
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NONE TO OPTIMA IN FEW SHOTS: BAYESIAN OPTI-
MIZATION WITH MDP PRIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization (BO) is an efficient tool for optimizing black-box func-
tions, but its theoretical guarantees typically hold in the asymptotic regime. In
many critical real-world applications such as drug discovery or materials de-
sign, where each evaluation can be very costly and time-consuming, BO becomes
impractical for many evaluations. In this paper, we introduce the Procedure-
inFormed BO (ProfBO) algorithm, which solves black-box optimization with re-
markably few function evaluations. At the heart of our algorithmic design are
Markov Decision Process (MDP) priors that model optimization trajectories from
related source tasks, thereby capturing procedural knowledge on efficient opti-
mization. We embed these MDP priors into a prior-fitted neural network and em-
ploy model-agnostic meta-learning for fast adaptation to new target tasks. Exper-
iments on real-world Covid and Cancer benchmarks and hyperparameter tuning
tasks demonstrate that ProfBO consistently outperforms state-of-the-art methods
by achieving high-quality solutions with significantly fewer evaluations, making
it ready for practical deployment.

1 INTRODUCTION

Bayesian Optimization (BO) is an efficient machine learning–based approach for solving global
optimization problems of black-box functions where the objective functions can be highly non-
convex, and the functional form or derivative is not necessarily available. Owing to its ability to
optimize black-box functions, BO is particularly suited for and has been applied in many critical
real-world applications such as hyperparameter optimization (Snoek et al., 2012; Wu et al., 2020),
neural architecture search (Kandasamy et al., 2018; Zhou et al., 2019), drug discovery (Pyzer-Knapp,
2018; Shields et al., 2021), and materials design (Khatamsaz et al., 2023; Tian et al., 2025).

In BO settings, the objective function can only be accessed by sequential, expensive and time-
consuming evaluations. At each iteration all previous evaluations guide the selection process for
the next query of the objective function. To study the data efficiency of BO, numerous theoreti-
cal studies focused on establishing asymptotic regret bounds (Srinivas et al., 2012; Chowdhury &
Gopalan, 2017), such as cumulative regrets and simple regrets. However, asymptotic efficiency of-
ten proves impractical in real-world experimental design scenarios, primarily due to the high cost
and long turnarounds of each function evaluation. In penicillin manufacturing, for example, the
pharmaceutical goal is to identify the optimal experimental control parameters (e.g., temperature,
humidity, biomass concentration) that maximize yield. Unfortunately, each evaluation via the wet
labs can take days or weeks and incur substantial costs, severely limiting the number of feasible
evaluations per year. Notably, Liang & Lai (2021) reported that even state-of-the-art BO algorithms
require around 1,000 iterations to converge in a penicillin production simulator, equivalent to nearly
20 years if each evaluation takes one week. Also, Aldewachi et al. (2021) reported that developing
a new drug cost approximately $1.3 billion USD on average in 2018, while a failed Alzheimer’s
disease drug development program could take up to 5 years and cost as much as $2.5 billion.

Therefore, to significantly accelerate the scientific discovery processes mentioned above, an urgent
and important question is:

Can we design a BO algorithm that is able to find the global optimum within very
few shots, e.g., fewer than 90 evaluations?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

y

Surrogate Comparison

GP
ProfBO (Our Model)

FSBO
True Objective

Observations

Figure 1: Comparison of function pre-
dictions with only 3 observation points.
PROFBO models the true objective func-
tion curve significantly better than GP model
and FSBO algorithm (Wistuba & Grabocka,
2021).

In this paper, we answer this question affirmatively
by proposing a few-shot BO method, the Procedure-
informed Bayesian Optimization (PROFBO). How
does PROFBO address the problem above that ini-
tially seems impossible? The key insight behind
PROFBO is that, although the target task permits
only a few evaluations, related source tasks of-
ten have existing evaluations that can serve as rich
sources of prior information. Leveraging these ex-
isting evaluations enables us to both design and ac-
celerate a BO algorithm for the target task. In prac-
tice, these related source tasks can be the docking
scores of a set of molecules evaluated on different
receptors (Liu et al., 2023), or evaluations of the
same supervised-learning loss function on different
datasets (Pineda-Arango et al., 2021).

The most straightforward way to exploit such source
information is to directly predict the shape of the
target objective function, as studied in Wistuba &
Grabocka (2021); Falkner et al. (2018); Wang et al.
(2024). In this paper, however, we propose a frame-
work that optimizes the target objective function by
leveraging optimization trajectories of related source tasks in principled Bayesian perspective.
Specifically, we use Markov Decision Process (MDP) (Bellman, 1958) priors to model source op-
timization trajectories, thereby capturing procedural knowledge on efficient optimization. We then
embed these MDP priors into a Prior-Fitted Neural Network (PFN) (Müller et al., 2022) and em-
ploy Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) for fast adaptation to new target
tasks. The whole PROFBO framework works efficiently even with very few evaluations. See Figure
1 for an example showing that with only 3 evaluations, our PROFBO framework models the true
objective function significantly better than the standard Gaussian Process (GP) model and the FSBO
algorithm (Wistuba & Grabocka, 2021) .

Contributions. Our contributions are summarized as follows:

1. With very few shots, our PROFBO framework can accurately and efficiently identify global
optima of black-box functions. Its modular design allows easy adaptation to various con-
figurations and input types by retraining the MDP priors part only. Both make PROFBO
highly practical for a wide range of scientific and engineering applications.

2. While optimization trajectory information from source tasks is needed, the Bayesian frame-
work underlying PROFBO eliminates all manual steps in prior design and posterior infer-
ence via the universal PFN inference.

3. The core design of the PROFBO algorithm lies in its use of MDP priors, which model
optimization trajectories from source tasks, thereby capturing procedural knowledge of
efficient optimization. These MDP priors are then embedded into a PFN, and MAML is
employed for rapid adaptation to new target tasks.

4. We establish new real-world Covid and Cancer benchmarks for few-shot BO problems and
show that PROFBO achieves better performances than all existing state-of-the-art baselines.

2 RELATED WORKS

Few-Shot Bayesian Optimization. In few-shot BO, people often leverage the knowledge in the
evaluations of related tasks to improve the performance of BO. One common approach is meta-
surrogate design, whose goal is to transfer-learn a BO surrogate that captures the shared features of
multiple tasks’ response surfaces. The meta-surrogates can be synthesized from surrogates of related
tasks. Falkner et al. (2018); Schilling (2016); Wistuba et al. (2016) used an ensemble surrogate with
weights based on metrics like task similarity or model uncertainty from related task evaluations.
Meta-prior design also induces the corresponding meta-surrogate, where knowledge from related

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tasks is transferred to the prior distribution of the target task. Swersky et al. (2013); Poloczek et al.
(2016); Yogatama & Mann (2014); Law et al. (2019); Tighineanu et al. (2022); Wistuba & Grabocka
(2021) proposed to design novel kernels for GP functional priors. Wang et al. (2024) proposed to
obtain a target task prior by minimizing the KL divergence between it and its related tasks. Perrone
et al. (2018) designed a linear function prior for the target objective whose feature is processed by a
meta-trained neural network, and the inference is facilitated by Bayesian linear regression. However,
most existing work relies on manually designed ensemble weights or tractable priors, and meta-
learns only the response surface, while our approach eliminates those manual designs through the
universal PFN inference, and introduces a trajectory surrogate that captures procedural information.

Acquisition function design is another important approach of few-shot BO, which also employs
ensemble methods (Wistuba et al., 2017), similar to the surrogate design. Some work reframed BO
as sequence modeling or Reinforcement Learning (RL). According to Bai et al. (2023), search space
and initialization design (Wistuba et al., 2015a; Perrone et al., 2019; Li et al., 2022; Feurer et al.,
2015; Wistuba et al., 2015b) also provide important information for few-shot BO, and their methods
primarily leverage source-domain information to provide a warm start for the target task or narrow
down the search space, which is far from the techniques used in our work.

Meta-Optimization with Sequence Modeling. An emerging trend in leveraging meta-data in op-
timization is to frame optimization as a generic sequential decision process, thus the knowledge
transfer is not limited to BO components. Those methods have demonstrated state-of-the-art re-
sults in various hyperparameter optimization and drug discovery problems. The meta-acquisition
learning method (Volpp et al., 2020; Hsieh et al., 2021) reframes BO (or optimization) as a MDP.
Optimization trajectories are generated during their own training processes. They meta-train a RL
agent on evaluations of related tasks and conduct optimization on target tasks. Iwata (2021); Mar-
aval et al. (2023) trained the acquisition function and surrogate model end-to-end, defining the state
space solely as historical evaluations, which is consistent with this work. Unlike these approaches,
we employ a lightweight RL agent to extract procedural experience, and generate optimization tra-
jectories separately from the training process. And our agent is not used to optimize the target tasks,
but serves as the prior distribution of the optimization trajectory.

