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Abstract
Recent advancements in large language model
(LLM)-based agents have demonstrated that col-
lective intelligence can significantly surpass the
capabilities of individual agents, primarily due
to well-crafted inter-agent communication topolo-
gies. Despite the diverse and high-performing
designs available, practitioners often face confu-
sion when selecting the most effective pipeline
for their specific task: Which topology is the best
choice for my task, avoiding unnecessary com-
munication token overhead while ensuring high-
quality solution? In response to this dilemma,
we introduce G-Designer, an adaptive, effi-
cient, and robust solution for multi-agent de-
ployment, which dynamically designs task-aware,
customized communication topologies. Specif-
ically, G-Designer models the multi-agent sys-
tem as a multi-agent network, leveraging a vari-
ational graph auto-encoder to encode both the
nodes (agents) and a task-specific virtual node,
and decodes a task-adaptive and high-performing
communication topology. Extensive experiments
on six benchmarks showcase that G-Designer
is: (1) high-performing, achieving superior re-
sults on MMLU with accuracy at 84.50% and on
HumanEval with pass@1 at 89.90%; (2) task-
adaptive, architecting communication protocols
tailored to task difficulty, reducing token con-
sumption by up to 95.33% on HumanEval; and (3)
adversarially robust, defending against agent ad-
versarial attacks with merely 0.3% accuracy drop.
The code is available at https://github.
com/yanweiyue/GDesigner.
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Figure 1. Existing practices for LLM-based multi-agent communi-
cation topology design.

1. Introduction
An LLM-based agent, which integrates the language gen-
eration capabilities of LLMs with decision-making and
action-execution functionalities (Richards & et al., 2023;
Nakajima, 2023; Reworkd, 2023), has exhibited impressive
performance across a wide range of tasks, from reason-
ing (Yao et al., 2023b) and code generation (Shinn et al.,
2023) to even more complex applications like video gam-
ing (Wang et al., 2023) and autonomous driving (Jin et al.,
2023). Even more exciting, researchers have discovered that
combining multiple LLM-based agents–whether implicitly
or explicitly–into a team can outperform individual agents
when tackling complex tasks (Du et al., 2023; Liang et al.,
2023; Wang et al., 2023b; Jiang et al., 2023; Shinn et al.,
2023; Zheng et al., 2023; Wu et al., 2023), demonstrating
a form of collaborative intelligence reminiscent of human
teamwork in multi-agent systems (Zhang et al., 2023b).
This emergence of human-esque collective intelligence is
fundamentally driven by the design of their topology, i.e.,
how multi-agents are connected, and how they transmit,
exchange, and assimilate information reciprocally.

In practice, prior research has extensively explored how
multiple instances of LLMs, referred to as agents (Wang
et al., 2024; Xi et al., 2023; Gao et al., 2023; Cheng et al.,
2024), should be structured and organized to converse,
collaborate, debate, or even compete. Various topologi-
cal designs have been investigated, such as chain (Wei
et al., 2022; Hong et al., 2023), tree (Yao et al., 2023a; Wu
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Figure 2. The token consumption and accuracy of different multi-
agent protocols on two subsets of MMLU dataset, “Highschool Bi-
ology” and “College Math”, tested with four gpt-4-based agents.

et al., 2023), star (Wu et al., 2023), complete graphs (Qian
et al., 2024), random graphs (Qian et al., 2024), optimiz-
able graphs (Zhuge et al., 2024; Zhang et al., 2024), and
LLM-based networks (Hao et al., 2023; Liu et al., 2023).
These elaborately designed communication topologies have
demonstrated remarkable performance with minimal human
supervision, bridging the gap between individual and collec-
tive intelligence. Faced with numerous structures available,
an inquisitive practitioner might ask: how should I select or
design a topology that best suits my task at hand?

The question posed above is non-trivial and, at times, per-
plexing. A piece of experimental evidence is presented in
Figure 2, where we evaluated the performance of different
multi-agent structures on the MMLU dataset (Hendrycks
et al., 2021), a collection of multiple-choice questions across
various subjects. The results reveal that even within the same
dataset, the suitability of different communication topolo-
gies varies. ❶ Simpler Case: in the simpler ”High School
Biology” subset, the chain structure performs comparably
to the complex GPTSwarm, while consuming significantly
fewer tokens (0.5k versus 7.8k). In this case, the chain
structure is clearly a more economical choice. ❷ Harder
Case: However, for the more challenging ”College Mathe-
matics” subset, GPTSwarm outperforms the chain structure
by 8.75%, primarily attributed to its intricate topology and
prompt optimization. In summary, practitioners often find
it challenging to effortlessly identify the most efficient and
complexity-adaptive multi-agent topology for a given task.

In light of this dilemma, we propose the LLM-based
::
Multi-

:
agent

:
Communication

::
Protocol (MACP), establishing

standardized guidance for LLM-MA topology design:

Multi-agent Communication Protocol (MACP): Given
a task/query q, an optimal LLM-MA communication topol-
ogy for q should satisfy the following protocol logics: (1)
Effectiveness: The communication structure must effec-
tively produce the qualified solution for q; (2) Complexity-
adaptiveness: The topology should dynamically adjust
to the complexity of the task, minimizing communica-
tion overhead; (3) Adversarial robustness: The topology
should maintain reliable under adversarial attacks.

The formal definition of MACP is provided in Section 3.3.

