Learning Latent Variable Models via
Jarzynski-adjusted Langevin Algorithm

James Cuin Davide Carbone
Department of Mathematics Laboratoire de Physique de 1’Ecole Normale Supérieure,
Imperial College London Université PSL, CNRS,
London, UK Sorbonne Université, Université de Paris
jamie.cuin23@imperial.ac.uk Paris, France

davide.carbone@phys.ens.fr

O. Deniz Akyildiz
Department of Mathematics
Imperial College London
London, UK
deniz.akyildiz@imperial.ac.uk

Abstract

We utilise a sampler originating from nonequilibrium statistical mechanics, termed
here Jarzynski-adjusted Langevin algorithm (JALA), to build statistical estimation
methods in latent variable models. We achieve this by leveraging Jarzynski’s
equality and developing algorithms based on a weighted version of the unadjusted
Langevin algorithm (ULA) with recursively updated weights. Adapting this for
latent variable models, we develop a sequential Monte Carlo (SMC) method that
provides the maximum marginal likelihood estimate of the parameters, termed
JALA-EM. Under suitable regularity assumptions on the marginal likelihood, we
provide a nonasymptotic analysis of the JALA-EM scheme implemented with
stochastic gradient descent and show that it provably converges to the maximum
marginal likelihood estimate. We demonstrate the performance of JALA-EM on a
variety of latent variable models and show that it performs comparably to existing
methods in terms of accuracy and computational efficiency. Importantly, the
ability to recursively estimate marginal likelihoods—an uncommon feature among
scalable methods—makes our approach particularly suited for model selection,
which we validate through dedicated experiments.

1 Introduction

Real world data often contains latent structures (R) that can be described well
with a latent variable model (LVM). As a result, LVMs have become ubiquitous in modern statistical
research, from natural language processing (s) to bioinformatics (s),

due to their flexibility in capturing complex and hidden processes underlying observed data. It is
therefore of significant interest to fir LVMs, i.e., learn its parameters from data.

A particularly prominent estimation paradigm for LVMs is that of maximum marginal likelihood
estimation (MMLE) (,). Given some fixed observed data ¥, the task of MMLE is to
compute the maximum likelihood estimate of the parameters, denoted 6, by maximising the marginal
likelihood pg(y). This intractable quantity is defined through marginalising the joint likelihood of the
observed data and the latent variable x, over the latent variable . More precisely, let y € R% be
the observed data, © € R be the latent variables, and § € R% be the parameters of interest. Given

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

some fixed observed data y, we define the joint likelihood function py(z,y) : R% x R% — R. Our
main task in this paper is to develop methods for finding the maximisers of the marginal likelihood
po(y) : R% — R, i.e., we aim to solve

0* € argmaxlogpy(y), where py(y) = / po(z,y)dz.)
HecRo Rda

Indeed, the integral in (1) is often analytically intractable or numerically expensive, making direct
maximisation of the marginal likelihood infeasible in many relevant applications.

Historically, the gold standard for solving the problem in (1) is the Expectation-Maximisation
(EM) algorithm (s), which is a two-step iterative procedure that alternates
between estimating an expectation Q(6, 0;—1) = Epy,_, (zly) [log po(z,y)] (E-step) and updating the

parameter via 6, — arg maxg Q(0,0;—1) (M-step). This algorithm requires the implementation
of two general procedures, integration for the E-step and maximisation for the M-step, which are
generally intractable for complex statistical models. This has resulted in many numerical strategies for
implementing these steps efficiently, which gave rise to a large number of variants and approximations
of the EM algorithm. Early examples include simulation based approaches for the E-step for models
where it is possible to sample from the posterior po(z|y) for a given 0 (,),
termed Monte Carlo EM. Slmllarly, the M-step is often appr0x1mated using numerical optlmlsatlon
techniques as exact maximisation is intractable (s

). In general, however, these schemes are still 1mposs1ble to implement as the posterlor is
rarely amenable to exact sampling, which resulted in the use of Markov chain Monte Carlo (MCMC)
algorithms for the E-step. There has been a significant body of work in this direction, see, e.g.,

(2017); (2005); (1999); (2003);

(); (). Most notably, () used unadjusted Langevin
chains for the E-step and gradient descent schemes for the M-step, which is most related to our work.
This approach may result in long running times for the Markov chain approximating the E-step, which
also complicates the analysis. To overcome such limitations, a significant body of Work developed an
mteractmg particle systems approach to solve the MMLE problem (, ,

; s) including extensions for nondlfferentlable models
(,) and accelerated schemes (s ; s) with
applications to generative modelling (; ; ,) and
inverse problems (,). These works use a parncle system instead of a MCMC
chain for the E-step, which is computationally efficient. However, most of these methods run the
particles in the space of latent variables independently (except ()) - which could
also be improved with further interaction. Moreover, these methods do not allow an easy computation
of the model likelihood py(y) for a given 6.

There are alternative, closer to our approach, sequential Monte Carlo (SMC)-based methods.

() considers an SMC algorithm on an extended target measure that concentrates on the
MMLE solution. () provides a general SMC method that bears similarities to ours,
but is designed for a specific parameter update mechanism (rather than general optimisers). In the
context of particle filtering, Hamiltonian Monte Carlo approaches have been explored, as in

(2015).

Contributions. To address the issues mentioned above, in this paper, we build on a numerical
technique to sample probability paths, which we term Jarzynski adjusted Langevin algorithm (JALA).
JALA is a Langevin Monte Carlo (LMC) method to sample from time-varying probability measures,
corrected using a SMC rather than Metropolis steps. The key idea is to run biased dynamics,
specifically that of the unadjusted Langevin algorithm (ULA) with no Metropolis correction, and
subsequently correct for the bias in sampling via an exponentially weighted factor referred to as a
Jarzynski factor. Building on this idea:

* In Section 2, we formulate the Jarzynski adjusted Langevin algorithm (JALA) for sampling
from time-varying sequence of distributions. The algorithm is based on the sampler de-
veloped in () and is closely related to sequential Monte Carlo (SMC)
samplers (,) —and can be seen as a weighted-ensemble of the ULA.

* In Section 3, using the JALA as the core component, we propose a numerical method for
EM, using JALA, which we term Jarzynski adjusted Langevin algorithm for EM (JALA-EM).
This method uses the JALA for estimating the gradient of the marginal likelihood, which

is then used to update the parameters via a gradient-based optimiser. The resulting JALA-
EM algorithm is a sequential Monte Carlo method that provides the maximum marginal
likelihood estimate of the parameters.

* In Section 4, we provide a convergence analysis, under log-concavity and Polyak-
Lojasiewicz (PL) conditions. In particular, we provide a nonasymptotic analysis of the
JALA-EM method which is implemented via stochastic gradient descent (SGD). We utilise
the convergence analysis of SGD algorithms to prove our nonasymptotic result. This is just a
first step, as any other gradient-based optimiser can be used in the JALA-EM algorithm and
their theoretical properties can be used to prove convergence of the JALA-EM algorithm.

