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Abstract

Observing that for certain NLP tasks, such as001
semantic role prediction or thematic fit estima-002
tion, random embeddings perform as well as003
pretrained embeddings, we explore what set-004
tings allow for this and examine where most005
of the learning is encoded: the word embed-006
dings, the semantic role embeddings, or “the007
network”. We find nuanced answers, depend-008
ing on the task and its relation to the training009
objective. We examine these representation010
learning aspects in multi-task learning, where011
role prediction and role-filling are supervised012
tasks, while several thematic fit tasks are out-013
side the models’ direct supervision. We ob-014
serve a non-monotonous relation between some015
tasks’ quality score and the training data size.016
In order to better understand this observation,017
we analyze these results using easier, per-verb018
versions of these tasks.019

1 Introduction020

We examine to what extent models trained on a021

simplified semantic role labeling (SRL) task can022

estimate thematic fit (aka semantic fit), as the train-023

ing set size grows – and where most of the learning024

is stored: in the word embeddings, the thematic025

role embeddings, or elsewhere in the neural net.026

A major goal of natural language processing027

(NLP) is to understand the semantics of language.028

One traditional NLP task around this is SRL, which029

labels word spans in a sentence with thematic roles.030

Consider the sentence “I cut the cake with a knife”.031

We can interpret ‘cut’ as the action, ‘I’ as the032

Agent (the performer of the action), ‘cake’ as033

the Theme of the action (the thing that underwent034

the action), and ‘knife’ as the Instrument of035

the action. These words, labeled with roles such as036

Agent, Theme and Instrument, would be our037

representation of the event that the sentence con-038

veys. Other sentences with similar meanings, e.g.,039

“the cake was cut with the knife by me”, should040

have the same (or very similar) event representa-041

tions. In this work, we focus on model training042

with a simplified version of SRL: each event is043

represented only by the lemmatized syntactic head 044

of each event argument (including the predicate), 045

and the semantic roles are the simplified PropBank 046

roles (Arg0, Arg1, etc.). The reason for this is 047

the current limitations of available evaluation sets 048

for thematic fit: they are all comprised of lemma- 049

tized syntactic argument heads as well. 050

Thematic fit is related to SRL, but separate. 051

This task aims to identify how well a given word 052

or concept fits into a role of an event. Going back 053

to our example sentence, consider these potential 054

replacements for ‘knife’: scissors, fork and brick. 055

As humans, we understand that while ‘knife’ is the 056

most typical object for this situation, both ‘scissors’ 057

and ‘fork’ could also fit, even if not as naturally. 058

This is because we have a construct of all three 059

objects being instruments for cutting. More so, we 060

know that ‘brick’ is unlikely to fit given the con- 061

text of cutting a cake. Since thematic fit datasets 062

are scarce, one challenge in computational linguis- 063

tics (and computational psycholinguistics) revolves 064

around how machine learning models can learn the- 065

matic fit indirectly – perhaps from SRL training. 066

To the best of our knowledge, the state-of-art in 067

this line of work is the residual role-filler averag- 068

ing model (ResRoFA-MT) proposed by Hong et al. 069

(2018), with an adjusted embeddings representa- 070

tion and training data annotation in Marton and 071

Sayeed (2021). 072

In this paper, we examine training set size ef- 073

fects on thematic fit tasks – for which the models 074

were not directly optimized – even after reaching 075

a plateau on the simplified SRL task and its com- 076

plementary task (predicting the head word given 077

the role). 1. We find surprising training set size in- 078

teractions with specific evaluation sets and design 079

a modified evaluation metric in order to better un- 080

derstand these interactions. 2. We also modify the 081

ResRoFA-MT model architecture in various ways 082

to understand what contributes the most to the learn- 083

ing: the pretrained (or random) word embeddings, 084

the thematic role embeddings, or the rest of the 085

network. 3. In order to be able to train on larger 086
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data, we optimized the code of Hong et al. (2018)087

