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Abstract

We consider the problem of optimal planning in determinis-
tic domains and reduce it to the problem of finding an optimal
solution of a corresponding constraint optimization problem
incorporating a bound n on the maximum length of the plan.
By solving the latter, we can conclude whether (i) the plan
found is optimal even for bounds greater than n; or (ii) we
need to increase n; or (iii) it is useless to increase n since
the planning problem has no solution. Our approach (i) sub-
stantially generalizes previous approaches for optimal sym-
bolic deterministic planning; (ii) allows to compute non triv-
ial lower bounds on the cost and length of optimal plans; and
(iii) produces an encoding linear in the size of the planning
problem and the bound n.

1 Introduction
We consider the problem of optimal planning in determinis-
tic domains. Given a planning problem Π with costs C, We
assume (i) that Π is specified with 3 formulas in conjunctive
normal form (CNF) giving the initial state, valid transitions
and goal states, and (ii) that C associates a non negative real
number to every valid transition between two states. Our ob-
jective is to determine an optimal plan, i.e., a sequence of
actions leading from the initial state to a goal state with min-
imum associated total cost, defined as the sum of the costs
of the transitions induced by the actions in the plan.

In particular, we extend the planning as satisfiability ap-
proach (Kautz and Selman 1992) and reduce the problem of
finding an optimal plan for ⟨Π, C⟩ to the one of solving a
corresponding constraint optimization problem incorporat-
ing a bound n on the maximum length of the plan. The basic
idea is to construct an encoding ΠO

n of Π and CO
n of C such

that each valid plan π of Π with cost C(π)

• bijectively corresponds to a model πO
n of ΠO

n having cost
CO

n (πO
n ) = C(π), if π has at most n actions, and

• corresponds to a model πO
n of ΠO

n having cost
CO

n (πO
n ) ≤ C(π), if π has more than n actions.

Thus, if πO
n is an optimal model of ⟨ΠO

n , C
O
n ⟩ then

1. if πO
n corresponds to a plan π of Π with at most n actions,

then π is an optimal plan of Π, and
2. if πO

n does not correspond to a plan of Π with at most n
actions then we have to increase the bound n.

Moreover, if ΠO
n is unsatisfiable then Π does not admit a

valid plan and it is useless to increase the bound n.
Since we place no restriction on the CNF formula spec-

ifying the valid transitions, our work substantially general-
izes previous approaches for optimal symbolic deterministic
planning. In particular, this paper builds on and significantly
extends (Leofante et al. 2020) which is restricted to numeric
planning problems expressible in PDDL2.1 level 2 (Fox and
Long 2003). Despite being far more general than (Leofante
et al. 2020), (i) we provide non trivial lower bounds on the
cost of the optimal plans and on the length of valid plans,
and (ii) our encoding never exponentially blows up since it
is guaranteed to be linear in the size of Π and the bound n.

The paper is structured as follows. After the formal frame-
work, we focus on how to encode plans with length smaller
than or equal to the bound (section 3), and then we consider
plans longer than the bound (section 4). We put all the pieces
together in section 5, ending the paper in section 6 with some
final considerations, including related and future works.

2 Formal framework
We consider deterministic planning problems (i) that can be
described using finitely many state and action variables, and
(ii) whose initial state, valid transitions and goal states are
the models of quantifier free CNF formulas. Thus, our ap-
proach is completely general and captures many logic based
planning representation languages, like grounded PDDL 2.1
level 2 (Fox and Long 2003) and the action language C
(Giunchiglia and Lifschitz 1998) in the deterministic case.

For the language signature, we assume to have
1. a non empty finite set X of state variables, each variable

x ∈ X equipped with a domain dom(x) representing the
values the variable can assume,

2. a finite set A of Boolean action variables,
3. a copy X ′ of X of next state variables such that, for each

state variable x ∈ X , there is a corresponding variable
x′ ∈ X ′ with dom(x′) = dom(x).

An assignment to a set of variables V is a function mapping
each variable in V to an element of its domain. In the case
of Boolean variables, their domain is {⊤,⊥} for truth and
falsity, and we use v in place of v = ⊤. A state (resp. action,
resp. next state) is an assignment to the variables X (resp.
A, resp. X ′). States, actions and next states are denoted with



σ, σ0, . . ., α, α0, . . ., and σ′, σ′
0, . . . respectively. A transition

is an assignment to all the state, action and next state vari-
ables at hand. Besides variables, we assume to have other
possibly theory dependent symbols (like “0”, “+”, “≥”) and
auxiliary symbols (like “(” and “)”) that are used to define
atomic formulas, literals and well formed formulas. We take
for granted standard logic notions like satisfiability, entail-
ment, model, and the like. Unless explicitly specified, as-
signments are total. (Partial) actions are represented with the
set of action literals they satisfy.

