
MathGLM, including GLM-large with 335M parameters, GLM-6B, GLM2-6B, and GLM-10B.
Besides, we train the MathGLM using the ChatGLM-6B and ChatGLM2-6B backbones. These
backbone models bestow the MathGLM with a basic language understanding skills, enabling it to
effectively comprehend linguistic information contained within math word problems. The details of
backbone models are presented in Appendix B.2.
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{"question": "Xiao Wang wants to dilute 150 kilograms of pesticides 
with a pesticide content of 20% into a potion with a pesticide content 
of 5%. How many kilograms of water need to be added? ", "answer": 
"x=150*20%/5%-150=450"}

{"question": "Xiao Wang wants to dilute 150 kilograms of pesticides 
with a pesticide content of 20% into a potion with a pesticide content 
of 5%. How many kilograms of water need to be added? “, "answer": 
"x=150*20%/5%-150=150*0.2/0.05-150=30/0.05-150=600-150=450"}

{"question": "The radius of a circular flower bed is 4 meters. Now we 
need to expand the flower bed and increase the radius by 1 meter. 
How many meters will the area of the flower bed increase at this 
time** 2.", "answer": "x=(3.14*(4+1)**2)-(3.14*4**2)=28.26"}

{"question":"The radius of a circular flower bed is 4 meters. Now we 
need to expand the flower bed and increase the radius by 1 meter. 
How many meters will the area of the flower bed increase at this 
time** 2.", "answer": "x=(3.14*(4+1)**2)-(3.14*4**2)=(3.14*5**2)-
(3.14*4**2)=(3.14*25)-(3.14*4**2)=78.5-(3.14*4**2)=78.5-
(3.14*16)=78.5-50.24=28.26"}

{"question": "The area of a triangle is 32cm**2, the base is 8cm, and 
the height is how many cm.", "answer": "x=32*2/8=8"}

{"question": "The area of a triangle is 32cm**2, the base is 8cm, and 
the height is how many cm.", "answer": "x=32*2/8=64/8=8"}

Figure 3: Comparison between the original Ape210k dataset and the reconstructed version. A
step-by-step strategy is employed to reconstruct the solutions for each mathematical problem.

Training Strategy. To achieve better performance, we employ two training strategies for MathGLM.
The first is to fine-tune the GLM backbone models on a solitary mathematical dataset. This process
allows the MathGLM to specialize in understanding and solving math word problems by learning
from the mathematical dataset’s unique characteristics. However, such strategy damages the generic
ability of the MathGLM. To circumvent this limitation, a second strategy is to continue training the
GLM backbone models on a hybrid dataset that combines both mathmatics and text content.

3 EXPERIMENTS

The overarching objective of MathGLM revolves around demonstrating the ability of language
models in the domain of mathematical reasoning. To validate this, we design two distinct types of
experiments, encompassing arithmetic tasks and math word problems. Here, we utilize Accuracy
and RE to measure the ability of MathGLM on arithmetic tasks. The details of evaluation metrics is
presented in Appendix C.

3.1 LEARNING ON ARITHMETIC

Overall Results. We contrast the performance between MathGLM with those of leading LLMs
such as GPT-4 and ChatGPT. As presented in Table 2, MathGLM consistently outperforms all other
models, indicating its superior performance in tackling arithmetic tasks. Even when we consider a
more small model variant, namely MathGLM-10M with a mere 10 million parameters, the results
reveal a surprising phenomenon. Despite its compact parameter size, MathGLM-10M outperforms
GPT-4 and ChatGPT across an array of comprehensive arithmetic tasks. This astonishing results show
the effectiveness of MathGLM, which involves decomposing complex arithmetic expressions into
individual steps, granting it the capacity to discern and comprehend the subtleties within arithmetic
tasks. It effectively learns the underlying rules and principles of arithmetic operations, enabling it to
generate accurate and precise solutions. Furthermore, when comparing MathGLM across different
parameter scales, we observe that the MathGLM’s arithmetic performance is directly correlated with
the augmentation of its parameter count. This finding suggest that as models increase in size, their
performance exhibits a corresponding enhancement.

Table 2: Performance comparison on an arithmetic dataset containing 9,592 test cases between
MathGLM and the leading LLMs.

Model GPT-4 ChatGPT MathGLM-10M MathGLM-100M MathGLM-500M MathGLM-2B

ACC 18.84% 10.00% 61.21% 70.28% 89.57% 93.03%
RE - - 97.83% 99.28% 99.41% 99.71%
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Generalization Analysis. To assess the generalization ability of MathGLM beyond the 5-digit range,
a set of 50,000 training records involving numbers within the 12-digit range are introduced into the
training dataset. After incorporating this additional data, MathGLM is further pre-trained for 20,000
steps to enhance its ability to handle arithmetic tasks involving numbers outside the 5-digit range.
Table 3 shows the arithmetic performance comparison across various digit ranges, spanning from 5
digit to 12 digit, and involving a mix of arithmetic operations. In comparison to GPT-4 and ChatGPT,
our proposed MathGLM consistently achieves the highest accuracy across all digit ranges, indicating
the superiority of MathGLM for multi-digit arithmetic operations. A noticeable observation is that a
decline in accuracy as the number of digits in the arithmetic operations increases.

Table 3: Performance comparison between most powerful LLMs and MathGLM on various multi-digit
arithmetic operations.

Model 5-D 6-D 7-D 8-D 9-D 10-D 11-D 12-D

GPT-4 6.67% 10.00% 3.33% 3.13% 6.90% 3.33% 0% 6.90%
ChatGPT 5.43% 2.94% 1.92% 1.43% 1.57% 1.45% 0% 1.33%

MathGLM-500M 83.44% 79.58% 71.19% 64.62% 66.66% 49.55% 42.98% 27.38%
MathGLM-2B 86.16% 78.17% 73.73% 67.69% 69.60% 65.77% 57.89% 41.05%

Scaling Analysis. To comprehensively assess the effect of model parameters and training data
sizes on performance, we conduct a series of scaling analysis experiments. The model parameters of
MathGLM are designed as a range of {10M, 100M, 500M, 2B} and the training data sizes is set to
a range of {1M, 5M, 10M, 25M, 50M}. Figure 4 shows the evaluation performance of MathGLM
under various scaling configurations. As expected, the performance trend highlights that the 2B
model consistently outperforms its smaller counterparts when evaluated using equivalent data sizes,
illustrating the positive impact of larger model parameters on arithmetic performance. Besides, it is
evident that larger data sizes have a substantial influence on improving the arithmetic performance
as well. However, it is important to note that the effect of data size on the smaller model sizes may
not be as pronounced as compared to the larger models. This discernible pattern implies that the
benefits derived from increasing the data size tend to be more substantial when paired with larger
model parameters.

Furthermore, by analyzing the trend illustrated in Figure 4, we attempt to extend our findings and
make predictions for scaling configurations that were not directly studied. Employing a log-linear
trend assumption, we can extrapolate the results to estimate the requisite model size for achieving a
targeted performance when utilizing a more extensive training set. Figure 5 illustrates the extrapolated
outcomes derived from the log-linear trend. To validate the validity of this trend, we pre-train a
MathGLM equipped with 6B model parameters. From Figure 5, we can observe that the extrapolated
trend aligns with the performance achieved by the MathGLM-6B.

Figure 4: Performance visualization on MathGLM under
different scaling configurations, including model param
-eters and training data sizes.

MathGLM-10M

MathGLM-100M

MathGLM-500M MathGLM-2B

Figure 5: The log-linear trend
exhibited by the MathGLM.
This trend accurately predicts
MathGLM-6B’s performance.

