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Abstract

This study presents an Exploratory Retrieval-Augmented Planning (ExRAP) frame-
work, designed to tackle continual instruction following tasks of embodied agents
in dynamic, non-stationary environments. The framework enhances Large Lan-
guage Models’ (LLMs) embodied reasoning capabilities by efficiently exploring
the physical environment and establishing the environmental context memory,
thereby effectively grounding the task planning process in time-varying environ-
ment contexts. In ExRAP, given multiple continual instruction following tasks,
each instruction is decomposed into queries on the environmental context memory
and task executions conditioned on the query results. To efficiently handle these
multiple tasks that are performed continuously and simultaneously, we implement
an exploration-integrated task planning scheme by incorporating the information-
based exploration into the LLM-based planning process. Combined with memory-
augmented query evaluation, this integrated scheme not only allows for a better
balance between the validity of the environmental context memory and the load
of environment exploration, but also improves overall task performance. Further-
more, we devise a temporal consistency refinement scheme for query evaluation
to address the inherent decay of knowledge in the memory. Through experiments
with VirtualHome, ALFRED, and CARLA, our approach demonstrates robustness
against a variety of embodied instruction following scenarios involving different
instruction scales and types, and non-stationarity degrees, and it consistently out-
performs other state-of-the-art LLM-based task planning approaches in terms of
both goal success rate and execution efficiency.

1 Introduction

The application of Large Language Models (LLMs) in embodied AI is essential for harnessing
common knowledge and immediately applying it to unseen tasks and domains without requiring
additional training or data. Researchers are further enhancing task adaptation by integrating environ-
mental information with the intrinsic common knowledge of LLMs [1, 2, 3, 4, 5, 6, 7]. This capability
proves invaluable in fields such as home robotics and autonomous driving, where it enables embodied
agents to learn across diverse instruction following tasks with minimal data requirements.

For embodied agents, these tasks are often not mere single, one-time instructions but are multiple and
persistent, necessitating continuous access to environmental knowledge to reason and plan effectively
for user needs. In such scenarios, the efficiency of repeatedly collecting environmental knowledge
through interaction each time the agent plans can be suboptimal. Furthermore, there is a clear need to
integrate and manage multiple user requirements effectively.
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In this paper, we investigate continual instruction following for an embodied agent, where multiple
tasks are contingent upon the real-time information of a continuously changing environment. This
setup requires the agent to engage in ongoing exploration of the environment to adaptively respond
to dynamic changes and fulfill the required tasks. To address the problem of continual instruction
following, we present an exploratory retrieval-augmented planning (ExRAP) framework, designed to
enhance LLMs’ embodied reasoning capabilities by integrating environmental context memory.

In ExRAP, to improve effectiveness and efficiency in managing environment interaction and explo-
ration loads for multiple embodied tasks, we employ an exploration-integrated task planning scheme,
in which the information-based exploration is incorporated into the LLM-based planning process. This
integrated planning scheme establishes a robust policy that balances the validity of the environmental
context memory with the demands of environment interaction and exploration. We also devise a
temporal consistency-based refinement scheme to ensure the robustness of memory-augmented query
evaluation on environmental conditions. Through experiments with VirtualHome [8], ALFRED [9]
and CARLA [10], we demonstrate that the ExRAP framework achieves competitive performance in
both task success and efficiency compared to several state-of-the-art embodied planning methods,
including ZSP [11], SayCan [1], ProgPrompt [3], and LLM-Planner [12].

Our contributions are summarized as: First, we propose a novel ExRAP framework, systemati-
cally combining LLMs’ reasoning capabilities and environmental context memory into exploration-
integrated task planning to tackle continuous instruction following tasks in non-stationary embodied
environments. We also introduce two schemes tailored for exploration-integrated task planning in
ExRAP, information-based exploration estimation and temporal consistency-based refinement on
memory-augmented query evaluation. Finally, we demonstrate superior performance and robust-
ness of ExRAP via intensive experiments with home robots and autonomous driving scenarios in
VirtualHome, ALFRED, and CARLA.

2 Related work

Embodied instruction following. Embodied instruction following involves executing complex tasks
based on an understanding of embodied knowledge. This aims to grasp various aspects of the physical
environment including objects, their relations, and dynamics, and to plan appropriate sequences
of actions or skills to complete the tasks specified by instructions successfully. In the area of task
planning, there have been many works to combine LLMs’ reasoning capabilities with environmental
characteristics. Recent research explored the utilization of skills’ affordances to compute their
values [1, 2], implemented code-driven policies [3, 4], and generated reward functions [13, 14],
while highlighting the use of LLMs’ enhanced abilities in task planning. Moreover, LLM-driven
environment modeling approaches, utilizing LLMs’ common knowledge and reasoning about real-
world objects, have been introduced [5, 6, 7]. These LLM-based approaches to task planning have been
applied across a range of embodied instruction following tasks, facilitated by repeated interactions
with environments, humans, or other agents [15, 16, 12, 17, 18, 19].

While these approaches underscore the versatility and depth of LLMs for task planning and embodied
agent control, they often rely on a non-systematic integration of observations to the LLMs’ reasoning
process. Furthermore, they rarely consider continual instruction following scenarios, where an agent
should handle a set of instructions continuously, adapting to real-time environmental conditions. In
contrast, our work differentiates itself by incorporating agents’ exploration capabilities, which are
guided by information gains, into continual instruction following.

Retrieval-augmented generation for LLM. Research in retrieval-augmented generation (RAG) fo-
cused on efficiently executing tasks by sourcing and utilizing task-related information from databases.
In particular, enhancing the performance of retrieval, which suggests relevant data when an LLM
requires specific knowledge for the tasks, involves training retrievers [20, 21, 22, 23], fine-tuning
the LLM to adapt the RAG process [24, 25], or exploiting the LLM itself for dynamic query refor-
mation [26, 27]. In the area of embodied task planning, recent studies adopt the integration of RAG
with task-specific demonstrations [12]. Our work also uses RAG for embodied task planning, but
it uniquely emphasizes its dynamic aspects. For continual instruction following, we prioritize the
relevance and significance of the agent’s skills, not only to perform tasks but also to ensure continuous
and efficient synchronization of its environmental memory with changes in the environment.
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Figure 1: Concept of ExRAP. In the embodied environment, this framework manages continual
instructions, a set of instructions for embodied instruction following tasks that are conducted continu-
ously and simultaneously. At each step, it operates through (a) memory-augmented query evaluation,
and (b) exploration-integrated task planning coupled with environmental context memory updates
(as shown in the left side of the figure). By performing this integrated plan in conjunction with the
memory, the ExRAP framework achieves more efficient task execution in response to the continual
instructions, compared to the instruction-wise planning (as in the right side of the figure).

Exploration in reinforcement learning (RL). In the field of RL, exploration methods, designated to
efficiently gather environmental information, have been a focus of research. Strategies were developed,
that prioritize the exploration of new environmental information, by offering intrinsic rewards [28,
29] or through navigation schemes derived from offline demonstrations [30, 31, 32]. Particularly,
in DREAM [33], an exploration policy is formulated to adapt to varying conditions by using data
gathered during initial exploration episodes. This policy is optimized by maximizing the information
gain to better adapt to changes. Our work adapts this mutual information-based exploration strategy
with RAG for embodied instruction following. Our proposed framework is the first to implement
exploration-integrated task planning with LLMs, enabling the efficient execution of continuously-
performed instructions and facilitating the dynamic adaptation to changing environmental conditions.