To design a communication topology that ideally adheres
to the MACP principles, we propose an effective, adaptive,
and robust LLM-powered multi-agent communication graph
designer, termed G-Designer. Technically, G-Designer
first architects a multi-agent graph, where each agent, along
with its specific properties (e.g., profile (Li et al., 2023a),
external API tools (Zhuang et al., 2023), or knowledge
base (Chen et al., 2024a)), is represented as a node, and com-
munication between agents forms the edges. G-Designer
employs a variational graph auto-encoder to encode the
nodes (agents) along with task-specific information, and
to decode the resulting collaboration network between
agents. This input-dependent paradigm allows G-Designer
to design task-adaptive, high-performing communication
topology, which is, at the same time, assured of efficiency
and robustness with sparsity regularization. Unlike previous
LLM-based multi-agent topology designs, which rely on
a static structure for all queries/tasks, G-Designer adap-
tively crafts customized topologies for different domains
and tasks, serving as a fully autonomous and flexible assis-
tant for multi-agent system establishment and deployments.

Our contribution can be summarized as follows:

❶ Protocol Proposal. We propose the first communica-
tion protocol tailored for LLM-powered multi-agent sys-
tems, MACP, which comprehensively regulates multi-
agent topology design across three dimensions: perfor-
mance, adaptability, and robustness, and incisively high-
lights the shortcomings of existing designs.

❷ Practical Solution. We present G-Designer, an effective,
adaptive, and robust designer of LLM-powered multi-
agent communication graphs. By leveraging a varia-
tional graph auto-encoder to construct and process the
multi-agent network, G-Designer decodes task-adaptive
and high-performing agent communication, which is also
equipped with strong robustness against agent-rooted ad-
versarial attacks via dynamic topology adjustment.

❸ Experimental Validation. Extensive experiments across
six benchmarks show that G-Designer is: (1) high-
performing, surpassing state-of-the-art topologies by
0.20% ∼ 4.10% on MMLU and HumanEval; (2) task-
adaptive, dynamically adjusting topology complexity
with task awareness, outperforming state-of-the-art meth-
ods on MMLU with a cost of merely 1.5e+ 5 compared
to their 2.6e + 6, reducing token consumption by up to
92.24%; and (3) adversarially robust, defending against
agent adversarial attacks with merely 0.3% accuracy drop.

2. Related Works
LLM-agent Collaboration Recent research has explored
various multi-agent communication topologies, including:
(1) Non-interactive, where agents operate independently
without inter-agent communication, as employed in systems
like LATM (Zhang et al., 2023a) and LLM-Debate (Du
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et al., 2023); (2) Chain, where agents are arranged in a
sequential structure, each receiving the output from its pre-
decessor and passing information to its successor, utilized
by ChatDev (Qian et al., 2023), MetaGPT (Hong et al.,
2023), and L2MAC (Holt et al., 2024); (3) Star, where
a central administrative agent (often referred to as a com-
mander, teacher, etc.) directs subordinate agents, seen in
AutoGen (Wu et al., 2023), SecurityBot (Yan et al., 2024),
and MiniGrid (Zhou et al., 2023); (4) Tree, where a root
agent hierarchically manages multiple child agents, as in
SoA (Ishibashi & Nishimura, 2024); and (5) Graph, encom-
passing complete graphs (Qian et al., 2024; Zhuge et al.,
2024) and random graphs (Qian et al., 2024), among others.

Multi-agents as Graphs Graphs, as a fundamental data
structure for organizing and representing relationships be-
tween entities (Zhang & Chartrand, 2006), are widely
adopted in the pre-LLM era as a powerful tool to facilitate
effective communication in multi-agent reinforcement learn-
ing (MARL) (Pesce & Montana, 2023; Hu et al., 2024; Liu
et al., 2022). With the rise of LLMs and the proliferation of
LLM-based agents (Chen et al., 2023a; Cohen et al., 2023;
Hua et al., 2023), researchers have similarly recognized that
interactions among multiple agents can naturally be mod-
eled from a graph-based perspective (Chen et al., 2023b;
Zhuge et al., 2024; Qian et al., 2024; Liu et al., 2023). Early
attempts are implicit, like ChatEval (Chan et al., 2023), Au-
toGen (Wu et al., 2023), and DSPy (Khattab et al., 2023).
More recent practices including ChatLLM (Hao et al., 2023),
DyLAN (Liu et al., 2023), GPTSwarm (Zhuge et al., 2024),
and MacNet (Qian et al., 2024), have explicitly represented
the organization of multiple agents as a graph. However, all
these attempts, whether predefined or iteratively optimized,
remain input-independent. Consequently, they fail to be
task-aware and adaptively design topologies that suit the
complexity of the specific task.

3. Formalization
This section establishes the notation, formalizes key con-
cepts from a topology perspective, and formally defines our
proposed multi-agent communication protocol.

3.1. Topology Structure
We model the multi-agent system as a directed graph G =
(V, E), where V = {v1, . . . , vN} represents the set of nodes
(with N = |V|) and E denotes the set of edges. Each node
vi ∈ V corresponds to an agent, formalized as:

vi = {Basei,Rolei,Statei,Plugini}, (1)

where each agent vi is composed of four key elements:
(1) Basei, the language model instance powering vi;
(2) Rolei, the agent’s pre-assigned role or function; (3)
Statei, representing the agent’s accumulated knowledge
and interaction history; and (4) Plugini, a set of external

tools or plugins available to vi, such as web searchers (Ma
et al., 2023), code compilers (Richards & et al., 2023;
Wu et al., 2023; Hong et al., 2023; Bouzenia et al., 2024;
Ishibashi & Nishimura, 2024), or file readers (Zhuge et al.,
2024; Richards & et al., 2023). Each LLM-based agent vi
receives prompt P and generates responseRi:

Ri = vi(P) = vi(Psys,Pusr), (2)

where Psys = {Rolei,Statei} represents the system
prompt encompassing its role and state, and Pusr denotes
the user prompt, which possibly includes the given tasks,
responses/instructions from other agents and externally re-
trieved knowledge.