Discussions. Due to the page limit, some additional experiments are reported in Appendix D. Com-
pared with different prominent LLMs including PT-4, ChatGPT, text-davinci-003, code-davinci-002,
Galactica, LLaMA, OPT, BLOOM, and GLM, MathGLM consistently achieves superior performance
(Cf. Appendix D.1 and Table 10). MathGLM outperforms well-known chat-type LLMs in various
arithmetic operations (Cf. Appendix D.2). For BIG-bench arithmetic dataset, MathGLM consistently
maintains high accuracy levels even in high-digit arithmetic tasks (Cf. Appendix D.3). Results
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on MATH401 can be found in Appendix D.4. A detailed analysis of error categories and their
potential causes is reported in Appendix D.5. By leveraging the step-by-step strategy, MathGLM-2B
achieves the accuracy raises from 40.76% to 93.03% (Cf. Appendix D.6). The examples generated
by MathGLM-2B on various arithmetic tasks are shown in Appendix D.7.

3.2 LEARNING ON MATH WORD PROBLEMS

Table 4: Performance comparison among differ-
ent language models on the Ape210K dataset.

Model ArithmeticAcc AnswerAcc

GPT-4 - 59.57%
ChatGPT - 39.78%

GLM-Large - 0%
w/ MathGLM 62.00% 50.80%

GLM-6B - 3.94%
w/ MathGLM 64.60% 48.06%

GLM-10B - 0%
w/ MathGLM 69.08% 58.68%

GLM2-6B - 31.42%
w/ MathGLM 52.24% 45.48%

ChatGLM-6B - 6%
w/ MathGLM 58.52% 42.28%

ChatGLM2-6B - 31.70%
w/ MathGLM 50.38% 43.14%

Results on the Ape210K test dataset. We report
the performance results of various LLMs including
GPT-4, ChatGPT, and a series of our MathGLM
variations in Table 4. The results show that when
paired with GLM-10B, MathGLM achieves perfor-
mance levels comparable to the state-of-the-art GPT-
4 model in terms of answer accuracy. Furthermore,
we report the arithmetic accuracy, which measures
the correctness of the generated arithmetic expres-
sions. Notably, MathGLM consistently achieves
higher arithmetic accuracy compared to answer ac-
curacy across different model sizes. It is obviously
observed that augmenting model size tends to bol-
ster its overall performance by comparing Math-
GLM’s performance with GLM-Large, GLM-6B,
and GLM-10B. However, it is worth noting that
the performance of MathGLM drops significantly
compared to the GLM models when it is coupled
with ChatGLM models. A possible explanation
is that ChatGLM models are fine-tuned using the
instruction data, potentially compromising the in-
herent capabilities of language models. This tuning
process might introduce biases or constraints that
hinder the overall ability of the language models in
handling math word problems.

Results on the K6 dataset. To assess the mathematical problem-solving abilities across different
grade levels, we present the performance results on the K6 dataset for various LLMs in Figure 6.
A general trend of performance decreases as the grade level increases. Such observation indicates
that solving math word problems becomes progressively more challenging for LLMs as the grade
level increases, requiring more advanced problem solving skills and a deeper understanding of
mathematical concepts. GPT-4 exhibits consistently high accuracy levels across most grade levels,
while ChatGPT outperforms the majority of Chinese LLMs across different grade levels. Among
the evaluated Chinese LLMs, ChatGLM2-6B demonstrates a commendable level of performance,
achieving satisfactory accuracy (reaching 60% accuracy) in solving math word problems from grade
1 to 4. However, its effectiveness diminishes when attempting to solve problems in grade 5 and
6. MathGLM consistently outperforms ChatGPT and many of the most powerful Chinese LLMs
from grade 1 to grade 6. Particularly, MathGLM achieves higher accuracy than GPT-4 in more
advanced grades, such as grade 5 and 6. This observations show the effectiveness of MathGLM
in enhancing the accuracy of solving math word problems, especially in challenging educational
contexts that demand deeper mathematical understanding and advanced problem-solving skills. The
detailed introduction of these baseline models is provided in Appendix E.
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Figure 6: Performance comparison between MathGLM and other popular language models on the
K6 dataset.
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Step-by-Step Analysis for MWP. Figure 7 and Figure 8 demonstrate the performance comparison of
MathGLM across different GLM and ChatGLM models respectively. In terms of arithmetic accuracy,
as shown in Figure 8, the MathGLM equipped with the step-by-step strategy records marginally
lower scores than its counterpart without the strategy. This can be attributed to the fact that the
step-by-step approach necessitates a sequential calculation for each mathematical problem. This
encourages MathGLM to concentrate on grasping the foundational mathematical rules. Consequently,
a portion of the MathGLM’s processing power is dedicated to understanding and generating step-by-
step solutions, which might slightly weaken its prowess in precisely crafting arithmetic expressions.
Nevertheless, while there’s a minor dip in arithmetic accuracy, the step-by-step strategy significantly
bolsters MathGLM’s answer accuracy (Cf. Figure 7). By guiding MathGLM to derive answers
progressively, MathGLM generates higher accuracy in solving math word problems. Notably, we
observe pronounced improvements in answer accuracy across all GLM variants: 37.86% for GLM-
Large, 42.29% for GLM-10B, 47.97% for GLM-6B, and 53.96% for GLM2-6B. Similar trends
are also evident in the ChatGLM models, recording gains of 40.65% in ChatGLM-6B and 49.38%
in ChatGLM2-6B. These results highlight the inherent trade-off between arithmetic accuracy and
answer accuracy by employing the step-by-step strategy. Although this strategy may introduce some
potentially impact on arithmetic accuracy, it effectively enhance MathGLM’s ability to generate
accurate answers for math word problems.

GLM-Large GLM-10B GLM-6B GLM2-6B ChatGLM-6B ChatGLM2-6B

+37.86%
+42.29%

+47.97% +53.96% +40.65% +49.38%

Figure 7: The answer accuracy of MathGLM
is compared across various backbone models.
A marked improvement in answer accuracy by
employing the step-by-step approach.

GLM-Large GLM-10B GLM-6B GLM2-6B ChatGLM-6B ChatGLM2-6B

Figure 8: The arithmetic accuracy of MathGLM
is evaluated across various backbone models. A
slight decrease in arithmetic accuracy by leverag-
ing the step-by-step strategy.

Figure 9: The distribution of error types generated by
MathGLM on math word problems.

Error Distribution. Here, we construct a
percentile graph to analyze the distribution
of error types exhibited by the MathGLM
on the Ape210K test dataset. As depicted
in Figure 9, a prominent error is the “ques-
tion misunderstood” category. These errors
occur when the MathGLM fails to grasp the
linguistic nuances and context of specific
math word problems, subsequently produc-
ing incorrect solutions. Besides, a significant
portion of errors is attributed to “calculation
error”, signaling a need to enhance the com-
puting ability of our language models. In
the future, we can further improve the per-
formance of MathGLM based on the type of
errors.

Discussions. Appendix F reports some additional experiments on MWP. The impact of training
strategies is reported in Appendix F.1. Performance comparison of MathGLM on MWP among
different training dataset sizes and model parameters (Cf. Appendix F.2). A detailed analysis of error
categories is reported in Appendix F.3. The impact of training steps is shown in Appendix F.4.