The Transformer (Vaswani et al., 2017) architecture excels in sequence prediction and in-context
learning. The Transformer Neural Process (Nguyen & Grover, 2022)-based models have shown
strong performance to conduct meta-learning for complicated priors, demonstrating high potential
for many BO tasks. Prior-fitted Neural Networks (PFNs) excel among these methods, demonstrating
both the flexibility to integrate user priors (Müller et al., 2023) and the ability to efficiently perform
in-context freeze–thaw BO (Rakotoarison et al., 2024). Ramos et al. (2023); Liu et al. (2024) lever-
aged the knowledge in Large Language Models (LLMs) to conduct in-context learning. Chen et al.
(2022); Nguyen et al. (2024) framed optimization as a sequence prediction task, using LLMs to
jointly predict the next query and response, leveraging evaluations of other optimization algorithms.
Our approach also uses Transformer to facilitate in-context learning, but adopts a modular design
that allows easy adaptation by retraining only the MDP priors for various configurations and input
types.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Let [n] denote the set {1, · · · , n}, n ∈ N+. We consider the target problem of finding the global
optimum of a black-box function f : X → R:

x∗ = argmax
x∈X

f(x), (1)

where X ⊆ Rd is the function domain and d is the input dimension. f is said to be a black-box
function because its closed-form expression or the derivative is not necessarily known, and it can
be a non-linear non-convex function. We learn from f only through sequential noisy evaluations.
Throughout T iterations, at each iteration t ∈ [T ], its evaluation is given by yt = f(xt) + ζt where
ζt is the noise. Our goal is to solve this problem within a few shots, e.g., T ≤ 20.

Given the limited information gained from each evaluation, we assume access to historical source
knowledge that can accelerate the target optimization process, enabling completion within only a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

few evaluations. Formally, historical knowledge can be D(i) = {x(i)
τ , y

(i)
τ }ni

τ=1,∀i ∈ [N ] generated
by N source black-box functions f (1), · · · , f (N) : X → R where ni denotes the evaluation length
of f (i). Additionally, we define p(T (i)) as the process of sampling from f (i), which can also be
comprehended as the distribution of optimization trajectories of f (i) under some policy. p(·) or
p(·|·) denotes a (conditional) probability density function or its corresponding distribution. If p is a
distribution of a function f : X → R, it will specify the distribution of f(x) with probability density
function p(·|x) where x ∈ X .

3.2 BACKGROUND

Bayesian Optimization (BO). To solve eqn. (1), BO usually assumes f is drawn from a functional
prior, e.g., a GP prior. At iteration t, conditioning on historical evaluations Dt−1 = {xτ , yτ}t−1

τ=1,
we denote the posterior predictive distribution as p(·|x,Dt−1). Then the next query xt is chosen
by xt = argmaxx∈X αt(x) where αt is the acquisition function built on p(·|x,Dt−1). Upper
Confidence Bound (UCB) (Srinivas et al., 2012), Expected Improvement (EI) (Jones et al., 1998),
Thompson sampling (Thompson, 1933), and knowledge gradient (Frazier et al., 2008) are commonly
used as acquisition functions in practice.

Prior-Fitted Neural Networks (PFNs). The motivation of applying PFNs (Müller et al., 2022)
in BO is to leverage the meta-trained Transformer architecture to perform principled Bayesian in-
ference in a single forward pass, enabling superior few-shot learning and accurate predictions with
interpretable uncertainty quantification. It outperforms traditional GP (see Figure 1), offering greater
flexibility in the choice of prior and faster inference by avoiding the matrix inversion in GP posterior
inference, thereby enabling our proposed MDP priors (Section 4.2). Given any observation set D
and an inference location x ∈ X , the PFN qθ(·|x,D) approximates p(·|x,D) through a bar distri-
bution. In practice, we evaluate a sequence of queries {xi}mi=1 in parallel. Figure 2 illustrates the
forward pass and attention mask with three contextual observations and two inference locations. Our
settings of PFN’s regression head and network structure are shown in Appendix A.1.

Markov Decision Process (MDP). An MDP (Sutton & Barto, 2018) is typically defined as a 5-
tuple M = {S,A,P,R, γ} where S is the state space, A is the action space, P is the transition
probability space and p(st+1|st, at) ∈ P is the transition probability from state st ∈ S to state
st+1 ∈ S if the agent takes action at ∈ A at time t, R ⊆ R is the reward space and rt(st, at) ∈ R
is the reward of taking action at at state st, and γ ∈ (0, 1] is a discount factor. A classical RL
problem is to train an agent by finding the optimal policy π∗ that maximizes the expected cumulative
discounted reward π∗ = argmaxπ E

[∑∞
t=1 γ

t−1rt
]

where the expectation is taken w.r.t. MDP.

Model-Agnostic Meta-Learning (MAML). MAML (Finn et al., 2017) is a gradient-based meta-
learning framework designed to train a model Mθ that can rapidly adapt across a collection of tasks
{T (i)}Ni=1. Each task T (i) specifies a loss L(i)(θ). The meta-objective minimizes the meta loss
defined as Lmeta(θ) :=

∑N
i=1 L

(i)(θ − β · ∂θL(i)(θ)) where β is an inner step size. By descending
with respect to the meta loss, the model learns the common internal representation across N tasks.

4 THE PROFBO ALGORITHM

In this section, we show details of our PROFBO algorithm, a Bayesian framework that can find
high-quality solutions to the black-box function optimization problem within very few shots where
T can be fewer than 90. The key design of PROFBO lies in how it can efficiently transfer the
knowledge from historical optimization trajectories obtained from related source tasks to accelerate
its optimization process in target task. The core procedure is summarized in Figure 2.

The PROFBO framework is grounded in a principled Bayesian perspective on optimization trajecto-
ries. Under the GP assumption in standard BO, at iteration t, all queries in Dt−1 are treated as being
exchangable, ignoring the fact that Dt−1 is temporal-correlated, since it was generated from a BO
procedure. To fully make use of this information to accelerate the BO process in the target task, we
aim to construct a new surrogate model that replaces GP with a set of optimization trajectory priors,
p(T (i)),∀i ∈ [N ] (Figure 2 right, Section 4.2). To facilitate posterior inference under such a prior,
we introduce the PFN model qθ(·|x,Dt−1) as a proxy for p(·|x,Dt−1) (Figure 2 left-top, Section
4.1). By leveraging observations from the source tasks {D(i)}Ni=1, MAML enables the PFN model

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MAML
Positional Encoding

neural network
forward pass

D
Q

N
 Learning

maximize acquisition 

update context 

non-informative
prior

MDP prior training of MDP prior

meta-datasets

Section 4.2
Se

ct
io

n 
4.

1
Se

ct
io

n 
4.

3

Figure 2: Overview of our PROFBO framework. [Left] The BO loop: a PFN (Müller et al., 2022)
model pre-trained with a non-informative prior (e.g., GP) and fine-tuned with MDP priors from
source tasks. Fine-tuning uses positional encoding and MAML (Finn et al., 2017) for better knowl-
edge transfer. The PFN performs posterior inference on context D via Transformer attention, with
outputs interpreted as logits of a bar distribution. [Right] MDP prior training: for each meta-dataset
D(i), a Deep Q-Network (DQN) (Mnih et al., 2013) policy generates optimization trajectories of the
corresponding objectives. Right flowchart is attributed to Figure 1 in Volpp et al. (2020).

to rapidly adapt to the unknown trajectory of the target task f , while preventing it from learning
spurious temporal correlations (Figure 2 left-bottom, Section 4.3).

4.1 THE PFN FRAMEWORK

First, we introduce the PFN framework used in the BO loop where the surrogate model p(·|x,Dt−1)
is obtained by updating the observation set Dt−1 and conducting posterior inference. PFN con-
ducts simulation-based inference through the forward pass of a Transformer model. It directly takes
Dt−1, x as inputs and outputs a discrete approximation of p(·|x,Dt−1). Each query-evaluation pair
in Dt−1 attends to each other through the Transformer attention, and are attended by the position
of the query x. The final layer of the query network is converted to logits of p(·|x,Dt−1), through
which we can compute approximated acquisition functions, such as UCB and EI.

