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ABSTRACT

Recent advancements in generative modeling have significantly enhanced the recon-
struction of audio waveforms from various representations. While diffusion models
are adept at this task, they are hindered by latency issues due to their operation at
the individual sample point level and the need for numerous sampling steps. In this
study, we introduce RFWave, a cutting-edge multi-band Rectified Flow approach
designed to reconstruct high-fidelity audio waveforms from Mel-spectrograms
or discrete acoustic tokens. RFWave uniquely generates complex spectrograms
and operates at the frame level, processing all subbands simultaneously to boost
efficiency. Leveraging Rectified Flow, which targets a straight transport trajectory,
RFWave achieves reconstruction with just 10 sampling steps. Our empirical evalu-
ations show that RFWave not only provides outstanding reconstruction quality but
also offers vastly superior computational efficiency, enabling audio generation at
speeds up to 160 times faster than real-time on a GPU. An online demonstration is
available at: https://rfwave-demo.github.io/rfwave/.

1 INTRODUCTION

Audio waveform reconstruction significantly enhances the digital interactions by enabling realistic
voice and sound generation for diverse applications. This technology transforms low-dimensional
features, derived from raw audio data, into perceptible sounds, improving the audio experience on
various platforms such as virtual assistants and entertainment systems. Autoregressive models and
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been applied to this task,
greatly advancing audio quality beyond traditional signal processing methods (Kawahara et al., 1999;
Morise et al., 2016). Autoregressive methods, while effective, are hindered by slow generation speeds
due to their sequential prediction of sample points (Oord et al., 2016; Kalchbrenner et al., 2018;
Valin & Skoglund, 2019). In contrast, GANs predict sample points in parallel, resulting in faster
generation speeds and maintaining high-quality output (Kumar et al., 2019; Yamamoto et al., 2020;
Kong et al., 2020a; Siuzdak, 2023; Du et al., 2023). Consequently, GAN-based methods deliver
impressive performance and are extensively utilized in real-world audio generation applications.

Despite the advancements, GAN-based waveform reconstruction models face challenges such as the
necessity for complex discriminator designs and issues like instability or mode collapse (Thanh-Tung
et al., 2018). In response, diffusion models for waveform reconstruction have been explored, offering
stability during training and the ability to reconstruct high-quality waveforms (Chen et al., 2020;
Kong et al., 2020b; gil Lee et al., 2022; Nguyen et al., 2024; Huang et al., 2022; Koizumi et al.,
2022). However, these models are at least an order of magnitude slower compared to GANs. The
slow generation speed in these diffusion-based waveform reconstruction models is primarily due to
two factors: (1) the requirement of numerous sampling steps to achieve high-quality samples, and
(2) the operation at the waveform sample point level. The latter often involves multiple upsampling
operations to transition from frame rate resolution to sample rate resolution, increasing the sequence
length and consequently leading to higher GPU memory usage and computational demands.

In this paper, we propose RFWave, a diffusion-type waveform reconstruction method designed to
match the speed of GAN-based methods while maintaining the training stability and high sample
quality of diffusion models. To overcome the challenge of slow sampling, we employ Rectified Flow
(Liu et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023), which connects data and
noise along a straight line, thereby enhancing sampling efficiency. To address the GPU memory
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and computational demands of sample point-level modeling, our model operates at the level of
Short-Time Fourier Transform (STFT) frames, enabling more efficient processing and reducing GPU
memory usage. RFWave with only 10 sampling steps can generate high-quality audio, achieving an
inference speed of up to 160 times real-time on an NVIDIA GeForce RTX 4090 GPU. Additionally,
the incorporation of three enhanced loss functions and an optimized sampling strategy further elevates
the overall quality of the reconstructed waveforms. To our knowledge, RFWave stands as the
fastest diffusion-based audio waveform reconstruction model, and it delivers superior audio quality.
Furthermore, it can reconstruct waveforms from Mel-spectrograms and discrete acoustic tokens,
enhancing its versatility and applicability in various audio generation tasks. Our main contributions
are as follows:

1. By integrating the Rectified Flow and 3 enhanced loss functions – energy-balanced loss,
overlap loss, and STFT loss – our model can reconstruct high-quality waveforms with a
drastically reduced number of sampling steps.

2. We utilize a multi-band strategy, coupled with the high-efficiency ConvNeXtV2 (Woo et al.,
2023) backbone, to generate different subbands concurrently. This not only assures audio
quality by circumventing cumulative errors, but also boosts the synthesis speed.

3. Our model operates at the level of STFT frames, not individual waveform sample points.
This approach significantly accelerates processing and reduces GPU memory usage.

4. We propose a technique for selecting sampling time points based on the straightness of the
Rectified Flow transport trajectories, which enhances sample quality for free.

2 BACKGROUND

In this section, we describe the basic formulation of the Rectified Flow and present releated works,
while also detailing our correlation and distinction.

Rectified Flow Rectified Flow (Liu et al., 2023) presents an innovative Ordinary Differential
Equation (ODE)-based framework for generative modeling and domain transfer. It introduces a
method to learn a mapping that connects two distributions, π0 and π1 on Rd, based on empirical
observations:

dZt

dt
= v(Zt, t), initialized from Z0 ∼ π0, such that Z1 ∼ π1, (1)

where v : Rd × [0, 1]→ Rd represents a velocity field. The learning of this field involves minimizing
a mean square objective function,

min
v

E(X0,X1)∼γ

[∫ 1

0

|| d
dt

Xt − v(Xt, t) ||2 dt

]
, with Xt = ϕ(X0, X1, t), (2)

where Xt = ϕ(X0, X1, t) represents a time-differentiable interpolation between X0 and X1, with
d
dtXt = ∂tϕ(X0, X1, t). The γ represents any coupling of (π0, π1). An illustrative instance of γ is
the independent coupling γ = π0 × π1, which allows for empirical sampling based on separately
observed data from π0 and π1. Liu et al. (2023) recommended a simple choice of

Xt = (1− t)X0 + tX1 =⇒ d

dt
Xt = X1 −X0. (3)

This simplification results in linear trajectories, which are critical for accelerating the inference
process. Typically, the velocity field v is represented using a deep neural network. The solution to
(2) is approximated through stochastic gradient methods. To approximate the ODE presented in (1),
numerical solvers are commonly employed. A prevalent technique is the forward Euler method. This
approach computes values using the formula

Zt+ 1
n
= Zt +

1

n
v(Zt, t), ∀t ∈ {0, . . . , n− 1}/n, (4)

where the simulation is executed with a step interval of ϵ = 1/n over n steps.

The velocity field has the capacity to incorporate conditional information, which is particularly essen-
tial in applications such as text-to-image generation and waveform reconstruction from compressed
acoustic representation. Consequently, in such contexts, v(Zt, t) in (2) is modified to v(Zt, t | C),
where C represents the conditional information pertinent to the corresponding X1.
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Diffusion Models for Audio Waveform Reconstruction Diffusion models (Song et al., 2020; Ho
et al., 2020) have become the de-facto choice for high-quality generation in the realm of generative
models. Diffwave (Kong et al., 2020b) and WaveGrad (Chen et al., 2020) were pioneering efforts to
reconstruct waveforms using diffusion models, achieving performance comparable to autoregressive
models and GANs. PriorGrad (gil Lee et al., 2022) enhances both speech quality and inference
speed by employing a data-dependent prior distribution. Meanwhile, FreGrad (Nguyen et al., 2024)
simplifies the model and reduces denoising time through the use of Discrete Wavelet Transform
(DWT). Multi-Band Diffusion (MBD) (Roman et al., 2023) leverages a diffusion model to reconstruct
waveforms from discrete EnCodec (Défossez et al., 2022) tokens. Despite these advancements,
the current fastest generation speed of these methods is only about 10 to 20 times faster than real-
time, which limits their application for real-time use, especially when combined with large-scale
Transformer-based acoustic models (Wang et al., 2023; Du et al., 2024). In contrast, our method
achieves speeds up to 160 times faster than real-time, significantly enhancing real-time applicability.