4 RELATED WORK

Arithmetic Calculation. The emergence of pre-trained Large Language Models (LLMs) (Brown
et al., 2020; Chowdhery et al., 2022; OpenAI, 2023) has sparked considerable interest in investigating
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their potential for handling arithmetic tasks. Nogueira et al. (2021) and Wang et al. (2021)
evaluate the arithmetic capabilities of LLMs on elementary arithmetic operations like addition and
subtraction. Muffo et al. (2023) undertake an evaluation that specifically centers on assessing the
proficiency of language models in the domain of 2-digit multiplication. BIG-bench (Srivastava et al.,
2022) introduces a comprehensive collection of arithmetic datasets, which encompass a spectrum
of arithmetic tasks that span numbers within a range of up to 5 digits. Yuan et al. (2023) design an
complex arithmetic dataset MATH 401 with various arithmetic operations to evaluate the capabilities
of models like GPT-4, ChatGPT, InstructGPT (Ouyang et al., 2022), Galactica (Taylor et al., 2022),
and LLaMA (Touvron et al., 2023). To support arithmetic operations involving large numbers,
Nye et al. (2021) employ scratchpad-based fine-tuning that enables LLMs to achieve remarkable
outcomes in the context of 8-digit addition. Zhou et al. (2022b) adopt the specialize prompt
engineering techniques to successfully extend the scope of addition but encountered limitations with
multiplication beyond 7 digits. Goat (Liu and Low, 2023) utilizes supervised instruction fine-tuning
to handle elementary arithmetic operations with large integers. (Jelassi et al., 2023) investigate length
generalization in basic arithmetic tasks via approaches like relative position embeddings and train
set priming. Distinguishing itself from these efforts focused on elementary arithmetic, MathGLM
pushes the envelope by not only exceeding the realm of basic arithmetic with two numbers but also
tackling intricate mixing arithmetic operations involving multiple numbers and diverse data formats.
Furthermore, several works explore the integration of external tools for arithmetic tasks. For instance,
Toolformer (Schick et al., 2023) adopts an external calculator to accomplish arithmetic calculations,
while PoT (Chen et al., 2022) and PAL (Gao et al., 2023) obtain the final answer with the help of
programs. Different from leveraging external tools, we focus on explore how to enhance the inherent
arithmetic ability of LLMs without relying on external tools.

Mathematical Reasoning. LLMs have indeed demonstrated considerable promise in addressing
math word problems. (Cobbe et al., 2021) utilize training verifiers to rerank the outputs of LLMs,
resulting in remarkable performance on the created GSM8K dataset. Lewkowycz et al. (2022)
introduce Minerva, a large language model fine-tuned based on PaLM models (Chowdhery et al.,
2022), leveraging a substantial dataset containing scientific and mathematical data. Minerva attains
state-of-the-art performance on MATH (Hendrycks et al., 2021) and GSM8K. By leveraging COT
(chain of thought) (Wei et al., 2022; Kojima et al., 2022; Zhou et al., 2022a) to decompose the
math problems into multiple steps, LLMs notably improve their performance in tackling math
word problems. Wang et al. (2022) propose the self-consistency strategy as a replacement for
the decoding strategy used in COT, which brings about better performance than the traditional
COT prompting. Uesato et al. (2022) employ process and outcome supervision to enhance the
performance of LLMs in solving grade school math problems. Lightman et al. (2023) propose
to verify each intermediate reasoning step and find process supervision can significantly improve
mathematical reasoning performance. While these studies show the substantial advancements made
by LLMs in mathematical reasoning, it is clear that LLMs still make mistakes when confronted
with arithmetic operations in math word problems. Different from the aforementioned works that
primarily concentrate on improving the reasoning process, our goal is to simultaneously advance both
mathematical reasoning and arithmetical calculation capabilities of LLMs, addressing both aspects at
the same time.

5 CONCLUSION

In this paper, our primary focus revolves around evaluating the mathematical reasoning capabilities
of LLMs, encompassing both arithmetic operations and math word problems. For arithmetic tasks,
we incorporate step-by-step solution and curriculum learning to train a Transformer-based language
model from scratch. With comprehensive training on ample data, we establish that a language
model boasting 2 billion parameters can achieve outstanding accuracy in multi-digit arithmetic
tasks, exceeding GPT-4’s results by a considerable margin. This finding compellingly challenges
the prevailing cognition that LLMs face constraints in executing accurate arithmetic operations,
especially when dealing with multi-digit numbers, decimals, and fractions, without leaning on
external computational aids. When pivoting to math word problems, we reconstruct a dataset enriched
with multi-step arithmetic operations. After fine-tuning our MathGLM on this revamped dataset
derived from GLM-10B, it achieves similar performance to GPT-4 on the 5,000-sample test set of
Chinese math problems, demonstrating its formidable prowess.
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A DATASET DETAILS

A.1 DATASET ON ARITHMETIC TASKS

Pre-training Dataset. The training dataset for pre-training arithmetic model is created with a
Python script. The dataset includes a variety of arithmetic expressions, encompassing different types
of arithmetic operations such as addition, subtraction, multiplication, division, and exponentiation.
Each expression in the dataset is composed of various types of numbers, including integers, decimals,
fractions, percents, and negative numbers. The training dataset consists of approximately 50 million
arithmetic sequences. To investigate the impact of dataset scale on the arithmetic performance, we
also create multiple datasets of varying sizes, including 1 million, 5 million, 10 million, and 25
million. This diverse representation of numbers ensures that the model can handle a wide range of
numerical formats encountered in real-world arithmetic problems.

To facilitate the learning of underlying calculation rules, the arithmetic expressions are designed to be
more complex than simple two-number calculations. Instead, each expression in the dataset involves
multiple steps of calculations, ranging from 2 to 10 steps. By creating multi-step expressions, the
model is exposed to more intricate mathematical reasoning and is better equipped to handle complex
arithmetic problem-solving. The details of expressions is presented as follows. Table 5 demonstrates
examples from the arithmetic dataset.

• Operations involving integers up to 10,000 that combine addition, subtraction, multiplication,
and division.

• Exponentiation tasks using an integer base up to 10,000 and an integer exponent capped at
100.

• Bracketed expressions that include integers up to 10,000, combined with operations such as
addition, subtraction, multiplication, and division.

• Lengthy arithmetic expressions that incorporate brackets and blend various numerical types,
including integers, decimals, percentages, and negative numbers. These sequences utilize
operations such as addition, subtraction, multiplication, and division.

• Arithmetic expressions involving fractions combined with various operations, including
addition, subtraction, multiplication, and division.

Validation Dataset. Our evaluation dataset, which comprises 9,592 test cases, is generated from
the same distribution as the training dataset, yet remains distinct and is excluded from the training
process. This carefully generated suite of datasets serves as a comprehensive benchmark to evaluate
and quantify MathGLM’s computational prowess across a wide variety of arithmetic tasks.

A.2 VALIDATION DATASET ON MWP

In the field of math word problems (MWP), the performance of MathGLM is measured using the
Ape210K test dataset (Zhao et al., 2020), which contains a collection of 5,000 test math problems.
Additionally, we introduce the K6 dataset, which is designed to cover math word problems suitable
for elementary school students across 6 different grade levels. The primary purpose of the K6 dataset
is to assess the mathematical abilities of LLMs in comprehending and solving general-purpose math
reasoning problems. By evaluating MathGLM on the K6 dataset, we are able to gauge its effectiveness
in handling mathematical word problems of varying complexity and across a range of grade levels.
We collect math word problems from Chinese elementary schools in collaboration with the renowned
educational institution, TAL AI Lab. The dataset consists of math problems for each grade level,
with each grade containing approximately 100 problems. The wide-ranging nature of these math
word problems empowers us to gauge the model’s efficacy across an array of difficulty gradients
and academic grades. To illustrate the diversity and complexity of the K6 dataset, we present some
exemplary math word problems in Table 6. These examples show the range of mathematical concepts
covered and the varying levels of difficulty present in the dataset.
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Table 5: Examples from the arithmetic dataset where “+”, “-”, “*”, “/”, “ˆ” denotes addition,
subtraction, multiplication, division, and exponentiation respectively.