We assume that the evaluations of f is generated by the process p(D), which is similar to p(T (i))
defined in Section 3 corresponding to a certain process sampling from f . To train the PFN to
conduct posterior inference for p(D), one only need to minimize the KL divergence between
the PFN approximation qθ(·|x,D) and the ground-truth p(·|x,D), where θ is the model param-
eter and D is any context. It is equivalent to a more tractable negative log-likelihood term
ED∪{(x,y)}∼p(D)[− log qθ(y|x,D)] plus a constant, where {(x, y)} ∪ D are sampled from p(D)
1. In each gradient descent step, we aim to teach the model to make inference for context D at m
inference locations, thus the step-wise loss is

ℓ̂θ(D ∪ {(xi, yi)}mi=1) =

m∑
i=1

− log qθ(yi|xi, D), D ∪ {(xi, yi)}mi=1 ∼ p(D) (2)

We use a fixed total sequence length for each training step, and m in each step is chosen to randomly
split the sequence. The flexible choice of p(D) provides the possibility to infer any complicated
while easy-to-generate prior. Thus, we construct simulators of p(T (i)) based on meta-datasets of
related tasks D(i),∀i ∈ [N ] (Section 4.2) and train the PFN with the supervised loss in eqn. (2),
yielding a desired trajectory surrogate for BO.

1The derivation can also be found in Appendix A in Müller et al. (2022).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 MODELING OPTIMIZATION TRAJECTORY WITH MDP

We propose a novel prior for Bayesian optimization that models p(T (i)), the prior distribution of op-
timization trajectories, with MDP (Bellman, 1958; Sutton & Barto, 2018). In this MDP, at time t, the
action at is defined as the next query point xt ∈ X . The state st consists of the previous k evaluations
{xτ , f

(i)(xτ )+ζτ , τ/T}t−1
τ=t−k, and the transition is adding a new evaluation (xt, f

(i)(xt)+ζt, t/T )
while removing the oldest evaluation obtained at time τ = t− k. The reward is the negative simple
regret rt = maxτ≤t f

(i)(xτ ) − maxx∈X f (i)(x). The agent thus performs T -shot optimization of
f . We train an agent for each source task f (i) via a DQN policy (Mnih et al., 2013), and denote the
resulting policy parametrized by η as π(i)

η (Figure 2 right). Trajectories sampled according to policy
π
(i)
η and state transition defined above are then used to train PFNs.

The DQN agent approximates the optimal Q-function with Qη(s, a) and updates η iteratively during
training on dataset D(i) until surpassing random search (details in Appendix A.2). Its parametric
nature allows efficient batched trajectory generation on GPUs, which is crucial for PFN training.

4.3 MODEL-AGNOSTIC META-LEARNING FOR TRAJECTORY SURROGATE

Next, we show how PROFBO trains the PFN framework using MAML for trajectory surrogate, with
details shown in Algorithm 1. Let GDθ[f ] := θ − β · ∂θf denote the gradient descent operator
where β is a learning rate. In the pre-training stage (Line 1–4), we train the PFN conventionally
using synthetic samples from common function priors p(D), such as GPs. As shown in Müller
et al. (2023), PFNs trained with non-trajectory functional priors are well-suitable BO surrogates, as
they generate sensible mean predictions with uncertainty quantification. Therefore, p(D) provides
a warm start for the following stage. Moreover, since trajectories may not cover the entire response
surface of the objective, training with p(D) stabilizes regions unexplored by p(T (i))s. Each iteration
involves gradient descent (Line 3) on the loss from a batch of samples (Line 2), enabling the PFN to
infer across more diverse contexts.

Algorithm 1 PFN training of PROFBO

Inputs: Prior over general distribution p(D); prior over source tasks {p(T (i))}Ni=1, numbers of
iterations K1,K2, initialized PFNs parameter θ.

1: for j ∈ [K1] do
2: Sample D ∪ {(xi, yi)}mi=1 ∼ p(D)

3: Update θ = GDθ[ℓ̂θ(D ∪ {(xi, yi)}mi=1)] ▷ standard gradient descent
4: end for
5: for j ∈ [K2] do
6: sample a batch of priors Π ⊂ {p(T (i))}Ni=1 ▷ sample from MDP prior
7: for p ∈ P do
8: sample D ∪ {(xi, yi)}mi=1 ∼ p

9: Compute θπ = GDθ[ℓ̂θ(D ∪ {(xi, yi)}mi=1)] ▷ with positional encodings
10: end for
11: Update θ = GDθ

[∑
π∈Π ℓ̂θπ (D ∪ {(xi, yi)}mi=1)

]
▷ MAML update

12: end for
Output: qθ

In the fine-tuning stage (Line 5–12), we fine-tune the PFN using samples from all p(T (i)),∀i ∈ [N ],
incorporating both MAML (Finn et al., 2017) and positional encoding. We introduce the positional
encoding to better capture sequential information in the MDP prior, unlike the original PFN (Müller
et al., 2022) that omitted it for permutation-invariant priors. However, this also increases the risk of
overfitting to spurious correlations. To address this, we combine positional encoding with MAML,
which helps the model generalize well by focusing on common optimization patterns rather than
overfitting task-specific details. Unlike its original purpose of warm-starting parameters, MAML in
our method is creatively repurposed to extract features shared across trajectories. Fine-tuning with
MAML involves three steps: sampling tasks (Line 8), computing task-specific updates (Line 9), and

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

optimizing the total adapted loss (Line 11). In Section 5.4, we show through an ablation study that
both MAML and positional encoding are crucial for building a robust trajectory surrogate.

The training cost in the first stage is incurred only once, since the base PFN can be stored and later
fine-tuned for future problems. Thus, the cost for future problems is reduced to the fine-tuning stage.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. We compare PROFBO with several few-shot BO methods using different techniques:
BO with meta-learned GP (META-GP), few-shot deep kernel surrogate learning (FSBO) (Wistuba
& Grabocka, 2021), pure transformer neural processes (TNP) (Nguyen & Grover, 2022; Müller
et al., 2022), end-to-end meta-BO with transformer neural processes (NAP) (Maraval et al., 2023),
random search (RANDOM), and BO with standard GP (GP). Table 1 shows a technical summary of
them except RANDOM and GP since they do not use any listed techniques.

In TNP, we meta-train a TNP 2 on original meta-data instead of MDP priors; for comparison, we
also test a variant with MAML and positional encoding, denoted as TNP+. Similarly, we pre-train
META-GP kernel parameters with meta-data before testing, and introduce a meta-trained version
of our MDP prior, denoted as Meta-Acquisition Function (MAF), to align with RL-based methods.
We also include OPTFORMER (Chen et al., 2022) when possible 3. As summarized in Table 1,
these baselines fall into two main categories: meta-surrogate learning (META-GP, FSBO, TNP),
which learn BO surrogates without sequential information, and meta-trajectory learning (MAF,
OPTFORMER), which directly model trajectories. PROFBO and NAP use both approaches.

Techniques META-GP FSBO TNP MAF NAP OPTFORMER PROFBO (Ours)

Meta-learn traj. % % % ! ! ! !

Meta-learn surrog. ! ! ! % ! ! !

MAML % % % % % % !

Positional encoding % % % % % ! !

Table 1: Technical summary of all compared algorithms except RANDOM and GP. “!” and “%”
denote a certain technique is used in an algorithm or not.

Evaluations. The objective function range of each task is normalized to [0, 1], so the regret at
iteration t is defined as 1 −max0≤τ≤t f(xτ ) and we use the log-scaled version in our results. The
rank is defined as the integer rank value of the method at a given iteration among all baselines
in terms of regret performance. Both regret and rank are the lower, the better. As in existing
literature (Müller et al., 2023; Wistuba & Grabocka, 2021), for each benchmark, we report the
aggregated regret and aggregated rank, computed as the average regret and rank over five different
initializations, with error bars denoting 95% confidence.

All the benchmarks contain a meta-training, meta-validation and meta-test dataset. We train the
models with meta-training data. All the hyperparameters of our method (learning rate, acquisition
function, MAML inner step size, fine-tuning epochs, etc.) are optimized on the validation set and the
results are demonstrated on the test set. PROFBO uses the same pre-trained PFN for all benchmarks.
We use an Adam optimizer for PFN training (Kingma & Ba, 2015). Please refer to Appendix B for
more detailed experimental settings and comparison.