A (deterministic) planning problem is a 5 tuple Π =
⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ where
1. I(X ) is the initial state formula in the state variables X ,

assumed to be satisfied by exactly one state;
2. T (X ,A,X ′) is the transition relation, i.e., a formula in

the X ,A,X ′ variables, whose models are the valid tran-
sitions. For each state σ and action α it is assumed that
there is at most one valid transition σ, α, σ′;

3. G(X ) is the goal formula in the state variables X , whose
models are the goal states.

Without loss of generality, we assume I(X ), T (X ,A,X ′)
and G(X ) to be in CNF, i.e, that each formula is a conjunc-
tion of clauses, where a clause is a disjunction of literals.

In the following, lx, lx1, . . . (resp. la, la1, . . ., resp.
lx′, lx′

1, . . .) denote state (resp. action, resp. next state) liter-
als, i.e., literals in the X (resp. A, resp. X ′) variables. When
convenient, we use also the symbol “→” for implication and
write clauses in T (X ,A,X ′) either as

p∧
i=1

lai →
q∨

i=1

lxi (1)

(p, q ≥ 0) to model that (
∨q

i=1 lxi) is an explicit precondi-
tion of the partial actions which satisfy (

∧p
i=1 lai), or as

p∧
i=1

lai ∧
q∧

i=1

lxi →
r∨

i=1

lx′
i (2)

(p, q ≥ 0, r ≥ 1), to model that (
∨r

i=1 lx
′
i) is an explicit

(conditional) effect of the partial action {la1, . . . , lap} with
the conditions in {lx1, . . . , lxq}.

Running Example Consider a domain SQUARE in
which a numeric variable var is initialized to a fixed value
VI ∈ R and should reach a fixed value VG ∈ R. The value of
var can be changed only in states with var ≥ 0, and in the
next state the value of var is automatically incremented by 1
unless it is squared. This domain can be formalized as the
planning problem Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩
where X = {var}, A = {square}, I(X ) = (var = VI),
G(X ) = (var = VG), and T (X ,A,X ′) is the formula

(¬square ∧ var ≥ 0 → var′ = var + 1)∧
(square → var ≥ 0) ∧ (square → var′ = var2)∧

(var < 0 → var′ = var).
(3)

Indeed, SQUARE has been formalized as above to make the
example simple yet illustrative for the theory below. □

Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a plan-
ning problem. Our next step is to define the valid plans of

Π. We mostly use the terminology of (Fox and Long 2003;
Haslum et al. 2019). If F (V) is a formula/function in the
V variables and µ is a partial assignment to V defined on
U ⊆ V , by F (µ) we mean the formula/function obtained by
substituting each variable v ∈ U with µ(v) in F (V).

An action α is executable in a state σ if there is a next
state σ′ satisfying T (σ, α,X ′), in which case the result of
executing α in σ is the state σ′′ such that, for each state vari-
able x, σ′′(x) = σ′(x′). A plan (of length k) is a sequence
of k ≥ 0 actions.

Consider a plan π = α0; . . . ;αk−1 (k ≥ 0). π is exe-
cutable if for each i ∈ [0, k − 1], αi is executable in σi,
where
1. σ0 is the state satisfying the initial state formula, and
2. σi+1 is the result of executing αi in σi.
If π is executable, the state σi (0 ≤ i ≤ k) as above defined
is the i-th state induced by π. The plan π is valid if it is
executable and the k-th induced state σk satisfies G(X ).

For the definition of optimal plan, we introduce a cost as-
sociated to each valid transition. By Cmin we denote a fixed
positive constant. A pair ⟨Π, C⟩ is a planning problem with
costs if C is a cost function such that for each valid transition
σ, α, σ′, (i) C(σ, α, σ′) ≥ Cmin whenever σ′(x′) ̸= σ(x)
for some state variable x, and (ii) C(σ, α, σ′) ≥ 0 other-
wise. If π is a valid plan, the cost C(π) of π is the sum of
the costs of each transition, i.e.,

C(π) =

k−1∑
i=0

C(σi, αi, σ
′
i+1)

where σi and σi+1 are the i-th and (i+ 1)-th states induced
by π and, for each x ∈ X , σ′

i+1(x
′) = σi+1(x). The plan

π is optimal if it is valid and there is no valid plan with a
smaller cost.

Running Example In SQUARE, we further assume that
the cost of each transition is the maximum between 1 and the
difference between the new and old values of var. Formally,

C(X ,A,X ′) = max(var′ − var, 1).