* Finally, in Section 5, we demonstrate the performance of JALA-EM on a variety of LVMs
and provide empirical evidence that it successfully estimates model parameters for various
regression models and that it can also be used in model selection unlike the methods above.

Computational Cost and Code. Experiments were run on a personal computer and a Google Colab
T4 GPU. The code can be found in https://github.com/jamescuin/jala-em.

2 Jarzynski-adjusted Langevin algorithm

We first introduce here the Jarzynski adjusted Langevin algorithm (JALA) which is a sampling method
for time-varying probability distributions. The main idea behind the method is to run ULA on these
time-varying potentials and correct the resulting bias (due to time-dependence) using the Jarzynski
equality. The resulting JALA is a sampler for a sequence of evolving measures.

Consider a sequence of target distributions (7)r>0 on R% and assume that we wish to use a
ULA-based strategy to sample from these distributions. As opposed to the case with a static target
measure, the problem is significantly harder, as a naive application of the ULA, i.e., iterating
Xpt1 = X —hV,Ug(z) + V/2h&;, 41 where Ui (z) = — log mi(x), will not yield samples from the
target distribution 7y, at time k. In fact, even introducing a Metropolis step would not correct the bias
(even asymptotically), as the distributions (7),>0 are evolving. One possible solution is the idea
of employing a Jarzynski-based correction for sampling from time-evolving measures which was
studied by (). As opposed to the setting therein, we first introduce the method for
time-varying potentials (U)x>0, and then we will apply it to the case of LVMs in Section 3.

Proposition 1 (Adapted from Proposition 1 of (). Assume that Z, =
fer’“(z)d:r < oo forall k > 0. Let the sequences (Xy)r>0 and (Ag)k>0 be given by the it-
eration rule

X1 = X — WV, Up(Xx) + V2h &1, Xo ~ o,
@)
Apr = A — a1 (Xpp1, Xi) + (X, Xpy1), Ao =0,
where {&y:}y.en, are i.id N'(04,1a), and we define
1 h
ozk(xl,xr) = Uk(l‘l) + §($T - J)l) : VUk(xg) + Z‘VUk(.’L‘l)P. 3)
Then, for all k € Ny and a test function ¢ : R% — R, we have
E [o(X)eA
E., [p(X)] = E[p(X0)e] Zx = ZoE [e**],)

E[e4x]
where the expectations on the right-hand side, of both equations, are over the law of the joint process
(Xk, Ag), as defined through (2).

See Appendix B.1 for a proof. Eq. (4) provides a powerful tool for estimating expectations with
respect to the time-evolving measures 7. In particular, it allows us to compute the expectation of
any test function ¢ with respect to the target distribution 7, by running the joint process (Xy, Ax)
and using the Jarzynski factor e”* to correct for the bias introduced by the unadjusted Langevin
dynamics. In practice, the expectation in (4) cannot be computed, hence a particle algorithm can
be used, which makes the method an instance of an SMC method. This result then can be used for
estimating parameters of an LVM or fitting energy-based models (EBMs) as observed in

(), as time-varying potentials (Uy)r>o can be indexed by some parameter 0}, and the sampler
can be used to compute the gradient of the log-marginal likelihood.

https://github.com/jamescuin/jala-em

Algorithm 1 JALA-EM

1: Inputs: Observed data y € R%; potential energy U; number of particles N € N; number of
iterations K € N; step-size h > 0; gradient-based optimiser OPT; ESS threshold C' > 0; and set

of walkers {Xé}iem sampled from py, (z|y).

2: Initialise Ay = 0 for all i € [N].

3: fork=0,..., K —1do_

4: wh = e/ Z;V:1 et, foralli e [N]. // compute weights
5: gk = Eil ineU (Gk, X,Z) . // estimate the gradient
6: Or+1 = OPT(0k, gx) // update the parameter
T

fori=1,...,Ndo
Xipy = X} — V.U (01, Xi) + V2hEL,,,
Ajpr = Ap — ar (Xg, X)) + an (X5 X))
where &, ~ N(0,1,,) and ay is defined as in (2) with Uy, := U (6, -).

8: end for '
9: Resample w.r.t. wy | if ESSg 41 < C.
10: end for

11: Outputs: Ok, {wi N, {XI N,

Remark 1. The definition of Ay, update in relation to SMC can be interpreted as a particular case of
Eq. (12)in (), or later on Sec. 2.4 in (), where the backward
transition kernel Ly_1 (X, X¢—1) is chosen to be My(Xy, X¢—1), given that My(X;—1, X3) is the
forward transition kernel (i.e. ULA kernel in the case of (2)). Exemplary illustrations of this situation
in the context of MCMC design can be found in () and in Fig. 2 of

(). A theoretical motivation for this particular choice is that in the limit h — 0 one recovers
Apy1 = Ap + .U (Xp)h + O(h3/?), meaning that the continuous time limit for the evolution
of the log-weights is coherent with Jarzynski work up to (’)(hl/ %), i.e. the discretization error of
Euler-Maruyama ULA, cfr. (). Moreover, for sufficiently small h the ULA kernel
becomes reversible and "1-step"” ergodic (cfr. ()), ensuring that for a finite
sample size the estimator (4) is not affected by variance and bias issues due to poor exploration. In
practice, different strategies for tuning h are available, see for instance ().

3 Jarzynski-adjusted Langevin algorithm for MMLE

We now outline Jarzynski adjusted Langevin algorithm for EM (JALA-EM), in which the key idea is
to approximate the nonequilibrium corrections required by Jarzynski’s identity through a population
of particles that evolve under ULA, whilst simultaneously performing parameter updates.

Let y be the observed data and py(z, y) be a joint distribution of an LVM. For the ease of notation, let
U(0,2) = —logpg(z,y) where U will be referred to as joint potential. Our aim is to compute the
minimisers of V' (6) = — log pg(y) wr.t. 6 as y is fixed. Given that this cannot be done analytically, an
appealing scheme would be to implement a gradient based optimiser, using Vg log pg(y). However,
as we have discussed, this gradient cannot be computed in closed form either. Nevertheless, for
sufficiently regular models (see, e.g., (, Appendix D)), one can write this gradient as

VoV () = —Vlogps(y) = /VeU(&I)pe(wly)dl’ = Epy(aly) [VoU(0,2)], ©)

where U (6, z) = —log pe(x,y) and pe(z|y) is the posterior distribution of latent variables. This
identity (which is known as the Fisher’s identity) is behind many recent algorithms to implement
MMLE procedures, see, e.g., () for an implementation of EM based on this
identity (using ULA chains to sample from pg(z|y)).