5.2 RESULTS ON REAL-WORLD DRUG DISCOVERY

The docking score, generated through simulation, estimates how strongly a small molecule (lig-
and) binds to a target receptor (typically a protein) where lower scores indicate stronger predicted

2Using the same architecture as our PFN, as in Maraval et al. (2023).
3OPTFORMER requires datasets with extensive optimization trajectories, which are unavailable in our drug

discovery benchmarks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Strong performance of PROFBO on Covid-B (five problems) and Cancer-B (two problems)
compared with other baseline methods.

binding affinity. In drug discovery, a favorable docking score suggests effective interaction with the
disease-related receptor, potentially blocking or modulating its function. In this paper, we establish
two benchmarks, each consisting of multiple molecule search tasks that aim to minimize the docking
score against Covid-19 or cancer receptors, denoted as Covid-B and Cancer-B. We use a 26D contin-
uous embedding for both datasets, converted from their mqn feature (Nguyen et al., 2009). Covid-B
and Cancer-B contain 5 and 2 problems respectively. Check Appendix C for detailed dataset de-
scription.

In Figure 3, our method consistently and significantly outperforms baselines and meets the few-
shot requirement by achieving strong performance within 40 iterations. In terms of average regret
on both datasets, the gaps between PROFBO and other methods are even larger as T increases.
While Maraval et al. (2023) reported state-of-the-art NAP ’s superiority in a similar antibody design
benchmark, in our experiments NAP performs comparably to the lighter MAF, likely due to the
challenging high dimensionality of our benchmarks and the Transformer policy’s instability in few-
shot settings. Notably, NAP required over 200 iterations to dominate in the 11D antibody design
task, whereas we evaluate on 26D problems for few iterations.

5.3 RESULTS ON HYPERPARAMETER OPTIMIZATION

HPO-B (Pineda-Arango et al., 2021) is a benchmark of classification models’ hyperparameters and
accuracies, widely used in few-shot BO. Following Maraval et al. (2023), we select 6 of the 16
problems, where each corresponds to the loss of a classification algorithm on different tasks, with
input dimensions ranging from 2 to 18. We report results over 90 iterations to align with existing
literature, though our focus is still on few-evaluation BO. Results on additional 13 problems with 25
iterations are provided in Appendix D, showing the consistent strong performances of PROFBO.

The HPO-B results are shown in the left two subfigures of Figure 4. PROFBO achieves strong
performances, clearly leading in average rank and regret. Meta-surrogate learning methods (META-
GP, FSBO, TNP, TNP+) overlook the procedural knowledge in optimization trajectories, while
our surrogate leverages an MDP prior to capture this knowledge, yielding improved results. Among
meta-trajectory learning methods, MAF performs even worse than RANDOM, OPTFORMER is com-
petitive, and NAP, also directly modeling trajectories, outperforms both. We attribute this improve-
ment to NAP ’s supervised auxiliary loss, which helps the agent better learn inductive biases across
tasks. PROFBO balances trajectory modeling and meta-learning by separating the two in a simple
yet effective way. MAML enables efficient meta-learning of the trajectory surrogate, while PFN’s
in-context learning accelerates adaptation to target tasks, yielding stronger performance than NAP
and OPTFORMER, especially in the first 10 iterations.

5.4 ABLATION STUDIES

To thoroughly understand the algorithmic design of PROFBO, we analyze the effectiveness of three
key components in the fine-tuning of PROFBO: the MDP prior, MAML, and positional encoding

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: [Left two] Strong performances of PROFBO on HPO-B compared with other baseline
methods. [Right two] Ablation study results of PROFBO with MAML and positional encoding
enabled (“MAML”, “Pos”) or not (“NoMAML”, “NoPos”), showing both MAML and positional
encoding are important technical components of PROFBO.

added to PFN. The test setting is the same as Section 5.3. To ensure fair comparison, for each
problem, all surrogates are trained with the same dataset pre-generated from our MDP prior.

To test the effectiveness of MDP prior, we compare PROFBO against TNP+. As discussed in Section
5.1, TNP+ is a meta-trained PFN using original meta-data instead of MDP priors, incorporating
MAML and positional encoding, so TNP+ serves as the control group. Results shown in Figure 3, 4
provide compelling evidence for MDP priors’ great contributions across three benchmarks. Without
MDP priors, MAML and positional encoding provide little benefit to Transformer neural processes,
as seen with TNP and TNP+4. This explains why MAML is effective with MDP priors: they encode
richer sequential correlations but are more prone to overfitting, where MAML helps the surrogate
extract common optimization patterns. This provides evidence for our claim in Section 4.3.

Next, to study the roles played by MAML and positional encoding, in the right two subfigures of
Figure 4, we test four settings where MAML or positional encoding is enabled or not. The figures
show that the performances of PROFBO indeed benefit from MAML, as the trials with MAML en-
abled are better than those without it under the same conditions. Also, vanilla PFN removes the
positional encoding to make it permutation-invariant on the context, however, in our task we intro-
duce the positional encoding back to PFN as it can help the surrogate better learn the optimization
trajectories, which are also validated in Figure 4.

5.5 COMPUTATIONAL EFFICIENCY

NAP (Maraval et al., 2023) is one of the state-of-the-art methods in few-shot BO, and it implements
a similar Transformer model to ours. NAP’s efficiency was investigated in the original paper, taking
only 2% of OPTFORMER’s training time. However, PROFBO is even more efficient than NAP.

Both PROFBO and NAP use only the Transformer’s forward pass during test, resulting in similar
test time, so we only compare the training time of them on the same device implementing a same
Transformer architecture. NAP trains the model end-to-end, whereas PROFBO employs a two-stage
training paradigm. We evaluate training time across five Covid-B problems, each with approximately
1M evaluations. NAP takes 3,925 seconds to finish the process, while PROFBO takes only 1,176
seconds, including 1,045 (MDP prior training) and 131 (fine-tuning) seconds, therefore, PROFBO is
3.34 times faster than NAP. We attribute PROFBO’s efficiency to its lightweight RL agent (a MLP
with hidden size 200-200-200-200), which trains faster than NAP’s Transformer policy. Addition-
ally, supervised learning in PROFBO is less computationally intensive than RL in NAP.

4Consistent with Wistuba & Grabocka (2021), which showed that FSBO without MAML often outperforms
its MAML-enhanced variant.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In many real-world black-box optimization scenarios, such as drug screening in wet labs, traditional
BO methods often fail to converge within a practical number of iterations due to costly evaluations.
To solve this problem, we introduce PROFBO, a Bayesian framework that incorporates MDP priors
to transfer procedural knowledge from source tasks. Integrated with PFNs and MAML, PROFBO
can quickly adapt to the target task in few shots. Experiments on drug discovery and hyperparameter
tuning tasks demonstrate consistent improved performances of PROFBO over existing methods.
Moreover, its modular design and efficient training process make PROFBO practically ready for a
wide range of critical applications. Overall, this work explores the potential of applying principled
Bayesian inference to the optimization trajectory prior of real-world experiments, paving the way for
more efficient and generalizable optimization strategies that further accelerate scientific discovery.

REFERENCES

H. Aldewachi, R. N. Al-Zidan, M. T. Conner, and M. M. Salman. High-throughput screening plat-
forms in the discovery of novel drugs for neurodegenerative diseases. Bioengineering, 8(2):30,
2021.

Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, and Bin Cui. Transfer learning for
bayesian optimization: A survey, 2023.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization. In
Advances in Neural Information Processing Systems, volume 33, pp. 21524–21538, 2020.

Richard Bellman. Dynamic programming and stochastic control processes. Information and Con-
trol, 1(3):228–239, 1958.

Krisyanti Budipramana and Frangky Sangande. Molecular docking-based virtual screening: Chal-
lenges in hits identification for anti-sars-cov-2 activity. Pharmacia, 69:1047–1056, 2022.

Yutian Chen, Xiaoxi Song, Chung-Ching Lee, Zihang Wang, Ruoxi Zhang, David Dohan, Kenji
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’Aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 32053–32068, 2022.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pp. 844–853, 2017.

Stefan Falkner, Aaron Klein, and Frank Hutter. Practical transfer learning for bayesian optimization.
arXiv preprint arXiv:1802.02219, 2018.

Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter opti-
mization via meta-learning. In AAAI Conference on Artificial Intelligence, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential
information collection. SIAM Journal on Control and Optimization, 47(5):2410–2439, 2008.

Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. Reinforced few-shot acquisition function learning
for bayesian optimization. Advances in Neural Information Processing Systems, 34:7718–7731,
2021.

Tomoharu Iwata. End-to-end learning of deep kernel acquisition functions for bayesian optimization.
arXiv preprint arXiv:2111.00639, 2021.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. Advances in neural
information processing systems, 31, 2018.

Danial Khatamsaz, Raymond Neuberger, Arunabha M Roy, Sina Hossein Zadeh, Richard Otis, and
Raymundo Arróyave. A physics informed bayesian optimization approach for material design:
application to niti shape memory alloys. npj Computational Materials, 9(1):221, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Ho Chung Law, Peilin Zhao, Leung Sing Chan, Junzhou Huang, and Dino Sejdinovic. Hyperparam-
eter learning via distributional transfer. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Yang Li, Yu Shen, Huaijun Jiang, Tianyi Bai, Wentao Zhang, Ce Zhang, and Bin Cui. Transfer
learning based search space design for hyperparameter tuning. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022.