Estimating Complex Spectrograms Waveform reconstruction from complex spectrograms can
be effectively achieved using the ISTFT. Notably, Vocos (Siuzdak, 2023) and APNet2 (Du et al.,
2023), utilizing GANs as their model framework, estimate magnitude and phase spectrograms from
the input Mel-spectrograms, which can be transformed to complex spectrograms effortlessly. Both
models operate at the frame level, enabling them to achieve significantly faster inference speeds
compared to HiFi-GAN (Kong et al., 2020a), which uses multiple upsampling layers and operates at
the level of waveform sample points. Morever, these models preserve the quality of the synthesized
waveform, demonstrating their superiority in both speed and fidelity without a trade-off. In this paper,
we directly estimate complex spectrograms using Rectified Flow and focus on frame-level operations,
aiming to enhance both the efficiency and quality of our waveform synthesis process. Notably, the
distributions of real and imaginary parts of the complex spectrograms appear more homogeneous in
comparison to the distributions magnitude and phase.

Multi-band Audio Waveform Reconstruction Both Multi-band MelGAN (Yang et al., 2021) and
Multi-band Diffusion (Roman et al., 2023) employ multi-band strategies, albeit for different purposes
within their respective frameworks. Multi-band MelGAN, specifically, uses Pseudo-Quadrature
Mirror Filters (PQMF) (Johnston, 1980) to divide frequency bands. This division results in each
subband’s waveform being a fraction of the original waveform’s length, based on the number of
subbands. By reshaping these subbands into feature dimensions and utilizing a unified backbone
for modeling, Multi-band MelGAN is able to operate on considerably shorter signals. This strategy
significantly enhances the efficiency of the model, leading to accelerated training and inference
processes. Multi-band Diffusion utilizes an array of band-pass filters to separate the frequency bands
and models each subband with a distinct model. This approach ensures that errors in one band do not
negatively impact the others. In our research, we simplify the process of frequency band division
by directly choosing the appropriate dimensions from the complex spectrograms. Furthermore, we
enhance efficiency by modeling all subbands together in parallel with a single, unified model. This
strategy improves the processing speed and also helps in reducing error accumulation across different
subbands.

3 METHOD

Our model utilizes a multi-band Rectified Flow to directly predict the complex spectrogram. It
operates at the STFT frame level and incorporates a highly efficient ConvNeXtV2 (Woo et al.,
2023) backbone. With only 10 steps of sampling, the model is capable of producing high-quality
waveforms. In this section, we present the structure of the multi-band Rectified Flow model, which
can operate with noisy sample in either the time or frequency domain. Additionally, we describe the
corresponding normalization techniques, three enhanced loss functions, and the strategy for selecting
sampling time points.

3.1 MULTI-BAND RECTIFIED FLOW

Model Structure The model structure is depicted in Figure 1. All frequency bands, each dis-
tinguished by a unique subband index, share the same model. The subbands of a given sample
are grouped together into a single batch for processing, which facilitates simultaneous training or
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Figure 1: The overall structure for RFWave. isb is the subband index, C is the conditional input, which can be an
Encodec token or Mel-spectrogram, and ibw is the EnCodec bandwidth index. Modules enclosed in a dashed
box, as well as dashed arrows, are considered optional.

inference. This significantly reduces inference latency. Moreover, independently modeling the
subbands reduces error accumulation. As discussed in (Roman et al., 2023), conditioning higher
bands on lower ones can lead to an error accumulation, which means inaccuracies in the lower bands
can adversely affect the higher bands during inference.

The model maps a noisy sample (Xt) to its velocity (vt). For each subband, the subband’s noisy
sample (Xisb

t ) is fed into the ConvNeXtV2 backbone to predict its velocity (visbt ) conditioned on time
(t), the subband index (isb), the conditional input (C, the Mel-spectrogram or the EnCodec (Défossez
et al., 2022) tokens), and an optional EnCodec bandwidth index (ibw). The detailed structure of the
ConvNeXtV2 backbone is shown in Figure 1. We employ Fourier features as described in (Kingma
et al., 2021). The Xisb

t , C, and Fourier features are concatenated along the channel dimension and
then passed through a linear layer, forming the input that is fed into a series of ConvNeXtV2 blocks.
The sinusoidal t embedding, along with the optional ibw embedding, are element-wise added to
the input of each ConvNeXtV2 block. The ibw is utilized during the decoding of EnCodec tokens,
enabling a single model to support EnCodec tokens with various bandwidths. Furthermore, the isb is
incorporated via an adaptive layer normalization module, which utilizes learnable embeddings as
described in (Siuzdak, 2023; Xu et al., 2019). The other components are identical to those within the
ConvNeXtV2 architecture, details can be found in (Woo et al., 2023).

Our methodology offers two modeling options. The first involves mapping Gaussian noise to the
waveform directly in the time domain, wherein X0, X1, Xt and vt all reside in the time domain. The
second option maps Gaussian noise to the complex spectrogram, placing X0, X1, Xt and vt in the
frequency domain. Notably, Xisb

t and visbt are consistently represented in the frequency domain, as
detailed in the following paragraphs, ensuring that the neural network runs at the frame level. By
processing frame-level features, our model achieves greater memory efficiency compared to diffusion
vocoders like PriorGrad, which operate at the level of waveform sample points. While PriorGrad (gil
Lee et al., 2022) can train on 6-second1 audio clips at 44.1 kHz within 30 GB of GPU memory, our
model is capable of handling 177-second clips with the same memory resources.

Operating with Xt in the Time Domain and Waveform Equalization Since our model is
designed to function at the frame level, when Xt and vt are in the time domain (specially, X1 is the
waveform and X0 is noise of the identical shape, with Xt and vt derived from (3)), the use of STFT
and ISTFT, as illustrated in Figure 1, becomes necessary. The dimension of Xt and vt adhere to
[1, T ]2, where T is the waveform length in sample points. After the STFT operation, we extract the
subbands by equally dividing the full-band complex spectrogram, getting Xisb

t . Each subband Xisb
t

is then processed independently by the backbone as an individual sample to predict the corresponding
visbt . These predictions are subsequently merged back together before the ISTFT operation. The
Xisb

t processed by the backbone thus has dimensions of [2ds, F ], where ds represents the number of

1The duration of an audio clip is calculated as the batch size multiplied by the number of segment frames
and hop length, divided by the sampling rate.

2For simplicity, the batch dimension is not included in the discussion.
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frequency bins in a subband’s complex spectrum and F the number of frames. The real and imaginary
parts of each subband are interleaved to form a 2ds-dimensional feature.

White Gaussian noise has uniform energy across frequency bands, but waveform energy profiles
vary significantly. For example, speech energy decays exponentially with frequency, while music
maintains a consistent distribution (Schnupp et al., 2011). These differences challenge diffusion
model training, making energy equalization across bands beneficial (Roman et al., 2023). In the
time-domain model, a bank of Pseudo-Quadrature Mirror Filters (PQMF) is employed to decompose
the input waveform into subbands. Subsequently, these subbands are equalized and then recombined
to form the equalized waveform. The performance of the PQMF bank exhibits a modest enhancement
compared to the array of band-pass filters employed in (Roman et al., 2023). It’s important to note that
the PQMF is solely utilized for waveform equalization and holds no association with the division of
the complex spectrogram into subbands. For waveform equalization, mean-variance normalization is
employed, utilizing the exponential moving average of mean and variance of each waveform subband
computed during training. This approach ensures that the transformation can be effectively inverted
using the same statistics.