Instead of an MCMC-based method, we aim at using the JALA to approximate the expectation in (5).
This can indeed be done straightforwardly using Proposition 1, by replacing Uy, (x) with U (6,) and
letting (61) x>0 evolve with some discrete-time protocol (e.g., SGD). As noted in the last section, this

computation can only be performed using a particle scheme and then setting p(z) := VU (0,).
This is the main idea behind JALA-EM. To develop our method, we instantiate the method using N
particles, resulting in the system:

X1 =X} —hV,U (01, X}) + V2he}, (6)
A}Lc+1 = A;c = Of+1 (Xlchrleli:) + ag (Xlszlchr])) (7)

where «y, is defined as in (3) with Uy, := U(0y, -). At iteration k, the gradient can be estimated by
computing the normalised weights wi = eAk / Zjvzl eA%, and then computing the weighted average

N
gk = Y _wiVeU (0k, X7) .)

=1

This can then be used for a generic first-order optimiser. We outline the method in Algorithm 1. A
few remarks are in order for our method.

Remark 2. We note that the method (6)—(7) is an SMC method, where Ay, are the unnormalised
log-weights. It is thus vulnerable to standard problems of SMC samplers, such as weight degeneracy.
For this to not happen, the sequence (0)>o needs to vary slowly’ which can be achieved with small
step-sizes or adaptive approaches, see, e.g., (). To keep track of the degeneracy, we
use the effective sample size (ESS) as ESS), = 1/2?21 (wi)?. This quantity takes values in between
1 and N. Initially, since Al = 0, we have ESSy = N, but it decreases with k, as generally observed
in SMC. When this happens, a resampling operation is triggered (see Appendix C.1 for details).

4 Nonasymptotic bounds for JALA-EM

In this section, we establish nonasymptotic error rates for our algorithm, where the optimiser OPT is
assumed to be a first-order method, specifically, stochastic gradient descent (SGD):

OPT,, (0k, gr) = Ok — Yk k> ©)

where () x>0 is a sequence of step-sizes and (g) x>0 are the estimates of VV'(0) := —Vy log ps(y)
for (01)k>0-

Remark 3. Our framework would allow for deriving nonasymptotic bounds using any optimiser
(notably adaptive optimisers), as soon as the analysis for biased gradients (e.g.

()) is available. This is in contrast to similar methods like ();

() where theory strictly requires gradient descent type update for the parameters, albeit in
practice adaptive optimisers are used in experiments. See Appendix A.1 for a more thorough
discussion of this point.

4.1 Bounding the MSE of the stochastic gradient

In order to establish nonasymptotic rates for JALA-EM, the first challenge is to notice that our
stochastic gradient estimate given by (8) is biased, as opposed to the usual SGD setting. Therefore,
we need to first provide an analysis of our estimator w.r.t. the true gradient, which requires the
following assumptions.

A1. We assume that (i) the sequence (Ay)x>o has finite exponential moments, i.e. supys, E[e*4] <

oo, (ii) there exists a measurable set A C R4, independent of k, such that: Leb(A) > 0 (positive
Lebesgue measure) and supgy sup,c 4 U(6,x) < M for some M < oo, (iii) the gradient satisfies
VeUllo = SUD(9,z)cR6 x Rdx [VeU (0,2, < oo
Three remarks are in order regarding Al. First, the finite exponential moments are about the weights
of the SMC method, specifically, we require weights to be bounded, which is usually a standard
assumption. Secondly, A1(ii) immediately implies Zj, = Zp, > [, e V0" dy > [, e"Mdx =
e MLeb(A) > 0, and just correspond to ask pg, (|y) to not concentrate mass in a zero measure set.
Thirdly, we require the gradient to be bounded, as it acts as a test function in our importance sampling
(IS)-type estimator. This assumption can be dropped at the expense of significantly complicating the
analysis, see, e.g., (). We thus keep this assumption for simplicity.

Assume that we run the system (2) with Uy (+) := U(0y, -). At iteration k, for any 6 € R% we have
that
E [V@U(ek, Xk)eAk‘]

VoV (Ok) = Ep,, (oly) [VoU Ok, 7)) = E [e4+] ’

where in the last equality we have used Proposition 1 with ¢(x) = VU (0, «) and so the expectations
on the right-hand side are over the law of the joint process, as defined in (2). In practice, however, we
run a particle system given in (6)—(7) and estimate this gradient as in (8). Our estimator is an IS-type
estimator and we can prove the following proposition to bound the mean-squared error (MSE).

Proposition 2. Under Al, for any sample size, N > 1, we have that

4C VU2,
N)

for k >0, where C = sup, E {(eA’f)Q} /(E [eAk])Q = sup;, Cj < oo.

E[IVV) - gil*] < (10)

A self-contained proof can be found in Appendix B.2.

Remark 4. One has to choose N = O(C/¢) to obtain that MSE < e. Another viable strategy,
common in particle filtering, can be adapting the number of particles in time w.r.t. (an empirical
estimate of) C. This quantity is related to ESS (,). In our experiments, we keep N
fixed, instead performed resampling which sets Cy, = 1, which empirically performed well.

4.2 Nonasymptotic convergence

Now, in light of Proposition 2, Algorithm 1 can be understood to be solving the unconstrained
optimisation problem,
0, := argminV (0) = arg max log pg(y), (11)
HcR? OcR?

where we have access to biased and noisy gradient estimators. Below, we analyse this scheme in two
distinct assumptions on the negative marginal log-likelihood V/, first under the PE. condition and then
a strong convexity condition, utilising the results from (,).

For our first result, we impose the following smoothness condition, together with the PE condition on
the marginal likelihood. For brevity we use the notation V' (6..) = V..

A2. Assume the function V is differentiable and L-smooth, that is, for all (0,0") € R? x R,
VoV (0) = VoV (')l < Ll6 — 0", (12)
and also that V' is bounded from below by V, € R.
A3. (Polyak-tojasiewicz) There exists a constant, p > 0, such that for all 6 € R4,
IVoVO)II* = 2u(V (0) — V). (13)

Theorem 1. Assume that OPT(0y, gi.), in Algorithm 1, refers to the SGD scheme outlined in (9).
Under A1-A3, provided that a fixed step-size 7 is chosen such that 0 < v < min{1/4L,2/u} we
have, for every k € N,
SL’YHVGUHgoC+ A|VeU|3.C

uN uN ’

EV) Vil < (1-) 5+

where 6o = V (0y) — Vi and C = sup, E [(eAk>2} /(E [eAk])z < oo.

A proof can be found in Appendix B.3. Note that this provides a result on the convergence of marginal
likelihood since V' (6) = — log pe(y).

Remark 5. To expand this result and write it in a more intuitive form, we see that Theorem 1
essentially implies that

E[V(6)) — Vi] < 80 (1 —yu/2)" + O (v/N) + O (1/N).