Then, if VI = 1 and VG = 9, the plans ξ =
{square}; {¬square}; {¬square}; {square}, and π =
{¬square}; {¬square}; {square}, are both valid, but only
π is optimal (since C(ξ) = 9 and C(π) = 8), and there exist
only two other optimal plans of length 7 and 8. □

As a consequence of the assumption that every valid tran-
sition to a different state has an associated cost greater than
or equal to Cmin > 0, we have the following fact.

Proposition 1 Let ⟨Π, C⟩ be a planning problem with costs.
If π is a valid plan of Π with cost C(π) then there exists an
optimal plan of length less than or equal to ⌊C(π)/Cmin⌋.

3 Plans shorter than or equal to the bound
Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem with costs C(X ,A,X ′), and let n ≥ 0 be a fixed
integer called bound or number of steps.

Following the planning as satisfiability approach (Kautz
and Selman 1992), we make n + 1 disjoint copies



X0, . . . ,Xn of the set X of state variables, and n copies
A0, . . . ,An−1 of the set A of action variables. Then, for
each i ∈ [0, n− 1], T (Xi,Ai,Xi+1) is the formula obtained
substituting each variable x ∈ X (resp. a ∈ A, x′ ∈ X ′)
with xi ∈ Xi (resp. ai ∈ Ai, xi+1 ∈ Xi+1) in T (X ,A,X ′),
and similarly for other formulas like I(X0), G(Xn) and
C(Xi,Ai,Xi+1).

Then, we define

ΠS
n = I(X0) ∧

∧n−1
i=0 T (Xi,Ai,Xi+1) ∧G(Xn),

CS
n =

∑n−1
i=0 C(Xi,Ai,Xi+1).

Notice that both ΠS
n and CS

n are in the variables
X0,A0, . . . ,Xn−1,An−1,Xn. ΠS

n and CS
n define a con-

straint optimization problem, whose optimal models are the
models of ΠS

n that have minimum associated cost CS
n .

Lemma 1 Let Π be a planning problem. Let π =
α0; . . . ;αn−1 be a plan of Π. There exists at most one model
πS
n of ΠS

n such that for each variable ai ∈ Ai (0 ≤ i < n),
πS
n (ai) = αi(a).

According to the lemma, for each plan π we have at
most one corresponding model πS

n of ΠS
n . Indeed, we have a

tighter correspondence between the valid plans of Π and the
models of ΠS

n and their respective costs.

Proposition 2 Let ⟨Π, C⟩ be a planning problem with costs.
Let π be a plan of length n. π is a valid plan of Π iff πS

n is a
model of ΠS

n , and C(π) = CS
n (π

S
n ).

Notice that ΠS
n and CS

n (π
S
n ) encode the validity and the

cost of plans of length exactly n. In order to consider also
plans with length smaller than the bound, the transition rela-
tion T (X ,A,X ′) may need to be modified in order to ensure
Π to be inertial, i.e., that for every state σ there exists an ac-
tion α whose execution in σ results in the same state σ with
cost 0. To deal with inertia, we

1. extend the action signature with the variable NoOp, and
2. define T I(X ,A ∪ {NoOp},X ′) to be

T I(X ,A ∪ {NoOp},X ′) = (¬NoOp → T (X ,A,X ′)∧∧
x∈X (NoOp → x′ = x)∧∧
a∈A(NoOp → ¬a).

Imposing in the definition above that all the action variables
a ∈ A have to be false whenever NoOp is true allows to es-
tablish a one-to-one correspondence between the valid plans
of Π of length k ≤ n and the models of

ΠI
n = I(X0)∧

∧n−1
i=0 T I(Xi,Ai ∪ {NoOpi},Xi+1)

∧
∧n−2

i=0 (NoOpi → NoOpi+1) ∧G(Xn).

The following lemma defines the assignment πI
n to the

variables in ΠI
n corresponding to a valid plan π of length

k ≤ n.

Lemma 2 Let Π be a planning problem. Let π =
α0; . . . ;αk−1 be a plan of Π of length k ≤ n. There ex-
ists at most one model πI

n of ΠI
n such that for each variable

ai ∈ Ai (0 ≤ i < k), πI
n(ai) = αi(a) and πI

n(NoOpk) =
. . . = πI

n(NoOpn−1) = ⊥.

If we define CI(X ,A∪ {NoOp},X ′) to be such that, for
each assignment σ, α, σ′ to X ,A,X ′,

CI(σ, α ∪ {NoOp = ⊥}, σ′) = C(σ, α, σ′),
CI(σ, α ∪ {NoOp = ⊤}, σ′) = 0,

then we have also that the cost C(π) of a plan π of length
k ≤ n is equal to CI

n(π
I
n), defined as:

CI
n =

n−1∑
i=0

CI(Xi,Ai ∪ {NoOpi},Xi+1).