3 Approach

3.1 Continual instruction following

We consider a set of instructions for embodied tasks that are continuously and simultaneously
conducted based on specific environmental contexts. In Figure 1, the instructions entail conditional
actions like “If the temperature is high, open the window” and “When watching TV, turn off the
light.” The agent continuously explores the environment to verify whether the conditions (e.g.,
temperature and TV status) are met. Upon confirmations, the agent executes the associated tasks
within the environment. We refer to these scenarios, where multiple embodied tasks are conditioned
on environmental contexts and conducted continuously, as continual instruction following. This
concept aligns closely with continuous queries [34, 35] in database literature, which monitor updates
of interest over time and return results when specific thresholds or conditions are met. This is in
contrast to single in-situ instruction following, where each task is executed based on isolated, one-time
directives.

For continual instruction following tasks with conditional instructions I = {i1, ..., iM}, we consider a
non-stationary embodied environment that changes over time. The conditions of continual instructions
may or may not be satisfied over time, requiring continuous exploration in the environment. When
certain conditions are met, the associated tasks should be performed promptly. For this continual
instruction following tasks in the non-stationary environment, we evaluate agent performance in terms
of task completion and efficiency. Our goal is to establish an embodied agent policy π∗ that maximizes
the overall performance of continual instruction following tasks. Specifically, we formulate the reward
as a combination of (i) the task success rate SR and (ii) the average pending step PS. SR is the
rate of completed tasks whose conditions have been met, and PS is the average steps required to
accomplish the task associated with instruction i ∈ IC whenever the condition is met. For instructions
I and timestep t, we then formulate the agent policy π∗ performing a skill upon observation ot as

π∗ = argmaxπ

[∑
t

SR(st, π(ot, I)) + Ei∈IC
[−PS(π, i)]

]
. (1)
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Optimizing both SR and PS allows the agent not only to appropriately plan for multiple instruction
following tasks but also to strategically integrate these instructions to improve overall efficiency.
The resulting policy is able to minimize redundant skill executions by addressing multiple tasks
in an integrated manner, taking into account the possible spatial and temporal overlap of the task
requirements. For instance, as illustrated in Figure 1, an integrated plan achieves a pending step of 7,
the average of required timesteps 7, 4 and 10 for the three instructions. This is significantly shorter
than 9.2, the average of 5, 9, and 14 achieved by an instruction-wise plan.

3.2 Overall framework

To address the challenge of continual instruction following in a non-stationary embodied environment,
we develop the ExRAP framework. It is designed to minimize the necessity for environmental
interaction, by utilizing memory-augmented and exploration-integrated planning schemes while
ensuring robust task performance.

In ExRAP, each conditional instruction i ∈ I is decomposed into two primary components: query
q and execution e. Queries function as conditions for task initiation and are evaluated against
environmental information. Executions, on the other hand, involve physical interactive manipulations
that are triggered based on the results of query evaluation. In a non-stationary environment, evaluating
queries poses a unique challenge due to the need for the agent to continuously synchronize with
constantly changing information. This synchronization often necessitates continual exploration,
resulting in intensive interaction with the environment.

As described in Figure 1, ExRAP addresses this challenge through two components: (a) query
evaluation using environmental context memory and (b) exploration-integrated task planning. In
(a), the environmental context memory is established via a temporal embodied knowledge graph to
effectively represent the dynamic environment. Augmented with this graph-based context memory,
the LLM-based query evaluator responds to queries by checking if their conditions are met and
provides confidence levels for these assessments. To address the information decay, which stems from
synchronization uncertainty between the previously collected environmental context and the actual
current state of the environment, we incorporate entropy-based temporal consistency refinement into
the query evaluation process. In (b), ExRAP plans skills that are instrumental not only for achieving
tasks from an exploitation perspective but also for boosting confidence in the query evaluations from
an exploration perspective. To effectively plan skills that balance both perspectives, we integrate the
exploitation value of skills, which is derived from the in-context learning ability of LLMs, with their
exploration value, which is determined through information-based estimation.

3.3 Memory-augmented query evaluation with temporal consistency

We represent both the environmental context memory and the observations perceived by the agent
using a temporal embodied knowledge graph (TEKG), where the memory is established through the
accumulation of these observations. Queries, derived from given instructions, are evaluated against the
context memory, with consideration for inherent information decay within the previously accumulated
data. The query evaluation procedure is described on the upper side of Figure 2.

TEKG and retriever. The TEKG comprises a set of quadruples τ = (se, re, te, t) consisting of
source entity se, relation re, target entity te, and timesteps t. We represent the environmental context
memory at a specific timestep t within the TEKG, defined as

Gt = {τ1, τ2, · · · , τN} where τi = (sei, rei, tei, ti), ti ≤ t. (2)

To integrate the current observation ot+1 into previously established up-to-date memory Gt, we
employ an update function µ as follows:

Gt+1 = µ(Gt, ot+1) = {τ ∈ Gt | c(τ, τ ′) = 0, ∀τ ′ ∈ ot+1}
⋃

ot+1. (3)

Here, c is a function that detects the semantic contradictions between quadruples, such as when τ and
τ ′ indicate that a TV is both “off” and “on”. It returns 1 if there is a contradiction, otherwise 0.

Constructed memory G serves as a knowledge database for continual instruction following, enabling
the retrieval of environmental information related to specific task directives such as instructions,
queries, and executions. Specifically, for language-specified task directives L = {l}, the retriever ΦR
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Figure 2: Overall procedures of ExRAP. (a) Query evaluation: The instruction interpreter ΦI produces
queries and executions, as well as a condition function from continual instructions. The memory-
augmented query evaluator ΦM then evaluates these queries probabilistically using the LLM with a
retrieved TEKG from the environmental context memory. (b) Exploration-integrated task planning:
The LLM-based exploitation planner vT estimates the value of skills based on their executions
and relevant demonstrations in an in-context manner. Simultaneously, the exploration planner vR
evaluates these skills using the subsequent TEKG through information-based value estimation. At
each step, a skill is then selected based on the integrated skill value from the two estimations.

interacts with the memory G and samples k quadruples {τ̂1, · · · , τ̂k}. The sampling is based on the
multinomial softmax distribution, where the likelihood of retrieving a quadruple τ is determined by
the highest sentence embedding similarity between τ and any l in L.

Instruction interpreter. The instruction interpreter ΦI processes continual instructions I =
{i1, ..., iM}, translating them into queries Q and corresponding task executions E :

ΦI(I) = (Q : (q1, . . . , qM ), E : (e1, . . . , eM ), C) where C(qj) = ej for ∀j. (4)

Here, C is a conditional function that maps each query to its respective execution counterpart.

Query evaluator. The memory-augmented query evaluator ΦM estimates the likelihood P (q|Gt)
of query q ∈ Q being satisfied, using the historical memory accumulated over time, denoted as
G1:t = G1 ∪ ... ∪ Gt. Leveraging the memory-augmented LLM (ΦLLM), we develop the query
evaluator ΦM by incorporating the previous step’s query evaluation P (q|Gt−1) and a prior of query
evaluation R(q|Gt−1), which is defined in (7).

P (q|Gt) = ΦM (q, t, G1:t, P (q|Gt−1)) =

{
R(q|Gt−1) if Ĝ1:t = Ĝ1:t−1

ΦLLM(q, t, Ĝ1:t, R(q|Gt−1)) otherwise
(5)

Here, Ĝ1:t ∼ ΦR(G1:t, {q}) is retrieved quadruples, and the prior R(q|Gt−1) is the retrospective
query response evaluated at timestep t using Gt−1.