Qiaohao Liang and Lipeng Lai. Scalable bayesian optimization accelerates process optimization of
penicillin production. In NeurIPS 2021 AI for Science Workshop, 2021.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In International Conference on Learning Representations,
2024.

Xuefeng Liu, Songhao Jiang, Archit Vasan, Alexander Brace, Ozan Gokdemir, Thomas Brettin,
Fangfang Xia, Ian Foster, and Rick Stevens. Drugimprover: Utilizing reinforcement learning for
multi-objective alignment in drug optimization. In NeurIPS 2023 Workshop on New Frontiers of
AI for Drug Discovery and Development, 2023.

Alexandre Max Maraval, Matthieu Zimmer, Antoine Grosnit, and Haitham Bou Ammar. End-to-end
meta-bayesian optimisation with transformer neural processes. Advances in Neural Information
Processing Systems, 34, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. In International Conference on Learning Representations,
2022.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. In International Conference on Machine Learning, pp. 25444–25470.
PMLR, 2023.

Kong T. Nguyen, Lorenz C. Blum, Ruud van Deursen, and Jean-Louis Reymond. Classification of
organic molecules by molecular quantum numbers. ChemMedChem: Chemistry Enabling Drug
Discovery, 4(11):1803–1805, 2009.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling. In International Conference on Machine Learning, pp. 16723–16738.
PMLR, 2022.

Tung Nguyen, Qiuyi Zhang, Bangding Yang, Chansoo Lee, Jorg Bornschein, Yingjie Miao, Sagi
Perel, Yutian Chen, and Xingyou Song. Predicting from strings: Language model embeddings
for bayesian optimization. arXiv preprint arXiv:2410.10190, 2024.

Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cédric Archambeau. Scalable hyperpa-
rameter transfer learning. Advances in Neural Information Processing Systems, 31, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Valerio Perrone, Huibin Shen, Matthias Seeger, and Cédric Archambeau. Learning search spaces for
bayesian optimization: Another view of hyperparameter transfer learning. In Advances in Neural
Information Processing Systems, 2019.

Sebastian Pineda-Arango, Hadi Jomaa, Martin Wistuba, and Josif Grabocka. HPO-B: A large-
scale reproducible benchmark for black-box HPO based on OpenML. In Conference on Neural
Information Processing Systems Track on Datasets and Benchmarks, 2021.

Matthias Poloczek, Jialei Wang, and Peter I Frazier. Warm starting bayesian optimization. In Winter
simulation conference, pp. 770–781. IEEE, 2016.

E. O. Pyzer-Knapp. Bayesian optimization for accelerated drug discovery. IBM Journal of Research
and Development, 62(6):2:1–2:7, 2018.

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov,
Eddie Bergman, and Frank Hutter. In-context freeze-thaw bayesian optimiza-
tion for hyperparameter optimization. ArXiv, abs/2404.16795:null, 2024. doi:
10.48550/arXiv.2404.16795. URL https://www.semanticscholar.org/paper/
2ef9ee354cfedebe497b4614926b733d10a23693.

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian opti-
mization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Nicolas Schilling. Scalable hyperparameter optimization with products of gaussian process experts.
In International Conference on Algorithmic Learning Theory, pp. 312–326, 2016.

Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimization
as a tool for chemical synthesis. Nature, 590(7844):89–96, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-
theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions
on Information Theory, 58(5):3250–3265, 2012.

Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for everyone. Journal of Chemical
Information and Modeling, 55(11):2324–2337, 2015.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In Advances
in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Yuan Tian, Tongtong Li, Jianbo Pang, Yumei Zhou, Dezhen Xue, Xiangdong Ding, and Turab Look-
man. Materials design with target-oriented bayesian optimization. npj Computational Materials,
11(1):209, 2025.

Petru Tighineanu, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix Berkenkamp, and Julia Vino-
gradska. Transfer learning with gaussian processes for bayesian optimization. In International
Conference on Artificial Intelligence and Statistics, pp. 6152–6181, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter,
and Christian Daniel. Meta-learning acquisition functions for transfer learning in bayesian opti-
mization. In International Conference on Learning Representations, 2020.

12

https://www.semanticscholar.org/paper/2ef9ee354cfedebe497b4614926b733d10a23693
https://www.semanticscholar.org/paper/2ef9ee354cfedebe497b4614926b733d10a23693


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zi Wang, George E. Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of
Machine Learning Research, 25:1–43, 2024.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates.
In International Conference on Learning Representations, 2021.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Hyperparameter search space pruning
– a new component for sequential model-based hyperparameter optimization. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2015a.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter optimiza-
tion initializations. In IEEE International Conference on Data Science and Advanced Analytics,
pp. 1–10, 2015b.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Two-stage transfer surrogate model
for automatic hyperparameter optimization. In Machine Learning and Knowledge Discovery in
Databases, pp. 199–214, 2016.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Scalable gaussian process-based
transfer surrogates for hyperparameter optimization. Machine Learning, 107:43–78, 2017.

Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and Andrew Gordon Wilson. Practical multi-
fidelity bayesian optimization for hyperparameter tuning. In Uncertainty in Artificial Intelligence,
pp. 788–798. PMLR, 2020.

Dani Yogatama and Gideon Mann. Efficient Transfer Learning Method for Automatic Hyperparam-
eter Tuning. In International Conference on Artificial Intelligence and Statistics, pp. 1077–1085,
2014.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for
neural architecture search. In International conference on machine learning, pp. 7603–7613.
PMLR, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS OF PROFBO

A.1 SETTINGS OF THE PFN TRAINING

The Transformer architecture (Vaswani et al., 2017) processes sequential data by embedding each
element into a vector representation and employs a specialized attention mechanism to enable ele-
ments to attend to one another during the forward pass. PFNs utilize a tailored attention mask to
allow context points in D to attend to each other and be attended by test locations during the forward
pass.

The implementation of the PFN is adapted from the repository of PFNs4BO (Müller et al., 2023)
5. Here we list the settings for the PFN used in our experiment (Table 2). Similar to Müller et al.
(2023; 2022), our model takes contextual variables with dimension ≤ 26 by conducting a zero-
padding to the missing dimensions and normalization to the existing dimension. We use a discrete
bar distribution for the regression head of PFN, with 1,000 bars uniformly chosen from the interval
[−4.5, 4.5].

Hyperparameters Choices
Embedding size 512
Number of self-attention layers 6
Number of heads 4
Activation function GeLU
Feed forward NN size 1024
Number of discretized bars 1000
Pre-training learning rate {1e-3, 1e-4, 3e-4, 1e-5}
Fine-tuning learning rate 3e-4
Batch size 128
Sequence length 40
Steps per epoch 100
Fine-tuning epoch 2
Maximum input size 26
Pre-training prior GP
Acquisition function {EI, PI, UCB}
Optimizer Adam + Cosine Anneal

Table 2: PFN settings & Hyperparameters of PROFBO

A.2 SETTINGS OF THE RL TRAINING

We train our RL agent with the vanilla DQN algorithm, where there is a policy and target Q-network
with identical architecture. The target network is a copy of the policy network initially, but it is
updated at a specific frequency during the training process. The policy network is used to sample
the trajectories, while the target network is treated as the “ground-truth”, and is used to calculate the
Bellman equation as mentioned in Section 4.

In the main paper, where all baselines are discrete search problems, we developed an adapted training
paradigm for the MDP prior to enable efficient learning from extensive molecule meta-data, demon-
strating strong empirical performance in generating prior trajectories. Specifically, we restricted the
agent to interact with only 10% of the problem, updating to a new 10% subset and updating the tar-
get network every 50 epochs. Initially, training multiple RL agents with a dynamic action space per
epoch was challenging. In this case, increasing the action space size slowed training without signifi-
cant gains. Our approach ensures robust increases in cumulative reward while substantially reducing
computational costs. Other training hyperparameters of the MDP pirior are shown in Table 3. We
note that the feed-forward NN of the agent has the same hidden size as the popular meta-learning
neural acquisition methods (Hsieh et al., 2021; Volpp et al., 2020).

5https://github.com/automl/PFNs4BO

14

https://github.com/automl/PFNs4BO


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The sampling scheme of the final policy π
(i)
η (i.e., Q(i)

η ) for task i is ϵ-greedy to balance exploration
and exploitation:

at =

{
Uniform({x(i)

τ }ni
τ=1),Pr = ϵ,

argmax
a′∈{x(i)

τ }ni
τ=1

, Q
(i)
η (st, a

′),Pr = 1− ϵ.