Proposition 3 Let ⟨Π, C⟩ be a planning problem with costs.
Let π be a plan of length k ≤ n. π is a valid plan of Π iff πI

n
is a model of ΠI

n, and C(π) = CI
n(π

I
n).

Owing to proposition 3, we know that if a model πI
n of ΠI

n
is optimal (i.e., all the other models ρIn of ΠI

n are such that
CI

n(ρ
I
n) ≥ CI

n(π
I
n)), then there is no valid plan of Π with

length ≤ n and cost smaller than C(π).
Running Example Assume that VI = 1 and VG = 9 in

our ⟨Π, C⟩ formalization of the SQUARE domain. From the
previous example, we know that there is an optimal plan π,
plus two other, say ω and ρ, of length 3, 7 and 8, respectively.
Assuming n = 8, from the proposition we can conclude that
πI
n, ωI

n and ρIn are optimal models of ⟨ΠI
n, C

I
n⟩. On the other

hand, from the fact that πI
n, ωI

n and ρIn are optimal models
of ⟨ΠI

n, C
I
n⟩, the proposition does not allow us to conclude

that π, ω and ρ are optimal plans of ⟨Π, C⟩. □

4 Plans longer than the bound
Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem with costs C(X ,A,X ′), and let n ≥ 0 be a bound.
We build an abstract encoding ΠA

n such that for each valid
plan π of length k > n there is a corresponding model πA

n
of ΠA

n with cost CA
n (πA

n ) ≤ C(π).
Consider a plan π = α0; . . . ;αk−1 of length k > n and

let σn be the n-th state induced by π.
The definition of ΠA

n is based on an abstract version
TA(X ,BA,BX ,V) of the transition relation T (X ,A,X ′)
and an abstract version GA(X ,BX ,V) of the goal condition
G(X ), where

1. BX is a set containing one new Boolean abstract state
variable x for each variable x ∈ X : intuitively x is true
in πA

n if x is affected by some action αi (n ≤ i < k);
2. BA is a set containing one new Boolean abstract action

variable la for each action literal la (thus, |BA| = 2 ×
|A|): intuitively, la is true in πA

n if for some n ≤ i < k,
αi(la) = ⊤; and

3. V is a set of auxiliary Boolean variables necessary to
maintain polynomial the size of TA(X ,BA,BX ,V) and
of its CNF conversion, and allowing the computation of
non trivial lower bounds on the length and cost of π.

If π is valid, then πA
n will be a model of both

TA(X ,BA,BX ,V) and GA(X ,BX ,V).
Similarly to T (X ,A,X ′) (see eq. (1) and (2)),

TA(X ,BA,BX ,V) includes two types of clauses:



1. the abstract preconditions of each variable la ∈ BA, de-
fined on the basis of a subset P la of the preconditions
of the partial action {la} in T (X ,A,X ′) and defining
whether la can be set to true, and

2. the abstract effects affecting a variable x ∈ BX , defined
on the basis of a superset Ex of the states and actions
causing x ∈ X to change value (i.e., x ̸= x′) and defining
whether x has to be set to true given the BA variables set
to true in the previous step.

Given that the abstract preconditions and effects involve the
variables in the same set BA,BX , “loops” between the ab-
stract preconditions and effects are possible. Such loops, if
not ruled out, cause unwanted models, i.e., models not corre-
sponding to plans executable starting from σn, the n-th state
induced by π. In order to rule out such models, taking in-
spiration from (Janhunen 2004; Niemelä 2008), we impose
a level ordering on BA,BX ensuring that the first actions
in BA set to true have their abstract preconditions satisfied
by σn, and each variable in BX is not used to enable an ab-
stract action in BA unless it has been previously set to true
by some other abstract action in a lower level. This is ob-
tained by introducing level ordering constraints associating
a level in [0, |X |+1] to the following level ordering variables
in V:

1. λla for each abstract action la ∈ BA,
2. λx for each abstract state variable x ∈ BX ,
3. λp for each precondition p∈P la of a partial action {la},
4. λe for each conjunction e ∈ Ex whose truth affects the

value of x in the resulting state,
5. λlx for each state literal lx in a conjunction e ∈ Ex.

As part of V , we also have one Boolean variable e for each
conjunction e ∈ Ex and one additional Boolean variable lx
for each state literal lx in a conjunction e ∈ Ex.

