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ABSTRACT

In this study, we propose a deep clustering algorithm that utilizes a variational
autoencoder (VAE) framework with a multi encoder-decoder neural architecture.
This setup enforces a complementary structure that guides the learned latent rep-
resentations towards a more meaningful space arrangement. It differs from previ-
ous VAE-based clustering algorithms by employing a new generative model that
uses multiple encoder-decoders. We show that this modeling results in both bet-
ter clustering capabilities and improved data generation. The proposed method is
evaluated on standard datasets and is shown to outperform state-of-the-art deep
clustering methods significantly.

1 INTRODUCTION

Clustering is one of the most fundamental techniques used in unsupervised machine learning. It
is the process of classifying data into several classes without using any label information. In the
past decades, a plethora of clustering methods have been developed and successfully employed in
various fields, including computer vision (Jolion et al., 1991), natural language processing (Ngomo
& Schumacher, 2009), social networks (Handcock et al., 2007) and medical informatics (Gotz et al.,
2011). The most well-known clustering approaches include the traditional k-means algorithm and
the generative model, which assumes that the data points are generated from a Mixture-of-Gaussians
(MoG), and the model parameters are learned via the Expectation-Maximization (EM) algorithm.
However, using these methods over datasets that include high-dimensional data is problematic since,
in these vector spaces, the inter-point distances become less informative. As a result, the respective
methods have provided new opportunities for clustering (Min et al., 2018). These methods incorpo-
rate the ability to learn a (non-linear) mapping of the raw features in a low-dimensional vector space
that hopefully allow a more feasible application of clustering methods. Deep learning methods are
expected to automatically discover the most suitable non-linear representations for a specified task.
However, a straightforward implementation of “deep” k-means algorithm by jointly learning the
embedding space and applying clustering to the embedded data, leads to a trivial solution, where
the data feature vectors are collapsed into a single point in the embedded space, and thus, the k
centroids are collapsed into a single spurious entity. For this reason, the objective function of many
deep clustering methods is composed of both a clustering term computed in the embedded space and
a regularization term in the form of a reconstruction error to avoid data collapsing.

One broad family of successful deep clustering algorithms, which was shown to yield state-of-
the-art results, is the generative model-based methods. Most of these methods are based on the
Variational Autoencoder framework (Kingma & Welling, 2014), e.g., Gaussian Mixture Variational
Autoencoders (GMVAE) (Dilokthanakul et al., 2016) and Variational Deep Embedding (VaDE).
Instead of using an arbitrary prior to the latent variable, these algorithms proposed using specific
distributions that will allow clustering at the bottleneck, such as MoG distributions. This design
results in a VAE based training objective function that is composed of a significant reconstruction
term and a second parameter regularization term, as discussed above. However, this objective seems
to miss the clustering target since the reconstruction term is not related to the clustering, and actual
clustering is only associated with the regularization term optimization. This might result in inferior
clustering performance, degenerated generative model, and stability issues during training.

We propose a solution to alleviate the issues introduced by previous deep clustering generative
models. To that end, we propose the k-Deep Variational Auto Encoders (dubbed k-DVAE). Our
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k-DVAE improves upon the current state-of-the-art clustering methods in several facets: (1) A novel
model that outperforms the current methods in terms of clustering accuracy. (2) A novel Variational
Bayesian framework to balance the data reconstruction and actual clustering that differs from the
previous methods. (3) A network architecture that allows better generative modeling and thus more
accurate data generation. Importantly, this architecture uses a lower amount of parameters compared
to previous models. We implemented the k-DVAE algorithm on various standard document and
image corpora and obtained improved results for all the datasets we experimented with compared to
state-of-the-art clustering methods.