The connectivity of G can also be characterized by a (non-
symmetric) adjacency matrix A ∈ {0, 1}N×N , where
A[i, j] = 1 if eij = (vi, vj) ∈ E , otherwise 0. Each edge
eij ∈ E represents the flow of information from vi to vj .

3.2. Communication Pipeline
Given a query/problem Q, the multi-agent system engages
in K rounds of interactive utterances, which collaboratively
drive the agents toward producing the final solution a(K)

based on their cumulative dialogue exchanges. At the be-
ginning of the t-th dialogue round, a mapping function ϕ is
applied to determine the execution index for each agent:

ϕ : G 7−→ σ, σ = [vσ1
, vσ2

, · · · , vσN
],

s. t.∀i > j, vσi
/∈ Nin(vσj

),
(3)

where σ is the execution sequence of agents, Nin(vσ(j))
denotes the in-neighborhood of vσ(j), and the constraint
ensures that an agent vσ(i) can only execute after any agent
vσ(j) from which it receives information. Once the execu-
tion order is determined, each agent proceeds to perform
input-output operations sequentially:

R(t)
i = vi(P(t)

sys ,P(t)
usr ), P(t)

usr = {Q,∪vj∈Nin(vi)R
(t)
j } (4)

where R(t)
i represents the output of vi, which could be a

rationale, an answer, or a partial solution, depending on
the specific context. The outputR(t)

i is generated based on
the system prompt P(t)

sys and the context prompt, consisting
of the query Q and messages from other agents. At the
end of each dialogue, an aggregation function is adopted to
generate the answer/solution a(t):

a(t) ← Aggregate(R(t)
1 ,R(t)

2 , · · · ,R(t)
N ). (5)

The implementation of the Aggregate function is flexible,
with possible options including majority voting (Chen et al.,
2024b; Zhuge et al., 2024; Li et al., 2024), aggregating all
agents’ responses and delegating one agent to provide the
final answer (Wu et al., 2023; Jiang et al., 2023; Liu et al.,
2023; Zhang et al., 2024), or simply using the output of
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Figure 3. The designing workflow of our proposed G-Designer.

the last agentR(t)
σN (Qian et al., 2024). Through K rounds

of utterances, either predefined (Qian et al., 2024) or deter-
mined by an early-stopping mechanism (Liu et al., 2023),
the overall system G produces the final answer a(K) for Q.

3.3. MACP Protocol
We give the formal definition of MACP Protocol as follows:

Definition 3.1 (Multi-agent Communication Protocol).
Given an LLM-based multi-agent system G = (V, E), we
establish the following objective as optimization principle:

min
G∈G

[
−u

(
G(Q)

)
+β1 · ||G||+ β2 ·

∣∣Ĝ(Q̂)− G(Q)∣∣], (6)

where G represents the feasible parameter space of G, u(·)
is the utility evaluator, ||G|| measures the computational and
communication overhead of the entire graph, and Q̂ and
Ĝ denote the query description and the multi-agent system
after adversarial perturbation, respectively. The first term in
Equation (6) corresponds to high performance, aiming to
maximize the utility of the system’s output; the second term
addresses task-adaptiveness, seeking to minimize system
complexity to reduce power consumption and economic
cost; and the third term focuses on robustness, constraining
the deviation of system output under adversarial attacks.

4. G-Designer
Figure 3 illustrates how G-Designer adaptively designs
communication topologies for any given query. Specifi-

cally, the process begins with a few “raw materials”: the
input query Q, the agent set V , the profile pool, and the
toolset. In the Construct stage, G-Designer leverages a
node encoder to construct a multi-agent network along with
a task-specific virtual node. In the Design stage, a graph
auto-encoder is employed to decode the communication
graph topology Gcom, which is leveraged for multi-round
inter-agent collaboration in the Optimize stage.

4.1. Multi-agent Network Construction
Given an input query Q and a set of LLM-agents V ,
G-Designer aims to design a task-adaptive and effective
communication topology Gcom. We begin by assigning each
agent a unique role and profile, as previous research (Wang
et al., 2023b) has shown that assigning distinct personas or
roles to LLM-based agents can enhance cognitive synergy.
Based on these roles, different external tools are allocated
to the agents (e.g., Mathematica for a math analyst, Python
compiler for a programmer). Thus, we successfully initial-
ize each agent vi as {Basei,Rolei,Statei,Plugini},
as defined in Equation (1).

We proceed to construct a structured multi-agent network
as input to G-Designer, represented as G = (Xagent,A),
where Xagent ∈ RN×D is the node (agent) feature matrix
and A ∈ RN×N represents the connectivity matrix. For
the feature matrix Xagent, we employ a node encoder to
transform each agent’s unique profile into a fixed-length
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embedding representation:

xi ← NodeEncoder (T (Basei),Rolei, T (Plugini)) , (7)

where T (·) extracts the textual description of the agent’s
LLM backbone and its assigned plugins, and NodeEncoder
can be realized using small and lightweight text embed-
ding models (Reimers, 2019). After encoding the indi-
vidual agents, we aim to ensure that the multi-agent net-
work incorporates information related to the query Q, as
this query-dependent approach enables G-Designer to be
task-aware and adaptive. To this end, we introduce an ad-
ditional task-specific virtual global node vtask, which is
bidirectionally connected to all agent nodes, enabling a
global ”storage sink” and facilitating smoother information
flow among agents (Shirzad et al., 2023; Tan et al., 2023;
Rosenbluth et al., 2024). This task node is encoded by the
NodeEncoder as follows: xtask ← NodeEncoder(Q).