Hyperparameters Choices
Hidden size [200, 200, 200, 200]
Activation function ReLU
Episode length (T ) 40
Epoch 250
Target update frequency 50
Discount factor (γ) 0.98
Maximum action sample size ni//10
History size (k) 10
Replay buffer size 10000
Learning rate 1e-3
Optimizer Adam

Table 3: RL setting of PROFBO

B EXPERIMENTAL SETTINGS OF OTHER BASELINES

FSBO 6. FSBO meta-trains a deep kernel GP surrogate with the meta-dataset and performs few
epochs of adaptation in each BO iteration. We adopted a deep kernel GP used in Wistuba &
Grabocka (2021). We trained the model with batch size 512 for 2000 iterations, so the total number
of training data point is 1,024,000, the same as PROFBO. The learning rate is 1e-3.

NAP 7. We use a Transformer with the same architecture as PROFBO (Table 2). The training com-
pletely follows the settings mentioned in the original paper, where we perform RL on a conditional
GP surrogate trained with meta-data and test on discrete problem. We use a different episode length,
epochs, batch size for each benchmark, so that the episode length T matches the experimental results
in Section 5 and the total training data is around 1M, please refer to our repository for details.

OptFormer 8. The results in HPO-B (Section 5.3) is produced by the authors of NAP based on the
official codebase. Please refer to their paper for details.

TNP. We used the same PFN architecture with a positional encoding as in Table 2. As mentioned in
Section 5.4, we used 1M raw samples from meta-dataset to train the surrogate model with MAML
and positional encoding.

Meta-GP. Like Maraval et al. (2023), we also pre-train the RBF kernel parameters of the GP with the
meta-dataset and initialize the GP with pre-trained parameters at the test time. The implementation
is based on BO package BOTORCH (Balandat et al., 2020).

NAF. Please refer to Table 3 for the settings of the RL agent. We used a RL prior that learns from
all the mata-datasets, instead of a single dataset. To do that, we train the RL agent to optimize
D(i), i ∈ [N ] for many i. Specifically, we sample i uniformly from [N ] in each outer loop and train
the agent in the same way as described in Appendix A.2.

6https://github.com/machinelearningnuremberg/FSBO
7https://github.com/huawei-noah/HEBO/tree/master/NAP
8https://github.com/google-research/optformer

15

https://github.com/machinelearningnuremberg/FSBO
https://github.com/huawei-noah/HEBO/tree/master/NAP
https://github.com/google-research/optformer


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS OF BENCHMARKS

C.1 HPO-B

Please refer to official repository 9 and paper Pineda-Arango et al. (2021) for detailed explanation of
the dataset. The six representative problems in Section 5.3 are 5860 (glmnet), 4796 (rpart.preproc),
5906 (xgboost), 5889 (ranger), 5859 (rpart), 5527 (svm). We also provide the aggregated results of
13 HPO-B problems in the following section of appendix (Figure 8).

C.2 COVID-B AND CANCER-B

The Covid-B dataset comprises five problems as in Pineda-Arango et al. (2021) across 24 tasks.
Each task within a problem optimizes the docking score for a shared Covid-19 receptor but targets
different binding interactions. For instance, task NPRBD 6VYO AB 1 F involves interactions with
both chains A and B of the PDB structure 6VYO, while NPRBD 6VYO A 1 F focuses solely on
chain A. The validation set consists of unique datasets from Liu et al. (2023) that are distinct from
their parent structure. The Cancer-B dataset differs from Covid-B, as it lacks related tasks from a
common parent structure. Instead, it includes docking scores for 5 distinct cancer-target receptors,
manually divided into source and target tasks. The validation set is a mixed random sample drawn
from each dataset. The final dataset comprises three training sets and two test sets.

For both datasets, the problem for each task is a set of molecules, with size ranging from 2K to
150K and are stored as Simplified Molecular Input Line Entry System (SMILES). We first convert
the molecules to their mqn feature (42D, integer) (Nguyen et al., 2009), then we use principle com-
ponent analysis (PCA) to construct a 26D continuous representation for each molecule, where the
percentage of explained variance in PCA are greater than 95% for all problems.

Covid-B. The Covid-B dataset is adapted from the Covid dataset used in DrugImprover (Liu et al.,
2023) 10. They were chosen by the authors from the Zinc 15 dataset (Sterling & Irwin, 2015),
containing 11M drug-like molecules. The original dataset consists of 24 .csv files, each containing
1,000,000 molecular docking samples across various SARS-CoV-2 receptors. We identified five
structural conditions shared by multiple receptors, each defined as a single problem (in HPO-B, one
learning algorithm corresponds to one problem). While different datasets in HPO-B share the same
supervised loss but differ in training data, in Covid-B datasets correspond to the same structural
condition under varying sub-conditions. Finally, we retain only the molecules common across their
respective problems in each dataset. All the objective values are normalzied to [0, 1].

Problems Meta-training Meta-test

# Evaluations # Datasets # Evaluations # Datasets

NPRBD 46,176 3 30,784 2
NSP10-16 202,254 1 202,254 1
NSP15 11,540 5 4,616 2
Nsp13.helicase 244,361 1 244,361 1
RDRP 106,266 3 35,422 1

Table 4: Statistics of each Covid-B problem in the meta-training and meta-test datasets.

We provide a list of problems of Covid-B and the size of each meta-train and meta-test dataset
in Table 4. All the problems use a common meta-validation dataset, containing 4 datasets
chosen as subsets of 3CLPro 7BQY A 1 F, NSP16 6W61 A 1 H, PLPro 6W9C A 2 F,
NSP10 6W61 B 1 F and 1M evaluations in total.

Cancer-B. We also refer to Liu et al. (2023); Sterling & Irwin (2015) for the original five sets of
molecules docked on different cancer proteins. In Cancer-B, we utilize three meta-training datasets
(6T2W, NSUN2, RTCB), comprising 437,634 evaluations in total, and two meta-test datasets (WHSC,
WRN), totaling 291,756 evaluations. The meta-validation set is constructed as a balanced mixture of

9https://github.com/machinelearningnuremberg/HPO-B
10https://github.com/xuefeng-cs/DrugImprover

16

https://github.com/machinelearningnuremberg/HPO-B
https://github.com/xuefeng-cs/DrugImprover


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

random samples from these five datasets, totaling to 10,000 evaluations, with each dataset contribut-
ing an equal proportion. Molecules are also common in five .csv files.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the additional experimental results.

D.1 ADDITIONAL BASELINE COMPARISON

In the following, we demonstrate the baseline comparison of regret and rank in each problem, i.e.,
the results in Section 5.2, 5.3 before aggregation w.r.t. problems.

Figure 5 demonstrates the results on 5 problems in Covid-B, where PROFBO shows superior per-
formance in general, while NAP is the most unstable one. Figure 6 demonstrates the results on 2
problems in Cancer-B, where PROFBO demonstrates robust performances by being the best method
after 30 iterations. Other methods suffer from instability in different problems.

Figure 7 shows the results on 6 HPO-B problems. We can see that the baselines’ performance
stabilizes after 90 iterations, and PROFBO is consistently in the top 3 baselines except for Problem
No. 5859. This shows that PROFBO is also prominent in problems that require long iterations.
In Figure 8, we demonstrate the aggregated results of PROFBO on 13 problems of HPO-B for 25
iterations. We find PROFBO still excels in these problems, providing more solid evidence of its
ability to adapt to problems with varying input dimensions and diverse meta-task dependencies.

(a) Rank of each problem of Covid-B

0 3 6 912151821
#iterations

2 × 10 1

3 × 10 1

Av
er

ag
e 

Re
gr

et

NPRBD

0 3 6 912151821
#iterations

10 1

Av
er

ag
e 

Re
gr

et

NSP10-16

0 3 6 912151821
#iterations

2 × 10 1

3 × 10 1

Av
er

ag
e 

Re
gr

et

NSP15

0 3 6 912151821
#iterations

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Av
er

ag
e 

Re
gr

et

Nsp13.helicase

0 3 6 912151821
#iterations

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Av
er

ag
e 

Re
gr

et

RDRP

Random
GP

Meta-GP
FSBO

MAF
TNP

TNP+
NAP

ProfBO (Our Method)

(b) Regret of each problem of Covid-B

Figure 5: Performance comparisons on Covid-B.