Consider an action literal la. The set of abstract precon-
ditions of la are computed on the basis of a subset P la of
the preconditions of la. A disjunction p of state literals is a
precondition of an action literal la if T (X ,A,X ′) and the
falsity of p entails the falsity of la (i.e., if (T (X ,A,X ′) ∧
¬p ∧ la) is unsatisfiable). Formally, the conjunction of the
preconditions of la is equivalent to

∃A∃X ′(la ∧ T (X ,A,X ′)). (4)

Running Example The preconditions of square co-
incide with its explicit precondition (var ≥ 0), while
¬square has no preconditions, corresponding to the formula
⊤. Indeed, in this case, the explicit preconditions of square
and ¬square are equivalent to the formula (4). However,
such equivalence in general does not hold since there can
be also other implicit preconditions. For instance, if we add
the clause (var′ > var) to (3), the precondition of square
becomes (var > 1), which indeed entails its explicit pre-
condition. □
Computing the preconditions of la requires that the the-
ory behind the planning problem admits a quantifier elim-
ination procedure, but the existence of a quantifier free
formula equivalent to (4) is in general undecidable since

T (X ,A,X ′) can be an arbitrary Diophantine equation in
X ′ (see (Helmert 2002)). However, there are cases in which
such quantifier elimination is possible, though computation-
ally expensive, e.g., using Fourier–Motzkin procedure, as-
suming variables are either Boolean or range over the reals,
and that in T (X ,A,X ′) there are only Boolean variables
and linear inequalities. Furthermore, in many cases all pre-
conditions are explicit in T (X ,A,X ′), e.g., for PDDL en-
coded problems. Finally, in all cases — since we wish to
compute a superset of the set of actions literals la which
have their precondition satisfied — we do not need all the
preconditions of la, and we can just consider the explicit
ones in T (X ,A,X ′).

Given the last point, consider a subset P la of the precon-
ditions of la, which contains at least the explicit precon-
ditions of {la} in T (X ,A,X ′) and thus also the clauses
in T (X ,A,X ′) without action and next state variables.
Formally, let P la be a set of disjunctions of state lit-
erals, each entailed by (4). Then, for each precondition
p = (

∨q
i=1 lxi) ∈ P la (q ≥ 0) in the state variables

{x1, . . . , xm} ⊆ X , TA(X ,BA,BX ,V) includes the clause

la → p ∨
m∨
i=1

xi.

The above clause models the fact that we consider the ab-
stract precondition corresponding to p satisfied, if p is either
satisfied by σn or if one of its state variables has been af-
fected by an abstract action at a lower level. For the level
ordering constraint, we impose that the level λp associated
to p is 0 if p is satisfied by σn, and is the minimum of the
levels associated to x1, . . . , xm and |X |+ 1 otherwise:∨q

i=1 lxi → λp = 0,∧q
i=1 ¬lxi → λp = min(λx1

, . . . , λxm
, |X |+ 1).

Then, the level λla associated to la ∈ BA is the maximum
of the levels associated to all the preconditions in P la and 0,
and la can be set to true only if its level is not |X |+ 1:

λla = max(λp : p ∈ P la, 0), la → λla ̸= |X |+ 1. (5)

Now we consider the problem of computing the abstract
effects, determining when an abstract state variable x ∈ BX
can be set to true. Consider a state variable x. Our goal is
to set x to true when there is a state and an action which
cause x to change value in the resulting state. Such states
and actions are those that satisfy

∃X ′(x′ ̸= x ∧ T (X ,A,X ′)). (6)

As for the preconditions of an action literal, computing a
quantifier free formula equivalent to the above may not be
possible. However, we need to find a superset of the set of
next state variables x′ which change value, and we can con-
sider a superset of the desired states and actions. Thus, we
can take Ex to be the set of the antecedents of the explicit
effects (2) in T (X ,A,X ′) such that

1. x′ occurs in a next state literal lx′
i (1 ≤ i ≤ r), and



2. (
∧q

j=1 lxj ∧ lx′
i) does not entail x′ = x.1

Consider a set Ex of conjunctions of state and action lit-
erals such that if x changes value in the resulting state then
at least one of the conjunctions in Ex is satisfied. Let Ex be
a set of conjunctions of state and action literals such that
the disjunction of the conjunctions in Ex is entailed by (6).
Then, TA(X ,BA,BX ,V) includes the following clauses:

1. for each conjunction e =
∧p

i=1 lai ∧
∧q

i=1 lxi ∈ Ex

(p, q ≥ 0), the clauses corresponding (i) to
lxi ↔ lxi ∨

∨m
j=1 xj ,

for each state literal lxi (1 ≤ i ≤ q) in e in the state
variables {x1, . . . , xm} ⊆ X , and (ii) to

e ↔
∧p

i=1 lai ∧
∧q

i=1 lxi,

all clauses modeling the fact that we consider e to be sat-
isfied when the abstract version of the actions and condi-
tions in e are satisfied; and

2. the clauses saying that x is true iff one of abstract formu-
las in Ex is satisfied, equivalent to:

x ↔
∨

e∈Ex

e.