Alternative Approach: Operating with Xt in the Frequency Domain and STFT Normalization
When Xt and vt reside in the frequency domain (i.e., X1 is the waveform’s complex spectrogram
and X0 is noise of the identical shape), STFT and ISTFT, as shown in Figure 1, are unnecessary.
The dimensions of Xt and vt are [2d, F ], where d is the number of frequency bins in the complex
spectrogram. By equally partitioning the full-band complex spectrogram, Xisb

t is extracted, resulting
in a shape of [2ds, F ], which is then processed by the ConvNeXtV2 backbone. In the frequency-
domain model, the waveform is transformed to a complex spectrogram without equalization. The
preprocessing involves the dimension-wise mean-variance normalization of the complex spectrogram.

During inference, operating with Xt and vt in the time domain requires both STFT and ISTFT at
each sampling step. In contrast, when Xt and vt are in the frequency domain, only a single ISTFT is
needed after the entire sampling process. Despite this computational overhead, our experiments show
that the time-domain configuration achieves slightly better performance, particularly in preserving
high-frequency details. Sampling algorithms for the two distinct approaches, one in the time domain
and the other in the frequency domain, are provided in Appendix Section A.9.1.

3.2 LOSS FUNCTIONS

Energy-balanced Loss In preliminary experiments, we noticed low-volume noise in expected
silent regions. We attribute this to the property of Mean Square Error (MSE) used in (2). The
MSE measures the absolute distortion between the predicted values and the ground truth. In silent
regions, small absolute errors contribute minimally to the overall MSE loss, so the model does not
prioritize eliminating them during training. This results in the model’s inability to effectively suppress
minor deviations in silent areas, potentially leading to perceptible noise. In contrast, larger errors in
high-amplitude regions have a significant impact on the MSE loss, causing the model to focus more
on reducing errors in these areas during training.

We propose energy-balanced loss to mitigate this problem. Our energy-balanced loss is designed
to weight errors differently depending on the region’s volume (or energy) accross the time-axis.
Specifically, for each frequency subband, we compute the standard deviation along the feature
dimension of the ground truth velocity to construct a weighting coefficient of size [1, F ]. This
vector is reflective of the frame-level energy of the respective subband, as depicted in Figure A.1.
Subsequently, both the ground truth and predicted velocity are divided by this vector before proceeding
to the subsequent steps. For the frequency domain model, the training objective defined in (2) is
adjusted as follows:

min
v

EX0∼π0,(X1,C)∼D

[∫ 1

0

|| (X1 −X0)/σ − v(Xt, t | C)/σ ||2 dt

]
,

with σ =
√

Var1(X1 −X0) and Xt = tX1 + (1− t)X0,

(5)

where D represents the dataset with paired X1 and C, and Var1 calculates the variance along the
feature dimension. For the time domain model, this energy balancing operation precedes the ISTFT
process. This approach helps to minimize the relative error in low-volume regions. Our experimental
results demonstrate that this method enhances overall performance, benefiting not just the silent parts.

5
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Figure 2: An illustration of dividing complex spectrograms into subbands. The area highlighted in pink represents
a subband, while the section enclosed by the two dashed vertical lines indicates the main section.

Overlap Loss Within the multi-band structure, each subband is predicted independently, potentially
resulting in inconsistencies among them. To mitigate these inconsistencies, we introduce an overlap
loss. This involves maintaining overlaps between the subbands when dividing the full-band complex
spectrograms. A detailed illustration of this scheme is provided in Figure 2 and described in detail
in Appendix Section A.3. In this paper, we employ an 8-dimensional overlap. During the training
phase, the MSEs of the overlapped predictions is minimized. In the inference phase, the overlaps are
removed, and all subbands are merged to recreate the full-band complex spectrograms.

As each subband is predicted, the model internally maintains consistency between its overlap section
and the main section. The overlap serves as an anchor to maintain consistency among the subbands.
Modeling higher bands based on lower bands rather than predicting all subbands in parallel can
increase consistency between subbands. However, at the inference stage, if the lower bands are
incorrectly predicted, the higher bands conditioned on them would also be inaccurate (Roman et al.,
2023). RFWave addresses this by using overlap loss to maintain consistency between subbands
during training. At the inference stage, subbands are predicted independently, so any error occurring
in one subband does not negatively affect the others.

STFT Loss The magnitude spectrogram derived loss (Arik et al., 2018) is extensively utilized in
GAN-based vocoders, such as HiFi-GAN (Kong et al., 2020a) and Vocos (Siuzdak, 2023), both of
which leverage a Mel-spectrogram loss. Nevertheless, its use in diffusion-based vocoders is relatively
rare. This might stem from its lack of direct compatibility with the formalization of a noise prediction
diffusion model. Here we adopt STFT loss for RFWave. According to (5), the model’s output serves
as an approximation for velocity:

v(Xt, t | C) ≈
d

dt
Xt = X1 −X0. (6)

Hence, at time t, an approximation for X1 is:
∼
X1 ≈ X0 + v(Xt, t | C). (7)

The STFT loss can be applied on the approximation
∼
X1, incorporating the spectral convergence loss

and log-scale STFT-magnitude loss as proposed in (Arik et al., 2018), which are detailed in Appendix
Section A.4. According to our experimental findings, the STFT loss effectively reduces artifacts in
the presence of background noise.

3.3 SELECTING TIME POINTS FOR EULER METHOD

Liu et al. (2023) employ equal step intervals for the Euler method, as illustrated in (4). Here, we
propose selecting time points for sampling based on the straightness of transport trajectories. The time
points are chosen such that the increase in straightness is equal across each step. The straightness of a
learned velocity field v is defined as S(v) =

∫ 1

0
E || (X1−X0)−v(Xt, t | C) ||2 dt, which describes

the deviation of the velocity along the trajectory. A smaller S(v) means straighter trajectories. This
approach ensures that the difficulty of each Euler step remains consistent, requiring the model to
take more steps in more challenging regions. Using the same number of sampling steps, this method
outperforms the equal interval approach. The implementation details are provided in Appendix
Section A.5, while the algorithm is presented in Appendix Section A.9.2. We refer to this approach
as equal straightness.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Overview We evaluate RFWave using both Mel-spectrograms and discrete EnCodec tokens as
inputs. For Mel-spectrogram inputs, we first benchmark RFWave against existing diffusion vocoders

6
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to demonstrate its superiority. We then compare it with widely-used GAN models to highlight its
practical applicability and advantages. For discrete EnCodec tokens, we evaluate RFWave’s efficiency
in reconstructing high-quality audio from compressed representations across diverse domains. Finally,
we conduct ablation studies and further analysis to examine the effects of the individual components
of RFWave.

Data For Mel-spectrogram inputs, we conduct two evaluations. When benchmarking against
diffusion vocoders, we train separate models on LibriTTS (Zen et al., 2019) (speech), MTG-Jamendo
(Bogdanov et al., 2019) (music), and Opencpop (Wang et al., 2022) (vocal) datasets and test each
model on its respective dataset to ensure comprehensive comparison across various audio categories.
When comparing RFWave to widely used GAN-based models, we train a model on LibriTTS and
evaluate its in-domain performance on the LibriTTS test set. Additionally, we assess the out-of-
domain generalization ability of this LibriTTS-trained model by testing it on the MUSDB18 (Rafii
et al., 2017) test subset.

For discrete EnCodec token inputs, we follow convention by training a universal model on a large-
scale dataset. This dataset combines Common Voice 7.0 (Ardila et al., 2019) and clean data from
DNS Challenge 4 (Dubey et al., 2022) for speech, MTG-Jamendo (Bogdanov et al., 2019) for music,
and FSD50K (Fonseca et al., 2021) and AudioSet (Gemmeke et al., 2017) for environmental sounds.
Recognizing the lack of a comprehensive test set for universal audio codec models, we constructed
a unified evaluation dataset comprising 900 test audio samples from 15 external datasets, covering
speech, vocals, and sound effects. Detailed information about this test set is provided in Table A.4.