This in turn provides us a guideline on how to scale parameters, in particular, the number of iterations
k and the number of samples N. To obtain E[V (0;) — V,] < O(e) with 0 < ¢ < 1, one must

choose N = O(c~ ') and k > O(loge~!). Notably, due to the apperance of N in the second term,
we do not need to take -y — 0 for our method to converge, and rather should take N large. This is in
contrast to theoretical results obtained in (,) and () for
alternative diffusion-based MMLE methods, where for convergence, one needs to pick N large and
very small. See Appendix A.2 for more discussion.

We next impose a stronger assumption on the negative log marginal likelihood to strengthen this
result.
A4. The following holds: (VV (0) —VV(0'),0 — 0"y > (u/2)]0 — ¢'||.

Remark 6. Note that there are practical examples where A4 is almost satisfied. For example, if
U(0,x) is strongly convex in (0, x), then A4 can be shown to be satisfied via Prekopa-Leindler

inequality (see, e.g., (, Theorem 3.8)). For example, it can be shown that
U (0, x) is strictly convex in (0, x) for the Bayesian logistic regression example, see (,
Prop. 1).

Theorem 2. Under Al, A2, and A4, fix a step-size such that 0 < v < min {1/4L,2/u}, then we
have
16Ly||VoU|2.C | 8|IVeU|2,C

(2N pAN

E [||6) — 0*]°] < (1 - %)k do(2/p) +

where 69 = V(0y) — Vi and C = sup, E [(eAk)Q} /(E [eAk])z < 0.

The proof of this theorem follows from the fact that the strong convexity (A4) implies ||0 — 6, || <
(2/1)(V(0) — V), hence the bound under PL condition in Theorem 1 can be applied directly.

5 Experimental results

5.1 Bayesian logistic regression - Wisconsin cancer data

To benchmark JALA-EM’s performance, relative to that of the particle gradient descent (PGD) and
stochastic optimization via unadjusted Langevin algorithm (SOUL) algorithms, as introduced in

() and () respectively, we consider the extensively studied Bayesian
logistic regression task using the Wisconsin Breast Cancer dataset, as described in
(). Specifically, we employ a model with a Bernoulli likelihood for the binary classification
of d,, = 683 malignant or benign samples, and the regression weights w € R%=9 are assigned an
isotropic Gaussian prior p(w|6, 03) = N'(w|6 - 14,,02). As is the case in (), we fix

the prior variance to o = 5.0, and estimate the unique maximiser of the marginal likelihood.

To ensure a robust comparison, algorithm-specific step-sizes were tuned via a 3-fold cross-validation
on the respective training-validation set, Dyyqin,va1, Where the Log Pointwise Predictive Density
(LPPD) was utilised as the evaluation metric, since this signifies predictive performance of the fitted

0.45+

m
A 0.304
N
0.154
- T T T T T 0.00 T T T T T T T
0.1 1 2 3 4 5 —2 -1 0 1 2 3 4
Time (s) wo
—— PGD SOUL —— JALA-EM o 200 Iter.

Figure 1: Bayesian logistic regression: Parameter estimates for PGD, SOUL, and JALA-EM, for
N = 100 and tuned step-sizes, with a iteration milestone of 200 indicated (left). KDE of the second
coordinate of the posterior approximation for the model weights (right).

model. Subsequently, final algorithm runs were constrained to a 5.0 second wall-clock duration
to assess practical computational efficiency. Comprehensive experimental details can be found in
Appendix C.2.

The parameter estimates and posterior approximations, illustrated in Figures 1, 5 and 6 for particle
counts N € {100, 50, 10}, highlight some of JALA-EM’s distinct characteristics. Across the particle
counts, JALA-EM demonstrates rapid convergence for the parameter 6, consistently matching or even
outperforming PGD and SOUL in terms of wall-clock time, while reaching the same estimated value.
Although across algorithms all posterior approximations, for the representative regression weight
wy, are comparable at N = 100, the posterior fidelity of PGD and SOUL noticeably degrades as N
decreases. In contrast, JALA-EM maintains high-quality approximations, even with fewer particles,
which we attribute to its effective particle management due to reweighting. Despite JALA-EM
requiring an additional step-size to be tuned compared to PGD, it provides a compelling combination
of fast parameter estimation and accurate posterior approximation in this setting.

5.2 Error model selection - Bayesian regression

To demonstrate JALA-EM’s unique and dual capability to concurrently estimate both parameters and
the marginal likelihood, we consider a Bayesian model selection problem. Specifically, we aim to
differentiate between two competing, nested Bayesian linear regression models, in which one is the
true generating process G of the synthetic dataset D, with model preference quantified via Bayes
Factors derived from these marginal likelihood estimates. Specifically, these models aim to capture
the relationship y; = X,;w + ¢; through a latent weight vector w € R, where ¢; represents the
observation error. The first model, M, assumes i.i.d. Gaussian observation errors, £; ~ N (0, 02),
while the second, M, assumes Student-t distributed errors, €; ~ Student-t(0, 02, v), providing
robustness against outliers. For both models, an isotropic Gaussian prior is placed on the regression
weights w, p(w|a) = N(0,a™'1,,). Notably, for numerical stability and to ensure positivity, we
use JALA-EM to estimate the log-transformed model parameters, ¢; = log 02, ¢; = log o, and for
M, p3 = logv.

Indeed, to estimate the log marginal likelihood log Z M., for model M, we have, by Proposition 1,
that after K steps

i=1

N
log Za, i =log Zp,0 + log (Z eA%> —log N & log p(y| X, 1,5, M), (14)

where Z 4 is the marginal likelihood evaluated at the initial estimates, o . Furthermore, we adopt
the following version of (14) which includes resampling as usual in SMC contexts, cfr.

(2006):

J N k;
o 1 i
logZMszlogZMyoJerog NZGXP(Z Am) , kg=1 (15)
j=1 =1 m=k;_1+1
where k; is the step at which the j-th resampling event occurs, with j = 1,...,.J, whilst A7, is

the log-incremental weight of particle ¢ at step m, and Zfé: & At represents the cumulative

log-weight of particle ¢ between two resampling steps.

j—1+1

Notably, the computation of the marginal likelihood is model dependent, as for M ¢ this is analytically
tractable, whereas for M it is generally intractable, and thus we estimate it using Importance
Sampling, with a proposal distribution derived from a Gaussian approximation to the posterior of w
using initial parameter guesses. Comprehensive experimental details and corresponding derivations
can be found in Appendix C.4.