Due to the inherent information decay in the memory over increasing timesteps, a decline in con-
fidence should be considered for the likelihood estimation in (5). To address this, we incorporate
an entropy-based temporal consistency as an intermediate step in query evaluation. Specifically,
when using the memory from Gt−1, we posit that the entropy of the prior query response at timestep
t should be higher than at timestep t−1:

H(R(q|Gt−1)) > H(P (q|Gt−1)). (6)

To enforce the temporal consistency, we compute the multiple query response priors using ΦLLM and
discard any responses that do not align with the consistency constraint. Specifically, if the entropy of
each prior of query response is smaller than previous step P (q|Gt), it is removed.

R(q|Gt−1) = EĜ1:t−1∼ΦR(G1:t−1,{q})

[
ΦLLM

(
q, t, Ĝ1:t−1, P (q|Gt−1)

)
with hold (6)

]
(7)
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Then, we select a set of corresponding executions Et that are likely to require manipulations in the
environment, using a filtering threshold θ.

Et = {C(q)|q ∈ Q, P (q|Gt) > θ} (8)

3.4 Exploration-integrated task planning with information-based estimation

To facilitate integrated task planning for continual instructions, we devise exploitation and exploration
planners. The former focuses on exploiting appropriate skills to complete tasks associated with given
instructions using the LLM, and the latter focuses on exploring the environment to update the memory
in a direction that maximizes information gain. We then integrate their plans to prioritize the next
skills to be executed. The resulting planning directs to complete specific task executions E , ensuring
effective maintenance of the environmental context memory. This maintenance process involves
synchronizing the memory with the current state of the environment. The exploration-integrated task
planning procedure is described on the lower side of Figure 2.

Exploitation planner. Given the memory Gt and a language description of a skill z ∈ Z, the exploita-
tion planner vT is responsible for estimating the value of the skill with respect to its effectiveness
in accomplishing the executions Et. To do so, we harness the retrieved memory-augmented LLMs
along with their in-context learning capabilities. Specifically, under the assumption that we can access
expert planning dataset De, we retrieve demonstrations D from De based on the graph similarity
between the current observation ot and the observation within De.

vT (Gt, z) = ΦLLM(Et,ΦR(Gt, Et), D, z) (9)

Exploration planner. In conjunction with the exploitation planner, the exploration planner vR is
responsible for assessing the value of the skill with respect to its utility for reducing the response
uncertainty of the query evaluator ΦM . This assessment is intended for efficient environmental explo-
ration, thereby facilitating the swift and precise identification of query conditions and maintaining
the memory up-to-date. Specifically, we define the exploration value of skill z as the difference of
mutual information for consecutive timesteps using the query evaluation result in (5):

vR(Gt, z) = I(Q;Gt+1)− I(Q;Gt) =
∑
q∈Q

H(P (q|Gt))−H(P (q|Gt+1)) (10)

where I denotes mutual information and Gt+1 is the updated memory by execution of skill z.

Direct computation of Gt+1 is impractical without actual skill execution. Therefore, to evaluate the
exploration value of skills before their execution, we focus on the entropy related only to the retrieved
knowledge pertinent to the evaluated queries Q. This approach is feasible under the mild assumption
that the entropy of the query evaluator reaches zero (indicating no uncertainty), once the TEKG
memory is fully synchronized with the environment. Thus, we approximate the exploration value as

vR(Gt, z) =
∑
q∈Q

H(P (q|Gt))

(
1− d(ΦR(G

z
t , {q})

d(ΦR(Gt, {q})

)
(11)

where d represents the average distance function between the retrieved quadruples and the current
agent’s entity in TEKG, and Gz

t is the predicted partially updated knowledge graph after skill execu-
tion, where only quadruples containing the agent as an entity are altered. Note that the exploration
value increases as the agent moves closer to the query-related environment parts on the graph through
the skill execution. Consequently, the skill is selected by maximizing the integrated skill value, which
is obtained by a weighted sum of exploitation and exploration values, as defined in (9) and (11)
respectively:

zt = argmax
z∈Z

[wT · vT (Gt, z) + wR · vR(Gt, z)]. (12)

4 Experiments

We evaluate ExRAP across various degrees of non-stationarity, scales of instructions, and instruction
types. We also provide ablation studies and qualitative analysis. Further analysis is in Appendix D.
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Table 1: Performance in VirtualHome, ALFRED, and CARLA w.r.t. non-stationarity. We use the 95%
confidence interval, using 10 random seeds for VirtualHome and 5 random seeds for both ALFRED
and CARLA.

Model Low non-stationarity Medium non-stationarity High non-stationarity

SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

Evaluation in VirtualHome

ZSP 20.59%±4.71% 31.03±4.68 20.06%±1.93% 32.06±4.66 17.28%±3.16% 24.08±4.63
SayCan 35.12%±4.83% 21.67±3.81 33.69%±5.36% 21.81±4.14 27.33%±4.24% 16.18±3.98
ProgPrompt 32.10%±4.41% 18.84±4.08 30.51%±5.31% 23.43±1.07 27.19%±2.99% 18.60±4.22
LLM-Planner 40.97%±7.00% 17.61±1.40 39.89%±4.52% 15.93±2.13 34.60%±6.49% 14.94±2.89
ExRAP 61.12%±7.03% 11.75±2.49 55.14%±6.59% 11.33±1.92 50.12%±5.70% 8.61±2.25

Evaluation in ALFRED

ZSP 18.22%±5.33% 17.24±2.12 14.67%±6.18% 20.83±3.63 9.56%±4.80% 22.53±3.57
SayCan 45.67%±6.89% 8.25±1.86 41.81%±7.64% 8.39±3.55 35.79%±6.31% 7.42±1.14
ProgPrompt 47.15%±1.17% 9.81±2.14 35.62%±1.04% 7.22±1.35 19.97%±0.80% 7.52±2.45
LLM-Planner 58.44%±3.97% 7.28±1.09 51.80%±3.79% 7.28±1.05 35.76%±6.00% 6.65±1.06
ExRAP 69.90%±1.47% 5.94±0.92 64.00%±5.07% 4.82±1.03 59.11%±2.48% 4.42±1.36

Evaluation in CALRA

ZSP 10.44%±1.03% 29.35±7.21 6.89%±2.98% 32.46±6.03 4.67%±1.17% 33.00±1.40
SayCan 37.55%±4.74% 20.73±5.36 35.11%±6.12% 22.44±5.38 30.71%±5.28% 21.71±2.01
LLM-Planner 50.83%±1.60% 14.02±3.01 44.00%±0.70% 14.39±1.94 41.58%±3.35% 13.59±2.65
ExRAP 65.25%±7.47% 12.43±3.90 62.25%±6.72% 11.50±2.24 58.83%±10.08% 10.84±2.52

Environments. We evaluate ExRAP in the context of household planning and skill-based autonomous
driving with VirtualHome [8], ALFRED [9], and CARLA [10], where we use 16 to 19 distinct
instructions for continual instruction following tasks. Details are provided in Appendix A.

Evaluation metric. We employ two evaluation metrics for the objective specified in (1). The task
success rate (SR) measures the proportion of completed tasks for continual instructions whose
conditions are satisfied at each timestep. Given the continual instructions, the pending step (PS)
represents the average number of timesteps required to complete the associated tasks from the moment
the conditions of the instructions are actually satisfied in the environment. Note that the agent’s
detection time of such condition satisfaction may differ from its actual occurrence.

Datasets. We use 100 trajectories across 10 different environment settings in VirtualHome, and 50
trajectories in ALFRED and CARLA. These are used for in-context learning of the exploitation
planner in ExRAP and the baselines. Note that we use different environment settings for evaluation.