Baseline and Evaluation Metrics We conducted a comprehensive benchmark comparison of
RFWave against a series of state-of-the-art models. For Mel-spectrogram inputs, we utilized PriorGrad
(gil Lee et al., 2022) and FreGrad (Nguyen et al., 2024) as baselines for diffusion-based models.
Vocos (Siuzdak, 2023) and BigVGAN (gil Lee et al., 2023) served as baselines for GAN-based
methods, reflecting their widespread use in real-world applications. For discrete EnCodec token
inputs, we compared with EnCodec (Défossez et al., 2022) and MBD (Roman et al., 2023).

We trained PriorGrad and FreGrad on LibriTTS, Opencpop, and MTG-Jamendo using their open-
source details. For Vocos, BigVGAN, EnCodec, and MBD, we used public pre-trained models. We
followed the authors’ recommended sampling steps: 6 for PriorGrad, 50 for FreGrad, and 20 for
MBD. Model sources are in Table A.2.

For objective evaluation, we use ViSQOL (Chinen et al., 2020) to assess perceptual quality, employing
speech-mode for 22.05/24 kHz waveforms and audio-mode for 44.1 kHz waveforms. Additional
metrics include the Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001), the F1 score
for voiced/unvoiced classification (V/UV F1), and the periodicity error (Periodicity) (Morrison et al.,
2022). For subjective evaluation, we conduct crowd-sourced assessments, employing a 5-point Mean
Opinion Score (MOS) to determine the audio naturalness, ranging from 1 (‘poor/unnatural’) to 5
(‘excellent/natural’), more details provided in the Appendix Section A.10.

Implementation We use the time-domain model with three enhanced loss functions as the default.
The RFWave backbone contains 8 ConvNeXtV2 blocks, and the complex spectrogram is divided into
8 equally spanned subbands. For evaluation, we use 10 sampling steps. Table A.3 lists the parameters
used for extracting Mel-spectrograms and complex spectrograms from datasets with different sample
rates. Further implementation details and computational resource requirements are provided in the
Appendix Sections A.1 and A.2, respectively.

4.2 EXPERIMENTAL RESULTS ON MEL-SPECTROGRAMS INPUT

Comparison with Diffusion-based Method In this portion, we compare RFWave3 with PriorGrad
and FreGrad by training separate models for each method on the LibriTTS, MTG-Jamendo, and
Opencpop datasets and evaluating each model on its respective test set. Table 1 presents overall
results, while Table A.5 provides detailed metrics for each audio category. RFWave consistently

3This evaluation used an earlier RFWave version without the optimized sampling method (equal straightness)
from Section 3.3. Despite this, the results convincingly demonstrate RFWave’s superiority over other diffusion
vocoders.
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outperforms PriorGrad and FreGrad in both objective and subjective metrics. The superior MOS score
achieved by RFWave is likely due to its ability to produce clearer and more consistent harmonics,
particularly in high-frequency ranges, which contributes to better overall audio quality. A collection
of spectrograms and their corresponding analyses can be found in Appendix Section A.6.

Comparison with GAN-based Method When comparing RFWave to widely used state-of-the-art
GAN-based models (BigVGAN, Vocos), we used models trained on LibriTTS. Besides evaluating on
the LibriTTS testset, to assess the models’ robustness and extrapolation capabilities, following the
methodology in (gil Lee et al., 2023), we also evaluated these models’ performance on the MUSDB18
dataset. It can be observed in Table 2 that on the in-domain test set (LibriTTS), RFWave is generally
on par with state-of-the-art GAN-based models. However, on the out-of-domain test set (MUSDB18),
according to the results in Table 3, RFWave shows significant advantages over BigVGAN and Vocos,
even though BigVGAN employed Snake activation (Ziyin et al., 2020) to enhance its out-of-domain
data generation capabilities. This demonstrates that RFWave, as a diffusion-type model, offers
clear advantages in generalization and robustness compared to GAN-based models. For detail, we
observe that GAN-based methods tend to generate horizontal lines in the high-frequency regions of
the spectrograms, as exemplified in Figure A.7. In contrast, RFWave consistently produces clear
high-frequency harmonics, even when applied to out-of-domain data.

Table 1: Average Mean Opinion Score (MOS) and objective evaluation metrics for RFWave, PriorGrad and
FreGrad across various test sets. MOS is provided with 95% confidence interval.

Model MOS ↑ PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity ↓

RFWave 3.95±0.09 4.202 4.456 0.979 0.070
PriorGrad 3.75±0.09 3.612 4.347 0.974 0.082
FreGrad 2.99±0.14 3.640 4.179 0.973 0.087

Ground truth 4.00±0.09 - - - -

Table 2: MOS and objective evaluation metrics for RFWave, BigVGAN and Vocos on LibriTTS.

Model MOS ↑ PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity ↓

RFWave 3.82±0.12 4.304 4.579 0.967 0.091
BigVGAN 3.78±0.11 4.240 4.712 0.978 0.067
Vocos 3.74±0.10 3.660 4.696 0.958 0.104

Ground truth 3.91±0.10 - - - -

Table 3: MOS for RFWave, BigVGAN and Vocos on MUSDB18.

Model Vocals Drums Bass Others Mixture Average

RFWave 3.46±0.14 3.65±0.10 3.62±0.10 3.54±0.11 4.04±0.11 3.67±0.05
BigVGAN 3.42±0.13 3.68±0.09 3.50±0.12 3.33±0.13 3.58±0.10 3.51±0.05
Vocos 3.04±0.15 3.54±0.11 2.96±0.12 2.88±0.15 3.08±0.14 3.10±0.06

Ground truth 3.62±0.14 3.71±0.14 3.75±0.12 3.79±0.12 4.17±0.10 3.80±0.05

4.3 EXPERIMENTAL RESULTS ON DISCRETE ENCODEC TOKENS INPUT

We evaluated RFWave against EnCodec and MBD across various bandwidths for discrete EnCodec
tokens inputs. For RFWave, we used Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) with
a 2.0 coefficient. CFG showed little improvement for Mel-spectrogram inputs, but effective for
EnCodec tokens, likely due to CFG tending to be more impactful when the input is more compressed.

Table 4 displays the average MOS and objective metrics for EnCodec tokens with varying bandwidths
across different auditory contexts. Meanwhile, Table A.6 offers the detailed results for each category.
RFWave excels in all metrics, achieving optimal scores, except for ViSQOL. While using a larger
bandwidth generally improves performance, for RFWave, an increase in bandwidth from 6.0 kbps to
12.0 kbps results in only a slight enhancement in MOS. EnCodec’s GAN-based decoder attains the
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highest ViSQOL. Different model families may produce distinct waveform footprints, with ViSQOL
showing a subtle bias for GAN-based models.

Table 4: Average MOS and objective metrics for RFWave, EnCodec and MBD across various test sets.