Our numerical experiments focus on generating D with d,, = 500 and d, = 8, with features drawn
from NV (0, I,). True parameters are set to o* = 1.0, o* = 1.0, and v* = 4 (for G = M), with
w, drawn from N'(0,a;11,,). This core experimental trial was repeated 100 times, with JALA-
EM configured with N = 50 and K = 250. The results, exemplified by Figure 7, highlight rapid
convergence to sensible parameter estimates and estimated marginal likelihoods clearly differentiating
between the true and misspecified models. Notably, when G = M, log Z Me, K quickly stabilises
close to its true analytical value, and precisely matches the analytical marginal likelihood derived

—2125 —21
—2150 N“ —2600
—2175 —2625
|
—2200 .
N —2650
& 2225
—2675
—2250
. —2700
—2300 —2725
—— Analytic log Zq g, l\l“
—2325 —2750
0 50 100 150 200 250 0 50 100 150 200 250
Iteration, k Iteration, k
—— JALA-EM (M) JALA-EM (M7) ==ee- Analytic log Z, 0,

Figure 2: Error model selection: Marginal likelihood estimates for JALA-EM fitting M and M,
where the true underlying model is the former (left) and the latter (right). Here, d,, = 1500, d;, = 8,
and N = 50. Parameter estimates are initialised at values perturbed away from the true values.

from the iterated parameter estimates, corroborating Proposition 1. Additionally, when G = M,
JALA-EM fitting M is more effective at recovering the true parameter values, and importantly its
log Z a6, stabilises at a higher value. In fact, in Figure 2, where d,, = 1500, JALA-EM’s ability to
effectively leverage larger datasets for more confident model selection is highlighted, consistent with
Bayesian principles. Lastly, we note that, across the 100 repetitions, model selection based on the
higher estimated marginal likelihood correctly identified the true underlying model class in 100%
of trials when G = M, and 99% of trials when G = M, indicating JALA-EM’s robustness and
utility for model selection.

5.3 Model order selection - Bayesian regression

A related, but distinct problem is that of model order selection in the context of competing, nested
Bayesian polynomial regression models. In this case, the candidate models share the same probabilis-
tic structure for both their weights and observation errors, and instead differ in the model specific
features utilised, which are derived from the polynomial basis expansion up to and including order p,
denoted by ¢, (z;), for the p-th model M,,. To be clear, these models aim to capture the relationship
yi = @p(x;) Twy, + &;, through a latent vector w, € RPTL, where g; ~ N(0,0?).

Following the comprehensive setup described in Appendix C.5, we compare the performance of
JALA-EM to that of a competitive baseline, which notably leverages Ordinary Least Squares (OLS)
for weight estimation followed by Bayesian Information Criterion (BIC) for model selection, over a
range of true model orders p, € [2, 8], where we repeat the core experimental trial 100 times for each
order. As seen in Table 1, we observe JALA-EM to match or outperform the aforementioned baseline
across the values of p, and d, considered, where outperformance is notably more pronounced for
higher model orders. We attribute this to JALA-EM leveraging an approximation of an integral over
the latent parameters, which yields a more robust trade-off between model complexity and fit than
the baseline’s reliance on a point estimate and BIC approximation, particularly in the non-asymptotic
settings considered.

5.4 Bayesian neural network

As motivated in (), Bayesian neural network (BNN) models represent a more
complex task due to the typically multimodal nature of their posterior distributions. In this setting,
we first consider a BNN for the binary classification task of distinguishing between the MNIST
handwritten digits 4 and 9, before extending this to a multi-class setting distinguishing between the
digits 2, 4, 7, and 9, for a variety of BNN model capacities. Full experimental details are provided in
Appendix C.3.

Following the setup of (), we observe short transient phases in the evolution of
parameter estimates—albeit converging to different local maxima—as well as in evaluation metrics

3
I 5
g —108 ™ 10
o B3 A
2 = s 50f\
&= 5 \
—15 I N
25 e i o e —————
!'vfw _m edis ""“u-‘»"‘m"" ol 20 0.0l
100 200 300 400 500 0 100 200 300 400 500
Iteration, k& Iteration, k&
— PGD SOUL —— JALA-EM = Test Error / a —-== LPPD/j

Figure 3: Bayesian neural network: LPPD and Test Error, for PGD, SOUL, and JALA-EM particle
clouds, with V = 100 and a global step-size of 0.1, as in () (left). Parameter
estimates, (o, 8) = (log(o), log(o,)), where o, and o, are the variances of the zero-mean isotropic
Gaussian priors applied to the weights W and V' (right).

for PGD, SOUL, and JALA-EM, as illustrated in Figure 3. Notably, the predictive performance of
JALA-EM is comparable to that of SOUL across all experiments, which is to be expected due to
the correlations that exist between particles due to the resampling mechanism present in JALA-EM.
Although PGD converges faster in terms of wall-clock time, it does not support marginal likelihood
estimation, which is a key advantage of our method. Overall, this example highlights the reasonable
scalability of our proposal to more complex and high-dimensional inference problems.

6 Conclusions

We provided an SMC-based EM algorithm that exploits unadjusted Langevin dynamics together with
SMC corrections to implement a MMLE procedure. Our method is general and can be interfaced
with different optimisation methods for efficiency. One distinct feature of our method is the ability
to compute normalising constants on-the-fly, hence the ability to select models during training runs.
We demonstrate the performance of our method on a variety of regression examples, as well as on a
Bayesian neural network example.

Limitations and future work. Besides SOUL and PGD, other benchmarks (such as using Metropolis-
Hastings for the E-step or gradient-free optimisation for the M-step) would be interesting to consider.
Additionally, our work can use a large number of computational tricks from particle filtering literature,
since our method is closely related. Our method is SMC-based, hence there are computational
limitations due to weight computations. Without a careful implementation, one can run into weight
degeneracy issues as is common in SMC, especially in high-dimensions, see, e.g.,

(). One can resort to alternative strategies, such as tempering (,) or weight clipping
(,) to improve the performance.

Broader impact. Our method provides a general purpose training scheme for fitting LVMs which are
ubiquitous in science and engineering. Our methodology can help faster and more reliable model
testing in a variety of scenarios, accelerating the process of model development and selection for a
range number of applications. However, as a standard training algorithm, it could be also used to
train models for harmful activities, but this risk is not any larger than a standard training method.

Acknowledgements

J. C. is supported by EPSRC through the Modern Statistics and Statistical Machine Learning (StatML)
CDT programme, grant no. EP/S023151/1. D.C. worked under the auspices of Italian National Group
of Mathematical Physics (GNFM) of INdAM. D.C. expresses their gratitude to Marylou Gabrié
for the support. O. D. A. is grateful to Department of Statistics, London School of Economics and
Political Science (LSE) for the hospitality during the preparation of this work. We thank anonymous
referees for their insightful feedback which improved our work.

10

References

Sergios Agapiou, Omiros Papaspiliopoulos, Daniel Sanz-Alonso, and Andrew M Stuart. Importance
sampling: intrinsic dimension and computational cost. Statistical Science, pages 405—431, 2017.