D.2 ADDITIONAL FUNCTION PREDICTION COMPARISON

In Figure 9, we demonstrate more visualizable comparison between PROFBO, FSBO, and GP,
similar to Figure 1. In addition, we add META-GP to our comparison where the GP parameters are
pretrained with meta-datasets. The settings for PROFBO, FSBO and GP are the same as mentioned
in Figure 1. As we can see, PROFBO consistently models the true objective function much better
than other methods, with only 3 evaluation points.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Rank of each problem of Cancer-B (b) Regret of each problem of Cancer-B

Figure 6: Performance comparisons on Cancer-B.

(a) Rank of each problem of HPO-B

(b) Regret of each problem of HPO-B

Figure 7: Performance comparisons on HPO-B.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: Aggregated results of HPO-B with 13 problems for 25 iterations.

Figure 9: Function prediction comparison.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 NEGATIVE/UNRELATED TRANSFER

0 10 20 30 40 50 60 70 80 90
#iterations

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Av
er

ag
e 

Ra
nk

0 10 20 30 40 50 60 70 80 90
#iterations

10 2

10 1

Av
er

ag
e 

Re
gr

et

Effect of Negative Transfer on HPO-B

(a) Aggregated results of all problems before & after different levels of negative transfer.

(b) Rank and Regret of each problem before & after different levels of negative transfer.

Figure 10: A study of the effect of negative transfer on PROFBO tested with problems No. 5860,
4796, 5859, 5889 on HPO-B. “negative epoch ” refers to the negative transfer epochs a surrogate is
tuned with. The learning rate of negative transfer is 3e-4. The acquisition function is chosen to be
PI. Other training parameters are described in Table 2.

We study how unrelated source tasks will affect the performance of PROFBO. We select 4 totally
different hyperparameter optimization tasks with varying input dimensions d from HPO-B: problems
No. 5860 (glmnet, d = 6), 4796 (rpart.preproc, d = 3), 5859 (rpart, d= 6), 5889 (ranger, d = 6). We
tune the surrogates used in Section 5.1, Figure 4 with meta-train data from other tasks. Specifically,
we attack the surrogate of problem 5859 with data from 5889, and attack 5889 with 5859, attack
5860 with data of 4796, and attack 4796 with 5860.

We demonstrate the performance of the surrogates on their original tasks after 1 to 5 negative tun-
ing epochs (more epochs indicates stronger negative transfer, Figure 10). On average (Figure 10a),
PROFBO’s performance is not significantly damaged compared with the surrogate before negative
transfer under a moderate negative effect (with a single negative transfer epoch), while it is signifi-
cantly worse under a stronger negative effect (with more than one negative tune epochs). Moreover,
the effect of negative transfer is severer when the discrepancy between unrelated tasks is larger, e.g.,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

when the input dimension does not match, which is the case for problems 5860 (d = 6) and 4796
(d = 3) in Figure 10b.

D.4 NUMBER/DIVERSITY OF SOURCE TASKS

0 10 20 30 40 50 60 70 80 90
#iterations

1.6

1.8

2.0

2.2

2.4
Av

er
ag

e 
Ra

nk

0 10 20 30 40 50 60 70 80 90
#iterations

10 2

10 1

Av
er

ag
e 

Re
gr

et

Effect of Number of Source Tasks on HPO-B

(a) Aggregated results of all problems pre-trained with different number of source tasks.

(b) Rank and Regret of each problem pre-trained with different number of source tasks.

Figure 11: A study of the effect of number (diversity) of source tasks on PROFBO tested with HPO-
B problems No.4796, 5859 and 5906. 10%, 50%, 100% are the percentages of the available source
tasks used to train the MDP prior and fine-tune the PFN. The tasks of each proportion are inde-
pendently and randomly sampled. Acquisition function is PI. See Section 5.1 for other evaluation
details.

We study the effect of number of sources tasks used to train the MDP prior and fine-tune the PFN
on the final performance of PROFBO. We choose problems No. 4796 (rpart.preproc, d = 3), 5859
(rpart, d = 6), 5906 (xgboost, d = 16) from the HPO-B benchmark and re-evaluate the performance
under 10%, 50%, 100% (original one) of available source tasks’ data for each problem. The results
are shown in Figure 11.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

In terms of average effect (Figure 11a), we can observe a clear pattern where increased number and
diversity of source tasks indeed correlates with better performance. From Figure 11b, task with
higher dimension (5906) seems to be more sensitive to the number of source tasks.

D.5 GP-LIKE PRE-TRAINING

0 10 20 30 40 50 60 70 80 90
#iterations

1.4

1.5

1.6

Av
er

ag
e 

Ra
nk

0 10 20 30 40 50 60 70 80 90
#iterations

10 1

Av
er

ag
e 

Re
gr

et

Effect of GP-like Pre-training on HPO-B

(a) Aggregated results of all problems with or without GP-like Pre-training in Lines 1-4
of Algorithm 1.

(b) Rank and Regret of each problem with or without GP-like Pre-training in Lines 1-4 of Algorithm 1.

Figure 12: A study of the effect of GP-like pre-training (Lines 1-4 of Algorithm 1) on PROFBO
performance tested with HPO-B problems No. 4796, 5527, 5889. “Only MDP prior” refers to
the PFN surrogate trained only with MDP prior data as in Lines 5-12 of Algorithm 1. Acquisition
function is PI. See Section 5.1 for evaluation details.

In Section 4, we claimed that the GP-like pre-training described in lines 1-4 of Algorithm 1 will
help the PFN make valid inference in the region unexplored by the MDP prior. To test this claim, we
now evaluate the performance of PROFBO trained only with MDP prior data, i.e, only conducting
Line 5-12 of Algorithm 1 on problems No. 4796 (rpart.preproc, d = 3), 5527 (svm, d = 8), 5889
(ranger, d = 6) from HPO-B. The results compared with our proposed full algorithm are shown in
Figure 12.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

From the aggregated and task-wise results, it is clear that without GP-like pre-training, PROFBO’s
performance is significantly worse.

D.6 EXTENDING #ITERATIONS ON Covid-B TO 40

0 5 10 15 20 25 30 35 40
#iterations

2

3

4

5

6

7
Av

er
ag

e 
Ra

nk

0 5 10 15 20 25 30 35 40
#iterations

10 1

2 × 10 1

3 × 10 1

Av
er

ag
e 

Re
gr

et

COVID-19 Dataset Benchmark Results

(a) Baseline comparison in Covid-B with 40 iterations, aligning with the result in Cancer-
B.

(b) Rank and Regret of each problem for 40 iterations in Covid-B

Figure 13: Baseline comparison in Covid-B, with #iterations from 0 to 40. This is an extended result
from Figure 3 (Right), where only 20 iterations are recorded. See Section 5.1 for evaluation details.

In Figure 13, we extend the results of baseline comparison on Covid-B in Section 5.2 from 20
iterations to 40 to better algin with the evaluation on Cancer-B (Figure 3, Right).

As shown in Figure 13a, our claim in Section 5.2 about PROFBO’s few-shot (≤ 20 iterations)
performance on Covid-B is still valid on the aggregated result over all problems, and PROFBO
still demonstrats great performance within 40 iterations, although there is a certain case (problem
NSP15) when TNP outperforms PROFBO after 20 iterations (Figure 13b).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.7 ABLATION STUDY FOR MAML AND POSITIONAL ENCODING ON Covid-B AND Cancer-B

0 5 10 15 20 25 30 35 40
#iterations

1.8

2.0

2.2

2.4

2.6

2.8

3.0
Av

er
ag

e 
Ra

nk

0 5 10 15 20 25 30 35 40
#iterations

10 1

2 × 10 1

3 × 10 1

Av
er

ag
e 

Re
gr

et

COVID-19 Dataset Benchmark Results

(a) Ablation study for Covid-B

0 5 10 15 20 25 30 35 40
#iterations

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

Ra
nk

0 5 10 15 20 25 30 35 40
#iterations

10 1

Av
er

ag
e 

Re
gr

et
Cancer Dataset Benchmark Results

(b) Ablation study for Cancer-B

Figure 14: Ablation study results of PROFBO with MAML and positional encoding enabled
(“MAML”, “Pos”) or not (“NoMAML”, “NoPos”), conducted on Covid-B and Cancer-B bench-
marks, showing both MAML and positional encoding are important technical components of
PROFBO. This is an extension of the ablation study described in Section 5.4, which is only con-
ducted on HPO-B benchmark (check this section for evaluation details).