After obtaining the agent node features Xagent =
[x1,x2, . . . ,xN ]⊤ and the task-specific embedding xtask,
we provide a simple anchor topology Aanchor ∈
{0, 1}N×N , which serves as a starting point for
G-Designer’s topology design process. For instance,
given a code generation task with three agents: man-
ager/programmer/code reviewer, the anchor topology could
be configured as a chain structure, i.e., “manager → pro-
grammer → reviewer”, reflecting the typical workflow
of code completion. The anchor topology, being either
user-defined or automatically generated by LLMs, is often
simple and sub-optimal1. However, it provides a founda-
tional reference and prior knowledge for G-Designer’s
subsequent optimization process. We incorporate the task-
specific vertex vtask and its corresponding edges and obtain
Ãanchor ∈ {0, 1}(N+1)×(N+1). Consequently, we estab-
lish a task-specific multi-agent network G̃:

G̃ =
([Xagent

x⊤task

]
, Ãanchor

)
= (Ṽ, Ẽ)

=
(
V ∪ {vtask}, E ∪ {

←→
(vi, vtask)|vi ∈ V)}

)
,

(8)

where
[
Xagent

x⊤
task

]
can also be jointly denoted as X̃.

4.2. Designing Communication Topology
Building upon the task-specific multi-agent network G̃,
G-Designer seeks to establish a more fine-grained and
precise communication topology Gcom. Drawing inspi-
ration from the variational graph auto-encoder (VGAE)
framework (Kipf & Welling, 2016; Zhao & Zhang, 2024),
G-Designer employs a VGAE-based encoder-decoder fv
to generate the multi-agent interaction topology:

Gcom = fv(G̃; Θv) = p(Gcom | H)q(H | X̃, Ãanchor), (9)

1We discuss the substantial performance improvement of
G-Designer over the anchor topology in Section 5.4.

where fv is the encoder-decoder architecture with parame-
ters Θv , q(·) is the encoder module, p(·) is the decoder mod-
ule. The encoder utilizes posterior probabilities to encode
the node embeddings into low-dimensional latent vector
representations Hagent, which can be formulated as:

q(Hagent | X̃, Ãanchor) =

N∏
i=1

q(hi | X̃, Ãanchor),

q(hi | X̃, Ãanchor) = N (hi | µi,diag(σ
2
i )),

(10)

where µ = GNNµ(X̃, Ãanchor; Θµ) is the matrix of mean
vectors µi; similarly log(σ) = GNNσ(X̃, Ãanchor; Θσ).
The choice of GNN backbone can be customized as needed;
here, we utilize a simple two-layer GCN (Kipf & Welling,
2017). hi, µi, and σi denote the i-th column of H, µ,
and σ, respectively. The encoder q(·) is parameterized
by Θe = {Θµ,Θσ}. Following the encoding phase, the
decoder employs the latent representations to generate a
comprehensive blueprint for multi-agent communication.
More specifically, the decoder q(·) = qc ◦ qs first constructs
a parameterized, sketched graph S, which is then refined
into the final multi-agent communication topology:

p(Gcom | Hagent) =

∫
S

pc(Gcom | S)ps(S | Hagent) dS.

(11)
At the first step, ps(·) constructs the sketched adjacency
matrix S from the latent representation Hagent:

ps(S | Hagent) =

N∏
i=1

N∏
j=1

ps(Sij | hi,hj ,htask; Θd), (12)

whose detailed derivation is as follows:

ps(Sij = 1 | hi,hj ,htask) = g(hi,hj ,htask),

= Sigmoid((log(ϵ)− log(1− ϵ) +ϖij)/τ),
(13)

where ϖ = FFNd([hi,hj ,htask]) with FFNd parame-
terized by Θd, ϵ ∼ Uniform(0, 1), and τ denotes the
temperature coefficient. When τ approaches zero, Equa-
tion (13) essentially return the Bernouli sampling result
for Sij . The resulting matrix S ∈ [0, 1]N×N represents a
densely-connected, non-negative graph distribution, indi-
cating an overly complex and resource-intensive pair-wise
communication structure, which is not yet suitable for guid-
ing multi-agent collaboration. To align with G-Designer’s
objectives of task adaptiveness and minimizing costs, we ap-
ply a refinement decoder pc(·) to refine the sketched S into
a compact, sparse, and highly informative communication
graph, instantiated by a regularization objective:

pc : argmax
S̃∈S

1/2||S− ZWZ⊤||2F + ζ||W||∗+

1/2||Aanchor − ZWZ⊤||2F , s. t. S̃ = ZWZ⊤,

(14)
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where Z ∈ RN×r is the top-r columns of left singular ma-
trix S, ζ is a coefficient hyperparameter, W ∈ Rr×r is an
optimizable weight matrix, || · ||F denotes the Frobenius
norm and ||W||∗ =

∑
i λi where λi is the i-th singular

value of W. S̃ ∈ RN×N is the desired sparse topology,
which is decomposed as ZWZ⊤. In Equation (14), the first
and second terms are jointly denoted as anchor regulariza-
tion, which encourage the learned S̃ to maintain similarity
with both the original S and the anchor topology. The third
term, denoted as sparsity regularization, though appearing
to minimize the nuclear norm of W, essentially sparsifies
S̃, since ||S̃||∗ = ||W||∗ holds due to Z⊤Z = Ir×r. There-
fore, Equation (14) achieves two key goals: (1) producing a
sparse, refined communication topology, and (2) constrain-
ing the design to remain grounded in practical intuition. The
resulting communication can be represented as follows:

Gcom = (V, Ecom), Ecom = {(i, j) | S̃ij ̸= 0 ∧ (i, j) ∈ E}).
(15)

At this stage, we have successfully distilled a lightweight
and informative collaboration network Gcom from the
sketched task-specific network G̃, which is now ready to
guide inter-agent message passing in the following process.