O Deniz Akyildiz, Michela Ottobre, and Iain Souttar. A multiscale perspective on maximum marginal
likelihood estimation. arXiv preprint arXiv:2406.04187, 2024.

O Deniz Akyildiz, Francesca Romana Crucinio, Mark Girolami, Tim Johnston, and Sotirios Sabanis.
Interacting particle Langevin algorithm for maximum marginal likelihood estimation. ESAIM:
Probability and Statistics, 29:243-280, 2025.

Omer Deniz Akyildiz and Joaquin Miguez. Convergence rates for optimised adaptive importance
samplers. Statistics and Computing, 31:1-17, 2021.

Yves F Atchadé, Gersende Fort, and Eric Moulines. On perturbed proximal gradient algorithms.
Journal of Machine Learning Research, 18(10):1-33, 2017.

Peter Bickel, Bo Li, and Thomas Bengtsson. Sharp failure rates for the bootstrap particle filter in high
dimensions. In Pushing the limits of contemporary statistics: Contributions in honor of Jayanta K.
Ghosh, volume 3, pages 318-330. Institute of Mathematical Statistics, 2008.

Brian S Caffo, Wolfgang Jank, and Galin L Jones. Ascent-based Monte Carlo expectation—
maximization. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67
(2):235-251, 2005.

Rocco Caprio, Juan Kuntz, Samuel Power, and Adam M Johansen. Error bounds for particle gradient
descent, and extensions of the log-Sobolev and Talagrand inequalities. Journal of Machine
Learning Research, 26(103):1-38, 2025.

Davide Carbone. Jarzynski reweighting and sampling dynamics for training energy-based models:
theoretical analysis of different transition kernels. Bollettino dell’ Unione Matematica Italiana,
2025.

Davide Carbone, Mengjian Hua, Simon Coste, and Eric Vanden-Eijnden. Efficient training of energy-
based models using jarzynski equality. In Advances in Neural Information Processing Systems,
volume 36, pages 52583-52614, 2023.

Davide Carbone, Mengjian Hua, Simon Coste, and Eric Vanden-Eijnden. Generative models as
out-of-equilibrium particle systems: training of energy-based models using non-equilibrium
thermodynamics. In International Conference on Nonlinear Dynamics and Applications, pages
287-311. Springer, 2024.

Francesca R Crucinio. A mirror descent approach to maximum likelihood estimation in latent variable
models. arXiv preprint arXiv:2501.15896, 2025.

Valentin De Bortoli, Alain Durmus, Marcelo Pereyra, and Ana F Vidal. Efficient stochastic optimi-
sation by unadjusted Langevin Monte Carlo: Application to maximum marginal likelihood and
empirical Bayesian estimation. Statistics and Computing, 31:1-18, 2021.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411-436, 2006.

Bernard Delyon, Marc Lavielle, and Eric Moulines. Convergence of a stochastic approximation
version of the EM algorithm. Annals of statistics, pages 94—128, 1999.

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtdrik. A guide through the zoo
of biased SGD. Advances in Neural Information Processing Systems, 36:23158-23171, 2023.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1-22, 1977.

11

Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering. In
ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and
Analysis, 2005., pages 64—69. Teee, 2005.

Randal Douc, Eric Moulines, and David Stoffer. Nonlinear time series: Theory, methods and
applications with R examples. CRC press, 2014.

Victor Elvira, Luca Martino, and Christian P Robert. Rethinking the effective sample size. Interna-
tional Statistical Review, 90(3):525-550, 2022.

Paula Cordero Encinar, Francesca R Crucinio, and O Deniz Akyildiz. Proximal interacting particle
Langevin algorithms. Uncertainty in Artificial Intelligence (UAI), 2025.

Gersende Fort and Eric Moulines. Convergence of the Monte Carlo expectation maximization for
curved exponential families. The Annals of Statistics, 31(4):1220-1259, 2003.

Alex Glyn-Davies, Connor Duffin, leva Kazlauskaite, Mark Girolami, and O Deniz Akyildiz. Statisti-
cal finite elements via interacting particle Langevin dynamics. SIAM/ASA Journal on Uncertainty
Quantification, 13(3):1200-1227, 2025.

Samuel Gruffaz, Kyurae Kim, Alain Durmus, and Jacob Gardner. Stochastic approximation with
biased MCMC for expectation maximization. In International Conference on Artificial Intelligence
and Statistics, pages 2332-2340. PMLR, 2024.

Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet. Controlled sequential
Monte Carlo. The Annals of Statistics, 48(5):2904-2929, 2020.

Adam M Johansen, Arnaud Doucet, and Manuel Davy. Particle methods for maximum likelihood
estimation in latent variable models. Statistics and Computing, 18:47-57, 2008.

Kyurae Kim, Zuheng Xu, Jacob R Gardner, and Trevor Campbell. Tuning sequential Monte Carlo sam-
plers via greedy incremental divergence minimization. In Forty-second International Conference
on Machine Learning, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015.

Juan Kuntz, Jen Ning Lim, and Adam M Johansen. Particle algorithms for maximum likelihood
training of latent variable models. In International Conference on Artificial Intelligence and
Statistics, pages 5134-5180. PMLR, 2023.

Kenneth Lange. A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal
Statistical Society: Series B (Methodological), 57(2):425-437, 1995.

Tiancheng Li, Miodrag Bolic, and Petar M Djuric. Resampling methods for particle filtering:
classification, implementation, and strategies. IEEE Signal processing magazine, 32(3):70-86,
2015.

Jen Ning Lim, Juan Kuntz, Samuel Power, and Adam Michael Johansen. Momentum particle
maximum likelihood. In International Conference on Machine Learning, pages 29816-29871.
PMLR, 2024.

Chuanhai Liu and Donald B Rubin. The ECME algorithm: a simple extension of EM and ECM with
faster monotone convergence. Biometrika, 81(4):633-648, 1994.

Joanna Marks, Tim W. J. Wang, and O Deniz Akyildiz. Learning latent energy-based models via
interacting particle Langevin dynamics. arXiv preprint arXiv:2510.12311, 2025.

Luca Martino, Victor Elvira,] Miguez, A Artés-Rodriguez, and PM Djuri¢. A comparison of clipping
strategies for importance sampling. In 2018 IEEE Statistical Signal Processing Workshop (SSP),
pages 558-562. IEEE, 2018.

Jonathan C Mattingly, Andrew M Stuart, and Desmond J Higham. Ergodicity for SDEs and approx-
imations: locally Lipschitz vector fields and degenerate noise. Stochastic processes and their
applications, 101(2):185-232, 2002.

12

Xiao-Li Meng and Donald B Rubin. Maximum likelihood estimation via the ECM algorithm: A
general framework. Biometrika, 80(2):267-278, 1993.