For the level ordering constraint, we impose that

1. for each conjunction e =
∧p

i=1 lai ∧
∧q

i=1 lxi ∈ Ex

(p, q ≥ 0), (i) that the level λlxi
(1 ≤ i ≤ q) associated

to the state literal lxi in the state variables x1, . . . , xm

(m ≥ 0) is 0 if lxi is satisfied in σn, and is the min-
imum of the levels associated to the abstract state vari-
ables {x1, . . . , xm} and |X |+ 1 otherwise:

lxi → λlxi = 0,
¬lxi → λlxi = min(λx1 , . . . , λxm , |X |+ 1),

and (ii) that the level λe of e is the maximum of the levels
of the conditions and action literals in e and 0:

λe = max(λla1
, . . . , λlap

, λlx1
, . . . , λlxq

, 0),

2. that the level λx of x ∈ BX is 1 plus the minimum of
the levels associated to each effect e ∈ Ex and |X |, and
x can be set to true only if its level is not |X |+ 1:

λx = min(λe : e ∈ Ex, |X |) + 1,
x → λx ̸= |X |+ 1.

(7)

TA(X ,BA,BX ,V) is the conjunction of the clauses as-
sociated to P la and Ex, for each action literal la and state
variable x.

Running Example Let Psquare = {var ≥ 0} and
P¬square = ∅, corresponding to the explicit precondi-
tions of {square} and {¬square} respectively. Let Evar =
{(¬square ∧ var ≥ 0), square}, corresponding to the first
and third clauses in (3). Then, from TA(X ,BA,BX ,V), it
follows that (|X | = 1)

1Such condition can be easily checked when (i) lx′ is x′ = x
or x = x′ or there is a conjunct lxi (0 < i ≤ q) equal to x = v
and lx′ is x′ = v (as it is the case in the explanatory and classical
frame axioms of classical Boolean planning problems).

1. if (var ≥ 0) is false then, given (5) and (7), ¬square
can be set to true but square and var are necessarily
false since λsquare = λvar = 2, λ¬square = 0,

2. if (var ≥ 0) is true then square, ¬square and var can
be set to true since λsquare = λ¬square = 0, λvar = 1.

□
Now we consider the definition of GA(X ,BX ,V), the ab-

stract version of the goal formula G(X ). Consider the goal
formula G(X ) =

∧s
i=1

∨si
j=1 lxij . GA(X ,BX ,V) is the

CNF formula consisting of
1. for each clause ci =

∨si
j=1 lxij in the state variables

x1, . . . , xm (m ≥ 0), the clauses corresponding to

ci ∨
∨m

j=1 xj ,
∨si

j=1 lxij → λci = 0,∧si
j=1 ¬lxij → λci = min(λx1 , . . . , λxm , |X |+ 1),

where λci is a new level ordering variable in V , and
2. the clause (λG is the last new variable in V we introduce)

λG = max(λc1 , . . . , λcs , 0).

The definition of the level ordering λG associated to the
goal formula allows us to define (i) a lower bound λG on the
number of steps necessary, starting from the n-th induced
state σn, to reach a goal state, and (ii) a lower bound

CG
n = λG × Cmin

of the cost to reach a goal state starting from σn.
We can state the desired correspondence between the plan

π with cost C(π) and a model πA
n of ΠA

n with cost CA
n (πA

n ).
ΠA

n and CA
n are defined below, while πA

n will be character-
ized with a lemma as we did for πI

n in Section 3.

ΠA
n = I(X0)∧

∧n−1
i=0 T (Xi,Ai,Xi+1)

∧TA(Xn,BA,BX ,V) ∧GA(Xn,BX ,V),
CA

n = CS
n + CG

n .

Lemma 3 Let Π be a planning problem. Let π =
α0; . . . ;αk−1 be a plan of Π of length k > n. There exists
at most one model πA

n of ΠA
n such that

1. for each variable ai ∈ Ai (0 ≤ i < n), πA
n (ai) = αi(a),

2. for each action literal la, πA
n (la) = ⊤ iff there exists an

action αi with i ∈ [n, k − 1] and αi(la) = ⊤.

Proposition 4 Let ⟨Π, C⟩ be a planning problem with costs.
Let G be the goal formula in Π. Let π be a valid plan of
length k > n ≥ 0. Then, πA

n is a model of ΠA
n , C(π) ≥

CA
n (πA

n ), and k ≥ n+ πA
n (λG).