2 RELATED WORK

Deep clustering has been studied extensively in the literature. The most common deep clustering
methods aim to project the data into a non-linear, low-dimensional feature space, where the task of
clustering appears to be feasible. Then, traditional clustering methods are further applied to perform
the actual clustering. Previous works have employed autoencoders (Yang et al., 2016; Ghasedi Dizaji
et al., 2017; Yang et al., 2017; Fogel et al., 2019; Opochinsky et al., 2020), Variational Autoencoders
(VAEs) (Jiang et al., 2016; Dilokthanakul et al., 2016; Yang et al., 2019; Li et al., 2019) and Gen-
erative Adversarial Networks (GANs) (Springenberg, 2015; Chen et al., 2016). IMSAT (Hu et al.,
2017), is another recent method that augmented the training data. Our method does not make any
use of augmented data during training and therefore, we do not consider IMSAT to be an appropri-
ate or fair baseline for comparison. Additionally, the GMVAE method has shown to yield inferior
performance results compared to the rest of VAE-based deep clustering, hence we do not present it
in our evaluations.

Among the aforementioned work, VaDE (Jiang et al., 2016) and k-DAE (Opochinsky et al., 2020)
are most relevant to our work. Both VaDE and our work utilize the Varitional Bayes framework, and
use a probabilistic generative process to determine the data generation model. Yet, the difference
lies in both the generative process and the use of several autoencoders: our network consists of a set
of k autoencoders, where each specializes on encoding and reconstructing a different cluster. The
k-DAE architecture consists of a set of k autoencoders, but does not consider generative modelling,
which as we show, proved to be more powerful and yields significant clustering performance results
in recent years.

The recent, state-of-the-art DGG method (Yang et al., 2019) was built on the foundations of VaDE,
and integrates graph embeddings that serves as a regularization over the VaDE objective. Using
the DGG revised objective, each pair of samples that are connected on the learned graph, will have
similar posterior distributions, using the Jenson-Shannon (JS) divergence similarity metric. The
other baselines used in this study are described in Section 4.2.

3 THE k-DVAE CLUSTERING ALGORITHM

In this section, we describe our k-Deep Variational Auto Encoders (dubbed k-DVAE). First, we
formulate the generative model that our algorithm is based on. Next, we derive the optimization
objective score. Then we discuss the differences between our model and previous VAE based algo-
rithms such as VaDE (Jiang et al., 2016) and illustrate the advantages of our approach.

3.1 GENERATIVE MODEL

In our generative modeling, we assume that the data are drawn from a mixture of VAEs, each with a
standard Gaussian latent r.v., as follows:

1. Draw a cluster y by sampling from p(y = i) = αi, i = 1, ..., k.
2. Sample a latent r.v. z from the unit normal distribution, z ∼ N (0, I).
3. Sample an observed r.v. x:

(a) If x is real-valued vector: sample a data vector using the conditional distribution,
x|(z, y = i) ∼ N (µθi(z),Σθi(z)).

(b) If x is binary vector: sample a data vector using the conditional distribution,
x|(z, y = i) ∼ Ber(µθi(z)).
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θi is the stacked vector of parameters of the i-th neural network (NN). It formulates a de-
coder NN that corresponds to the i-th cluster, 1 ≤ i ≤ k, assuming that the total number of
clusters is k. µθi(z),Σθi

(z) are computed by a decoder NN with an input z and parameters
θi. We denote the parameter set of all the decoders by θ = {θ1, ..., θk}.

Note that the latent data representation z is drawn independently of the selected class y, and the
class only affects when selecting the sample x.

3.2 LEARNING THE MODEL PARAMETERS BY OPTIMIZING A VARIATIONAL LOWER BOUND

Direct optimization of the likelihood function:

p(x;θ) =
∑
y

∫
z

p(z)p(y)p(x|z, y;θ)dz

is intractable. Instead, we can use variational approximation methods and learn the model parame-
ters by maximizing the Evidence Lower BOund (ELBO) lower bound. The ELBO(θ,λ) expression
is given by:

ELBO(θ,λ) =
∑
y

∫
z

q(y, z|x;λ) log p(x|y, z;θ)dz−DKL(q(y, z|x;λ)||p(y, z;θ)), (1)

whereDKL is the Kullback Leibler (KL) divergence between two density functions, and q(y, z|x;λ)
is a conditional density function parametrized by λ.