Jerome P Nilmeier, Gavin E Crooks, David DL Minh, and John D Chodera. Nonequilibrium candidate
Monte Carlo is an efficient tool for equilibrium simulation. Proceedings of the National Academy
of Sciences, 108(45):E1009-E1018, 2011.

Paul Felix Valsecchi Oliva and O Deniz Akyildiz. Kinetic Interacting Particle Langevin Monte Carlo.
arXiv preprint arXiv:2407.05790, 2024.

Paul Felix Valsecchi Oliva, O Deniz Akyildiz, and Andrew Duncan. Uniform-in-time convergence
bounds for persistent contrastive divergence algorithms. arXiv preprint arXiv:2510.01944, 2025.

Sébastien Roch. Mathematical Methods in Data Science: Bridging Theory and Applications with
Python. Cambridge Mathematical Textbooks. Cambridge University Press, 2025.

Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: a review. Statistics
surveys, 8:45, 2014.

Christoph Schonle, Marylou Gabrié, Tony Lelievre, and Gabriel Stoltz. Sampling metastable systems
using collective variables and Jarzynski—Crooks paths. Journal of Computational Physics, page
113806, 2025.

Francois Septier and Gareth W Peters. Langevin and Hamiltonian based sequential MCMC for
efficient Bayesian filtering in high-dimensional spaces. IEEE Journal of selected topics in signal
processing, 10(2):312-327, 2015.

Louis Sharrock, Daniel Dodd, and Christopher Nemeth. Tuning-free maximum likelihood training of
latent variable models via coin betting. In International Conference on Artificial Intelligence and
Statistics, pages 1810-1818. PMLR, 2024.

Ronglai Shen, Adam B Olshen, and Marc Ladanyi. Integrative clustering of multiple genomic data
types using a joint latent variable model with application to breast and lung cancer subtype analysis.
Bioinformatics, 25(22):2906-2912, 2009.

Sobihan Surendran, Adeline Fermanian, Antoine Godichon-Baggioni, and Sylvain Le Corff. Non-
asymptotic analysis of biased adaptive stochastic approximation. Advances in Neural Information
Processing Systems, 37:12897—-12943, 2024.

Tim YJ Wang, Juan Kuntz, and O Deniz Akyildiz. Training latent diffusion models with interacting
particle algorithms. arXiv preprint arXiv:2505.12412, 2025.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. Advances in Neural Information Processing Systems, 36:15614—15638, 2023.

Greg CG Wei and Martin A Tanner. A Monte Carlo implementation of the EM algorithm and the
poor man’s data augmentation algorithms. Journal of the American statistical Association, 85
(411):699-704, 1990.

Nick Whiteley, Annie Gray, and Patrick Rubin-Delanchy. Statistical exploration of the manifold
hypothesis. Journal of the Royal Statistical Society: Series B, 2025. ISSN 0035-9246.

W H Wolberg and O L Mangasarian. Multisurface method of pattern separation for medical diagnosis
applied to breast cytology. Proceedings of the National Academy of Sciences, 87(23):9193-9196,
1990.

Yuling Yao, Aki Vehtari, and Andrew Gelman. Stacking for non-mixing Bayesian computations: The
curse and blessing of multimodal posteriors. Journal of Machine Learning Research, 23(79):1-45,
2022.

Yan Zhou, Adam M Johansen, and John AD Aston. Toward automatic model comparison: an
adaptive sequential Monte Carlo approach. Journal of Computational and Graphical Statistics, 25
(3):701-726, 2016.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that our method performs comparably to the state of the art, which
we demonstrate in our experimental section. Furthermore, we also demonstrate the ability
to estimate marginal likelihoods - which is a special feature of our method.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Motivations of the assumptions are discussed throughout the main text and
a Limitation paragraph is included in the Conclusions. We discuss both theoretical and
practical limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a proof of every theoretical result presented in the paper. For the
sake of brevity, complete proofs are in Appendix A.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setups are detailed in Appendix B and in the Experimental
Result section with all the hyperparameters choices.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code via a .zip file, which will also be made publically
available.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details of the experiments are in the Experimental Results section and
in Appendix B, with detailed description of the setup and hyperparameters, as well as in the
released code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide in Appendix B results about statistical significance of the experi-
ments, i.e. error bar on multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments were run on personal computer and Google Colab. We specify
it in the Introduction.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS code of ethics and confirm that our paper is in full
agreement with the code.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in the Conclusions in a specific
paragraph.

Guidelines:

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They coincide with the authors. Pre-existent benchmark models that we
reimplemented are credited in the Related Works and in the Experimental Results sections.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The released is code is not an asset, but just due for experiment reproducibility.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Discussion and comparisons

In this section, we put our method in a more general context by comparing it to the recently proposed
body of interacting particle methods for the MMLE problem cited throughout the paper. We will

compare in this section, in particular, particle gradient descent (PGD) of () and
interacting particle Langevin algorithm (IPLA) of (), as well as the slow-fast
Langevin algorithm (SFLA) method discussed in ().

A.1 Algorithmic comparison

Our method is closely related to PGD and interacting particle Langevin algorithm (IPLA) which
rely on particle systems to update the parameter iterates. To be specific, given some initialisation

(00, X&, ..., X&), PGD (,) consists of the following discrete dynamical system:
N
O 1 = Or — % 3" VoU (61, Xi), (16)
i=1
Xis1 = Xk =1Vl (0, X0) + V27241, (17)
where Z; +1 ~ N(0, 1) are independent standard Gaussian random variables. The IPLA method of
() is very similar, with a scaled noise in 6 iterates:
7 v ; 2y
Or+1 = Ok — N;VGU(91@7X/Z)+\/;§1@+1, (18)
Xis1 = Xj = 1VaU (0, Xi) + V21241, (19)

where £,41 ~ N (0, I,) is another independent standard Gaussian random variable. In the above
equations, one can see parameters updates (16) and (18) play a similar role to our optimiser steps
in (9). However, in this setting, particles are equally weighted (1/N), and the latent variables are
updated through a ULA step in (17) and (19) similar to our case. One crucial aspect for both methods
is that the step-size -y needs to be same for both 6§ and X updates as these algorithms are derived from
an Euler discretisation of a continuous-time dynamics. This is a significant limitation in practice
as the scales of 6 and X can be very different, and thus, for example, the step-size - needs to be
chosen very small to ensure stability of the X updates, which in turn leads to very slow updates for 6.
A related aspect here is that while, for example, () uses an adaptive optimiser for
f-updates in challenging experiments, theoretical results for PGD (,) and IPLA are
both tied to the use of plain gradient updates as in (16) and (18). In contrast, our method allows for
different step-sizes for § and X updates, as well as the use of adaptive optimisers. This is because our
method is not derived from a discretisation of a continuous-time dynamics, but rather from a direct
optimisation of the MMLE objective.