and Marton and Sayeed (2021). We release our088

optimized codebase1, which trains 6 times faster089

and includes ablation architectures and a correction090

to the training data preparation step.091

2 Related Work092

In event representation models, the main goal is to093

predict the appropriate word in a sentence given094

both the role of that supposed word and the sur-095

rounding context in the form of word-role pairs.096

One of the best early neural models was the non-097

incremental role-filler model (NNRF), by Tilk et al.098

(2016). This model was based on selectional pref-099

erences, or a probability distribution over the candi-100

date words. However, one drawback of this model101

is that representations of two similarly-worded sen-102

tences differing hugely in meaning would closely103

resemble each other, e.g., “kid watches TV” and104

“TV watches kid”. Another drawback is that the105

embeddings of the word-role pairs are summed106

together to represent the sentence, and so the result-107

ing event representation vector does not weight the108

input vectors differently based on their importance109

and is not normalized for varying numbers of roles110

in a sample.111

Hong et al. (2018) extend this model in three112

ways: First, in addition to the word prediction task113

of NNRF, the task of role prediction given the cor-114

responding word is added, and the two tasks are115

trained simultaneously (multi-task learning). This116

model is known as the non-incremental role-filler117

multitask model (NNRF-MT). Second, they ap-118

ply the parametric rectified linear unit (PReLU)119

non-linear function to each word-role embedding,120

which acts as weights on the composition of em-121

beddings, and subsequently average the embed-122

dings, which normalizes for variable length in-123

puts. This model is called the role-filler averaging124

model (RoFA-MT). Third, in an effort to tackle the125

vanishing gradient problem, residual connections126

between the PReLU output and the averaging input127

were added together. This third iteration is known128

as the ResRoFA-MT model. They showed that it129

performs the best on our thematic fit tasks, and so130

we use it as our baseline.131

Our work differs from Hong et al. (2018) and132

Marton and Sayeed (2021) in that while they fo-133

cused more on state-of-the-art performance im-134

provement through new modeling and annotation135

1Anonymized

methods, we aim to understand what controls the 136

learning in such networks. 137

Previous work suggests a difference between 138

"count" and "predict" models, where "count" mod- 139

els represented lexical semantics in terms of raw or 140

adjusted unsupervised frequencies of correlations 141

between words (such as Local Mutual Information; 142

Baroni and Lenci, 2010) and syntactic or semantic 143

phenomena; "predict" models involve supervised 144

training to achieve their representations, e.g., neu- 145

ral models. Baroni et al. (2014) do a systematic 146

exploration of tasks vs. state-of-the-art count and 147

predict models and found that predict models were 148

overall superior, including for thematic fit tasks. 149

More recently, Lenci et al. (2022) demonstrate that 150

predict-models are not reliably superior to count- 151

models, but depend on the task and the way the 152

models are trained. They also show that even recent 153

contextual models such as BERT are not necessar- 154

ily better for out-of-context tasks than well-tuned 155

static representations, predict or otherwise. 156

3 Datasets 157

We use the Rollenwechsel-English, Version 2 (RW- 158

Eng v2) corpus (Marton and Sayeed, 2021) as the 159

training set for all our experiments. This corpus is 160

sentence-segmented, annotated with morphological 161

analyses, syntactic parses, and syntax-independent 162

PropBank-based semantic role labeling (SRL). The 163

syntactic head word of each semantic argument is 164

determined by using several heuristics to match 165

the parses to the semantic argument spans. Note 166

that a sentence may have multiple predicates (typi- 167

cally verbs) and therefore multiple semantic frames 168

(sometimes called “events”), each with its own se- 169

mantic arguments, whose span may overlap the 170

argument span of other frames in the sentence. 171

The first version of this corpus contained NLTK 172

lemmas, MaltParser parses, parts-of-speech (POS) 173

tags, and SENNA SRL tags (Bird, 2006; Nivre 174

et al., 2006; Collobert and Weston, 2007). The sec- 175

ond version added layers from more modern tag- 176

gers: Morfette lemmas, spaCy syntactic parses and 177

POS tags, and LSGN SRL tags (Chrupala, 2011; 178

Honnibal and Johnson, 2015; He et al., 2018). In 179

our experiments here we use the lemmas of the 180

semantic arguments’ head words in v2. 181

The sentences themselves are taken from both 182

the ukWaC (Ferraresi et al., 2008) and the British 183

National Corpus (BNC). This corpus contains 184

78M sentences across 2.3M documents. This in- 185
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cludes 210M verbal predicates with 700M associ-186