Baselines. ZSP [11] is an LLM-based zero-shot task planner. Our experiments serve as a baseline
to evaluate LLM-based task planning approaches. SayCan [1] is a state-of-the-art embodied agent
framework, which integrates both language affordance scores derived from an LLM and embodied
affordance scores learned through RL. In our experiments, we use the optimal affordance function for
each environment. ProgPrompt [3] is a framework to enhance language models’ capabilities in gener-
ating structured and logical outputs, by incorporating programming-like prompts. LLM-Planner [12]
is a state-of-the-art embodied agent framework that utilizes LLMs’ embodied knowledge to infer
subtask sequences. It incorporates object detection information from the agent’s interactions for
enhanced task planning. To address continual instructions and adapt to non-stationary environments,
we implement a variant of the LLM-Planner that infers skills in a step-wise manner.

4.1 Main results

Non-stationarity. Table 1 presents a performance comparison in terms of SR and PS in VirtualHome,
ALFRED, and CARLA, respectively, under varying degrees of non-stationarity, where environment
changes range from low to high. The higher degree of non-stationarity means the environment changes
more rapidly, requiring the agent to focus more on environmental information to adapt effectively.
ExRAP achieves superior performance across all degrees of non-stationary. Specifically, ExRAP
demonstrates a performance gain in SR by 16.45% on average compared to the most competitive
baseline, the LLM-Planner. Furthermore, ExRAP shows a reduction in PS by 3.40 on average
compared to the LLM-Planner. Importantly, the advantage of ExRAP becomes more significant with
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Table 2: Performance in VirtualHome w.r.t. instruction scale

Model Small continual inst. (=3) Medium continual inst. (=5) Large continual inst. (=7)

SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

ZSP 33.11%±2.55% 22.86±2.41 20.06%±1.93% 32.06±4.66 7.43%±6.2% 59.16±26.04
SayCan 40.58%±8.79% 19.76±2.02 33.69%±5.36% 21.81±4.14 23.04%±12.26% 37.05±17.43
ProgPrompt 43.15%±3.22% 19.99±1.59 30.51%±5.31% 23.43±1.07 21.20%±7.45% 29.00±1.27
LLM-Planner 49.28%±5.10% 17.13±7.67 39.89%±4.52% 15.93±2.13 31.82%±14.30% 17.63±2.34
ExRAP 67.77%±4.56% 12.29±0.96 55.14%±6.59% 11.33±1.92 53.86%±8.59% 8.76±0.94

increasing levels of non-stationarity; the performance gap in SR between the LLM-Planner and
ExRAP widens from 15.35% at low non-stationarity to 18.58% at high non-stationarity. Similarly, the
gap in PS grows from an average of 2.96 to 3.73. This increase in performance can be attributed to
ExRAP’s strong ability to promptly discern newly satisfied conditions through exploration-integrated
task planning, coupled with accurate memory-augmented query evaluation. This capability enables
ExRAP to respond to rapid environmental changes effectively.

Instruction scale. Table 2 shows a performance comparison under the medium non-stationarity, as
the scale of continual instructions increases. As the number of instructions grows, the agent needs to
collect more knowledge and perform more tasks. ExRAP achieves an average gain in SR of 18.78%
compared to the most competitive baseline, the LLM-Planner. Additionally, ExRAP reduces PS by an
average of 6.31. ExRAP exhibits widening performance gaps as the complexity of tasks increases; the
SR gap grows from 18.49% compared to the LLM-Planner with a small continual instruction scale,
to 22.04% with a large continual instruction scale. Similarly, the PS gap expands from an average of
4.84 to 8.87. This performance difference highlights ExRAP’s effectiveness in addressing multiple
continual instructions simultaneously, demonstrating its robust integrated task planning capabilities.
In ExRAP, the skill selection is guided by an integrated value derived from queries and executions,
enabling the efficient handling of multiple instructions and concurrent memory updates.

Instruction type. We also test the applicability of ExRAP for three types of continual instructions
in VirtualHome with medium non-stationarity. Sentence-wise type organizes each instruction into
individual sentences. This is the default setting in our experiments. Summarized type condenses
multiple instructions into a fewer number of sentences. Object Ambiguation type contains abstract
forms of target objects such as “something to read.”. Table 3 demonstrates superior performance of
ExRAP for those types. ExRAP adapts RAG with the environmental context memory to interpret
instructions and decompose them into queries and executions. This memory-augmented approach,
retrieving and utilizing the information relevant to given instructions, enables effective grounding of
continual instructions in different types within the environment.

Table 3: Performance w.r.t. instruction types

Model Sentence-wise Summarized Object Ambiguation

SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

SayCan 33.69%±5.36% 21.81±4.14 32.66%±4.29% 22.13±5.67 23.89%±10.97% 28.03±5.54
LLM-Planner 39.89%±4.52% 15.93±2.13 37.19%±3.48% 16.45±3.87 30.88%±5.20% 19.09±4.92
ExRAP 55.14%±6.59% 11.33±1.92 53.11%±15.10% 10.42±4.28 50.26%±10.91% 13.51±6.07

Qualitative analysis. Figure 3 (a) and (b) compare the exploration strategies of ExRAP and LLM-
Planner. Given multiple instructions, ExRAP demonstrates broader exploration. This reflects the
exploration-integrated task planning in ExRAP, which rather focuses on the overall gain achieved
from each exploration and skill execution.

4.2 Ablation study

We conduct several ablation studies for ExRAP in VirtualHome with medium non-stationarity.

Temporal consistency. We compare the performance of our ExRAP and its variant ExRAP-TC that
performs query evaluation without temporal consistency-based refinement. As in Table 4, ExRAP
outperforms ExRAP-TC by 15.56% on average. As observed in Figure 3 (a) and (c), with tempo-
ral consistency in query responses, information decay is effectively managed, leading to broader
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Figure 3: Knowledge exploration heatmap. Darker color represents high frequency in exploration.

exploration areas that accommodate different instructions simultaneously (i.e., in (a)). Otherwise,
without temporal consistency, exploration tends to concentrate exclusively on specific knowledge
where multiple queries overlap. This renders largely neglected areas experiencing significant decay,
often leading to invalidated query evaluation (i.e., in (c)).

Table 4: Ablation for query evaluation with temporal consistency

Model Low non-stationarity Medium non-stationarity High non-stationarity
SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

ExRAP-TC 47.25%±18.00% 15.30±6.97 43.92%±7.97% 15.47±2.17 27.91%±14.64% 9.67±5.32

ExRAP 61.13%±13.76% 11.66±3.93 55.14%±6.59% 11.33±1.92 49.73%±8.88% 8.74±2.74

Exploration strategy. We compare the performance of our ExRAP and two variants ExRAP-LLM
and ExRAP-EXP using different planning strategies. ExRAP-LLM directly employs the LLM as the
exploration planner, which fully relies on the LLM’s capability without information-based exploration,
by prompting the LLM with specific exploration commands, e.g., “explore the home.” On the other
hand, ExRAP-EXP employs only the exploitation planner with specific exploration commands, used
only when there are no executions. As shown in Table 5, ExRAP demonstrates higher performance
of 26.76 and 17.46% on average than the two variants, respectively. As in Figure 3 (a) and (d),
ExRAP-EXP exhibits reduced exploration capabilities, resulting in a narrower exploration area.