Types Arithmetic Expression

Integre mixing operation

1+8/1*10+2=1+8*10+2=1+80+2=81+2=83
53-2+23+51*56=53-2+23+2856=51+23+2856=74+2856=2930
214-792*509*260*556=214-403128*260*556=214-
104813280*556=214-58276183680=-58276183466
1912*6800*6022-7250-1624=13001600*6022-7250-
1624=78295635200-7250-1624=78295627950-1624=78295626326

Exponentiation
5170ˆ0=1, 1ˆ8756=1
3ˆ9=19683, 93ˆ18=270827695297250208363869180422467849
100ˆ13=100000000000000000000000000

Expression of fractions
((49/24)*-(8/70))/-(34/80)=(+(49/24)*(8/70))/(34/80)=(392/1680)/(34/80)=
(7/30)/(34/80)=(7/30)*(80/34)=(560/1020)=28/51
(9947/9276)+(4411/9276)=14358/9276=2393/1546

Expression with brackets
-7805+(4383/7377)=-7805+0.5941439609597398=-7804.40585603904
8371*(-1945+8878)=8371*(-1945+8878)=8371*6933=58036143

Lengthy arithmetic expressions

(-2090-5457.35697)*73.0=-7547.35697*73.0=-550957.05881
-4457+(-7823/5483%)*-3338=-4457+(-7823/54.83)*-
3338=-4457+(-142.6773664052526)*-3338=-4457+-
142.6773664052526*-3338=-4457+142.6773664052526*3338=-
4457+476257.0490607332=471800.0490607332

Grade Example

K1 李老师买了20颗糖果,送给小丽5颗,送给小刚8颗,还剩多少颗糖果?
K2 一个乘数是4,另一个乘数是7,积是多少?
K3 乐乐家养了36只小鸡,其中1/4是公鸡,母鸡是公鸡的3倍,公鸡和母鸡各有多少只?
K4 公益小组的同学为敬老院的老人们制作香囊(náng ),12个组共制作了864个,每组都

有9人,平均每人制作了几个?
K5 东、西两城相距180千米,甲、乙两车分别从东、西两城同时出发,相向而行,1.2小时后两

车可相遇.实际甲车出发0.4小时后因故障停车,乙车又走了2小时才和甲车相遇,求乙车每
小时行多少千米?

K6 甜甜读一本小说,第一天读了这本书的3/8,正好是180页,第二天又读了这本书的1/6,第2天
读了多少页?

Table 6: Examples from the K6 dataset to demonstrate the diversity and complexity of this dataset.
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B TRAINING DETAILS

B.1 OVERVIEW OF MATHGLM ON ARITHMETIC TASKS

Training Parameters for MathGLM. Table 7 reports an overview of all the models with different
model parameters, including hidden dimensions, the number of attention heads, and the total number
of layers employed in the model. Besides, we offer detailed training steps to facilitate the reproduction
of our MathGLM.

Table 7: Model sizes and architectures of MathGLM.

Model Dimension Heads Layers Parameters Training Steps

MathGLM-10M 256 32 15 10M 120,000
MathGLM-100M 512 32 35 100M 155,000
MathGLM-500M 1024 32 40 500M 135,000

MathGLM-2B 2048 32 40 2B 155,000

Tokenization for Arithmetic Tasks. The arithmetic operations in our MathGLM involve numbers
from 0 to 9, and the calculating signs comprise addition (+), subtraction (-), multiplication (*),
division (/), and exponentiation (ˆ). Symbols that represent forms in the data include the decimal
point (.), percent sign (%), negative sign (-), fraction delimiter (/), brackets such as ’(’ and ’[’, and the
equal sign (=). To achieve a consistent tokenization process, we adopt the unified tokenization tool
icetk proposed in CogView2 (Ding et al., 2022). By leveraging this methodology, we tokenize each
digit as a distinct token. For instance, the numeral “12345” is tokenized into the set {1, 2, 3, 4, 5}. To
allocate singular tokens to the other mentioned symbols, we disengage the continuous representation
symbols within icetk throughout the tokenization procedure.

Table 8 shows some tokenization examples employed in MathGLM. This tokenization approach
ensuers that every element in the arithmetic expression is adequately represented and can be efficiently
processed by the MathGLM, facilitating MathGLM to excute comprehensive arithmetic tasks. Owing
to the variable lengths of arithmetic expressions, it becomes imperative to standardize their lengths
for efficient training of the MathGLM. A straightforward method, like padding each input to a fixed
length, might damage training efficacy. To circumvent this, we adopt a more efficient strategy, where
multiple arithmetic expressions are concatenated until they achieve a predefined fixed length.

Table 8: Some examples of tokenization in MathGLM.

Input Tokenization

12345+345=
[’_’, ’1’, ’2’, ’3’, ’4’, ’5’, ’+’, ’3’, ’4’, ’5’, ’=’]
[20005, 20009, 20010, 20013, 20016, 20015, 20065, 20013, 20016, 20015,
20054]

1234-45678=
[’_’, ’1’, ’2’, ’3’, ’4’, ’-’, ’4’, ’5’, ’6’, ’7’, ’8’, ’=’]
[20005, 20009, 20010, 20013, 20016, 20011, 20016, 20015, 20021, 20025,
20023, 20054]

34*678=
[’_’, ’3’, ’4’, ’*’, ’6’, ’7’, ’8’, ’=’]
[20005, 20013, 20016, 20032, 20021, 20025, 20023, 20054]

1.2/2=
[’_’, ’1’, ’.’, ’2’, ’/’, ’2’, ’=’]
[20005, 20009, 20007, 20010, 20026, 20010, 20054]

(1.2*3%)/2+[(12+3)*5]=

[’_’, ’(’, ’1’, ’.’, ’2’, ’*’, ’3’, ’%’, ’)’, ’/’, ’2’, ’+’, ’[’, ’(’, ’1’, ’2’, ’+’, ’3’, ’)’,
’*’, ’5’, ’]’, ’=’]
[20005, 20020, 20009, 20007, 20010, 20032, 20013, 20040, 20014, 20026,
20010, 20065, 20052, 20020, 20009, 20010, 20065, 20013, 20014, 20032,
20015, 20042, 20054]
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B.2 BACKBONE MODELS

General Language Model (GLM) is a Transformer-based language model that combines autogressive
blank infilling with bidirectional attention mechanisms. Different from decoder-only language models
that primarily rely on unidirectional attention, GLM integrates bidirectional attention on unmasked
contexts. This innovative approach empowers it with heightened proficiency in both comprehension
and generative tasks.

Pre-Training Objectives. To amplify its linguistic understanding and generative abilities, GLM
incorporates a dual pre-training strategy: 1) Autoregressive Blank Infilling involves predicting missing
tokens within spans of corrupted text, wherein segments are arbitrarily supplanted with a [MASK]
token. 2) Multi-Task Pretraining is utilized to endow GLM text generation ability, which aims to
generate longer text by sampling random-length span from document-level or sentence-level text.

Model Sizes. GLM offers a diverse of models with various model parameters, including GLM-Large,
GLM-6B, GLM-10B, GLM2-6B, ChatGLM-6B, and ChatGLM2-6B. Comprehensive specifics
concerning the hyperparameters for each model variant can be found in Table 9. GLM-Large
model is specifically tailored for Chinese language processing tasks equipped with 335M model
parameters, while GLM-10B, GLM-6B, and GLM2-6B are equipped with 10 billion, 6 billion,
and 6 billion parameters, respectively, enabling them to handle a wide range of NLP tasks with
varying complexities. Augmenting the series are bilingual conversational models: ChatGLM-6B and
ChatGLM2-6B, both tailored for Chinese-English bilingual dialogue tasks. The ChatGLM-6B model,
having 6.2 billion parameters, undergoes fine-tuning using Chinese Q&A and dialogue datasets. In
contrast, ChatGLM2-6B emerges as an evolved iteration of ChatGLM-6B, marking enhancements in
performance, extended context handling, optimized inference, and broader applicability.