ated role-fillers. We use the same training, valida-187

tion, and test split as Hong et al. (2018). That is, we188

have 99.2% ( 201.5M samples) in the full training189

set, 0.4% in validation, and 0.4% in testing. We190

run our training experiments on different subsets191

of the training data, ranging from 1% up to the full192

dataset. We cap our vocabulary size at the 50,000193

most common words in that specific subset.194

We used the following psycholinguistic test sets:195

Padó (Padó et al., 2006) 414 verb-argument pairs196

and the associated judgement scores. These were197

constructed from 18 verbs that are present in both198

FrameNet and PropBank. For each verb, the three199

most frequent subjects and objects from each of the200

underlying corpora were selected. That yielded six201

arguments per verb per corpus, with some overlap202

between corpora. For each verb-argument pair, a203

judgement was collected online with an average of204

21 ratings per item for the argument in subject and205

object role. The rating was collected on a Likert206

scale of 1-7 with the question "How common is it207

for [subject] to [verb]?" or "How common is it for208

[object] to be [verbed]?"209

McRae (McRae et al., 1998) 1444 pairs of verb-210

argument pairs in a similar format to Padó. These211

were created using a similar rating question as the212

Padó dataset, but is a compilation of ratings col-213

lected over several studies with considerable over-214

lap and heterogeneous selection criteria.215

Ferretti-Instruments and Ferretti-Locations216

(Ferretti et al., 2001) 274 predicate-location pairs217

and 248 predicate-instrument pairs. Based on the218

McRae dataset (Psychological norms).219

GDS (Greenberg et al., 2015) 720 predicate-220

object pairs and their ratings. Only objects (no221

subjects), matched for high and low polysemy and222

frequency, well fitting vs. poorly fitting. Greenberg223

and McRae overlap by about a third, but the human224

scores are obtained from new surveys.225

Bicknell (Bicknell et al., 2010) 64 cases. Congru-226

ent vs incongruent Patient in an Agent-Verb-227

Patient paradigm. Hand crafted, not corpus-228

based, designed for event-related potentials-based229

neurolinguistic experiments.230

4 Modeling and Methodology231

In this setup, an input event is represented as232

role-word pairs, where the role is one of the233

following PropBank (Palmer et al., 2005) roles: 234

Arg0, Arg1, ArgM-Mnr, ArgM-Loc, 235

ArgM-Tmp, and the predicate. The word is the 236

argument’s syntactic head’s lemma. Both the role 237

and the head word are taken from RW-Eng v2. All 238

prior works with the ResRoFA-MT model use two 239

random word embedding sets (one for input words 240

and one for the target word) and similarly two role 241

embedding sets. See Figure 1a. 242

Our implementation differs in these key aspects: 243

• Modified model architecture - Using a sin- 244

gle word embeddings set, shared between the 245

target and input words, and similarly a sin- 246

gle role embeddings set (Figure 1b). In our 247

experiments, we find the non-shared, redun- 248

dant embedding layers do not affect the per- 249

formance while adding (vocab size 50,000 × 250

word embedding size 300) 15,000,000 learn- 251

able parameters in the model. 252

• Changes in Batching - With previous im- 253

plementations, one “epoch” only resulted in 254

about a third of the data being traversed. The 255

next epoch would start on the second third 256

and so on. Now, we set the data preprocessing 257

so that “one epoch = one pass through all the 258

training data”. Additionally, the data is pre- 259

processed during the training of each batch, 260

so no time is lost during training in waiting 261

for the next batch of data to be preprocessed. 262

• Missing and unknown words handling - Fol- 263

lowing Marton and Sayeed (2021) but un- 264

like Hong et al. (2018), we represent out- 265

of-vocabulary (OOV) words separately from 266

missing words (empty slots in an event). 267

5 Experiments and Discussion 268

It has been repeatedly observed that in some set- 269

tings, random word embeddings perform as well 270

as pretrained ones, or very nearly, including in our 271

baselines (Tilk et al., 2016; Hong et al., 2018; Mar- 272

ton and Sayeed, 2021). We design experiments to 273

answer the following questions: Q1. Why is this 274

so in our compositional semantics and psycholin- 275

guistic tasks? Q2. For such semantic tasks and 276

architecture, where is the learning encoded? Is it 277

in the word embeddings, role embeddings or “the 278

network”? Q3. Training set size effect: is more 279

data better for this indirect setting and tasks? 280
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(a) Original ResRoFA-MT architecture (b) Shared Embedding Layer