We use an approximate conditional density q(y, z|x) that mirrors the structure of the generative
model. For each cluster we define an encoder that transforms the input x into the latent space of that
cluster:

q(y = i, z|x;λ) = q(y = i|x)q(z|x, y = i;λi),

such that q(z|x, y = i;λi) = N (z;µλi
(x),Σλi

(x)) where µλi
(x),Σλi

(x) are computed by an
encoder NN with input x and parameter-set λi and we use the notation λ = {λ1, ..., λk}.
The first term of the ELBO expression (1) can be written as:∑

y

∫
z

q(y, z|x;λ) log p(x|y, z;θ)dz =
∑
i

q(y = i|x)Eq(z|x,y=i;λi) logN (x;µθi(z),Σθi(z)).

(2)
We next use Monte-Carlo sampling to approximate the expectation in Eq. (2):

Eq(z|x,y=i;λi) logN (x;µθi(z),Σθi(z)) ≈ logN (x;µθi(z),Σθi(z)), (3)

such that z|(x, y = i) is sampled from N (µλi
(x),Σλi

(x)).

Applying the chain rule for KL divergence to the second term of the ELBO expression (1), we get:

DKL(q(y, z|x;λ)||p(y, z;θ)) = DKL(q(y|x;λ)||p(y;θ))

+
∑
i

q(y = i|x)DKL(N (µλi
(x),Σλi

(x))||N (0, I)). (4)

We next replace the soft clustering in Eq. (3) and Eq. (4), by a hard clustering:

k∑
i=1

q(y = i|x)(logN (x;µθi(zi),Σθi(zi))−DKL(N (µλi
(x),Σλi

(x))||N (0, I))) (5)

≈ max
i

(logN (x;µθi(zi),Σθi(zi))−DKL(N (µλi
(x),Σλi

(x))||N (0, I))).

Finally, by neglecting the term DKL(q(y|x)||p(y;θ)) (4) (or equivalently setting q(y|x) = p(y;θ)),
we obtain the following objective for optimization:

ELBO(θ,λ) ≈ max
i
{logN (x;µθi(zi),Σθi(zi))−DKL(N (µλi(x),Σλi(x))||N (0, I))}

s.t. zi ∼ N (µλi
(x),Σλi

(x)).
(6)
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. . . 

Figure 1: A block diagram of the autoencoder that computes the ELBO of the k-DVAE clustering
method, during training phase.

Algorithm 1 ELBO score computation
Input: Data sample x
Output: Estimated score.

for i = 1 to k do
Compute µλi(x) and Σλi(x) using the i-th en-
coder.
Draw zi ∼ N (µλi(x),Σλi(x)).
Compute µθi(zi) and Σθi(zi) using the i-th
decoder.

end for
Compute the ELBO score using Eq. (6).

Algorithm 2 Hard clustering
Input: Data sample x
Output: Estimated cluster ŷ(x) of x.

for i = 1 to k do
Compute z̄i ← µλi(x) using the i-th encoder.
Compute µθi(z̄i) and Σθi(z̄i) using the i-th
decoder.

end for

Compute the cluster ŷ(x) using Eq. (8).

When optimizing the ELBO expression, we sample the Gaussian r.v. zi|(x, y = i) using the repa-
rameterization trick. Note that the ELBO objective function (6) consists of a reconstruction term
and a regularization term and both are involved in the clustering decision. In the derivation of the
objective function above we assumed that x is a real-valued vector. The derivation of the ELBO
objective function for the discrete case is similar. The score computation procedure is depicted in
Algorithm 1 and the overall architecture of the autoencoder used in the training is depicted in Fig. 1.