Running Example GA(X ,BX ,V) simplifies to

(var = VG ∨ var) ∧ (var = VG → λG = 0)∧
(var ̸= VG → λG = λvar).

Assuming that VG > VI ≥ 0, then, for n = 0, for any
model πA

n of ΠA
n , πA

n (λG) = 1 = |X |, meaning that, for
n = 0, we can conclude that the length of each valid plan
has 1 as lower bound. This is because, for every n, if ΠA

n
is satisfiable then it is always the case that λG ≤ |X |, and
we have |X | = 1. If we consider the planning problem with



m Boolean state variables X = {v1, . . . , vm} and no action
variables, assuming that I(X ) =

∧m
i=1 ¬vi, G(X ) = vm

and that the transition relation is a CNF formula equivalent
to

v′1 ∧
∧m−1

i=1 (vi → v′i+1) ∧
∧m−1

i=1 (¬vi → v′i+1 ↔ vi+1)

then valid plans (consisting of sequences of empty actions)
have length ≥ m and, for n = 0, λG = |X |. □

5 Optimal planning as Constraint
Optimization

Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem with costs C(X ,A,X ′), and let n ≥ 0 be a bound.
We combine the results in Sections 3, 4 and define a con-
straint optimization problem ⟨ΠO

n , C
O
n ⟩ allowing to deter-

mine (i) an optimal plan of length k ≤ n, or (ii) the non ex-
istence of a valid plan, or (iii) whether the bound n needs to
be increased. These statements are consequences of the The-
orem below, based on the following definition of ⟨ΠO

n , C
O
n ⟩:

ΠO
n = I(X0)∧

∧n−1
i=0 T I(Xi, Ai ∪ {NoOpi},Xi+1)

∧
∧n−2

i=0 (NoOpi → NoOpi+1)
∧TA(Xn,BA,BX ,V) ∧GA(Xn,BX ,V)
∧(NoOpn−1 → λG = 0)
∧
∧

la∈BA(λG = 0 → ¬la),
CO

n = CI
n + CG

n .

Lemma 4 Let Π be a planning problem. Let π =
α0; . . . ;αk−1 be a plan of Π. There exists at most one model
πO
n of ΠO

n such that, if m = min(k, n),
1. for each variable ai ∈ Ai (0 ≤ i < m), πO

n (ai) = αi(a)
and πO

n (NoOpm) = . . . = πO
n (NoOpn−1) = ⊥,

2. for each action literal la, πO
n (la) = ⊤ iff there exists an

action αi with i ∈ [m, k − 1] and αi(la) = ⊤.

Theorem 1 Let ⟨Π, C⟩ be a planning problem with costs.
1. A plan π of length k is optimal iff there exists a bound

n ≥ k such such that πO
n is an optimal model of

⟨ΠO
n , C

O
n ⟩ and πO

n (λG) = 0.
2. For a bound n ≥ 0, if πO

n is an optimal model of
⟨ΠO

n , C
O
n ⟩ and πO

n (λG) = 0, then for every m ≥ n, πO
m

is an optimal model of ⟨ΠO
m, CO

m⟩ and πO
m(λG) = 0.

3. For a bound n ≥ 0, if ΠO
n is unsatisfiable then for every

m ≥ n, ΠO
m is unsatisfiable and Π has no valid plans.

4. For a bound n ≥ 0, if πO
n is an optimal model of

⟨ΠO
n , C

O
n ⟩ then any valid plan of Π has cost greater than

or equal to CO
n (πO

n ).
5. For a bound n ≥ 0, if πO

n is an optimal model of
⟨ΠO

n , C
G
n ⟩ and πO

n (λG) ̸= 0 then any valid plan of Π
has length greater than or equal to (n+ πO

n (λG)).
6. The size of ΠO

n is O([Π]× n), where [Π] is the size of Π.

Given Proposition 1, the Theorem guarantees that, assum-
ing the existence of a valid plan for Π, we are able to deter-
mine an optimal plan by repeatedly solving the constraint
optimization problem ⟨ΠO

n , C
O
n ⟩ for increasing n, till an op-

timal model πO
n is found with πO

n (λG) = 0. The second
and third statements imply that we do not need to incre-
ment the bound in unitary steps: indeed, we can fix the new

bound according to some policy (see, e.g., (Rintanen, Hel-
janko, and Niemelä 2006; Rintanen 2012)). The fourth and
fifth statements provide the lower bounds on the cost and
length of valid plans. Notice that if πO

n is an optimal model
of ⟨ΠO

n , C
O
n ⟩ and πO

n (λG) ̸= 0, we can conclude neither
the existence of a valid plan nor that valid plans have length
≥ n+ πO

n (λG). Indeed, the latter holds (fifth statement) as-
suming that the cost function of the optimization problem is
fixed to CG

n (and not to CO
n = (CI

n +CG
n )). Finally, the last

statement ensures that our encoding is linear in the size of Π
and n.