Bandwidth Model MOS ↑ PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity↓

1.5 kbps
RFWave(CFG2) 3.17±0.22 1.797 3.108 0.914 0.193
EnCodec 2.23±0.23 1.708 3.518 0.906 0.199
MBD 3.01±0.19 1.699 2.982 0.901 0.212

3.0 kbps
RFWave(CFG2) 3.52±0.25 2.444 3.570 0.939 0.145
EnCodec 2.79±0.25 1.934 3.793 0.930 0.166
MBD 3.06±0.23 2.310 3.402 0.922 0.171

6.0 kbps
RFWave(CFG2) 3.69±0.16 2.936 3.892 0.954 0.117
EnCodec 3.10±0.15 2.432 4.091 0.951 0.126
MBD 3.43±0.15 2.488 3.582 0.929 0.168

12.0 kbps
RFWave(CFG2) 3.73±0.16 3.270 4.124 0.965 0.099
EnCodec 3.55±0.15 2.892 4.291 0.963 0.105
MBD - - - - -

Ground truth 4.07±0.14 - - - -

4.4 ANALYSIS

Ablations We evaluate the model’s performance in both frequency and time domains, then in-
crementally add the three loss functions and equal straightness to the better-performing model for
further analysis. We conduct ablation studies on LJSpeech (Ito & Johnson, 2017), using 250 test
sentences for Mel-spectrogram-based waveform reconstruction, summarized in Table 5. Despite the
metrics not consistently correlating with human evaluations, they accurately captured the quality
improvements brought about by design modifications (Roman et al., 2023). The model operating
in the time domain outperforms its frequency domain counterpart, as the ISTFT operation in the
former (Figure 1) introduces periodic signals. The inverse Discrete Fourier Transform (IDFT) matrix
comprises sinusoidal functions of frequencies [0, 1/N, ..., (N − 1)/N ], where N is the number of
FFT points (Oppenheim & Schafer, 1975). This mechanism is similar to the Snake activation (Ziyin
et al., 2020) in BigVGAN (gil Lee et al., 2023), which also introduces periodic signals into the
generator. Energy-balanced loss and equal straightness improves the overall performance. The STFT
loss enhances PESQ scores but adversely affects ViSQOL and periodicity error. This occurs because
the model tends to prioritize magnitude over phase when applying STFT loss. This trade-off is essen-
tial for effectively eliminating artifacts, especially in the presence of background noise. Although
overlap loss slightly decreases PESQ, omitting it results in a noticeable transition between subbands.
Example spectrograms illustrating the effects of omitting STFT loss and overlap loss are provided in
Figures A.8 and A.9, respectively.

Table 5: Objective metrics assess the model’s performance in the frequency domain and the time domain, where
three loss functions and equal straightness are applied incrementally.

Setting PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity ↓

frequency 3.872 4.430 0.948 0.144
time 4.127 4.551 0.957 0.124

+ energy-balanced loss 4.181 4.598 0.965 0.110
+ overlap loss 4.158 4.599 0.959 0.122
+ STFT loss 4.211 4.578 0.961 0.119
+ equal straightness 4.275 4.654 0.966 0.100

Futher Analysis Using the model with an 8-layer ConvNeXtV2 backbone, time domain, and three
loss functions as the baseline, we first experimented with the DDPM (Ho et al., 2020) approach.
Utilizing the noise schedule from DiffWave and PriorGrad, the performance with 50 sampling steps
fell short of the baseline, as demonstrated in Table 6. This highlights that Rectified Flow is critical
for our model to efficiently generate high-quality audio samples. Next, we experimented with a
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ResNet (He et al., 2016) backbone with a similar number of parameters. This configuration slightly
reduced efficiency and performance in objective metrics (Table 6), indicating that the ConvNeXtV2
backbone enhances both efficiency and audio quality. Finally, we experimented with models
of different sizes. Specifically, we tested ConvNextV2 backbones of half and double sizes, with
detailed configurations provided in A.1. Increasing the backbone size improves performance but
decreases efficiency (Table 6).

Table 6: Objective metrics for further analysis. xRT stands for the speed at which the model can generate speech
in comparison to real-time.

Setting GPU xRT ↑ PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity ↓

baseline 162.59 4.211 4.578 0.961 0.119
DDPM, 50 steps 34.40 2.790 4.499 0.939 0.174
ResNet 150.95 3.865 4.509 0.955 0.128
half size 228.70 4.128 4.553 0.959 0.120
double size 111.62 4.285 4.636 0.968 0.100

4.5 INFERENCE SPEED

We perform inference speed benchmark tests using an NVIDIA GeForce RTX 4090 GPU. The
implementation was done in PyTorch (Paszke et al., 2019), and no specific hardware optimizations
were applied. The inference was carried out with a batch size of 1 sample, utilizing the LJSpeech
test set, resampled to model’s sampling rate. Table 7 displays the model size, synthesis speed and
GPU memory consumption of the models. RFWave is more than twice as fast as BigVGAN and
consumes less GPU memory, thereby eliminating latency as a barrier for practical applications. This
speed advantage becomes even more pronounced when synthesizing high-resolution audio (44.1/48
kHz). Frame-level models like RFWave significantly outperform sample-point-based models in high-
resolution audio synthesis in terms of speed. RFWave can easily adjust the complex spectrogram’s
window length and hop length for 44.1 kHz sampling, maintaining low computational complexity,
whereas BigVGAN requires additional upsampling blocks. Vocos serves as a strong baseline, given
its efficiency in requiring only a single forward pass and operating at the frame level.

Table 7: Model footprint and synthesis speed. xRT stands for the speed at which the model can generate speech
in comparison to real-time.

Model Parameters (M) GPU xRT ↑ GPU Memory (MB) Sampling steps

RFWave 18.1 162.59 780 10
BigVGAN 107.7 72.68 1436 1
Vocos(ISTFT) 13.5 2078.20 590 1
PriorGrad 2.6 16.67 4976 6
FreGrad 1.7 7.50 2720 50
MBD 411.0 4.82 5480 20

RFWave(44.1KHz) 20.5 152.58 902 10
BigVGAN(44.1KHz) 116.5 39.03 1740 1

5 CONCLUSION

In this study, we propose RFWave, a multi-band Rectified Flow approach for audio waveform recon-
struction. The model has been carefully designed to overcome the latency issues associated with
diffusion models. RFWave stands out for its ability to generate complex spectrograms by operating at
the frame level, processing all subbands concurrently. This concurrent processing significantly en-
hances the efficiency of the waveform reconstruction process. The empirical evaluations conducted in
this research have demonstrated that RFWave achieves exceptional reconstruction quality. Moreover,
it has shown superior computational efficiency by generating audio at a speed that is 160 times faster
than real-time, comparable to GAN-based methods, making it practical for real-world applications.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The RFWave backbone contains 8 ConvNeXtV2 blocks. Within each ConvNeXtV2 block, the
depth-wise convolutional layer featuring a large kernel utilizes a kernel size of 7 and has a channel
dimension of 512. The first and last 1x1 point-wise convolutional layers in the sequence possess
channel dimensions of 512 and 1536, respectively. In Subsection 4.4, the half-size variant contains 8
ConvNeXtV2 blocks with point-wise convolutional layers of 384 and 1152, while the double-size
variant features 16 ConvNeXtV2 blocks with point-wise convolutional layers of 512 and 1536.

During the extraction of complex coefficients for the model, we use the orthonormal Fast Fourier
Transform (FFT) and its inverse (IFFT), with the normalization convention of dividing by 1/

√
N for

both operations, here N is the FFT size. This approach ensures the spectrogram extracted is within a
more reasonable range for modeling.

In terms of loss functions, we assign a weight of 1 to either the Rectified Flow loss or its energy-
balanced variant. If employed, the overlap loss and STFT loss are assigned a weight of 0.01. These
weights are determined by aligning the L2-norm of the gradients from the overlap loss and STFT loss
with approximately 1/10 of that from the Rectified Flow loss.

Training details are also worth mentioning. Audio samples are randomly cropped to lengths of 32512
and 65024 for 22.05/24 kHz and 44.1 kHz waveforms, respectively. This is equivalent to a crop
window of 128 frames for both sampling rates. We use a batch size of 64. The model optimization is
performed using the AdamW optimizer with a starting learning rate of 2e-4 and beta parameters of
(0.9, 0.999). A cosine annealing schedule is applied to reduce the learning rate to a minimum of 2e-6.