4.3. Optimizing G-Designer
Upon obtaining Gcom, the multi-agent utterances and di-
alogues can proceed as usual using Gcom, as detailed in
Section 3.2. After K rounds of interaction, the agents con-
verge to a final solution a(K) = Gcom(Q). We then give the
following optimization objective:

argmin
Θe,Θd

EΘe,Θd∼Ω

[
u
(
Gcom(Q)

)]
, (16)

where Θe and Θd are the parameters of the encoder q(·) and
decoder p(·), respectively, Ω is the parameter space and E(·)
denotes the mathematical expectation. Equation (16) aims
to maximize the utility of the generated solution, but it is
inherently intractable and non-differentiable, as u(·) often
depends on external API calls (Li et al., 2023b; Hendrycks
et al., 2021). To address this, following standard approaches
in multi-agent structure design (Zhuge et al., 2024; Zhang
et al., 2024), we apply policy gradient (Williams, 1992) to
approximate and optimize Equation (16):

∇ΘEΘ∼Ω

[
u
(
Gcom(Q)

)]
≈ 1

M

M∑
k=1

u(a(K)
m )∇Θ(P (Gk)), (17)

where Θ = {Θe,Θd}, {Gk}Mm=1 are indepently samples
from Gcom, and {a(K)

m }Mm=1 are the corresponding out-
put. P (Gk) calculates the probability of Gk being sam-
pled, which can be expressed as P (Gk) =

∏N
i=1

∏N
j=1 S̃ij .

Through iterative optimization guided by Equations (14)
and (16) over a limited set of queries as the “training set”,
G-Designer efficiently develops task-awareness and the ca-

pability to strategically design the agent network, achieving
truly task-customized multi-agent topology design.

Optimization configuration The overall training objec-
tive of our method is formulated as LG-Designer = Lutility +
Lanchor + Lsparse, where Lutility represents the optimiza-
tion target from Equation (16), Lanchor corresponds to the
first and third terms in Equation (14), and Lsparse is the
second term. Given a benchmark {Qi}Di=1 consisting of
B queries, G-Designer begins by optimizing with a small
subset of B′ queries and fixes the learned parameters for
testing on the remaining (B −B′) queries. The whole algo-
rithm workflow of G-Designer is depicted in Algorithm 1.

5. Experiments
5.1. Experimental Setup
Datasets and Metrics We evaluate G-Designer on
three categories of datasets: ■ General Reasoning:
MMLU (Hendrycks et al., 2021); ■ Mathematical Rea-
soning: GSM8K (Cobbe et al., 2021), MultiArith (Roy &
Roth, 2016), SVAMP (Patel et al., 2021), and AQuA (Ling
et al., 2017); ■ Code: HumanEval (Chen et al., 2021). We
include the dataset statistics in Table 4.

Baselines For single-agent approaches, we select
COT (Wei et al., 2022), ComplexCoT (Fu et al., 2022), Self-
Consistency (Wang et al., 2023a), and PHP (Zheng et al.,
2023). For multi-agent topologies, we select Chain, Star,
and Tree (formally defined in (Qian et al., 2024)), Complete
Graph and Random Graph , AutoGen (Wu et al., 2023),
MetaGPT (Hong et al., 2023), LLM-Debate (Du et al.,
2023), LLM-Blender (Jiang et al., 2023), DyLAN (Liu
et al., 2023), and GPTSwarm (Zhuge et al., 2024).

Implementation Details We access the GPT via the Ope-
nAI API, and mainly test on gpt-4-1106-preview
(gpt-4) and gpt-3.5-turbo-0125 (gpt-3.5). We
set temperature to 0 for the single execution and sin-
gle agent baselines and 1 for multi-agent methods. We set
a summarizer agent to aggregate the dialogue history and
produce the final solution a(K), with K = 3 across all
experiments. The NodeEncoder(·) is implemented using
all-MiniLM-L6-v2 (Wang et al., 2020), with the em-
bedding dimension set to D = 384. The anchor topology
Aanchor is predefined as a simple chain structure. The sam-
pling times M are set as 10, and τ = 1e− 2 and ζ = 1e− 1
are set for all experiments. We provide explicit agent pro-
filing for multi-agent methods, following the classical con-
figurations in LLM-MA systems (Liu et al., 2023; Zhuge
et al., 2024; Yin et al., 2023), and use gpt-4 to generate
agent profile pools. For all benchmarks, we merely use
B′ ∈ {40, 80} queries for optimization.

5.2. Main Results
In this section, we conduct extensive experiments across six
benchmarks to verify that G-Designer is:
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Table 1. Performance comparison with three types of baselines, including single-agent execution, spatial communication, and temporal
communication. The best results are in bold, and the runner-ups are underlined. All methods, except for the single-agent category,
utilize five gpt-4-based agents. “Mul.”, “Ada.”, and “Rob.” indicate whether the method supports a multi-agent setting, whether it is
task-adaptive, and whether it is adversarially robust, respectively. %, ✓✗ and! signifies no/partial/full support in these aspects.