Running Example If VI < 0 and VG ̸= VI then, for
any n ≥ 0, ΠO

n is unsatisfiable and indeed Π does not have
valid plans. If VI = 1 and VG = 9 there are three optimal
plans of length 3, 7 and 8; and (i) for n ≤ 6, ΠO

n has one
optimal model with cost (n − 1) and satisfying λG = 1;
(ii) for n = 7, ΠO

n has 3 optimal models with cost 8 but
only two of them satisfy λG = 0; and (iii) for n ≥ 8, there
are 3 optimal models and all of them satisfy λG = 0. If we
extend the transition relation (3) with the constraint (var <
9) and VI = 1 and VG = 10, then ΠO

n admits one optimal
model satisfying λG = 1 for n ≤ 8, while for n ≥ 9, ΠO

n is
unsatisfiable, proving that Π has no valid plan. □

As the above example makes clear, it is possible to have
(i) a bound n greater than the length of an optimal plan π
and πO

n is not an optimal model of ⟨ΠO
n , C

O
n ⟩; (ii) a bound n

for which we have various optimal models of ⟨ΠO
n , C

O
n ⟩ but

only some of them correspond to optimal plans; and (iii) a
bound n after which for every optimal plan π, πO

n is an opti-
mal model of ⟨ΠO

n , C
O
n ⟩. It is also possible that the optimiza-

tion problem ⟨ΠO
n , C

O
n ⟩ becomes unsatisfiable for bounds

greater than a certain value.

6 Conclusions, related and future work
We have shown how to reduce an optimal planning problem
in deterministic domains with finitely many variables to a
constraint optimization one. We have considered the prob-
lem in its full generality, making no other assumption about
the domain. Our results are thus applicable to planning prob-
lems specified, e.g., in various versions of the PDDL lan-
guage (in particular, in subsets of PDDL 2.1, 2.2, 3.1) and
in the action language C when the domain is deterministic.
We are not aware of comparable approaches as general as
ours. Previous attempts to find solutions for optimal plan-
ning problems include (Robinson et al. 2010), where partial
weighted MaxSAT is proposed as a backed to solve spe-
cific kinds of optimal planning problems. More recently,
in (Davies et al. 2016) a mixed-integer programming en-
coding of a perfect heuristic is developed, landing on an in-
cremental Boolean satisfiability encoding, while our results
can be applied to back-ends dealing with decidable first or-
der theories, e.g., satisfiability modulo theories. As for lower
bounds, some results related to ours can be found in (Haslum
2012) presenting incremental lower bounds, but limited to
additive cost planning problems, and (Haslum 2013) dis-
cussing optimal planning with conditional effects using a
mechanism of relaxation similar to ours. Finally, some work
closely related to ours can be found also in (Abdulaziz 2021)
where upper bounds on the length of cost optimal plans that



are valid for problems with 0-cost actions are investigated.
More in general, there are many papers focusing on optimal
planning and/or showing how to translate planning prob-
lems in logic-based formalisms (see, e.g., (Ghallab, Nau,
and Traverso 2004) for an overview). As mentioned, our
work generalizes (Leofante et al. 2020) which considers nu-
meric problems specified in PDDL 2.1 level 2. If we do not
take into account the optimizations introduced by (Leofante
et al. 2020) that are possible because of the restricted lan-
guage used, the substantial difference is in the encoding of
plans longer than the bound. In particular, to eliminate the
unwanted models caused by loops between preconditions
and effects, we use level order formulas based on (Janhunen
2004; Niemelä 2008), while Leofante et al. use loop formu-
las based on (Lin and Zhao 2002). However, with loop for-
mulas (i) the size of the encoding may exponentially blow
up (Lifschitz and Razborov 2006), and (ii) it is not possible
to compute non trivial lower bounds of the length of valid
plans and of their cost.

The primary extension of this work is to assess whether
the proposed theory and/or a generalization/specialization
scales in practice, also compared to other approaches. The
results in (Leofante et al. 2020), but also in (Piacentini et al.
2018) for numeric problems, are encouraging even for se-
quential planning problems in which, in every action, at
most one variable is true. Indeed, in the non sequential case,
planners based on search have to evaluate 2|A| possible ac-
tions in every state, making symbolic approaches like ours
very appealing.
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