3.3 HARD CLUSTERING OF DATA POINTS

After the model parameters have been learned we can extract the data clustering. We chose a deter-
ministic version of the clustering procedure (6) that avoids sampling of z and was empirically shown
to yield more stable results in our simulations. We used the expectation vector z̄i = µλi

(x) instead
of a sampled zi. The hard clustering is thus defined as:

ŷ(x) = arg max
i

(logN (x;µθi(z̄i),Σθi(z̄i))− log
p(z̄i|x;λi)

p(z̄i;θi)
) (7)

According to our generative model p(z̄i;θi) = N(z̄i;0, I), and

log p(z̄i|x;λi) = logN (z̄i;z̄i,Σλi(x)) =

d∑
s=1

logN(z̄is;z̄is,Σλi(x)s) = −
d∑
s=1

log σ̄is
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where d is the dimensionality of the latent r.v. and Σλi
(x) = Var(z|x, y = i) = diag(σ̄2

i1, ..., σ̄
2
id).

This finally implies:

ŷ(x) = arg max
i

(logN (x;µθi(z̄i),Σθi(z̄i))−
1

2
‖z̄i‖2 +

d∑
s=1

log σ̄is) (8)

The hard clustering procedure is depicted in Algorithm 2.

3.4 COMPARISON TO THE VADE METHOD

Our method and the VaDE algorithm (Jiang et al., 2016) are both based on generative models learned
by variational autoencoders. We will now briefly describe VaDE and focus on the differences from
our model. The VaDE generative process is based on a MoG model combined with a non-linear
function (decoder) and is given by:

1. Draw a cluster y by sampling from p(y = i) = αi, i = 1, ..., k.

2. Sample a latent r.v. z using the conditional distribution, z|y = i ∼ N (µi(z),Σi(z)).

3. If x is real valued, sample it using the conditional distribution, x|z ∼ N (µθ(z),Σθ(z)).
If x is binary valued, sample it using the conditional distribution, x|z ∼ Ber(µθ(z)).
µθ(z),Σθ(z) are computed by a decoder NN with an input z and parameters θ.

Note that unlike our method, this modeling uses the same decoder (parametrized by θ) to construct
the observed data for all the different clusters. Hence the decoder is likely to be very complex. In
comparing the performance of two methods in the next section, we show that much less number of
parameters are needed in our model than in VaDE, and the reconstruction quality of our model is
much better.

The VaDE ELBO(θ,λ) term can be approximated as follows:

ELBO(θ,λ) ≈ logN (x;µθ(z),Σθ(z))

−
k∑
i=1

pθ(y = i|z)(DKL(N (µλ(x),Σλ(x))||N (µi,Σi))︸ ︷︷ ︸
C

+ log
pθ(y = i|z)

αi
),

(9)

where z is sampled from N (µλ(x),Σλ(x)). After the VaDE parameters are learned, the soft clus-
tering of x is pθ(y|z) where z is sampled from N (µλ(x),Σλ(x)). For the full derivation, we refer
the reader to Jiang et al. (2016).

Note that the term C in Eq. (9) refers to the actual MoG-based soft clustering performed by VaDE
during the learning phase. The clustering is thus performed here only within the ELBO regulariza-
tion term. In our method, both the reconstruction and regularization parts of the ELBO term are
involved in the clustering decision.

Another variant of our algorithm is a non-generative approach that do not have a regularization
term, and it only minimizes the reconstruction error (Opochinsky et al., 2020). We show in the next
section that this results in significant degradation of the clustering performance. Hence, it is required
that both the reconstruction term and the regularization term of the ELBO should be involved in the
clustering process.

4 EXPERIMENTS AND RESULTS

In this section, we present the datasets, hyperparameters, and experiments conducted to evaluate our
approach’s clustering results and compare it to other clustering methods.

4.1 DATASETS

We used the following datasets in our experiments:
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MNIST: The MNIST dataset consists of 70, 000 handwritten (ten) digits images, of size 28 × 28
pixels. Prepossessing includes centering the pixel values and flattening each image to a
784-dimensional vector.