Method Mul. Ada. Rob. MMLU GSM8K MultiArith SVAMP AQuA HumanEval Avg.
Vanilla % % % 82.14 85.40 93.15 87.18 70.34 71.68 81.65
CoT % % % 82.65↑0.51 87.17↑1.77 94.79↑1.64 88.32↑1.14 73.91↑3.57 75.52↑3.84 83.73
ComplexCoT % % % 83.78↑1.64 87.62↑2.22 95.86↑2.71 90.17↑2.99 77.58↑7.24 74.94↑3.26 84.99
SC (CoT) % % % 82.66↑0.52 87.93↑2.53 96.88↑3.73 88.69↑1.51 75.08↑4.74 77.30↑5.62 84.75
SC (ComplexCoT) % % % 83.65↑1.51 86.14↓0.74 96.94↑3.79 89.72↑2.54 77.69↑7.35 77.94↑6.26 85.35
PHP ! % % 83.45↑1.31 95.50↑10.1 98.10↑2.84 90.02↑3.44 79.00↑8.66 82.96↑11.36 88.17
Chain ! % % 82.35↑0.21 85.57↑0.17 94.38↑1.23 83.41↓3.77 70.94↑0.60 80.88↑9.20 82.92
Star ! % % 80.79↓1.35 85.55↑0.15 93.79↓0.64 88.09↑0.91 68.57↓1.77 75.65↑3.97 82.07
Tree ! % % 81.89↓0.25 84.56↓0.84 94.60↑1.45 89.25↑2.07 72.84↑2.50 77.38↑5.70 83.42
Complete Graph ! % % 83.15↑1.01 86.49↑1.09 97.20↑4.05 89.48↑2.30 79.21↑8.87 83.75↑12.07 86.55
Random Graph ! % % 83.76↑1.62 86.14↑0.74 95.46↑2.31 85.41↓1.77 74.07↑3.73 82.66↑10.98 84.58
AutoGen ! % % 82.13↓0.01 90.06↑7.92 93.80↑0.65 88.44↓1.26 73.65↑3.31 85.41↑13.73 85.58
MetaGPT ! % % - - - - - 85.90↑14.22 84.90
LLM-Blender ! % % 81.22↓0.92 89.17↑3.77 94.27↑1.12 88.77↑1.59 77.05↑6.71 - 86.09
LLM-Debate ! % ! 83.69↑1.55 90.23↑4.83 96.27↑3.12 90.56↑3.38 77.52↑7.18 83.79↑12.11 87.01
DyLAN ! ✓✗ ! 80.16↓1.98 88.16↑2.76 94.27↑1.12 87.40↑0.22 74.16↑3.82 89.70↑18.02 85.64
GPTSwarm ! ✓✗ ! 83.98↑1.84 89.74↑4.34 97.84↑4.69 86.42↓0.76 78.16↑7.82 88.49↑16.81 87.32
G-Designer ! ! ! 84.50↑2.36 95.07↑9.67 98.30↑5.15 91.85↑4.67 79.47↑9.13 89.90↑18.22 89.84

High-performing The experimental results from Table 1
demonstrate that G-Designer is effective in designing
powerful LLM-MA topologies. Concretely, G-Designer
achieves the best performance in five out of six benchmarks,
and on GSM8K, it trails only PHP with a 9.67% ↑ accuracy
improvement. On the HumanEval benchmark, G-Designer
surpasses MetaGPT, a specialized multi-agent code gen-
eration framework, by 4.0% at pass@1, and outperforms
state-of-the-art multi-agent collaboration frameworks like
GPTSwarm and DyLAN by margins of 0.20% ∼ 1.41%.

Task-adaptive Figure 6 visualizes the different topolo-
gies designed by G-Designer for varying query difficul-
ties on HumanEval and GSM8K. As shown in Figure 6,
the multi-agent topologies generated by G-Designer are
highly dependent on the specific task context and its diffi-
culty. In Case a, despite having five gpt-4 agents available
as design resources, G-Designer identified the task of de-
signing a strlen(string) function as relatively simple.
It streamlined the topology by removing unnecessary agents
and retained only a minimal “Algorithm Designer→ Pro-
grammer” structure to solve the problem. In contrast, for the
more complex Case c and Case e, G-Designer crafted a
more intricate communication graph. These cases highlight
the strong task-adaptiveness of G-Designer.
Scalable To evaluate the scalability of G-Designer to
a larger number of agents, we report its performance
across 5 ∼ 20 agents, as presented in Table 6. No-
tably, G-Designer exhibits a steeper performance gain than
GPTSwarm as the agent count increases. More importantly,
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Figure 4. Visualization of the performance metrics and prompt
token consumption of different multi-agent communication topolo-
gies across MMLU, HumanEval, GSM8K, and SVAMP. The di-
ameter of each point is proportional to its y-axis value.

while the complete graph and GPTSwarm incur an over-
whelming token cost at 20 agents (5.6 ∼ 30.3M tokens),
G-Designer achieves superior performance with merely
6.11% of GPTSwarm’s prompt token consumption, surpass-
ing it by 2.44% ↑. These results decisively demonstrate
the scalability and potential of G-Designer in advancing
large-scale autonomous multi-agent systems.
Token-economical (inference) A key benefit of
G-Designer’s adaptivity is that it prevents the use of
overly complex structures for simple tasks, thus minimizing
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Figure 5. We compare the accuracy (%) of various multi-agent
frameworks before and after prompt attacks on MMLU.

unnecessary communication costs—in the case of LLM-
MA, reducing token consumption. Figure 4 It illustrates
the differences in prompt token consumption between
G-Designer and several representative multi-agent designs.
We observe that simpler topologies, such as complete
graphs and random graphs, consume fewer tokens but
show significantly weaker performance. More complex
communication structures, like GPTSwarm and DyLAN,
achieve superior performance, albeit at the cost of excessive
token consumption. For instance, DyLAN’s cost on
GSM8K is 2.82× that of the random graph, reaching a
substantial 2.2e + 7. In contrast, G-Designer elegantly
balances both efficiency and task performance, achieving
the highest performance across all four benchmarks while
maintaining the lowest token cost. For example, on SVAMP,
G-Designer surpasses DyLAN by 4% while using only
23.7% of DyLAN’s token cost.