A.2 COMPUTATIONAL RESOURCE REQUIRED FOR THE EXPERIMENTS

The bulk of the experiments were carried out on personal computers and GPU servers, which were
sourced from cloud service providers. Primarily, we utilized Nvidia-4090-24G and Nvidia-A100-80G
GPUs for these tasks.

The specific hardware used and the corresponding time taken for training RFWave on various datasets
are as follows:

Table A.1: GPU configurations and training duration for various datasets

Dataset GPU configuration Training duration
LJspeech 1×4090 2 days
LibriTTS 2×A100 5 days
Opencpop 1×4090 1 day
MTG-Jamendo 2×A100 7 days
EnCodec mixed dataset 4×A100 10 days

A.3 DEVIDING INTO SUBBANDS

The complex spectrogram is circularly padded in the feature dimension with a size of (dol, dol − 1),
where dol signifies the overlap size. The dimension of each subband’s main section, denoted as dm,
is calculated by dividing d− 1 by the total number of subbands. Here, d represents the dimension of
the complex spectrograms. The last subband is an exception, having an extra feature dimension but
one less padding dimension. Subbands are extracted by applying a sliding window along the feature
dimension, where the window has a size of dm + 2dol and shifts by dm

4.

4The feature dimension of each subband, represented as ds, equals (dm+2dol), accounting for the interleave
of real and imaginary parts.
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Figure A.1: The energy and weighting coefficients, represented by σ, display a consistent variation throughout
the frames.

A.4 STFT LOSS

Spectral convergence (SC) loss

∥|X1| − |
∼
X1|∥F /∥|X1|∥F , (8)

where X1 is the ground truth and
∼
X1 is the estimated complex spectrogram using (7). The Frobenius

norm, ∥ · ∥F , applied over time and frequency, emphasizes large spectral components in SC loss.

Log-scale STFT-magnitude loss

∥ log(|X1|+ ϵ)− log(|
∼
X1|+ ϵ)∥1, (9)

where the L1 norm, ∥ ·∥1, along with a small constant ϵ, is used to accurately capture small-amplitude
components in the log-scale STFT-magnitude loss.
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A.5 SELECTING TIME POINTS FOR EULER METHOD

Straightness is calculated from a single batch with a size of 96. The Euler method uses 100 equal
interval steps to estimate the integral in the straightness definition. Time points are selected such that
the increase in straightness remains consistent across each interval. An example with 10 Euler steps
is provided in Figure A.2. The time points are calculated only once per model, resulting in negligible
computational load.

Figure A.2: Deviation (top) and straightness (bottom) over time: red dots mark Euler method time points, with
constant increase in straightness across intervals.
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A.6 SPECTROGRAM EXAMPLES FOR COMPARISON WITH DIFFUSION-BASED METHOD

For all the spectrogram figures, we used Adobe Audition for spectrogram visualization, with the
dynamic range being [-132, 0] dB.

Figure A.3 showcases spectrogram examples generated by various models using the Opencpop
dataset. When compared to the ground truth spectrogram, RFWave is seen to produce clean and
stable harmonics, whereas the harmonics generated by other models exhibit minor discontinuities.

Figure A.4 exhibits spectrogram examples generated by different models utilizing the LibriTTS
dataset. RFWave generate clear high-frequency harmonics, while PriorGrad and FreGrad result in
blurred high-frequency harmonics.

Figure A.5 displays spectrogram examples generated by diverse models from the Jamendo dataset.
Both RFWave and PriorGrad generate commendable spectrograms, with RFWave edging out slightly
in the high-frequency range.

(a) Ground truth (b) RFWave

(c) PriorGrad (d) FreGrad

Figure A.3: Examples of spectrograms from Opencpop. Within the region marked out by the green box, the
harmonics generated through PriorGrad and FreGrad show minor discontinuities.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Ground truth (b) RFWave

(c) PriorGrad (d) FreGrad

Figure A.4: Examples of spectrograms from LibriTTS. Within the green-boxed region, RFWave yields better
harmonics than PriorGrad and FreGrad.
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(a) Ground truth (b) RFWave

(c) PriorGrad (d) FreGrad

Figure A.5: Examples of spectrograms from MTG-Jamendo. Within the green-boxed region, RFWave generates
more favorable high-frequency components compared to PriorGrad and FreGrad. Additionally, FreGrad gives
rise to vertical line artifacts as highlighted by the top-right box.
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A.7 SPECTROGRAM EXAMPLES FOR COMPARISON WITH GAN-BASED METHOD

Figure A.6 illustrates that RFWave, BigVGAN and Vocos are capable of generating high-quality
spectrograms when applied to the LibriTTS dataset. This demonstrates the effectiveness of each
approach in handling in-distribution data. The spectrograms exhibit well-defined harmonics and
minimal artifacts, highlighting the robustness of the models within their familiar domain.

Figure A.7 presents spectrogram examples generated on the MUSDB18 dataset, with the models
having been trained on the LibriTTS dataset. A notable observation is that both BigVGAN and Vocos
exhibit a tendency to produce horizontal lines in the high-frequency regions of the spectrograms.
These artifacts are perceptually problematic, as they often result in a metallic sound quality that
detracts from the naturalness of the audio. In stark contrast, RFWave consistently generates clear
and well-defined high-frequency harmonics. This capability underscores RFWave’s superior ability
to maintain spectral fidelity, even when applied to out-of-distribution data, thereby enhancing the
overall audio quality and realism.

(a) Ground truth (b) RFWave

(c) BigVGAN (d) Vocos

Figure A.6: Examples of spectrograms from LibriTTS. All the methods produce high-quality spectrograms.
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(a) Ground truth (b) RFWave

(c) BigVGAN (d) Vocos

Figure A.7: Examples of spectrograms from MUSDB18. Within the green-boxed region, both BigVGAN and
Vocos have a propensity to generate horizontal lines within the high-frequency areas of the spectrograms. These
artifacts present perceptual issues since they frequently lead to a metallic sound quality that diminishes the
naturalness of the audio. In sharp contrast, RFWave produces well defined high-frequency harmonics, even
when applied to out-of-distribution data.
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(a) Ground truth (b) w/ STFT Loss (c) w/o STFT Loss

Figure A.8: The effect of STFT loss. There are some vertical patterns in the spectrogram of waveforms generated
by a model without STFT loss, as highlighted by the green rectangular.

(a) Ground truth (b) w/ overlap Loss (c) w/o overlap Loss

Figure A.9: The effect of overlap loss. Omitting it results in a noticeable transition between subbands, as clearly
illustrated by the green arrows.
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A.8 TABLES

Table A.2: Code repositories for model training.

Model repository

PriorGrad
https://github.com/microsoft/
NeuralSpeech/tree/master/
PriorGrad-vocoder

FreGrad https://github.com/signofthefour/
fregrad

Multi-Band Diffusion (MBD) https://github.com/facebookresearch/
audiocraft

EnCodec https://github.com/facebookresearch/
encodec

Vocos https://github.com/gemelo-ai/vocos
BigVGAN https://github.com/NVIDIA/BigVGAN

Table A.3: Parameters for extracting Mel-spectrograms and complex spectrograms.

Dataset Sample rate (kHZ) Window length Hop length FFT size Mel bins

LJSpeech 22.05 1024 256 1024 100
LibriTTS 24 1024 256 1024 100
Opencpop 44.1 2048 512 2048 100
MTG-Jamendo 44.1 2048 512 2048 100
EnCodec Training 24 1280 320 1280 -
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Table A.4: Construction of the general Encodec test dataset

Category Subdirectory Samples Description

Speech

Expresso-test 50
From the Expresso dataset test set (Nguyen et al., 2023),
randomly select 50 samples, segmenting any audio longer
than 30 seconds into 10-second clips beforehand.

HiFiTTS-test 50 Randomly select 50 samples from the test set of the Hi-Fi
TTS dataset (Bakhturina et al., 2021).