(c) NIR network (d) NTR network

(e) NR network (f) Simple network

Figure 1: The model architectures for our experiments

5.1 Objective and Evaluation281

We train a feed-forward network in a multi-task282

learning setting to optimize word and role predic-283

tion accuracy. For target word prediction we give284

the prediction layer a context vector formed as a285

multiplication of the input word-role pairs and the286

target role. Similarly, for target role prediction we 287

feed the same context vector along with the tar- 288

get word, following the ResRoFA-MT architecture 289

(Hong et al., 2018) (Figure 1a). Since the network 290

initialization is random, we perform 5 runs of each 291

experiment and report the mean with a 95% con- 292
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fidence interval. Following Hong et al. (2018);293

Marton and Sayeed (2021), we test each model294

on the psycholinguistic datasets (Section 3), for295

which the models were not directly optimized. The296

idea behind using the latter test battery is that the297

model, even though trained on (simplified) SRL298

and word prediction (aka role-filling) tasks, is ex-299

pected to be able to make indirect generalizations300

about predicate–argument fit level from the training301

data and the related objectives. These psycholin-302

guistic tasks are evaluated with Spearman’s rank303

correlation between the sorted human scores and304

the sorted model scores, except for Bicknell, for305

which we take accuracy of predicting which argu-306

ment in each Patient role-filler pair is (more)307

congruent (Lenci, 2011).308

5.2 Shared Embedding Layer309

We modify the network to use a single embeddings310

set shared between the input words and target word,311

by using a single index-to-embedding mapping312

layer – and similarly a shared embedding-mapping313

layer for the input roles and target role (Figure 1b).314

This change results in 2x the training speed (Sec-315

tion 4) without degradation in performance (see316

first two rows in Tables 1 and 2). Therefore we317

use the faster shared architecture for the rest of the318

experiments. We train all models (until Section 5.6)319

on a uniformly sampled 1% subset, which is large320

enough to get indicative results while saving time321

and cost in experimentation. For comparison of our322

results to previous work, see Section 5.6.323

5.3 Random vs. Pre-trained Embeddings324

Hong et al. (2018) used random Glorot uniform to325

initialize the word embeddings. Private commu-326

nication with the authors confirmed random em-327

beddings do as well as pretrained ones for these328

tasks. We replicate this finding, comparing random329

word embeddings to pretrained GloVe embeddings330

(Pennington et al., 2014), both of size 300. See the331

third row in the top part of Tables 1 and 2.332

(Q1) Why is this so? We note that during train-333

ing, embeddings get updated. To check if this334

update is responsible for bridging the gap between335

zero knowledge (random embeddings) and much336

knowledge (compressed in the pre-trained GloVe),337

we freeze the word embedding layer and rerun the338

experiments (see the middle part in the same two339

tables). Contrary to our previous experiment, we340

find fixed GloVe embeddings do much better than341

fixed random embeddings on all our tasks. We also342

see tuning helps the network converge much faster 343

(from 25 epochs down to 11-15). 344

We conclude that indeed much of the learning 345

is captured in the word embeddings. Tuning them 346

even on only 1% of our training data bridges the 347

knowledge gap from the pre-trained embeddings 348

almost completely (with possible exceptions on Fer- 349

retti and Bicknell). But we note that although lower, 350

the fixed embeddings results are not near-random. 351

This leads us to Q2.: Where else is learning done, 352

and to what extent? 353

5.4 Role Contribution 354

We now turn to role ablation tests. First we take 355