Table 5: Ablation for exploration-integrated task planning

Model Low non-stationarity Medium non-stationarity High non-stationarity
SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

ExRAP-LLM 34.23%±24.57% 15.17±5.11 29.42%±25.63% 10.78±3.84 21.81%±14.06% 14.65±2.40

ExRAP-EXP 43.33%±11.28% 13.07±4.75 40.68%±9.77% 13.03±3.01 29.36%±14.35% 12.16±3.86

ExRAP 61.13%±13.76% 11.66±3.93 55.14%±6.559% 11.33±1.92 49.73%±8.88% 8.74±2.74

LLMs for planning. While we tested several LLMs, ranging from relatively smaller models such
as Gemma-2B [36] to larger ones such as Llama-3-70B [37], our experiments thus far have utilized
LLaMA-3-8B for ExRAP and the baselines. In Table 6, we evaluate ExRAP and two baselines
using different LLMs. Both LLM-Planner and SayCan exhibit improved performance with the larger
Llama-3-70B, but experience a significant drop in performance with the smaller Gemma-2B model.
Unlike those, ExRAP maintains robust performance even with the smaller model, highlighting the
benefits of its memory-augmented, integrated planning approach.

5 Conclusion

We introduced the ExRAP framework to facilitate efficient integrated planning for multiple instruction
following tasks, which are conducted continuously and simultaneously in the embodied environment.
With the extended RAG architecture, the framework incorporates memory-augmented query evalua-
tion and exploration-integrated task planning schemes, thereby achieving both efficient environment
exploration and robust task completion. Via experiments conducted in VirtualHome, ALFRED, and
CARLA, we demonstrated the robustness of ExRAP across various continual instruction following
scenarios, specifying its advantages over other LLM-driven task planning approaches.
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Table 6: Impact of different LLMs

Model Gemma-2B Llama-3-8B Llama-3-70B

SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

SayCan 27.55%±5.43% 19.98±6.82 34.31%±4.80% 21.43±3.31 45.11%±8.52% 14.39±3.04
LLM-Planner 23.31%±4.58% 20.74±5.83 39.07%±5.89% 15.81±2.35 47.18%±8.42% 16.33±2.79
ExRAP 52.75%±9.81% 13.36±3.62 54.89%±13.73% 10.59±3.84 55.12%±9.32% 10.07±2.61

Limitation. ExRAP leverages LLMs, which makes its performance dependent on the capabilities of
these models to some extent. Compared to other baselines, it also requires increased computation
effort due to the management of environmental context memory with temporal consistency. The
ablation studies demonstrate that ExRAP is able to deliver robust performance even with a relatively
lightweight LLM, yet further investigation into runtime overhead is desired.
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A Broader impact

Our work does not involve activities associated with negative societal impacts, such as disseminating
disinformation, creating fake profiles, or conducting surveillance. Therefore, we do not expect any
negative societal impacts from our research.

B Environment settings

B.1 VirtualHome

We employ VirtualHome [8], a complex simulation environment designed for embodied AI research,
which offers a wide range of interactive household activities. This environment requires an agent
to perform tasks by interacting with various objects and following high-level action commands.
VirtualHome features 162 different object types (e.g., TV, sofa) and multiple room types (e.g.,
kitchen, living room) across various indoor scenes, providing a complex environment through diverse
combinations of rooms. Additionally, to standardize the time duration of skill execution, we have
imposed the following restrictions on the ‘walk’ skill: walking is only possible to adjacent rooms,
and only permitted towards objects that are present in that same room.

Figure A.1: Visualization of VirtualHome.

The embodied agent collects information about objects that come into its view and uses this as
observations. Additionally, the agent utilizes seven skills to respond to the given continual instructions:
walk object or walk room, grab object, switch object, put object, putin object, open object, and close
object. For constructing TEKG, we use the graph based environment implemented in VirtualHome.

For non-stationarity, the environment condition involves a single continual instruction from the set
changing at every predefined timestep: 4 for high non-stationarity, 6 for medium non-stationarity,
and 8 for low non-stationarity. For continual instruction following tasks, we implement 19 continual
instructions. Table A.1 shows the details of instructions.

B.2 ALFRED

(a) ALFRED (b) CARLA

Figure A.2: Visualization of ALFRED and CARLA.

We utilize ALFRED [9], which provides vision-and-language navigation and rearrangement tasks
for embodied AI. This environment requires an agent to follow language formatted instructions to
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Table A.1: Continual instructions in VirtualHome environment

Example

If no one is watching the TV, turn it on.
If you have an apple somewhere, bring it to your desk.
If you see a book somewhere unorganized, bring it to the sofa.
The dishwasher must always be open to dry the dishwasher.
It is good for maintenance if the microwave is always open.
Always leave the stove open.
The mug should always be on the coffeetable.
To wash dishes, place the plates in the microwave as shown.
If you see towels, put them in the washingmachine.
If your towel isn’t stored somewhere else, put it in the closet.
If your computer stays off, turn it on.
If the cabinet is open, close it.
If someone reads a book and doesn’t tidy it up, put it back.
If the stove is off, go and turn it on for preheat.
Put paper on the floor or anywhere else in the cabinet.
Place all visible mug in the microwave to sterilize them.
If the radio is off, turn it on
If someone uses a plate for washing dishes and leaves it somewhere, put it in the dishwasher.
If your microwave is off, turn it on.

accomplish real-world-like household tasks. ALFRED features 58 different object types (e.g., bread)
and 26 receptacle types (e.g., plate) across 120 various indoor scenes (e.g., kitchen).

The embodied agent gathers information about objects that enter its view and uses this as observations.
Moreover, the agent utilizes six skills to respond to the given continual instructions: goto object,
grab object, toggle object, put object, open object, and close object.

For non-stationarity, the environment condition involves a single continual instruction from the set
changing at every predefined timestep: 4 for high non-stationarity, 6 for medium non-stationarity,
and 8 for low non-stationarity. For continual instruction following tasks, we implement 16 continual
instructions. Table A.2 shows the details of instructions.

Table A.2: Continual instructions in ALFRED environment

Example

If TV is off, turn it on.
If you have an apple somewhere, bring it to your coffeetable.
If you see a book somewhere unorganized, bring it to the sofa.
It is good for maintenance if the microwave is always open.
The mug should always be on the coffeetable.
To wash dishes, place the plates in the microwave as shown.
If your towel isn’t stored somewhere else, put it in the closet.
If your computer stays on, turn it off.
If the cabinet is open, close it.
If someone reads a book and doesn’t tidy it up, put it back.
Put paper on the floor or anywhere else in the cabinet.
Place all visible mug in the microwave to sterilize them.
If your microwave is on and spinning, turn it off.
If someone uses a plate for washing dishes and leaves it somewhere, put it in the sink.
If you see towels, put them in the sink.
If the alarmclock is on alone, turn it off

B.3 CARLA

CARLA is an opensource simulator for autonomous driving tasks that provides various environment
settings for driving conditions and maps. For our experiment, we have modified CARLA to function
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as a skill-based environment. The agent can navigate within the environment using three skills: turn
right, turn left, and go straight. Additionally, the agent is capable of loading and offloading goods. The
objective of the agent is to transport goods from a designated building to a target building whenever
the conditions specified in the given instructions are met.

For non-stationarity, the environment condition involves a single continual instruction from the set
changing at every predefined timestep: 4 for high non-stationarity, 6 for medium non-stationarity,
and 8 for low non-stationarity. For continual instruction following tasks, we implement 16 continual
instructions such as "If the green building calls, load the goods from the green building to the red
building". We utilize a set of instructions as continual instructions.