Table 9: Hyperparameters of the backbone models.

Model Dimension Heads Layers Parameters

GLM-Large 1024 24 16 335M
GLM-10B 4096 64 48 10B
GLM-6B 4096 32 28 6.2B
GLM2-6B 4096 32 28 6.2B

ChatGLM-6B 4096 32 28 6.2B
ChatGLM2-6B 4096 32 28 6.2B

C EVALUATION METRIC

To measure the ability of MathGLM on arithmetic tasks, we adopt the following metrics to evaluate
the outputs.

Accuracy is typically measured by comparing the output of the MathGLM and the ground truth
answer. In our experiments, we adhere to standard rounding rules, constraining the generated answers
to precisely two decimal places. When the correctly rounded answer aligns with the answer generated
by the MathGLM, we classify this outcome as a correct answer.

Relative Error is another important metric used to evaluate the effectiveness of MathGLM, which
quantifies the difference between the output generated by MathGLM and the correct answer. The
relative error (RE) is quantified using the following formula:

RE = | ŷ − y

y
| (1)

where ŷ and y denote the generated answer and the correct answer respectively. For our evaluation
purposes, we utilize a relative error threshold of 1%. This threshold serves as a criterion for
determining the acceptability of the answers generated by the MathGLM, where any relative error
falling within this threshold range is considered an accurate outcome.
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D ADDITIONAL EXERIMENTS ON ARITHMETIC TASKS

D.1 RESULTS ON TEST-100

Table 10: Overall performance compari-
son on various LLMs in term of Accu-
racy.

Model ACC RE

GPT-4 22.22% -
ChatGPT 13.25% -

text-davinci-003 9.79% -
text-davinci-002 4.08% -
Galactica-120b 7.97% -
Galactica-30b 7.02% -
LLaMA-65b 5.02% -
OPT-175B 3.83% -

BLOOM-176B 3.96% -
GLM-130B 3.06% -

MathGLM-10M 64.29% 97.96%
MathGLM-100M 73.47% 98.23%
MathGLM-500M 89.80% 98.82%

MathGLM-2B 94.90% 98.98%

Additionally, we conduct a performance comparison of
arithmetic tasks among different prominent large language
models (LLMs) including GPT-4, ChatGPT, text-davinci-
003, code-davinci-002, Galactica, LLaMA, OPT, BLOOM,
and GLM. For this comparison, we randomly extract a
compact arithmetic dataset Test-100 containing 100 test
cases from the larger dataset discussed earlier. The results
of this comparison arithmetic performance are presented
in Table 10. Upon analyzing the results, it is evident that
MathGLM achieves a high accuracy of 93.03% with 2
billion model parameters, surpassing all other LLMs. In
addition to leading models like GPT-4 and ChatGPT, the
large science model Galactica exhibits better performance
in arithmetic tasks. This can be attributed to Galactica’s
training on a large scientific corpus, enabling it to learn
the languages of science and comprehend the intricacies
of arithmetic tasks. By leveraging the unique character-
istics of this dataset, Galactica is able to enhance its un-
derstanding and handling of arithmetic tasks, resulting in
improved performance. These findings emphasize the sig-
nificance of domain-specific training and leveraging spe-
cialized datasets to enhance model performance. Besides,
a step-by-step solution strategy, which involves decompos-
ing complex arithmetic expressions into individual steps,
has proven to be effective in improving arithmetic performance. The outstanding performance of
MathGLM shows that the language model coupled with a specialized dataset and the step-by-step
solution strategy can achieve remarkable performance in arithmetic tasks.

D.2 GROUPED RESULTS

To clearly evaluate the arithmetic ability of MathGLM among different operations, we design a series
of extended experiments. Specifically, we design small test datasets comprising 100 test cases to
respectively evaluate the arithmetica performance of MathGLM in various arithmetic operations,
including addition, subtraction, multiplication, and division. These datasets encompass different data
formats, such as integers, decimals, percents, fractions and negative numbers. Here, we compare
MathGLM with several well-known chat-type LLMs, such as GPT-4, ChatGPT, ChatGLM, and Bard.
The arithmetic performance comparison among these different language models is demonstrated in
Table 11. Analyzing the results, we can observe that the majority of LLMs exhibit commendable
accuracy levels exceeding 90% across diverse data formats for elementary arithmetic operations
like addition and subtraction. However, as the complexity escalates to operations like multiplication
and division, a divergence in performance manifests across different models. For instance, the
accuracy levels of the most powerful model GPT-4 also show a trend towards zero, especially when
dealing with decimal and percentile data formats. In contrast, MathGLM consistently shows superior
performance in multiplication operations across various data formats, surpassing the capability of
GPT-4. This demonstrates the effectiveness and capabilities of MathGLM in handling complex
arithmetic tasks, even outperforming a prominent model like GPT-4 in specific operations. Notably,
even the smaller variant of MathGLM, MathGLM-10M, with only 10 million training parameters,
also achieves remarkable arithmetic performances, further emphasizing the arithmetic capabilities of
our MathGLM.

D.3 RESULTS ON BIG-BENCH

We also evaluate MathGLM using BIG-bench arithmetic dataset (Srivastava et al., 2022), which is
commonly used to evaluate basic arithmetic capabilities of language models by performing n-digit
addition (ADD), subtraction (SUB), multiplication (MUL), and division (DIV). Table 12 reports
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Task Format GPT-4 ChatGPT ChatGLM Bard MathGLM-10M MathGLM-2B

ADD

Int 100% 100% 94% 96.0% 100% 100%
Dec 100% 98% 76% 87% 96% 100%
Frac 43.33% 17.02% 32.98% 14.2% 60.64% 100%
Perc 100% 90.0% 1% 9.6% 100% 100%
Neg 100% 98% 91% 95% 100% 100%

SUB

Int 100% 97% 89% 91% 98% 100 %
Dec 100% 94% 82% 85% 98% 100%
Frac 52.48% 18.81% 3% 24.24% 68.32% 96.04%
Perc 100% 100% 18% 0% 99% 100%
Neg 100% 97% 44% 78% 100% 100%

MUL

Int 9% 4% 1% 2% 77% 84%
Dec 0% 0% 0% 0% 3% 33%
Frac 5.63% 2.82% 1.41% 1.41% 67.61% 85.92%
Perc 0% 0% 1% 0% 81% 97%
Neg 7% 2% 0% 0% 76% 98%

DIV

Int 92% 91% 24% 68% 99% 100%
Dec 93% 88% 60% 60% 97% 98%
Frac 33.44% 29.69% 7.81% 1.56% 73.44% 96.88%
Perc 97% 80% 19% 15% 88% 100%
Neg 97% 90% 50% 52% 96% 100%

Table 11: Arithmetic comparison between MathGLM and other LLMs among different operations.
Int denotes integers, Dec denotes decimals, Frac denotes fractions, Perc denotes percents, and Neg
denotes negative numbers.

the experimental results of GPT-4 and MathGLM on various arithmetic operations with different
numbers of digits. GPT-4 exhibits near-perfect (100%) accuracy in low-digit arithmetic tasks.
However, as the digits escalate, the performance gradually diminishes, particularly pronounced in
the multiplication task. In contrast, MathGLM consistently maintains high accuracy levels even in
high-digit arithmetic tasks, illustrating its outstanding ability to handle complex arithmetic tasks
effectively. The performance trends of different MathGLM variants reveal a consistent pattern of
improvement as model size increases. For ADD and SUB tasks, the accuracy remains consistently
high across all model sizes with slight variations. There is a tendency for larger models to achieve
higher accuracy compared to smaller models but the differences in performance between different
model sizes are relatively small. In the MUL task, accuracy rises distinctly with larger model sizes.
Smaller models exhibit relatively lower accuracy, while larger counterparts demonstrate enhanced
accuracy, particularly in tasks involving higher digit numbers. A similar tendency can be observed
in the DIV task. Overall, the evaluation results demonstrate that MathGLM outperforms GPT-4 in
high-digit arithmetic tasks, and the performance generally inproves with larger model sizes.