LibriTTS-test 50 Randomly select 50 samples from the test set of LibriTTS
(Zen et al., 2019).

Aishell3-test 50 Randomly select 50 samples from the test set of the
Aishell3 dataset (Shi et al., 2020).

JVS 50 Randomly select 50 samples from the entire JVS Corpus.
(Takamichi et al., 2019).

CML-TTS-test 50 Randomly select 50 samples from the test set of the CML-
TTS dataset (Oliveira et al., 2023).

Vocal

Musdb-test-vocal 60
Segment the vocal track audio from the Musdb test set
(Rafii et al., 2017) into 10-second clips, then randomly
select 60 samples.

CSD 20 Segment all audio in the CSD (Choi et al., 2020) into 10-
second clips, then randomly select 20 samples.

Opencpop 20 Randomly select 20 samples from the Opencpop dataset
(Wang et al., 2022).

ChineseOpera-monophonic 60
From the monophonic subset of the Chinese Opera
Singing Dataset (Black et al., 2014), segment any audio
longer than 30 seconds into 10-second clips, then ran-
domly select 60 samples.

JVS-Music 60 Randomly select 60 samples from the JVS-Music Corpus
(Tamaru et al., 2020).

RAVDESS 60 Randomly select 60 samples from the song subset of the
RAVDESS corpus (Livingstone & Russo, 2018).

Ccmusic-demo-vocal 20
From the demo audios of the Ccmusic Dataset (Liu & Li,
2021), select the vocal parts. Then, randomly select 20
samples from these for the test set, segmenting any audio
longer than 30 seconds into 10-second clips beforehand.

Sound Effect

ESC-50 150 Randomly select 150 samples from the ESC-50 (Piczak,
2015).

Musdb-test-accompaniment 40
Segment the accompaniment track audio from the test set
of the Musdb dataset (Rafii et al., 2017) into 10-second
clips, then randomly select 40 samples from these clips.

Musdb-test-mixture 20
Segment the mixture track audio from the test set of the
Musdb dataset (Rafii et al., 2017) into 10-second clips,
then randomly select 20 samples from these clips.

ChineseOpera-polyphonic 20
From the polyphonic subset of the Chinese Opera Singing
Dataset (Black et al., 2014), segment any audio longer than
30 seconds into 10-second clips, then randomly select 20
samples.

OpenMIC-test 40 Randomly select 40 samples from the test set of OpenMix
2018 (Humphrey et al., 2018).

Ccmusic-demo-music 30

From the demo audios of the Ccmusic Dataset (Liu &
Li, 2021), select the non-vocal parts. Then, randomly
select 20 samples from these for the test set, segmenting
any audio longer than 30 seconds into 10-second clips
beforehand.
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Table A.5: MOS and Objective evaluation metrics for RFWave, PriorGrad and FreGrad across various datasets.5

Dataset Model MOS ↑ PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity ↓

LibriTTS

RFWave 3.83±0.14 4.228 4.595 0.968 0.090
PriorGrad 3.70±0.16 3.820 4.134 0.960 0.100
FreGrad 3.68±0.15 3.758 4.278 0.960 0.099
Ground truth 3.88±0.15 - - - -

Opencpop

RFWave 4.26±0.17 4.176 4.564 0.990 0.049
PriorGrad 3.79±0.21 3.404 4.512 0.988 0.064
FreGrad 3.73±0.20 3.522 4.507 0.986 0.074
Ground truth 4.33±0.18 - - - -

MTG-Jamendo

RFWave 3.90±0.15 - 4.317 - -
PriorGrad 3.79±0.14 - 4.412 - -
FreGrad 1.89±0.17 - 3.765 - -
Ground truth 3.93±0.15 - - - -

5The MOS of the ground truth on LibriTTS differs from that presented in Table 2 because these two MOS
tests were conducted separately.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table A.6: MOS and objective evaluation metrics for RFWave, EnCodec and MBD across various test sets.

Test set Bandwidth Model MOS PESQ ↑ ViSQOL ↑ V/UV F1 ↑ Periodicity↓

Speech

1.5 kbps
RFWave(CFG2) 3.29±0.47 1.774 3.102 0.913 0.178
EnCodec 2.29±0.35 1.515 3.310 0.870 0.231
MBD 2.94±0.29 1.659 2.793 0.901 0.195

3.0 kbps
RFWave(CFG2) 3.85±0.39 2.421 3.582 0.935 0.137
EnCodec 2.85±0.47 1.967 3.746 0.919 0.166
MBD 2.88±0.33 2.194 3.219 0.915 0.166

6.0 kbps
RFWave(CFG2) 4.05±0.26 2.974 3.913 0.952 0.109
EnCodec 3.19±0.31 2.554 4.048 0.945 0.121
MBD 3.51±0.30 2.372 3.410 0.924 0.161

12.0 kbps
RFWave(CFG2) 3.96±0.22 3.393 4.158 0.965 0.089
EnCodec 3.52±0.22 3.104 4.250 0.961 0.095
MBD - - - - -

Ground truth 4.13±0.23 - - - -

Vocal

1.5 kbps
RFWave(CFG2) 3.06±0.34 1.820 3.317 0.914 0.208
EnCodec 1.94±0.38 1.900 3.931 0.941 0.166
MBD 2.84±0.31 1.739 3.221 0.901 0.228

3.0 kbps
RFWave(CFG2) 3.47±0.34 2.467 3.793 0.942 0.152
EnCodec 2.63±0.37 1.900 3.931 0.941 0.166
MBD 3.26±0.45 2.426 3.655 0.929 0.175

6.0 kbps
RFWave(CFG2) 3.77±0.23 2.897 4.080 0.956 0.124
EnCodec 2.92±0.23 2.310 4.206 0.956 0.131
MBD 3.30±0.26 2.604 3.840 0.933 0.175

12.0 kbps
RFWave(CFG2) 3.83±0.31 3.147 4.273 0.964 0.109
EnCodec 3.40±0.29 2.679 4.373 0.965 0.114
MBD - - - - -

Ground truth 4.27±0.24 - - - -

Soudn Effect

1.5 kbps
RFWave(CFG2) 3.24±0.43 - 2.906 - -
EnCodec 2.62±0.42 - 3.314 - -
MBD 3.33±0.36 - 2.932 - -

3.0 kbps
RFWave(CFG2) 3.11±0.59 - 3.334 - -
EnCodec 2.89±0.48 - 3.703 - -
MBD 3.11±0.54 - 3.331 - -

6.0 kbps
RFWave(CFG2) 3.27±0.27 - 3.682 - -
EnCodec 3.17±0.24 - 4.020 - -
MBD 3.44±0.23 - 3.496 - -

12.0 kbps
RFWave(CFG2) 3.33±0.28 - 3.942 - -
EnCodec 3.72±0.26 - 4.249 - -
MBD - - - - -

Ground truth 3.78±0.28 - - - -
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A.9 ALGORITHMS

We present a simplified version of the pseudocode along with a comprehensive Python implementation
for the two sampling algorithms. The detailed Python code delves into the intricacies of subband
processing and inverse equalization, offering deeper insights into the algorithmic steps involved.
Additionally, we provide a Python implementation for selecting time points of equal straightness.

A.9.1 SAMPLING ALGORITHM

Following is the sampling algorithm (Xt in time domain or frequency domain) with its pseudocode
and Python implementation.

For simplicity, in the pseudocode, we’ve omitted the subband-related operations. Here, Xf
t represents

the combination of all Xisb
t shown in Figure 1, and vft represents the combination of all visbt shown

in Figure 1. For a comprehensive understanding of the processing steps, please refer to the Python
implementation.