C Implementation details

In this section, we provide the implementation details of our proposed framework ExRAP and each
baseline. Our framework is implemented using Python v3.10 and trained on a system of an Intel(R)
Core (TM) i9-10980XE processor and two NVIDIA RTX A6000 GPUs. Each experiment run takes 4
hours. We employ 4 different methods: ZSP [11], SayCan [1], ProgPrompt [3], and LLM-Planner [12].
Although the format differs, the observed environmental knowledge used remains consistent across
all baselines. This includes observations of objects, object positions, object states, room adjacencies,
etc. For generating a plan, we utilize the Llama-3 [37] model.

C.1 Baseline

ZSP [11] capitalizes on the abilities of LLMs for embodied task planning by translating instructions
into skill sequences, thereby enhancing the performance of embodied tasks. ZSP achieves this through
the generation of detailed step-by-step prompts derived from examples of similar successful tasks, and
then it utilizes the LLM to generate executable plans based on these examples. For implementation,
we refer to the opensource 2.

SayCan [1] integrates the affordance function with language models, generating plans that are
feasible to the context. SayCan achieves this by learning the environment affordance function derived
from the LLM with the agent’s experiences. Similarly, we calculate optimal affordance scores using
environmental information and domain-specific knowledge. For observation, we utilize the linearized
retrieved knowledge graph as the prompt for SayCan as same as ExRAP. For implementation, we
refer to the opensource 3.

ProgPrompt [3] utilizes the code-style policy for generating plans for the embodied environment.
As it passes the available primitive actions such as walk object, grab object, etc., in the form of
import statements in Python, an available object list, and example tasks to LLM, the LLM produces
some plans to succeed in the task. ProgPrompt can also execute conditional action by assert-else
statements in the codes which is the output of the LLM. For experiments, we provide the code
examples for various tasks in VirtualHome and ALFRED. For implementation, we refer to the
opensource 4.

LLM-Planner [12] leverages the LLMs using the demonstrations with retrieved in-context examples,
empowering embodied agents to perform complex tasks in environments with observed information,
guided by natural language instructions. For our experiments, the LLM-Planner performs inference
at each timestep, gathering observed environmental knowledge through natural language. When a
skill execution fails, it captures the error and infers an alternative action based on the error at the next
timestep. For observation, we utilize the detection results from the environment and incorporate them
as prompts for the LLM-Planner. For implementation, we refer to the opensource 5.

The hyperparameter settings for baselines are summarized in Table A.3.

2https://github.com/huangwl18/language-planner
3https://github.com/google-research/google-research/tree/master/saycan
4https://github.com/NVlabs/progprompt-vh
5https://github.com/OSU-NLP-Group/LLM-Planner/
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Table A.3: Hyperparameter settings for baselines

Hyperparameters Value

LLM Llama-3-8B (Default)
Gemma-2B, Llama-3-70B (Ablation study)

Temperature 0.33
In-context example retriever dpr-ctx_encoder-single-nq-base + BM25

Number of prompts 3 (LLM-Planner, ZSP)
2 (ProgPrompt)

Maximum new tokens 40

C.2 ExRAP

In ExRAP, we address multiple continual instruction-following tasks by decomposing each instruc-
tion into queries and task executions based on environmental context memory. To manage these
tasks effectively, which are executed continuously and simultaneously, we introduce an exploration-
integrated task planning scheme. This scheme incorporates information-based exploration into the
LLM-based planning process, enhancing the balance between maintaining the validity of the environ-
mental context memory and the demands of environment exploration, ultimately boosting overall task
performance. Additionally, we implement a temporal consistency refinement scheme in our query
evaluation to counteract the inherent decay of knowledge within the memory.

For the update function µ of TEKG in (3), we design an algorithmic refinement function tailored
for embodied environments. This refinement function operates under two simple rules. First, only
the most recent timestep data is retained for quadruple related agents (i.e., where the source entity
or target entity is an agent). This is because information related to agents in the environment is
observable. Second, semantically contradictory information is categorized into two cases: one where
object states are opposite, such as simultaneous quadruples indicating that a TV is both off and on,
and another where an object exists in two places at TEKG. Both scenarios result in the removal of the
outdated quadruple.

The hyperparameter settings for the baselines are summarized in Table A.4.

Table A.4: Hyperparameter settings for ExRAP

Hyperparameters Value

LLM Llama-3-8B (Default)
Gemma-2B, Llama-3-70B (Ablation study)

Temperature 0.33
In-context example retriever dpr-ctx_encoder-single-nq-base + BM25
Number of prompts 3
Number of retrieved quadruples k for ΦR 12
Number of iterations of query evaluator ΦR 10
Maximum new tokens 40
Filtering threshold θ in (8) 0.5
Weights for exploration value wR in (12) 1.0
Weights for exploitation value wT in (12) 0.01

D Additional experiment

D.1 Detailed results of non-stationarity and scale of continual instructions

Table A.5 presents a performance comparison in terms of SR and PS. The environmental settings
consist of two variables: the size of continual instructions and the degree of non-stationarity. As the
size of continual instructions increases, the number of instructions that need to be addressed also
grows, requiring the agent to collect more knowledge and perform more tasks. Furthermore, a higher

16



Algorithm 1 Detailed implementation of ExRAP framework

1: Continual instructions I
2: Env. context memory Gt, Timestep t
3: Queries Q, Executions E
4: Instruction interpreter ΦI , Memory-augmented query evaluator ΦM

5: Exploitation planner vT , Exploration planner vR
6: Q, E , C = ΦI(I)
7: loop
8: // (a) Query evaluation in (5)
9: for q in Q do

10: LQ = [ ]
11: for 1, 2, ..., 10 do
12: Ĝ1:t−1 ∼ ΦR(G1:t−1, {q})
13: R(q|Gt−1) = ΦLLM

(
q, t, Ĝ1:t−1, P (q|Gt−1)

)
14: if hold (6) then
15: LQ.append(P (q|Gt−1))
16: end if
17: end for
18: R(q|Gt−1) = E[LQ]
19: P (q|Gt) = ΦM (q, t, G1:t−1, R(q|Gt−1))
20: end for
21: // (b) Exploration-integrated task planning in (12)
22: zt = argmaxz∈Z [wT · vT (Gt, z) + wR · vR(Gt, z)]
23: observation ot+1 = EnvStep(zt)
24: Gt+1 = µ(Gt, ot+1), t← t+ 1
25: end loop

degree of non-stationarity means the environment changes more rapidly, necessitating that the agent
focuses more on environmental information to adapt effectively.

As indicated in Table A.5, ExRAP demonstrates an increase in SR by 4.73% to 27.50% on average
compared to the most competitive baseline, the LLM-Planner. Furthermore, ExRAP shows an average
reduction in PS by 4.84 to 13.29 compared to the LLM-Planner. Similar to the experiments in the
main text, ExRAP exhibits widening performance gaps as the complexity of tasks increases: the
SR gap grows from 19.12% compared to the LLM-Planner with small continual instructions, to
19.93% with large continual instructions. Similarly, the PS gap expands from an average of 6.79 to
9.97. Moreover, ExRAP demonstrates robustness in embodied environments across varying levels of
non-stationarity: the SR gap remains consistent, ranging from 17.77% compared to the LLM-Planner
in low non-stationarity environments to 17.32% in high non-stationarity. The PS gap expands from
an average of 6.96 to 9.27.