D.4 RESULTS ON MATH 401

Table 13 shows a comprehensive evaluation of the arithmetic performance of MathGLM on the
MATH 401 dataset (Yuan et al., 2023). This dataset offers a new set of arithmetic problems, allowing
for a deeper exploration into MathGLM’s proficiency in addressing a wide variety of arithmetic tasks.
By evaluating MathGLM’s performance on this dataset, we observe that MathGLM consistently
outperforms all other large language models with a substantial number of model parameters.

D.5 ANALYSIS ON ARITHMETIC ERRORS

Despite achieving an impressive overall accuracy of 93.03% with its 2 billion model parame-
ters, a thorough analysis is conducted to comprehend instances where MathGLM fails to gen-
erate accurate answers. Consider the example 3468 ∗ 4046/7424, MathGLM generate an an-
swer of 468 ∗ 4046/7424 = 14031528/7424 = 1889.901400862069, while the true answer is
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Table 12: Overall performance comparison on GPT-4 and MathGLM on BIG-bench Arithmetic
sub-task.

Task GPT-4 MathGLM-10M MathGLM-100M MathGLM-500M MathGLM-2B

ADD

1D 100% 84% 100% 100% 100%
2D 100% 97.2% 100% 100% 100%
3D 99.6% 99.3% 100% 100% 100%
4D 98.8% 99.9% 99.9% 100% 100%
5D 94.1% 99.2% 100% 99.6% 99.4%

SUB

1D 100% 92% 100% 100% 100%
2D 100% 98.5% 99.8% 100% 100%
3D 99.2% 98.8% 99.9% 100% 99.9%
4D 98.9% 98.4% 99.6% 99.7% 99.8%
5D 92.4% 98.0% 99.3% 99.5% 98.9%

MUL

1D 100% 91% 100% 99% 100%
2D 99.4% 85.8% 99.7% 99.9% 99.9%
3D 30.3% 77.8% 91.4% 93.7% 98.3%
4D 5.3% 79.7% 80.4% 90.0% 94.9%
5D 0.0% 41.6% 55.6% 59.6% 89.9%

DIV

1D 100% 87.0% 100% 100% 100%
2D 100% 89.5% 100% 100% 100%
3D 94.5% 90.2% 100% 99.6% 99.4%
4D 90.9% 90.5% 99.5% 99.6% 100%
5D 53.4% 82.2% 92.9% 93.6% 94.9%

468 ∗ 4046/7424 = 14031528/7424 = 1890.0226293103. Upon comparing the generated results
with the true answers, it is obviously observed that the multiplication operation for 468 ∗ 4046 is
correct but the division operation for 14031528/7424 is incorrect. One possible reason for this dis-
crepancy is that MathGLM’s pre-training primarily encompasses numbers in the 5-digit range, thereby
causing inaccuracies when tackling division tasks involving 12-digit and 4-digit numbers. Upon
thorough analysis of the errors made by MathGLM, it’s important to highlight that the inaccuracies
in the generated answers are remarkably close to the correct evaluations.

Table 14 provides some examples to analyze the failures of MathGLM on performing arithmetic
tasks. Through careful examination of these examples, we can observe several patterns and trends in
the MathGLM’s errors. Firstly, MathGLM appears to grapple with intricate arithmetic expressions,
particularly those combining several operations and large numbers. For instance, the expression
14031528/742: the division of an 8-digit number by a 4-digit one proves problematic for MathGLM,
leading to miscalculations in the outcome. Secondly, MathGLM tends to encounter difficulties when
dealing with long sequences of numbers and operations. As the expression length increases, the
model’s ability to accurately perform arithmetic calculations diminishes, leading to inaccurate results.
For example, expression involving multiplication among two large numbers like 3626 * 8919 and
calculation with a decimal and large integer number like 1.610311 * 7691. These errors generated by
MathGLM usually have only one calculation result error, indicating that the MathGLM’s mistakes
mainly occur at specific calculation steps rather than affecting the entire expression.

D.6 STEP-BY-STEP ANALYSIS

To delve deeper into the impact of the step-by-step strategy on MathGLM, we conduct extended
experiments that directly calculate the answer of each arithmetic expression without employing the
step-by-step approach. Figure 10 shows performance comparison between employing the step-by-step
strategy and bypassing it for different models. We can observe that a significant improvement in
the peformance of MathGLM when the step-by-step strategy is applied. For instance, in the case of
MathGLM-500M, the accuracy rises from 31.96% to 89.57%, while for MathGLM-2B, it increases
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Table 13: Overall performance comparison on various LLMs in term of Accuracy.

Model ACC

GPT-4 83.54%
GPT-3.5-turbo 75.06%

text-davinci-003 56.61%
text-davinci-002 42.89%
code-davinci-002 21.70%

Galactica-120b 45.14%
Galactica-30b 45.14%
Galactica-6.7b 34.41%

LLaMA-65b 28.43%
LLaMA-30b 30.17%
LLaMA-13b 27.68%
LLaMA-7b 21.96%

OPT-175B 21.70%
OPT-66B 20.70%
OPT-30B 15.96%
OPT-13B 15.21%
OPT-6.7B 14.46%

BLOOM-176B 22.44%
BLOOM-7.1B 7.23%
BLOOM-3B 4.24%

BLOOM-1.7B 5.24%

GLM-130B 25.94%
GLM-10B 14.96%

MathGLM-0.5B 85.48%
MathGLM-2B 89.44%

Table 14: Some failed examples generated by MathGLM.

Input Output Ground Truth

3468*4046/7424= 14031528/7424=1889.901400862069 14031528/7424=1890.0226293103449
(3626*8919)/8861= 32330294/8861=3648.605574991536 32340294/8861=3649.7341157882856
7715/4791*7691-
1968*9155=

1.610311*7691-1968*9155=12384.801801-
1968*9155=12384.801801-18017040=-
18004655.198199

1.610311*7691-1968*9155=12384.9018993-
1968*9155=12384.9018993-18017040=-
18004655.098100606

(4059+7011.8718)-
4038.22*847.15907=

(4059+7011.8718)-
4038.22*847.15907=11070.8718-
4038.22*847.15907=11070.8718-
3420014.6996554=-3408943.8278554

(4059+7011.8718)-
4038.22*847.15907=11070.8718-
4038.22*847.15907=11070.8718-
3421014.6996554=-3409943.8278554003

7499-5747.91007/-5438*-
439=

7499-5747.91007/5438*439=7499-
1.0570081040823832*439=7499-
464.0265576921662=7034.973442307834

7499-5747.91007/5438*439=7499-
1.056989715*439=7499-
464.0184848713=7034.981515128724

3868*6735*5755+3741-
7533=

26050980*5755+3741-
7533=159923389900+3741-
7533=159923393641-7533=159923386108

26050980*5755+3741-
7533=149923389900+3741-
7533=149923393641-7533=149923386108
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from 40.76% to 93.03% for MathGLM-2B, all attributable to the incorporation of the step-by-step
strategy. Similarly, the relative error accuracy exhibits a similar positive trend, escalating from
89.29% to an exceptional 99.41% for MathGLM-500M, and from 94.26% to an outstanding 99.71%
for MathGLM-2B with the implementation of the step-by-step strategy. These results demonstrate
the effectiveness of the step-by-step strategy in enhancing MathGLM’s ability to accurately perform
arithmetic operations. The step-by-step approach enables MathGLM to better understand and solve
intricate arithmetic tasks, leading to significant improvements in accuracy and relative error accuracy
metrics.