STL-10: The STL-10 dataset consists of RGB colored images of size 96× 96 pixels. This dataset
contains a total number of 10 classes. Since clustering directly from raw pixels of high-
resolution images is rather difficult, Prepossessing includes features extraction by passing
the images to a pre-trained ResNet-50 (He et al., 2016) and then applying an average pool-
ing operation to reduce the dimensionality to 2048.

REUTERS: The REUTERS dataset consists of 10, 000 English news stories that relate to a total
number of 4 categories. Prepossessing includes computing of 2000-dimensional TF-IDF
feature vectors for the most frequent words in the articles.

HHAR: The Heterogeneity Human Activity Recognition (HHAR) dataset consists of 10, 200 sam-
ple records, where each sample relates to one of 6 different categories. Each sample in this
dataset is a 561-dimensional vector.

Note that we set k to be the actual number of classes of the given datasets during our simulations.
The overall datasets statistics are summarized in Table 1.

4.2 EVALUATED MODELS

We compared our method to the following state-of-the-art deep clustering algorithms:

Autoencoder followed by Gaussian Mixture Model (AE+GMM): This method trains a single
AE using the reconstruction objective, and then applies GMM-based clustering on the em-
bedding space.

Variational Deep Embedding (VaDE): Introduces a VAE based generative model that assumes
the latent variables follows a mixture of Gaussians, where the means and variances of the
Gaussian components are trainable (Jiang et al., 2016).

Latent Tree Variational Autoencoder (LTVAE): A VAE based model that assumes a tree struc-
ture of the latent variables (Li et al., 2019).

Deep clustering via a Gaussian mixture VAE with Graph embedding (DGG): A recent VAE
based model that assumes a tree structure of the latent variables (Yang et al., 2019).

k-Deep-AutoEncoder (k-DAE): This algorithm uses k-AEs for deep clustering, where k is as-
sumed to be the number of clusters (Opochinsky et al., 2020). This method serves as the
ablation study for our method, since it induces the same (reconstruction) objective without
the KL term (which stands for regularization).

k-Deep-Variational AutoEncoder (k-DVAE): Our clustering method.

The encoder-decoder structure used for the first four methods is the same (for a fair comparison) and
is composed as follows. Each encoder network uses dense layers of sizesD−500−500−2000−10,
and each decoder network uses dense layers of sizes 10−2000−500−500−D. All these methods
use additional mid-layers (to perform clustering). This setting and the remaining hyperparameters
were taken from Jiang et al. (2016), and Yang et al. (2019). For both our method and the k-DAE
method, the autoencoders used dense layers of sizes D − 500 − 100 − 10 for the encoder, and
10− 100− 500−D for the decoder. Note that although we needed to allocate one encoder-decoder
network to each cluster, the number of parameters was still drastically lower than the compared

Table 1: Datasets statistics

Dataset # Samples Input Dimension # Clusters
MNIST 70, 000 784 10
STL-10 13, 000 2048 10
REUTERS 10, 000 2000 4
HHAR 10, 200 561 6
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Table 2: Clustering accuracy results for clustering benchmarks. Best performance is bolded.

MNIST STL-10 Reuters HHAR
AE+GMM 82.20 ± 0.2 79.40 ± 0.2 71.12 ± 1.1 77.74 ± 0.1
VaDE 94.43 ± 0.1 85.45 ± 0.1 79.84 ± 1.5 84.49 ± 0.1
LTVAE 86.32 ± 0.1 90.05 ± 0.1 80.96 ± 1.8 85.10 ± 0.2
DGG 97.58 ± 0.1 90.59 ± 0.2 82.30 ± 1.2 89.04 ± 0.1
k-DAE 96.51 ± 0.1 87.30 ± 0.1 79.92 ± 1.1 87.26 ± 0.1
k-DVAE 97.87 ± 0.1 91.52 ± 0.1 82.74 ± 1.0 90.74 ± 0.1

methods. We tried increasing the number of parameters for each method, but it did not result in
any performance gains. Each encoder network outputs mean and variance vectors that form the
multivariate normal distribution. The output of the decoder is a single mean vector if the input x is
discrete; otherwise, it also outputs a variance vector to form the normal distribution.