away the input roles from the context embeddings 356

and call this the no-input-roles network NIR (see 357

Figure 1c and the third part of Tables 1 and 2). We 358

do not see significant drops in most of the tasks ex- 359

cept role prediction, which we expect by construc- 360

tion. Note that when predicting the target word, the 361

NIR network still receives the target role informa- 362

tion,which, together with at least the predicate, is 363

likely often sufficient information for prediction. 364

We find it surprising that input role ablation 365

barely affects performance on the psycholinguis- 366

tic tasks. Why is that? One possibility is that the 367

input role contribution is negligible. But another 368

possibility is that in NIR, all (or almost all) the role 369

information had to be ‘crammed’ into the target 370

role embeddings. To tease these apart, we next take 371

away the target role from the penultimate layer of 372

the network, but leave the input roles intact. We 373

call this no-target-role network NTR (see Figure 1d 374

and the row after NIR in the same tables). Now 375

the role accuracy goes back to the base level (as ex- 376

pected by construction), but word accuracy as well 377

as performance on the psycholinguistic tasks drop. 378

We conclude that target role carries more crucial 379

information than input roles for our psycholinguis- 380

tic tasks, and that role information ‘cramming’, if 381

it happens in NIR, does not happen in the other 382

direction (NTR). 383

Finally, for completeness, we remove all role 384

information from the network. We call this no-role 385

network NR (see Figure 1e and same tables). This 386

results in a drastic drop in word accuracy as well as 387

the psycholinguistic tasks. This is an an interesting 388

finding which supports previous knowledge about 389

the importance of roles in multi-task learning set- 390

ting while at the same time defies the importance of 391

roles in the context vector (the output of the resid- 392
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Embedding Shared? Tuned? Role? Role Accuracy Word Accuracy Epochs*

Random N Y Y .9655± .0014 .1363± .0020 11(6)
Random Y Y Y .9671± .0003 .1372± .0022 11(6)
GloVe Y Y Y .9669± .0003 .1374± .0005 15(10)

Random Y N Y .6609± .0046 .1208± .0012 25(20)
GloVe Y N Y .9510± .0011 .1291± .0006 25(20)

GloVe Y Y NIR† .9036± .0013 .1348± .0019 11(6)
GloVe Y Y NTR† .9677± .0006 .1230± .0017 12(7)
GloVe Y Y NR† .9007± .0021 .1078± .0010 8(3)

RAND Network‡ Y Y Y .1530± .0716 .0000± .0000 -
Simpler Network+ Y N Y .9987± .0005 .1208± .0020 6(1)

Table 1: Word and Role accuracy on 1% training data.
† NIR=No input role (in context); NTR=No target role (in prediction); NR=No role
‡ Network with no training that uses previously fine tuned word/role embeddings as input
+ Simpler Feed forward Network with previously fine tuned word/role embeddings as input
* Epochs in parentheses: the epoch of the effective model (best model before early stopping after patience limit)

Embed. Shrd Tuned Role Padó McRae GDS Ferretti-Loc Ferretti-Instr Bicknell
Random N Y Y .5474± .0345 .3231± .0236 .4485± .0314 .2611± .0036 .2282± .0623 .5260± .1185
Random Y Y Y .5280± .0274 .3384± .0174 .4388± .0206 .2532± .1421 .2266± .0391 .5000± .0673
GloVe Y Y Y .5316± .0320 .3280± .0177 .4534± .0209 .2851± .0301 .2895± .0258 .5438± .0370

Random Y N Y .4396± .0344 .2838± .0109 .2841± .0246 .1767± .0273 .2086± .0322 .4781± .0450
GloVe Y N Y .4941± .0247 .3090± .0254 .4349± .0229 .3011± .0301 .3439± .0421 .5563± .0490

GloVe Y Y NIR .5079± .0587 .3205± .0580 .4217± .0472 .3054± .0791 .2543± .0796 .6042± .0896
GloVe Y Y NTR .2400± .0294 .0937± .0258 .3845± .0083 .3071± .0017 .2621± .0531 .5469± .0388
GloVe Y Y NR .2496± .1088 .1139± .0150 .3385± .0363 .2955± .1243 .2668± .0375 .5885± .0448

RAND Y Y Y −.0001± .1090 .0109± .1604 .0365± .0784 .0165± .1048 −.0346± .0785 .4531± .1027
Simpler Y N Y .3271± .0555 .2175± .0294 .3356± .0345 .1055± .0259 .0459± .1239 .5365± .0593