D.2 Detailed results of ablation study

We compare the performance of ExRAP and ExRAP-TC, which evaluates queries without temporal
consistency-based refinement, to understand the impact of this feature. Additionally, ExRAP-LLM
operates by directly inputting the instruction “Explore the home” into the LLM, thereby enabling it
to function as an exploration planner. This approach contrasts with ExRAP-EXP, which evaluates
skills using an exploitation-only planner. Here, ExRAP-EXP inputs “Find {query}” for each query
that is not yet satisfied, focusing solely on achieving specific task objectives without incorporating
exploration. Table A.6 presents the detailed results of the ablation study for Tables 4 and 5 in Section
4.2 of the main text.
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Table A.5: Performance comparison in VirtualHome

Model Low non-stationarity Medium non-stationarity High non-stationarity

SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

Small continual instruction. Num. of continual instructions is 3

ZSP 34.67%±10.01% 15.68±1.40 33.11%±2.55% 22.86±2.41 22.10%±3.59% 24.84±12.50
SayCan 43.97%±10.71% 16.58±2.75 40.58%±8.79% 19.76±2.02 28.11%±6.80% 21.13±10.20
ProgPrompt 43.40%±7.20% 16.00±0.51 43.15%±3.22% 19.99±1.59 30.71%±4.99% 21.93±9.50
LLM-Planner 54.28%±6.47% 19.54±4.19 42.61%±7.31% 17.13±7.67 36.94%±9.93% 20.91±6.97
ExRAP 71.78%±5.69% 12.35±1.63 67.77%±4.56% 12.29±0.96 51.67%±8.14% 12.58±2.72

Medium continual instruction. Num. of continual instructions is 5

ZSP 20.59%±4.71% 31.03±4.68 20.06%±1.93% 32.06±4.66 17.28%±3.16% 24.08±4.63
SayCan 35.12%±4.83% 21.67±3.81 33.69%±5.36% 21.81±4.14 27.33%±4.24% 16.18±3.98
ProgPrompt 32.10%±4.41% 18.84±4.08 30.51%±5.31% 23.43±1.07 27.19%±2.99% 18.60±4.22
LLM-Planner 40.97%±7.00% 17.61±1.40 39.89%±4.52% 15.93±2.13 34.60%±6.49% 14.94±2.89
ExRAP 61.12%±7.03% 11.75±2.49 55.14%±6.59% 11.33±1.92 50.12%±5.70% 8.61±2.25

Large continual instruction. Num. of continual instructions is 7

ZSP 14.69%±1.65% 26.72±8.19 7.43%±6.2% 59.16±26.04 10.32%±4.38% 57.07±8.68
SayCan 32.50%±9.45% 19.87±7.19 23.04%±12.26% 37.05±17.43 24.20%±4.36% 32.42±4.43
ProgPrompt 29.34%±3.16% 20.89±5.60 21.20%±7.45% 29.00±1.27 21.48%±6.48% 40.05±6.19
LLM-Planner 41.10%±5.23% 18.97±0.35 31.82%±14.30% 17.63±2.34 26.39%±15.94% 20.19±5.96
ExRAP 56.75%±8.19% 11.21±2.63 53.86%±8.59% 8.76±0.94 48.50%±7.43% 6.90±0.28

Table A.6: Detailed performance for ablation study

Model Low non-stationarity Medium non-stationarity High non-stationarity

SR (↑) PS (↓) SR (↑) PS (↓) SR (↑) PS (↓)

Small continual instruction. Num. of continual instructions is 3

ExRAP-LLM 41.38%±2.94% 19.11±2.53 36.39%±11.49% 21.45±1.68 33.60%±12.52% 11.51±2.49
ExRAP-MA 46.22%±2.74% 16.24±2.87 42.74%±9.52% 18.41±2.97 36.00%±11.95% 13.02±4.07
ExRAP-TC 49.82%±2.55% 21.12±3.71 47.24%±7.55% 23.37± 2.26 40.41%± 11.37% 8.53±5.65
ExRAP 71.78%±1.69% 12.35±1.63 67.77%±4.56% 12.29±0.96 51.67%±8.14% 12.58±2.72

Medium continual instruction. Num. of continual instructions is 5

ExRAP-LLM 34.23%±24.57% 15.17±5.11 29.42%± 25.63% 10.78±3.84 21.81%±14.06% 14.65±2.40
ExRAP-EXP 43.33%±11.28% 13.07±4.75 40.68%±9.77% 13.03±3.01 29.36%±14.35% 12.16±3.86
ExRAP-TC 47.25%±18.00% 15.30±6.97 43.92%±7.97% 15.47±2.17 27.91%±14.64% 9.67±5.32
ExRAP 61.13%±13.76% 11.66±3.93 55.14%±6.59% 11.33±1.92 49.73%±8.88% 8.74±2.74

Large continual instruction. Num. of continual instructions is 7

ExRAP-LLM 40.88%±13.37% 15.42±3.61 23.15%±12.71% 12.27±3.32 21.51%±8.97% 19.68±3.97
ExRAP-MA 43.87%±11.54% 13.31±3.04 32.11%±10.70% 10.98±2.45 23.46%±10.38% 11.76±3.77
ExRAP-TC 46.21%±9.70% 11.21±2.46 41.07%±8.69% 9.69±1.57 26.40±11.79% 13.83±4.18
ExRAP 66.75%±8.19% 11.21±2.63 53.86%±8.59% 8.76±0.94 44.50%±7.43% 6.90±0.28

E Anaylsis

E.1 Analysis of refinement temporal consistency

In Table A.7, we show examples of refined query responses. Although the input for subsequent query
responses remains the same, the current timestep varies. Naturally, as timestep progresses, information
decay should occur, and the entropy of the query response is expected to increase. However, the
examples show an unexpected reduction in entropy from 0.24 to 0.15, leading to the removal of
these outdated responses. This approach allows us to effectively model information decay, thereby
improving the quality of query responses.

E.2 Analysis of computation overhead of ExRAP

ExRAP employs sentence embedding techniques, such as DPR and BM25, for retrieving knowledge
graphs and demonstrations to enhance exploitation value. As shown in the table below, the average
retrieval and LLM inference time is approximately 14 times faster compared to inferring actions
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Table A.7: Examples for temporal consistency-based refinement

Query: Tv is off
Timesteps: 42
Environmental knowledge: (TV, inside, livingroom, 7), (TV, is, off, 7), (TV, is, on, 9), (TV, on, tvstand, 7)
(TV, is, off, 27), (kitchen, adjacent, bedroom, 1), (kitchen, adjacent, bathroom, 1) ...
Query response: Yes: 25%, No: 75%

Query: Tv is off
Timesteps: 43
Environmental knowledge: (TV, inside, livingroom, 7), (TV, is, off, 7), (TV, is, on, 9), (TV, on, tvstand, 7)
(TV, is, off, 27), (TV, is, off, 33), (kitchen, adjacent, bathroom, 1) ...
Query response: Yes: 11%, No: 89%→ Removed
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Figure A.3: Examples for exploration value w.r.t non-stationarity; we noted that the increase in explo-
ration is more larger in environments with higher non-stationarity, leading to enhanced exploration.
This, in turn, resulted in a more frequent drop in exploration value.

through an LLM without retrieval, using an RTX A6000 GPU and an i9-10980XE processor. By
selecting relevant quadruples and demonstrations based on the query and instructions, ExRAP effec-
tively reduces the context length, maintaining efficient LLM inference times. In our experiments, we
retrieve only 3 demonstrations and 12 quadruples to generate prompts for each continual instruction,
regardless of the size of the knowledge graph or dataset.

Table A.8: Comparison of Retrieval and LLM Inference Times

Retrieval (Quadruple) Retrieval (Demos.) LLM Inference LLM Inference (w/o retrieval)
Time (sec) 0.021 sec 0.024 sec 2.203 sec 31.243 sec

E.3 Analysis of exploration dynamics

Figures A.3 illustrate the changes in exploration value for a single query during the execution of
continual instructions. We observed that the exploration value increased steadily over time and
decreased rapidly once information relevant to the query was collected. Specifically, we noted that
the increase in exploration was more larger in environments with higher non-stationarity, leading to
enhanced exploration. This, in turn, resulted in a more frequent drop in exploration value. As the
reviewer suggested, investigating the exploration dynamics is an interesting analysis that demonstrates
how ExRAP improves performance.