In our implementation of k-DVAE, Similar to the DGG method (Yang et al., 2019), we first pre-
train the VaDE network as initialization. Then, we set the initial clusters by applying the k-means
clustering over the VaDE embedded space. In our case, this architecture was used only in this
initialization step.

4.3 CLUSTERING RESULTS

Clustering performance of all the compared methods was evaluated with respect to the unsupervised
clustering accuracy (ACC) measure, given by

ACC , max
m∈Sk

1

N

N∑
i=1

1{yi = m(ŷ(xi)}

where N is the total number of data samples, yi is the ground-truth label that corresponds to that xi
sample, ŷ(xi) is the cluster assignment obtained by the model, and m ranges over the set Sk of all
possible one-to-one mappings between cluster assignments and labels. This measures the proportion
of data points for which the obtained clusters can be correctly mapped to ground-truth classes, where
the matching is based on the Hungarian algorithm (Kuhn, 1955). It lies in the range of 0 to 1 where
one is a perfect clustering result and zero is worst.

In Table 2 we depict the quantitative clustering results over the tested benchmarks compared to clus-
tering methods. We show the mean and average ACC clustering results over ten training sessions
with different random parameter initializations. The table shows that our method outperformed the
other methods in terms of accuracy. In addition, using the non-variational k-DAE variant yields infe-
rior results compared to our method, which emphasizes the superiority of the variational generative
framework in this setup.

4.4 QUALITATIVE ANALYSIS

A key modeling difference between our k-DVAE and recent state-of-the-art models is that our model
allocates a different decoder to each cluster. We saw that this yields improved clustering results. We
show below that we also gain improved generation capability. In classification tasks, it is known
that discriminative methods are better than generative ones since the classes are known, and we only
need to find the discriminative features. However, in clustering tasks where we need to learn the
clusters, there is a tight relationship between a model’s generation capabilities and its clustering
performance. To gain insight into our model’s data generation capabilities, we present examples of
images generated by the model’s generator network.

To generate an example from the i-th clusters, we first sample a random vector z from the unit nor-
mal distribution and then feed it to the i-th decoder network, parametrized by θi. The VaDE/DGG
algorithm, in contrast, uses a single decoder for all the clusters. Fig. 2 illustrates the generated sam-
ples for digits 0 to 9 of MNIST by our method compared to DGG1.Note that unlike the results shown

1VaDE has a similar generative model as DGG. Thus we choose to depict the results of DGG, which is
state-of-the-art.
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(a) DGG
(b) k-DVAE

Figure 2: Examples of generated digits. The digits were generated by the decoder networks of DGG
and k-DVAE, digits in the same row come from the same cluster.

in Jiang et al. (2016), we performed the digits generation process without restricting the posterior’s
high values. We note in passing that in Jiang et al. (2016), the authors presented generation re-
sults only for good cases where the posterior probability of the correct clustering was at least 0.999.
While both k-DVAE and DGG were able to generate smooth and diverse digits, the images gener-
ated by the DGG are prone to errors. In contrast, each decoder network of the k-DVAE successfully
reconstructed its corresponding digit by only using random normal noise as an input.

5 CONCLUSION

In this work, we proposed k-Deep Variational AutoEncoder (k-DVAE), a neural generative model
for deep clustering. This framework facilitates k encoder-decoder models designed to learn insight-
ful low-dimensional representations for better clustering. The model is optimized by maximizing
the evidence lower bound (ELBO) of the data log-likelihood. Using a distinct set of k parametrized
models combined with the variational probabilistic framework results in a much richer representa-
tion of each cluster than previous methods. Extensive experimental results on four different datasets
demonstrate our method’s effectiveness over different state-of-the-art baselines, which require more
parameters for training than our proposed architecture. Our qualitative analysis showcases the high
quality of the generative model induced by our k-DVAE. Future research can extend our work by
utilizing a graph embeddings similarity objective or adding a discriminator network to further regu-
larize the posterior.
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