Table 2: Thematic Fit tests on 1% training data (same models as in Table 1)

ual block in Figure 1). Next, we turn to learn more393

about the impact this vector and the block it is in.394

5.5 “It’s the Network!”... Or is it?395

In order to see how much the particular396

ResRoFA-MT model architecture (aka “the net-397

work”) contributes in our tasks, we first use the fine-398

tuned GloVe embedding from a previously trained399

base model (third row in Table 1) and assign the rest400

of the network random weights (“RAND Network”401

in Tables 1 and 2). To ensure the random weights402

are similar in size to the trained weights, we calcu-403

late the mean and standard deviation for each layer404

separately and assign that layer random weights405

using a Gaussian distribution with the same param-406

eters. We see this new model does very poorly,407

near random prediction. This could be due to the408

learned representation in the network weights that409

were ablated here but also due to incompatibility410

of the non-trained random network weights with411

the very informative word embeddings.412

Therefore next we replace the complex middle413

“residual block” with a plain dense projection layer414

but let this (“Simpler Network” (Figure 1f, Tables 1 415

and 2) learn during training. In training here we use 416

the fine-tuned word (and role) embeddings from 417

our base model. Curiously, we see a large jump in 418

role accuracy, but a drop in word accuracy as well 419

as psycholinguistic tasks other than Bicknell’s. We 420

can only speculate as to why the latter task is an 421

outlier here. It involves comparing the plausibility 422

of two two-participant events with one participant 423

changed. A simpler network may have an easier 424

time representing binary distinctions within a pair 425

of simple events, as opposed to predicting fine- 426

grained scores of more complex inter-relationships, 427

evaluated by the use of Spearman’s ρ in the other 428

datasets. It may even be able to rely on general 429

collocation statistics here, regardless of roles, but 430

we leave this for future work. Note that here, we 431

still do multi-task prediction as before, but in a 432

much simpler network. 433

This, along with the role ablation experiments, 434

suggest that while the potential incompatibility of 435

the non-trained random network weights with the 436

word embeddings may account for some of the 437
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drop in performance, the context vector formation438

through multiplication and likely also the improve-439

ments implemented in our base model have a large440

impact on the representation learning as tested on441

the thematic fit tasks (although not the same impact442

on role/word prediction).443

We see again that there is no clear correlation444

between the increase in directly optimized for445

role/word prediction, and the performance on the446

psycholinguistic tasks for which the models were447

not directly optimized.448

To recap, it seems that the answer to Q2 is nu-449

anced: Padó and McRae are most sensitive to ab-450

lated roles; GDS, and perhaps also Bicknell, to451

non-tuned random word embeddings; Ferretti to452

ablated (simplifiled) networks; and all are sensitive453

to RAND Networks, but Bicknell is surprisingly454

robust even there.455

5.6 Training Data Size Effect456

Often in machine learning and NLP, models learn457

better with more data. However, there are typically458

diminishing returns. To test the effect of training459

data size, we use our shared layer network with460

tuned GloVe embeddings (as in row 3 in Table 1) on461

uniformly sampled 1%, 10%, 20% 40% and 100%462

of the training dataset. See Table 3 and Table 4.463

Sys Role Accuracy Word Accuracy Epochs
B1† .9470 - -
B2‡ .9715± .0010 .1541± .0045 -

20%M+ .9707± .0002 .1450± .0004 -
0.1% .9446± .0015 .0994± .0024 12(7)
1% .9669± .0003 .1374± .0005 15(10)

10% .9701± .0002 .1443± .0006 13(10)
20% .9703± .0004 .1445± .0009 9(6)
40% .9704± .0007 .1442± .0011 9(6)

100%2 .9708± .0006 .1444± .0019 7(4)

Table 3: Comparison of performance with GloVe
(tuned) with varying training set sizes (Sys)