Resource-efficient (training) We validate G-Designer’s
training process is resource-friendly from three dimen-
sions: GPU cost, token cost, and wall-clock time. Table 5
showcases that training G-Designer with up to 1000 agents
requires less than 4GB of memory. Table 2 unveils that
G-Designer not only attains the highest accuracy but also
exhibits superior token efficiency and reduced wall-clock
time compared to existing baselines, underscoring its effec-
tiveness in multi-agent collaboration.

Table 2. Efficiency analysis. We compare the training/inference
wall-clock time and token consumption between G-Designer and
other high-performing baselines on the GSM8K dataset.

Method Perf.
#Training

Token
#Inference

Token
#Overall

Token
Training

Time
Inference

Time

Complete 86.4 - 9.8× 106 9.8× 106 - 2.4h
DyLAN 88.1 9.6× 106 1.3× 107 2.2× 107 2.8h 4.6h
GPTSwarm 89.7 5.5× 106 8.4× 106 1.4× 107 2.1h 2.8h

G-Designer 95.0 2.7× 105 8.2× 106 8.5× 106 0.3h 2.3h

5.3. Robustness Analysis
Following (Zhuge et al., 2024), we simulate a system prompt
attack on one of the five agents. As seen in Figure 5, many
trivial structures, such as chain or complete graph, expe-
rience significant performance degradation under partial
system attacks, with drops as high as 11.0%. Among more
sophisticated structures, GPTSwarm, benefiting from its spe-
cialized node optimization mechanism, only suffers a minor
0.3% accuracy decline. However, other methods fare less

Table 3. Ablation study of G-Designer’s four variants, tested on
MMLU benchmark.

Variant MMLU GSM8K
Clean Attack Clean Attack

vanilla G-Designer 84.5 84.2 95.0 92.5

w/o SR 84.1 83.2 94.4 90.7
w/o Anchor 84.0 83.8 94.7 92.0
w/o NodeEncoder(·) 83.2 82.4 92.8 87.4
w/o vtask 81.3 82.0 90.3 87.7

well, with DyLAN and AutoGen showing accuracy drops
of 6.2% and 9.9%, respectively. Remarkably, G-Designer
demonstrates exceptional robustness against adversarial at-
tacks, maintaining nearly identical performance pre- and
post-attack. This resilience can be attributed to its agent
encoding capability, which, during optimization, can detect
malicious inputs and prune the corresponding edges.

5.4. Framework Analysis
Ablation Study. We report results for two variants of
ourmethod: (1) w/o SR, which removes the sparsity regular-
ization in Equation (14), (2) w/o Anchor, which excludes
the anchor structure Aanchor, (3) w/o NodeEncoder, re-
moving node encoder in Equation (7), and (4) w/o vtask
in Equation (8). As shown in Table 3, removing the task
virtual node disrupts G-Designer’s task-adaptiveness, lead-
ing to the most significant performance drop. The removal
of Aanchor consistently leads to performance degradation,
while the absence of sparsity regularization makes the sys-
tem more vulnerable to adversarial attacks.

Discussion on anchor topology. Given that G-Designer
is initialized with the anchor topology Aanchor introduced
in Section 4.1, one may question whether the perfor-
mance gains of G-Designer primarily stem from Aanchor
itself. In response, we emphasize that the anchor topol-
ogy corresponds to the simple Chain structure in Table 1,
where G-Designer achieves substantial improvements over
it, specifically 9.50% ↑ on GSM8K and 8.44% ↑ on
SVAMP. Thus, we assert that the superior performance
of G-Designer is predominantly attributed to its adaptive
topology design rather than the anchor topology itself.

6. Conclusion
In this paper, we first present the LLM-based Multi-agent
Communication Protocol (MACP), which aims to provide
insightful guidance for designing complex multi-agent sys-
tems. Furthermore, we propose an effective, adaptive, and
robust LLM-powered multi-agent communication graph de-
signer, termed G-Designer, to facilitate the automated de-
sign of collaborative AI systems. G-Designer is highly
task-aware, dynamically crafting compact and robust com-
munication topologies based on the complexity of the task at
hand. We hope that G-Designer will inspire future research
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on the emergence of self-organizing and self-evolving col-
lective intelligence.
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A. Algorithm Workflow

Algorithm 1 Designing workflow of G-Designer
Input :Input query Q, Graph auto-encoder fv composed of encoder q(·) and decoder p(·) (parameterized by Θe and Θ),

learning rate α
for query d in {1, 2, · · · , D′} do

/* Establish multi-agent network */
for node i in {1, 2, · · · , N} do

xi ← NodeEncoder (T (Basei),Rolei, T (Plugini))
end
Obtain agent embeddings Xagent ← [x1,x2, · · · ,xN ]⊤