MathGLM-2BMathGLM-500MMathGLM-2BMathGLM-500M

Figure 10: Performance comparison of MathGLM with and without the step-by-step solution.

D.7 CASE STUDY

Figure 11 demonstrates examples generated by MathGLM with 2B model parameters on addition,
subtraction, multiplication, division, exponentiation, and mixing operations tasks.

Addition Subtraction
5678+9865=
5678+9865=15543

67548+908653=
67548+908653=976201

8659054861+7564369655=
8659054861+7564369655=16223424516

7878.547+98065.344901=
7878.547+98065.344901=105943.891901

176.67+2.3%=
176.67+2.3%=176.67+0.23=176.9

(13/14)+(18/19)=
(13/14)+(18/19)=247/266+252/266=499/266

Multiplication

Division Exponentiation Mixing Operations

-32+7854=
-32+7854=7822

76869-98654=
76869-98654=-21785

46455762897-9867553=
46455762897-9867553=46445895344

879800.75432-767.427934=
879800.75432-767.427934=879033.326386

-7634-8904=
-7634-8904=-16538

5423%-638.0965=
5423%-638.0965=54.23-638.0965=-583.8665

(3/5)-(12/19)=
(3/5)-(12/19)=57/95-60/95=-3/95

MathGLM-2B

21-(19/21)=
21-(19/21)=21-0.9047619047619048=20.095238095238

1234*7809=
1234*7809=9636306

8757755*907644=
8757755*907644=7948923779220

9765.89755*42653.9773065=
9765.89755*42653.9773065=416554372.4753039

-453*75479=
-453*75479=-34191987

7645%*975301=
7645%*975301=76.45*975301=74561761.45

(123/897)*(6753/16)=
(123/897)*(6753/16)=(830619/14352)=276873/4784

875*(646/67)=
875*(646/67)=875*9.64179104477612=8436.567164179

7862/87=
7862/87=90.36781609195402

6574389173/86532=
6574389173/86532=75976.3922363981

8753.75255/5427.67397=
8753.75255/5427.67397=1.6128000040872018

456%/243=
456%/243=4.56/243=0.01876543209876543

(12/33)/(56/12)=
(12/33)/(56/12)=(12/33)*(12/56)=(144/1848)=6/77

-129/-334=
-129/-334=129/334=0.3862275449101796

12^4=

786^1=

756^0=

457^2=

756^0=1

457^2=208849

786^1=786

12^4=20736

386^5=
386^5=8569125814176

723^10=
723^10=39028600001675809908107504649

61+9104+6129-8755-9978*1335*2454-5404
=61+9104+6129-8755-13320630*2454-5404
=61+9104+6129-8755-32688826020-5404
=9165+6129-8755-32688826020-5404
=15294-8755-32688826020-5404
=6539-32688826020-5404
=-32688819481-5404
=-32688824885

61+9104+6129-8755-9978*1335*2454-5404=

8723%/-632+-169.63=
8723%/-632+-169.63=87.23/-632+-169.63
=-87.23/632-169.63=-0.13802215189873418-169.63
=-169.76802215189873

(-2714.9607*4215%)--7850=
(-2714.9607*4215%)--7850=(-2714.9607*42.15)--7850
=(-114435.593505)--7850=-114435.593505--7850
=-114435.593505+7850=-106585.593505

Figure 11: Examples of MathGLM’s response on a variety of arithmetic tasks.
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E BASELINE MODELS FOR MWP

Here, we leverage a variety of popular LLMs that can address Chinese problems to compare the
mathematical reasoning ability among these LLMs and our MathGLM. The details of each baseline
LLM as follows.

• GPT-4 (OpenAI, 2023) is the most advanced generative language model that developed
by OpenAI, which successfully achieves so many SOTA performances on a variety of
downstream tasks.

• ChatGPT (OpenAI) is the predecessor of GPT4 and is constructed upon the success of
InstructGPT (Ouyang et al., 2022), which is fine-tuned using instruction data with reinforce-
ment learning from human feedback (RLHF), making it a powerful tool for natural language
understanding and conversation.

• MOSS (Sun and Qiu) is an open-source LLM that consists of 16 billion model parameters. It
utilizes 100 billion Chinese tokens and 20 billion English tokens to learn language patterns
and semantic representations.

• Ziya-LLaMA-13B (Zhang et al., 2022a) is a language model constructed on LLaMA-
13B, which extends LLaMA-13B’s character set to contain 7,000 Chinese characters and
undergoes continual pre-training on a vast dataset of 110 billion Chinese tokens.

• Chinese-Alpaca-13B (Cui et al., 2023) is a Chinese language model with 13 billion param-
eters that is built upon LLaMA-13B. During the supervised instruction tuning, the Low
Rank Adaptation (LoRA) (Hu et al., 2021) technique is utilized to fine-tune LLaMA-13B
for Chinese language tasks.

• Baichuan-7B (inc.) shares similarities with LLaMA but is pre-trained from scratch on a
massive dataset containing 1.2 trillion Chinese and English tokens.

• ChatGLM-6B (THUDM, a) and its successor ChatGLM2-6B (THUDM, b) are language
models that share a unified transformer architecture named GLM (Du et al., 2021; Zeng
et al., 2022). These models are pre-trained on a diverse dataset containing English and
Chinese data, combined with the supervised instruction tuning, makes them powerful tools
for understanding and generating text in both English and Chinese contexts.

F ADDITIONAL EXPERIMENTS ON MWP

F.1 COMPARISON OF TRAINING STRATEGIES

Here, we evaluate the mathematical reasoning ability of MathGLM with different training strategies:
fine-tuning and continue training. To execute continue training, we amalgamate the Ape210K train
dataset with instruction data released by Chinese-Vicuna (Chenghao Fan and Tian, 2023). We
subsequently continue training MathGLM from the GLM-10B backbone. Table 15 shows the overall
performance comparison of MathGLM employing different training strategies. We observe that
directly fine-tuning on the specific dataset can achieves better performance.

Table 15: Overall performance comparison on various LLMs in term of Accuracy.

Training w/o step-by-step strategy with step-by-step strategy
ArithmeticAcc AnswerAcc ArithmeticAcc AnswerAcc

Fine-tuning 71.38% 41.24% 69.08 % 58.68%
Continue training 70.16% 40.34% 67.02% 56.60%

F.2 SCALING ANALYSIS

To explore the impact of scaling on MathGLM, we conduct a series of experiments encompassing
varying dataset sizes and distinct model parameters. Table 16 demonstrates the results obtained from
varying the dataset sizes within the range of {5K, 10K, 20K, 50K, 100K, 200K}. Furthermore,
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to understand the impact of different model parameters, we incorporate various backbone models
into MathGLM, including GLM-Large (335M), GLM-6B, and GLM-10B. The results consistently
indicate that MathGLM’s performance improves across all backbone models with the increase in
dataset size. Such observation highlights the beneficial effects of enlarging the training data on
bolstering MathGLM’s proficiency in tackling math word problems. By accessing more extensive
datasets, MathGLM is introduced to a wider array of problem types, resulting in better performance.
Additionally, discernible differences in performance emerge among the various backbone models.
Given sufficient dataset size, larger models like MathGLM-GLM-10B often outperform others,
indicating the crucial role of model parameters in addressing intricate math word problems. These
insights emphasize the significance of both dataset and model scaling. By augmenting dataset size
and utilizing larger models, we can markedly boost MathGLM’s capability to generate more accurate
solutions, enhancing its overall efficacy in resolving math word problems.