† Hong et al. (2018) 20%?
‡ Marton and Sayeed (2021) 20%
+ The average of max value in each trial for fair compari-

son with benchmarks B1,B2

First, in order to compare fairly with previous464

work, we report the average of the maximum value465

in each training trial on 20% of the data. (Recall466

that our 20% of the data is a larger training set than467

our baselines’ 20% due to improvements in our468

batcher). Our role accuracy is better than Hong469

et al. (2018) and similar to Marton and Sayeed470

(2021). Our word accuracy is a bit lower than the471

latter. On the indirectly supervised thematic fit472

tasks, our results are better on Padó, similar on473

McRae, but lower for the rest. We suspect that in 474

the previous work authors reported the best of all 475

the epochs from all trials, which can explain why 476

the previously reported scores are higher than our 477

results; but we could not verify that. 478

In order to better understand the effect of train- 479

ing set size (Q3), we use next what we believe 480

to be more realistic numbers: the average of the 481

last saved model in each run (best model per our 482

validation set) in each training subset size. 483

We see incremental improvements from 0.1% 484

to 1% to the 10% dataset across all our evaluation 485

tasks; however, contrary to our null hypothesis, 486

we see diminishing returns or no gains in role and 487

word prediction when using 20% or more of the 488

training set. In most of the psycholinguistic tasks 489

(Table 4), results plateau at 10% or 20% with the 490

notable exception of Padó and McRae, where we 491

see a negative trend beyond 20%. Why is it so, and 492

only for these two tasks, with mainly Padó? The 493

Padó dataset is constructed from high-frequency 494

fillers. It behaves differently from the other datasets 495

and gets a high maximum average score on the 20% 496

subset probably because there is more training data 497

available for high-frequency fillers, compared to 498

the other datasets, including McRae. Considering 499

the small samples in these test sets, they might 500

quickly become victims of not only high variance, 501

but also of overfitting, that is to say, the models may 502

specialize on the corpus distribution, increasingly 503

with training set size. This distribution is likely to 504

be different from the WSJ distribution, from which 505

Padó dataset is drawn (but see also Section 5.7). 506

How do word/role prediction and thematic fit 507

tasks relate to each other? We leave this ques- 508

tion for future research, but our hypothesis is that 509

psycholinguistic meaning of natural language is 510

grounded in interaction with other modalities (e.g., 511

actions, vision, audio), which a model cannot learn 512

just from more textual training data. 513

This leads potentially to a much bigger question: 514

how much can a neural model learn natural lan- 515

guage by just being trained on very large corpora 516

or billions of parameters, and where is the satura- 517

tion point? Furthermore, we see role information is 518

important to our psycholinguistic tasks; how much 519

does the role definition and granularity (e.g., Prop- 520

Bank or FrameNet), or the role set size, matter for 521

these tasks? Possibly, with a richer roleset, we may 522

see more alignment between word / role prediction 523

and the psycholinguistic tasks. Perhaps PropBank 524
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System Padó McRae GDS Ferretti-Loc Ferretti-Instr Bicknell
B1 .5300 .4250 .6080 .4630 .4770 .7450
B2 .5363± .0035 .4322± .0232 - - - -

20%M .5855± .0101 .4338± .0181 .5495± .0220 .3539± .0239 .4255± .0210 .6094± .0000

0.1% .2992± .0441 .1856± .0157 .1699± .0180 .0891± .0306 .0367± .0203 .4906± .0402
1% .5316± .0320 .3280± .0177 .4534± .0209 .2851± .0301 .2895± .0258 .5438± .0370
10% .5572± .0247 .3993± .0137 .5409± .0150 .3410± .0358 .3765± .0320 .5906± .0320
20% .5241± .0558 .3708± .1182† .5245± .0148 .3191± .0312 .3853± .0454 .5813± .0210
40% .3662± .1355 .3831± .0276 .5467± .0183 .3331± .0215 .3660± .0284 .5750± .0460
100%‡ .3375± .7293 .3733± .5203 .5338± .1328 .2736± .7846 .3416± .3297 .6094± .1985

Table 4: Thematic Fit with GloVe tuned (same models as in Table 3)
† 1 trial had an outlier score .2026
‡ All experiments had 5 runs per training subset, except for the 100% with only 2 runs, due to compute resource limitation.