Obtain task-specific node xtask ← NodeEncoder(Qd)
Set an anchor topology Aanchor // In our experiments, the anchor topology is simply set

as the chain structure

Obtain a task-specific multi-agent network G̃ =
([Xagent

x⊤task

]
,Aanchor

)
// Note that Aanchor here

contains bidirectional edges added by the task node vtask
/* Design communication topology */

Encode G̃ into latent agent representations Hagent: q(Hagent | X̃,Aanchor) =
∏N

i=1 q(hi | X̃,Aanchor)

Decode (phase 1) and obtain the sketched graph S: ps(S | Hagent) =
∏N

i=1

∏N
j=1 ps(Sij | hi,hj ,htask; Θd),

Decode (phase 2) and obtain the communication graph Gcom = (V, Ecom), Ecom = {(i, j) | S̃ij ̸= 0 ∧ (i, j) ∈ E})
/* Guide multi-agent system collaboration */
for iteration t in {1, 2, · · · ,K} do

for node i in ϕ(Gcom) do
Agent vi generatesR(t)

i ← vi(P(t)
sys ,P(t)

usr ), P(t)
usr = {Q,∪vj∈Nin(vi)R

(t)
j }

end
/* Aggregate solution */

a(t) ← Aggregate(R(t)
1 ,R(t)

2 , · · · ,R(t)
N )

end
/* Update G-Designer parameters */
Θd+1 ← Θd − α∇ΘdLG-Designer

end

B. Dataset Statistics
We conclude the dataset statistics in Table 4.

C. Case Study
Figure 6 visualizes the different topologies designed by G-Designer for varying query difficulties on the HumanEval and
GSM8K benchmarks.

D. Supplementary Results
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Table 4. Dataset descriptions and statistics.

Category Dataset Answer Type Metric #Test License

General reasoning MMLU Multi-choice Acc. 153 MIT License

Math reasoning

GSM8K Number Acc. 1,319 MIT License
MultiArith Number Acc. 600 Unspecified
SVAMP Number Acc. 1,000 MIT License
AQuA Multi-choice Acc. 254 Apache-2.0

Code generation HumanEval Code Pass@1 164 MIT License

HumanEval (case a)
def strlen(string: str) -> int:
   """ Return length of given string
    >>> strlen('')
    0
    >>> strlen('abc')
    3
   """

Programming
Expert

Algorithm
Designer

HumanEval (case b)
def double_the_difference(lst: List[float]) -> int:
    """
    Given a list of numbers, return the sum of squares of
the numbers in the list that are odd. Ignore numbers that
are negative or not integers.
    If the input list is empty, return 0.
    """

HumanEval (case c)
def do_algebra(operator: List[str], operand: List[int]) -> int:
    """
    Given two lists operator, and operand. The first list has basic algebra operations, and  the second list is a
list of integers. Use the two given lists to build the algebraic expression and return the evaluation of this
expression.  The basic operations: Addition(+); Subtraction(-); Multiplication(*); Floor division(//);
Exponentiation(**) . Example: operator['+', '*', '-']; array = [2, 3, 4, 5];result = 2 + 3 * 4 - 5;=> result = 9
    Note: 1. The length of operator list is equal to the length of operand list minus one. 2. Operand is a list of
of non-negative integers. 3. Operator list has at least one operator, and operand list has at least two operands.
    """

Algorithm
Designer

Programming
Expert

Bug
Fixer

Test
Analyst

Project
Manager

Harder Example:
G-Designer is complexity-
aware and capable of designing
task-adaptive topologies

GSM8K (case d)
Background:
A robe takes 2 bolts of blue fiber and half that much
white fiber.  
Question:
How many bolts in total does it take?

Math
Analyst

Programming
Expert

Math
Solver

Inspector

GSM8K (case e)
Question: 
John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very
important at home.  He tries to get home in 4 hours but
spends the first 2 hours in standstill traffic.  He spends the
next half-hour driving at a speed of 30mph, before being
able to drive the remaining time of the 4 hours going at 80
mph.  How far is he from home at the end of those 4 hours?

Math
Analyst

Programming
Expert

Math
Solver

Inspector

Algorithm
Designer

Programming
Expert

Bug
Fixer

Test
Analyst

Figure 6. Case study of the communication topologies designed by G-Designer on HumanEval and GSM8K benchmarks.

Table 5. The GPU cost of G-Designer with increasing number of agents.

#Agents 5 50 100 1000

Memory (GB) 2.7 2.9 3.0 3.8
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Table 6. Comparison of accuracy, time, token consumption, and cost across different agent configurations. We use the MMLU benchmark
and gpt-3.5-turbo as the base LLM.

#Agents 5 10 20

Chain
Accuracy (%) 70.59 71.24 71.98

Time (min) 15.73 30.20 56.18
#Prompt Tokens 351,802 702,164 1,378,328

Cost (USD) 0.5228 1.0434 2.0482

Complete Graph
Accuracy (%) 71.90 72.16 72.51

Time (min) 16.85 34.21 66.47
#Prompt Tokens 545,984 1,669,451 5,648,834

Cost (USD) 0.7161 2.1770 7.3662

GPTSwarm
Accuracy (%) 72.55 73.86 75.38

Time (min) 62.14 186.86 412.18
#Prompt Tokens 3,055,236 9,048,465 30,317,341

Cost (USD) 4.2190 12.4961 41.4235

G-Designer
Accuracy (%) 73.20 74.51 77.82

Time (min) 19.26 36.04 68.89
#Prompt Tokens 452,329 885,332 1,852,538

Cost (USD) 0.6036 1.2768 2.6713
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