Algorithm 1 Simplified Sampling Algorithm (Xt in Time Domain)

Require:
1: nn_model: pre-trained neural network model
2: C: conditional input
3: {ti}Ni=0: time steps where 0 = t0 < t1 < ... < tN = 1

Ensure:
4: Generated audio waveform wave
5:
6: X0 ∼ N (0, 1)[1,T ] // Initialize with Gaussian noise
7: Xt

t ← X0

8:
9: for i← 0 to N − 1 do

10: dt← ti+1 − ti // Calculate step interval
11: Xf

t ← STFT(Xt
t ) // Convert Xt to frequency domain

12: vft ← nn_model.predict(Xf
t , ti, C) // vft in frequency domain

13: vtt ← ISTFT(vft) // Convert vt to time domain
14: Xt

t ← Xt
t + vtt · dt // Euler step in time domain

15: end for
16:
17: X1 ← Xt

t
18: wave← X1

19:
20: return wave
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Detailed Algorithm 1: Sample Time Domain

1 def sample_time_domain(model, mel, ts):
2 ’’’
3 :param model: A pre-trained time-domain RFWave model.
4 :param mel: A batch of mel-spectrogram data, [batch_size, channels

, num_frames].
5 :param ts: The selected sampling time points.
6 :return: The reconstructed audio waveform, [batch_size, num_frames

* hop_length].
7 ’’’
8

9 batch_size, num_frames = mel.shape[0], mel.shape[2]
10 noise_in_t = torch.randn([batch_size, model.hop_length *

num_frames])
11 # the STFT operation in Figure 1.
12 noise_in_f = torch.stft(noise_in_t, **model.stft_kwargs)
13 # Divide the noise spectrogram into subbands and reshape into the

batch dimension
14 noise_in_f = model.get_subband(noise_in_f)
15 # repeat the mel-spectrogram to match the subbands accordingly.
16 mel = torch.repeat_interleave(mel, model.num_bands, 0)
17

18 z_in_t = noise_in_t
19 z_in_f = noise_in_f
20 vs = [] # used for selecting sampling time points
21 for i in range(len(ts) - 1):
22 t = ts[i]
23 dt = ts[i + 1] - ts[i]
24 # the model runs at frame-level feature.
25 v_in_f = model.predict(z_in_f, t, mel)
26 # place the subbands to construct a full band feature
27 v_in_f = place_subband(model, v_in_f)
28 # the ISTFT operation in Figure 1.
29 v_in_t = torch.istft(v_in_f, **model.stft_kwargs)
30 # the Euler step operates in the time-domain
31 z_in_t = z_in_t + v_in_t * dt
32 # the STFT operation in Figure 1.
33 z_in_f = torch.stft(z_in_t, **model.stft_kwargs)
34 z_in_f = get_subband(model, z_in_f)
35 vs.append(v_in_t)
36 # append the straight line velocity
37 vs.append(z_in_t - noise_in_t)
38 # inverse the waveform equalization.
39 z_in_t = model.wave_equalizer.inverse(z_in_t)
40 return z_in_t, vs
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Algorithm 2 Simplified Sampling Algorithm (Xt in Frequency Domain)

Require:
1: nn_model: pre-trained neural network model
2: C: conditional input
3: {ti}Ni=0: time steps where 0 = t0 < t1 < ... < tN = 1

Ensure:
4: Generated audio waveform wave
5:
6: X0 ∼ N (0, 1)[d,F ] // Initialize with Gaussian noise
7: Xf

t ← X0

8:
9: for i← 0 to N − 1 do

10: dt← ti+1 − ti // Calculate step interval
11: vft ← nn_model.predict(Xf

t , ti, C)

12: Xf
t ← Xf

t + vft · dt // Euler step
13: end for
14:
15: X1 ← Xf

t
16: wave← ISTFT(X1)
17:
18: return wave

Detailed Algorithm 2: Sample Frequency Domain

1 def sample_freq_domain(model, mel, ts):
2 ’’’
3 :param model: A pre-trained frequency-domain RFWave model.
4 :param mel: A batch of mel-spectrogram data, [batch_size, channels

, num_frames].
5 :param ts: The selected sampling time points.
6 :return: The reconstructed audio waveform, [batch_size, num_frames

* hop_length].
7 ’’’
8 batch_size, num_frames = mel.shape[0], mel.shape[2]
9 noise_in_f = torch.randn([batch_size, model.n_fft + 2,num_frames])

10 noise_in_f = model.get_subband(noise_in_f)
11 mel = torch.repeat_interleave(mel, model.num_bands, 0)
12

13 z_in_f = noise_in_f
14 vs = [] # used for selecting sampling time points
15 for i in range(len(ts) - 1):
16 t = ts[i]
17 dt = ts[i + 1] - ts[i]
18 # the model runs at frame-level feature.
19 v_in_f = model.predict(z_in_f, t, mel)
20 # the Euler step operates in the frequency-domain
21 z_in_f = z_in_f + v_in_f * dt
22 vs.append(v_in_f)
23 # append the straight line velocity
24 vs.append(z_in_f - noise_in_f)
25 # place the subbands to construct a full band spectrogram
26 z_in_f = model.place_subband(z_in_f)
27 # inverse the stft normalization
28 z_in_f = model.stft_normalizer.inverse(z_in_f)
29 # convert the complex spectrogram to waveform
30 z_in_t = torch.istft(z_in_f, **model.stft_kwargs)
31 return z_in_t, vs
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A.9.2 SELECTING TIME POINTS OF EQUAL STRAIGHTNESS

Detailed Algorithm 3: Select Time Points

1 def select_time_points(model, sample_fn, mel, N1=100, N2=10):
2 ’’’
3 This function is designed to select time points of equal

straightness.
4 :param model: A pre-trained RFWave model.
5 :param sample_fn: sample_time_domain or sample_frequency_domain.
6 :param mel: A batch of mel-spectrogram data, [batch_size, channels

, num_frames].
7 :param N1: The number of steps used for numerically estimating the

straightness.
8 :param N2: The number of steps for equal straightness
9 :return: A list of selected time points.

10 ’’’
11

12 # Step 1: Numerically estimate the trajectory
13 eq_ts = torch.linspace(0, 1, N1 + 1)
14 _, vs = sample_fn(model, mel, eq_ts)
15

16 # Step 2: Calculate the deviation for each velocity step
17 ds = []
18 v_straight = vs[-1]
19 for v in vs[:-1]:
20 d = (v - v_straight).view(v.size(0), -1)
21 d = torch.norm(d, p=’fro’, dim=1)
22 ds.append(d.mean())
23

24 # Step 3: calculate straightness
25 # d_cum[-1] is the estimated straightness.
26 d_cum = torch.cumsum(torch.stack(ds), dim=0)
27 # s_inc is the increment of straightness for each step
28 s_inc = d_cum[-1] / N2
29

30 # Step 4: Select the time points of equal straightness
31 ts = [0.]
32 for i in range(1, N2):
33 s_i = s_inc * i
34 idx = torch.abs(d_cum - s_i).argmin()
35 ts.append(idx / N1)
36 return ts + [1.]
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A.10 SUBJECTIVE EVALUATION

We conducted the subjective listening test on our self-developed website platform. The platform
allows users to play audio samples and rate the audio naturalness using a 5-point Mean Opinion Score
(MOS) scale, where 1 indicates "poor/unnatural" and 5 indicates "excellent/natural".

For each subjective evaluation, we invited 30 listeners to participate. For each comparison experiment
to be evaluated, we randomly selected 20-40 groups of audio samples from the corresponding test
set for one listener to rate. Each group of audio includes ground truth audio, audio synthesized by
RFwave, and audio synthesized by other models. The order of audio within each set was randomly
shuffled.

All participating listeners were required to use headphones and give ratings from 1 to 5 based on the
audio naturalness. The rating results were directly submitted to our evaluation website. Figure A.10
shows the interface of the evaluation website.

Figure A.10: Interface of our subjective evaluation platform.
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