E.4 Analysis of behavior of ExRAP

To analyze the behavior patterns of ExRAP, we map its generated plans to heuristic strategies such
as Greedy, and Multiple Instruction First, and Max Staleness First. In our work, these heuristics are
utilized only for analysis purposes, showing how ExRAP is able to achieve superior performance and
how its exploration-integrated planning policy behaves differently in specific situations.
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Table A.9: Examples for ExRAP behavior as Greedy heuristic

Case

Continual instructions:
1. If you have an apple somewhere, bring it to your desk.
2. If no one is watching the TV, turn it on.
3. If your towel isn’t stored somewhere else, put it in the closet.
Timesteps: 10
Environmental knowledge: (TV, inside, livingroom, 7), (desk, inside, bedroom, 3), (apple, inside, kitchen, 9),
(apple, on, kitchencounter, 9), (kitchen, adjacent, bedroom, 1), (kitchen, adjacent, bathroom, 1), (towel, inside, bathroom) ...
Query response for instruction 1: Yes: 93%, No: 7%
Query response for instruction 2: Yes: 23%, No: 77%
Query response for instruction 3: Yes: 83%, No: 17%

Method Plan (Step-wise inference)

ExRAP walk kitchen, walk apple, grab apple, walk bedroom, walk desk, put apple desk, ...

Greedy walk kitchen, walk apple, grab apple, walk bedroom, walk desk, put apple desk, ...
Multiple Instruction First walk kitchen, walk apple, grab apple, walk bathroom, walk towel ...
Max Staleness First walk bedroom, walk livingroom, walk tv, walk bedroom, walk kitchen, ...

Greedy. When the entropy values of the queries are generally low and there are few executions
required to complete, ExRAP operates in a manner similar to a greedy heuristic with respect to a
single instruction. For example, in Table A.9, when there exist few executions required to complete
and the entropy of the query responses is generally low, ExRAP operates similarly to a Greedy
heuristic, executing instruction 1 independently. However, consistently applying this heuristic in all
scenarios results in executing an instruction-wise plan, similar to the baselines.

Table A.10: Examples for ExRAP behavior as Multiple Instruction First heuristic

Case

Continual instructions:
1. If you have an apple somewhere, bring it to your desk.
2. If no one is watching the TV, turn it on.
3. If your towel isn’t stored somewhere else, put it in the closet.
Timesteps: 34
Environmental knowledge: (TV, inside, livingroom, 2), (desk, inside, bedroom, 4), (apple, inside, kitchen, 5), (towel, inside, closet, 11)
(apple, on, kitchencounter, 3), (kitchen, adjacent, bedroom, 4), (kitchen, adjacent, bathroom, 7), (tv, is, off, 8) ...
Query response for instruction 1: Yes: 45%, No: 55%
Query response for instruction 2: Yes: 57%, No: 43%
Query response for instruction 3: Yes: 48%, No: 52%

Method Plan (Step-wise inference)

ExRAP walk kitchencounter, walk bedroom, walk desk, walk livingroom, walk tv ...

Greedy walk bedroom, walk livingroom, walk tv, switch tv, ...
Multiple Instruction First walk kitchencounter, walk bedroom, walk desk, walk livingroom, walk tv ...
Max Staleness First walk bathroom, walk bathroomcounter, walk kitchen, walk kitchencounter, ...

Multiple Instruction First. The Multiple Instructions First heuristic selects the skill based on the
number of related instructions rather than focusing on a specific instruction. If the entropy values
of various queries are generally high and there are many executions required to complete, ExRAP
prioritizes skills where multiple instructions are concentrated. For example, in Table A.10, when
the overall entropy of query responses is generally high, suggesting a need for efficient planning
to explore multiple queries, ExRAP operates similarly to a Multiple Instructions First heuristic.
However, consistently applying this heuristic in all cases can lead to an integrated plan, but result in
failing to properly conclude tasks.

Max Staleness First. The Max Staleness First heuristic prioritizes selecting skills based on the age
of information of related queries. Similarly, if the entropy value of a particular query is very high,
ExRAP prioritizes exploring that specific query. This typically aligns with a Max Staleness First
policy because our query evaluator operates with temporal consistency. For example, in Table A.11,
when the entropy of query responses for instruction 2 is particularly high, indicating a need to explore
such queries, ExRAP operates similarly to a Max Staleness First heuristic. While this heuristic
focuses on specific queries and may reduce efficiency, it prevents the occurrence of instructions
being left unexecuted, thereby avoiding starvation of certain instructions. This strategy essentially
requires precise measurement of information decay to be effectively implemented. In ExRAP, we
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Table A.11: Examples for ExRAP behavior as Max Staleness First heuristic

Case

Continual instructions:
1. If you have an apple somewhere, bring it to your desk.
2. If no one is watching the TV, turn it on.
3. If your towel isn’t stored somewhere else, put it in the closet.
Timesteps: 92
Query response for instruction 1: Yes: 92%, No: 8%
Query response for instruction 2: Yes: 87%, No: 13%
Query response for instruction 3: Yes: 50%, No: 50%
Environmental knowledge: (TV, inside, livingroom, 2), (desk, inside, bedroom, 4), (apple, inside, kitchen, 89), (tv, is, off, 91)
(apple, on, sink, 89), (kitchen, adjacent, bedroom, 4), (kitchen, adjacent, bathroom, 7), (towel, inside, bathroomcounter, 35) ...

Method Plan (Step-wise inference)

ExRAP walk kitchen, walk bathroom, walk bathroomcounter, walk faucet, ...

Greedy walk livingroom, walk tv, switch tv, ...
Multiple Instruction First walk livingroom, walk sofa, grab apple, switch tv, ...
Max Staleness First walk kitchen, walk bathroom, walk bathroomcounter, walk faucet, ...

perform temporal consistency-based refinement to enhance the quality of query responses, leading to
improved performance.

As discussed so far, by appropriately utilizing different strategies including those similar to the three
heuristics depending on given situations, our ExRAP dynamically adjusts its policy in the response
to changes in the environment for multiple tasks of continual instruction following.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction should clearly state the claims made, including
the contributions made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We write a separate limitation paragraph in Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details in Appendix, and also release source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open Access to Data and Code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We release code for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide implementation details, including environment and hyperparame-
ters, in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the results are accompanied by the confidence interval.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The paper indicate the type of compute workers CPU or GPU, and provide the
amount of compute required for each of the individual experimental runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read NeurIPS Code of Ethics. The paper preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact on the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make the best
faith effort.

12. Licenses for Existing Assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the baselines code, we write footnote for url.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Related work
	Approach
	Continual instruction following
	Overall framework
	Memory-augmented query evaluation with temporal consistency
	Exploration-integrated task planning with information-based estimation

	Experiments
	Main results
	Ablation study

	Conclusion
	Acknowledgement
	Broader impact
	Environment settings
	VirtualHome
	ALFRED
	CARLA

	Implementation details
	Baseline
	ExRAP

	Additional experiment
	Detailed results of non-stationarity and scale of continual instructions
	Detailed results of ablation study

	Anaylsis
	Analysis of refinement temporal consistency
	Analysis of computation overhead of ExRAP
	Analysis of exploration dynamics
	Analysis of behavior of ExRAP