Table 16: Performance comparison of MathGLM on different training dataset sizes and model
parameters.

Model Scale MathGLM-GLM-Large MathGLM-GLM-6B MathGLM-GLM-10B

5K Problems 4.32% 12.84% 3.68%
10K Problems 7.14% 19.78% 6.36%
20K Problems 10.36% 21.89% 9.62%
50K Problems 18.32% 26.40% 16.78%
100K Problems 25.98% 31.44% 22.20%
200K Problems 35.68% 34.00% 38.10%

F.3 FAILURE ANALYSIS ON MATH WORD PROBLEMS

Figure 12 provides some failed examples generated by MathGLM-GLM-10B on solving math word
problems. We can identify certain challenging scenarios where MathGLM-GLM-10B encounters
difficulties in solving math word problems. One common issue is the misinterpretation of ambiguous
language, leading to incorrect problem-solving approaches. For instance, ambiguous phrases such
as “more than” or “less than” can be interpreted differently by the model, resulting in inaccurate
solutions. Additionally, MathGLM-GLM-10B tends to struggle with problems that involve complex
mathematical operations. As a result, it may provide partially correct arithmetic solutions but fail to
arrive at the final correct answer.

F.4 TRAINING STEPS ANALYSIS.

We explore the impact of training steps on the MathGLM’s performance by analyzing its performance
against varied training steps, as depicted in Figure 13. The results reveal that there is a consistent
uptrend in performance as the number of training steps increases. With more training steps, MathGLM
becomes increasingly adept at comprehending and resolving math word problems, which translates
to a surge in accuracy. However, it is clearly observed that the performance gains of MathGLM
start to plateau after a certain point, indicating potential diminishing returns with extended training.
These findings highlight the significance of finding an optimal balance between training time and
performance gains for MathGLM in solving math word prblems. Additionally, we observe that model
undergoing instruction tuning requires a longer training duration to achieve consistent accuracy on
math word problems.

F.5 CASE STUDY

Here, we present specific cases to demonstrate the solving process of the MathGLM on both arithmetic
tasks and math word problems. As shown in Figure 14, these examples illustrate how the MathGLM
leverages a step-by-step strategy to solve both arithmetic tasks and math word problems accurately.

For arithmetic tasks, the MathGLM breaks down complex calculations into multiple steps rather
than a direct answer. The step-by-step strategy ensures that each intermediate result is accurately
computed, leading to the final correct answer for each arithmetic expression.
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Figure 12: Some failed examples generated by MathGLM-GLM-10B on solving math word problems.
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Figure 13: The impact of training steps on MathGLM with different backbone models. Fine-tuning
on model undergoing instruction tuning requires a longer training steps.
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In math word problems, the MathGLM utilizes LLMs’s language understanding capabilities to
understand the problem statement accurately. The MathGLM then applies the step-by-step strategy to
seperately calculate the generated arithmetic expressions for each math problem, enabling it to obtain
the correct answer for math word problems.

ሴᜌਹԣԧӞݣ။ᤏ๢޾Ӟݣኪ٩ᓟ�
Ӟوᜰԧز�����ኪ٩ᓟጱհ᰸ฎ။
ᤏ๢ጱ������࿢။ᤏ๢ጱհ᰸�

Math Word Problems Arithmetic Tasks

Input Output Input Output

ᒼ�[ �����
��������� ����º������� ����º�����
���� ����º��� ������� ����

ከԚӷ᫣՗ፘ᪗܉���ᔂጱӷݶࣈ෸
ፘݻᘒᤈ�ከ᫣ྯੜ෸ᤈ܉��ᔂ�Ԛ᫣
ྯੜ෸ᤈ܉��ᔂپ�ੜ෸ݸӷ᫣ፘ᭬"

ᒼ�[ ����������� ������ �

ӷӻࢩහፘԙ�ٌӾӞӻࢩහಘय़��
හᥝᖽੜԅࢩӞӻݚ�ݒ�ᥝֵᑌӧ׭
ܻ๶ጱग़੝"

ᒼ�[ ������

Ӟӻᳩො֛ጱ֛ᑌฎ��P

��ᳩฎ
�P̵਼ฎ�P̵ṛฎग़੝P"

ᒼ�[ �����
�� ����� ���

๫ທ፡Ӟ๜ԡ�ᒫӞޮ፡ԧقԡጱ
����ᒫԫޮ፡ԧقԡጱ������ᬮํ��
ᶭဌํ፡�ᬯ๜ԡӞํوग़੝ᶭ"

ᒼ�[ ������������������ ������
������������� ����������������� ���
�������� ������� ���

රਰᳩ�P̵਼�P̵ṛ�Pم��ቔํ��
"ጱᑮᳵฎग़੝ํܛՈྯ࣐਍ኞ�ଘݷ

ᒼ�[ �
�
���� ��
���� ������ �

ᇿ؉ᥝ��ॠਠ౮�ԚܔૡӞಢᵭկ�ከے
ݳከ̵ԚӷՈࣁᇿ؉ᥝ�ॠਠ౮�ሿܔ
֢�ग़੝ॠᚆਠ౮ᬯԶᵭկጱӞ܎"

ᒼ�[ ������
�������������� ���º���������� ���º���
�������� ���º���� ����� ����

Ӟᐿܻࠟߝհز����ই಑كರࠓڊ�ᮎ
ԍհ໒ᴳհग़੝"

ᒼ�[ ���
������� ���
������� ���

��� ���

ྯӻԡຝํ�੶�ྯ੶᮷ᤰ��๜ԡ�ํ�ӻ
ᬯ໏ጱԡຝ�Ӟوᤰԧग़੝๜ԡ"

ᒼ�[ ��
�
� ���
� ���

-7439+(3156+1649%)+(-2307+-1112)= -7439+(3156+16.49)+
(-2307+-1112)=-7439+3172.49+
(-2307+-1112)=-7439+3172.49+
(-2307-1112)=-7439+3172.49+-34
19=-7439+3172.49-3419=-4266.5
1-3419=-7685.51

4392.7*1127/
[(6532+3588)+-1499.90071*-3871.
5083]=4392.7*1127/
[10120+-1499.90071*-3871.5083]=
4392.7*1127/
(10120+1499.90071*3871.5083)=4
392.7*1127/
(10120+5806878.047940893)=439
2.7*1127/5816998.047940893=495
0572.899999999/5816998.047940
893=0.8510528728389893

 511 4392.7*1127/
[(6532--3588)+-1499.90071*-3871.50
83]=

2824/2202-[8553-(156-4493)/
9780*4740]*8637=

2824/2202-
[8553--4337/9780*4740]*8637=28
24/2202-
(8553+4337/9780*4740)*8637=28
24/2202-
(8553+0.4434560327198364*474
0)*8637=2824/2202-
(8553+2101.9815950920245)*863
7=2824/2202-10654.98159509202
5*8637=1.2824699818346957-10
654.981595092025*8637=1.2824
699818346957-92027076.036809
82=-92027074.75433984

1360*5664+8698= 7703040+8698=7711738

Figure 14: Some cases generated by MathGLM on arithmetic tasks and math word problems.
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