roles are too coarse-grained to allow for an analysis525

of how a role-prediction task relates to a thematic526

fit task, which involves the fine-grained ranking527

(via Spearman’s ρ) of event plausiblities derived528

from the underlying semantic characteristics of the529

nouns and verbs involved. If so, understanding how530

performance on a role-prediction task relates to the-531

matic fit judgements may not be possible without a532

finer-grained inventory of semantic characteristics,533

such as Dowtyan proto-roles (Dowty, 1991).534

5.7 Global and Local Correlation535

We evaluate both Padó and McRae by computing536

Spearman’s rank correlation between the sorted list537

of model’s probability scores and the sorted list of538

averaged human scores, for each dataset. Why do539

Padó and McRae deteriorate with increasing train-540

ing data size? To test if this is due to fluctuation of541

model scores for unrelated but near-in-score verb-542

noun pairs, we averaged correlations for “local”543

subsets, grouped by verb. This should be an easier544

task, since some of the globally close competition545

is not present in each by-verb subset. Indeed, we546

see high jumps of 5-8% for the “local” correlation547

scores in the larger subsets (40% and 100%). But548

in the smaller subsets we see changes of 2-3% up549

or down. Moreover, the trend of lower correlation550

with larger training sets remained. We leave it551

to future work to dig further into why Padó and552

McRae show such an anomaly.553

6 Conclusions and Future Work554

In this work, we explored why random word em-555

beddings counter-intuitively perform as well as pre-556

trained word embeddings on certain compositional557

semantic tasks (some being outside the models’558

explicit objective), where the learning is actually559

stored (teasing apart the word embeddings, role 560

embeddings, and the rest of the network), and how 561

training set size affects performance on these tasks. 562

We found out that tuning (or further tuning) the 563

word embeddings helps and can bridge the gap be- 564

tween random and pretrained embeddings. More- 565

over, our tuned embedding space is different from 566

pretrained embeddings like GloVe. We saw that the 567

target role is more important than the input roles on 568

our tasks. Furthermore, our experiments suggested 569

that much of the learning happens also in the rest 570

of the network outside word and role embedding 571

layers. No single factor (word / role embeddings 572

or the network) is most important for all tasks. 573

Training set size had a surprising negative effect 574

on Padó and McRae beyond 20% of the training 575

data. We attempted explaining this with an alter- 576

native evaluation method, but this remains to be 577

explained further. 578

We release our code, including our preferred 579

network architecture – a modified version of 580

ResRoFA-MT with shared embedding layers. 581

One avenue in which we want to invest is to bet- 582

ter understand the complex relationship between 583

word/role accuracy and our psycholinguistic tasks. 584

While our initial hypothesis was that training the 585

network to minimize loss on word/role prediction 586

would also optimize performance on all our tasks, 587

this did not always hold. We suspect that the 588

groundedness is the missing link for (artificially 589

and naturally) learning psycholinguistic tasks, and 590

therefore adding grounding seems promising to us. 591

Another future avenue for us is investigating the 592

high variability in performance on psycholinguistic 593

tasks, compared to the fairly stable results on the 594

directly optimized-for word and role prediction 595

tasks. 596
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Ethical Considerations597

Our work uses RW-Eng v2 (Marton and Sayeed,598

2021), which in turn uses two corpora: ukWaC and599

the BNC. Therefore, we have similar ethical con-600

cerns as mentioned in that previous work, including601

the way the BNC data was collected. Those who so602

wish can easily exclude the BNC data (it comprises603

only a small part of the whole corpus) and retrain.604

The RW-Eng corpus (v1 or v2) could introduce605

undesired bias in use outside the UK, since the data606

is sourced entirely from UK web pages and other607

UK sources from the 20th century. English used608

outside the UK, and more recent English anywhere,609

differ from this corpus in their word distributions,610

and therefore their input may yield sub-optimal611

or undesired results. Furthermore, models trained612

on it could encode a Western-centric view of the613

world.614

The silver labels – the automatic parsing and tag-615

ging of the corpus – could introduce bias from the616

parsing/tagging algorithms. These parsers/taggers617

are also trained models, which could be affected618

by their data sources. If this is a concern for some619

users, we encourage them to perform validation of620

the data and its annotations.621

Having said that, we believe that for most if not622

all conceivable applications, especially as long as623

one keep these limitations in mind, our work should624

not pose any practical risk.625
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