As shown in Figure 14, we follow the procedure described in Section 5.4 to conduct ablation study
for the contribution of the technical components positional encoding and MAML on Covid-B (Fig-
ure 14a) and Cancer-B (Figure 14b) benchmarks. The result is consistent with the one in Figure 4
(Right), where the surrogates trained with positional encoding generally outperforms those without,
and “MAML Pos” gives the significantly best result. This further strengthens our claim about how
PROFBO captures positional correlation of optimization trajectories through positional encoding
and avoid overfitting to spurious temporal correlation through a MAML-like meta-learning style.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.8 TASK SIMILARITY

Problem Task Similarity Final Ranking
Low Medium High

5860 (2) 0.296 0.444 0.259 1
4796 (3) 0.222 0.444 0.333 1
5527 (8) 0.235 0.647 0.118 2
5859 (6) 0.268 0.643 0.089 5
5889 (6) 0.350 0.400 0.250 3
5906 (13) 0.083 0.500 0.417 2

(a) Task similarity of source tasks to the target task of each problem in HPO-B. Numbers in “()” are input
dimensions.

Problem Task Similarity Final Ranking
Low Medium High

NPRBD 0.000 0.000 1.000 1
NSP10-16 0.000 0.000 1.000 1
NSP15 0.000 0.400 0.600 1
Nsp13.helicase 0.000 0.000 1.000 1
RDRP 0.000 0.000 1.000 1

(b) Task similarity of source tasks to the target task of each problem in Covid-B.

Table 5: Similarity of source tasks to the target task of each problem in HPO-B and Covid-B and
PROFBO’s final performance. For both tables, “Problem” is the name of a problem in the bench-
mark; “Task Similarity” is the proportion of source tasks with Low, Medium, High similarities to the
target task of the corresponding problem; “Final Ranking” is the final ranking of regret performance
of PROFBO among all baselines (see task-wise results in Figure 7,13b). The calculation of task
similarity is based on the misranked pairs count proposed by Falkner et al. (2018).

To study how similarity of source tasks to the target tasks affect the performance of PROFBO, we
adopt the notion of misranked pairs count proposed in Falkner et al. (2018), defined for source task
f (i):

L(f (i)) = Ef(i) [

n∑
q=1

n∑
r=1

1{(f (i)(xq) ≤ f (i)(xr))⊕ (yq ≤ yr)}], f (i) ∼ GP(i)

where
⊕

is the “exclusive or” operator; GP(i) is a GP model fitted with meta-data of f (i);
(xi, yi), i = 1, · · · , n are the evaluations of the target task. Thus, L(f (i)) can be seen as the ex-
pected frequency of mismatched ranking pairs between the target task value yp and the prediction of
yp based on source task f (i) evaluated at xp. The lower the L(f (i)), the more similar the source
task is to the target task. Empirically, we choose n = 100, and define “High” similarity in Table 5
as L(f (i)) < 3300, i.e., less than 1

3 pairs are mismatched. Similarly, we define “Low” similarity as
L(f (i)) > 6600 and “Medium” as being between them.

As shown in Table 5, the distribution of similarity of source tasks to the target task varies accross
different problems in Covid-B and HPO-B. Within the results of HPO-B (Table 5, (a)), there is a
weak correlation between higher task similarity and better final performance. Lack in highly similar
task in problem No. 5859 (8.9%) might explain why PROFBO fails to outperform other baselines in
this problem. Other factors such as input dimension may also affect PROFBO’s performance.

Higher task similarity indeed suggests better final performance of PROFBO across benchmarks. As
shown in Table 5, (b). Covid-B has more highly similar source tasks compared to HPO-B, providing
intuition of why PROFBO is uniformly the best in Covid-B.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.9 IMPLEMENTATION ON CONTINUOUS DOMAIN

Figure 15: Contour plot of a 2D continuous Ackley function at [0, 1]2. x1, x2 are values of two
input dimensions, the funciton value is indicated by the gray shades (the lighter, the higher). [Left]
Trajectory samples from a MDP prior. Red points are initializations; Lighter (yellow) points are
queried in later iterations. The MDP prior gradually finds optimal solution at (0, 0). Moreover, its
queries concentrate on local optima. [Right] Random trajectories in the same function.

In Figure 15, we provide a small example of MDP prior’s performance on a 2D continuous Ackley
function, showing that it is still possible to extract procedural experience of optimization using MDP
prior, even for a continuous problem. The training of MDP prior follows the hierachical gridding
method used in MetaBO (Volpp et al., 2020). As described in Section 4 and Appendix B.1 of Volpp
et al. (2020), a dynamic subset of candidate for the ξt ⊂ X is chosen at iteration t, which is the
union of a sparse global discretization ξglobal that spans the whole searchspace and a local adaptive
subset ξlocal,t generated from local discretized searches of first k best evaluations in ξglobal.

This approach balances between global search of best reward and local exploration using the current
RL agent, and has been applied in many meta-learning acquisition methods, including FSAF (Hsieh
et al., 2021) and NAP (Maraval et al., 2023). Using this method, Maraval et al. (2023) showed
it is possible to train an RL for high-dimensional continuous problems, as they tested NAP on a
135-dimensional mixed integer programming problem. PROFBO can also be applied to continuous
problems by this method.

D.10 ALIGNMENT WITH REAL-WORLD NEED

Problem Proportion (20 iter) Proportion (40 iter)
NPRBD-6VYO CD 1 F 0.8 1.0
NPRBD-6VYO DA 1 F 0.8 1.0
NSP10-16-6W61 AB 2 F 1.0 1.0
NSP15-6W01 A 2 F 1.0 1.0
NSP15-6W01 A 3 H 0.2 0.2
Nsp13.helicase-m3 pocket2 1.0 1.0
RDRP-7BV1 A 1 F 1.0 1.0

Table 6: The proportion of trials in which PROFBO identifies a molecule within the top 0.5% of
docking scores for each target task. “Problem” denotes the target task, and “Proportion” indicates
how many of the 5 independent trials successfully found a top-0.5% ranked molecule.

In real-world virtual screening workflows, a fixed proportion of top-ranked compounds is typically
selected for downstream experimental investigation. For SARS-CoV-2 drug-discovery pipelines

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(corresponding to our Covid-B benchmark), the top 0.25%–1% of compounds is commonly con-
sidered promising for follow-up, as reported in Budipramana & Sangande (2022). We evaluate how
frequently PROFBO identifies molecules within the top 0.5% of docking scores on each Covid-B
target task. For every task, we report the proportion of random seeds where PROFBO successfully
discovers a top-0.5% molecule within 20 and 40 optimization iterations. The resuts are summarized
in Table 6, showing that PROFBO reliably identifies scientifically meaningful candidates. On the
majority of tasks, the method reaches top-0.5% molecules within 20 iterations, and by 40 iterations
achieves 100% success in all but the most challenging case.

These results indicate that 40 iterations on Covid-B is indeed “few-shot optimal,” as ProfBO is
already able to identify the molecules targeted by human experts within 40 iterations.

E STATEMENT OF LIMITATIONS

While ProfBO shows strong empirical performance, our study also reveals several open challenges
that extend beyond the scope of this work. First, systematically generating MDP priors remains an
unsolved problem. Although we successfully trained MDP prior for HPO-B, Covid-B, and Cancer-
B benchmarks using DQN, developing a principled and general methodology that scales across do-
mains, dataset sizes, and mismatched task dimensions is an important direction for future research.
Second, although our MAML-based adaptation demonstrates significant performance improvement
(Section 5.4), establishing theoretical guarantees for such adaptation mechanisms in meta-BO set-
tings remains an open challenge. Finally, while our experiments clearly indicate that modeling
temporal correlations improves sequential optimization (Section 5.4), the underlying nature of these
correlations, and how they enhance decision-making remains understood. Addressing these limita-
tions may offer valuable theoretical insights, guide the design of more robust BO algorithms, and
clarify when PROFBO is expected to be most effective.

27


	Introduction
	Related Works
	Preliminaries
	Problem Statement
	Background

	The ProfBO Algorithm
	The PFN Framework
	Modeling Optimization Trajectory with MDP
	Model-Agnostic Meta-Learning for Trajectory Surrogate

	Experiments
	Experimental Setup
	Results on Real-World Drug Discovery
	Results on Hyperparameter Optimization
	Ablation Studies
	Computational Efficiency

	Conclusion
	Implementation Details of ProfBO
	Settings of the PFN Training
	Settings of the RL Training

	Experimental settings of other baselines
	Experimental Details of Benchmarks
	HPO-B
	Covid-B and Cancer-B

	Additional experimental results
	Additional Baseline Comparison
	Additional Function Prediction Comparison
	Negative/Unrelated Transfer
	Number/Diversity of Source Tasks
	GP-like Pre-training
	Extending #iterations on Covid-B to 40
	Ablation Study for MAML and Positional Encoding on Covid-B and Cancer-B
	Task Similarity
	Implementation on Continuous Domain
	Alignment with Real-World Need

	Statement of Limitations