To address some of the limitations above, the continuous-time dynamics behind PGD and IPLA have

been extended in (); () to allow for different time-scales for 6
and X updates. For example, the resulting slow-fast Langevin algorithm (SFLA) method of
() consists of the following updates:
Or+1 = Ok — YVoU (Or, Xi) + \/ i, (20)
X1 = Xg — ZV U(Ok, Xi) + \/ 2 i, 2D

where $ > 0 is an inverse temperature parameter, € > 0 is a scale parameter, and v > 0 is a step-size.
Here, there is a single latent variable X}, which is updated with a step-size /e that can be much
larger than the step-size « used for 6 updates (see () for a related particle-based
approach). However, this comes at the cost of introducing two additional hyperparameters 3 and e,
which can be difficult to tune in practice. Moreover, as for PGD and IPLA, theoretical results for
SFLA are tied to the use of plain gradient updates as in (20), and do not allow for adaptive optimisers.

21

A.2 Theoretical comparison

Both PGD and IPLA come with nonasymptotic bounds; see the analysis in () and
(). Under strong convexity and gradient smoothness assumptions on U, both

methods provide theoretical guarantees of the following form:
E[|0 — 0772 < O(/2 + N7H2 4 e70h), (22)

where 1 > 0 is a strong convexity constant, -y is the step-size, N is the number of particles, and
0, is the unique minimiser of the MMLE objective. One can see that, in addition to the fact that
these methods have to work with the same step-size «y for both § and X updates, the above bound
also requires ~y to be very small to control the bias term O(y'/?). Specifically, for the error to
vanish, one needs take large N and small . On the other hand, the convergence rate is governed by
the exponential term O (e~7#*), which decays faster for larger -, resulting in a trade-off between
accuracy and convergence speed.

In contrast, our result in Theorem 2 provides an error bound:
E[lox — 0,2/ < O (1 = yp/2)H/2 4 412N V2 4 N71/2). (23)

In the above display, it suffices to take IV large for error to be small. The step-size ¥ can be chosen
independently of N and only affects the convergence speed, thus decoupling the accuracy and
convergence speed trade-off.

Our results can also be extended to adaptive optimisers, see, e.g. () whereas
theoretical results for PGD, IPLA, and SFLA are tied to the use of plain gradient updates.

A.3 General comparison of the methods

We provide the following table summarising the main differences between the methods discussed
above.

Feature PGD SOUL SFLA JALA-EM
Marginal likelihood estimation X X X 4
Different 6 and x step-sizes X 4 v v
Theoretical guarantees with fixed v X v v
Adaptation of theory for adaptive optimizers X X X 4

B Theoretical results

B.1 Proof of Proposition 1

Proof. This proof follows mutatis mutandis from the proof of Proposition 1 in ()
we include here for completeness.

First, note that under the ULA update given in (2), the transition probability density, that is, the
probability density of moving from x to y at time £, is given by

1
Buovy) = ()P exp (= by = o+ VTP
We also observe that:

k
A = Z [vg—1(Xg—1,Xg) — ag(Xg, X4-1)], keN 24)
qg=1

Now, the need for this transition probability density becomes apparent when attempting to calculate
expectations over the law of the joint process, as we specifically have, for a test function ¢

E [p(Xi)e™] = /R pla)eplro, . wx)dy - day, (25)

22

where p(xo, . . ., 2%) denotes the joint probability density function of the path (X, ..., Xx) atk € N,
and is defined as

k—1

p(o, - w) = wo(xo) [[By(wa: wg1),
q=0

k
= mo(xo) H Bo—1(Tg-1,24),

g=1

In light of this, it remains to express e“* in terms of the transition probability density, 3. Indeed, we
have from (2) that

k
= log-1(Xg-1,Xy) — ag(Xg, Xg-1)], k€N, (26)
q=1
Thus, by substituting (3) into (26) , we have that

exp (Ag) = Hexp ag—1(Xgo1,Xg) — ag(Xy, Xg-1))
b 1 h
= H (Xq- 1) + §(Xq - qul) ’ VUqfl(qul) + Z|VUq71(Xq71)|2
1 h 9
- Uq(Xq) - i(qul - Xq) : VUq(Xq) - Z|VUq(Xq)| ’
k 1 h
= exp (Un(Xo) — U (6) [T exp (50X, = o) VUpa(Xy0) 4 90,1 (X
qg=1
1 h 9
- §(Xq*1 - Xq) : VUq(Xq) - Z|VUq(Xq)| ’

1)

= exp (Up(Xo) — Up(Xy)) Hﬂ 1 1X)’
q— q)

where in the last equality we have used the fact that

a 1
(4mh) =2 exp [_4h [Xg—1 — Xg + hVUq(Xq)|2]

Bﬂq(i(;a Xq—)l()) _ - 27)
-\ Ra=b el (4rh) = exp {_th X, — Xyo1 + hVUql(qu)ﬂ
1 h 9
= exp §(Xq = Xg-1) - VUg-1(Xg-1) + Z|VUq—l(Xq—1)|
1 h 9
- §(Xq—1 - Xq)) VUq(Xq) - Z|VUq(Xq)‘ : (28)

as we expanded the squares at numerator and denominator and we have notably leveraged the fact
that 5| X, — Xo-1% — [X1 — Xg> = 0.

23

Now, recalling that Z;, = | e~ Ux(®)dz and bringing everything together into 25, we obtain

Bp(Xet] = [ola)etplen....) doo- - don,

k

— [¢l exp Uatan) - Ui(on)) [T Aulirgs 24 pofin) doo- - dos,
Rd-k =1
1 k
— 70 - p(xk) exp (—Ug(xg) 1;[(g, Tq—1) dzo - - - dzg,
1
= o(ag) exp (—Ug(zr)) dag.
0 JRrd

where in the last equality we have have iteratively integrated over x(, x1, up to and including x5 _1,
where we note that, for all ¢ € Nand all z,_; € R,

/d By(zg, xg—1)dzg_1 = 1.
R

Thus, if we set o(X) = 1, we obtain

1 Zy,
]E Apg - _ d _ =
] = 5 [, e (Vo) don = ZE.
This complete the proof, since E [p(X;)e*| /E [e?s] = Ex, [o(X)]. O
See () for a further insight on different choices of the transition kernel 3(z, y).

B.2 Proof of Proposition 2

Now, we derive an MSE bound on the error introduced through utilising the sample based approxima-
tion

E [VoU(br, X)e™] o, VoU (B, X7)es”

E [e/ls] va 1 eA(!

Y

where, to be clear, the expectations on the left-hand side are over the law of the joint process (X}, Ax),
as defined through (2).

Specifically, we wish to bound the quantity

N i (@ 112
E [VoU 0k, Xi)e*] >iz1 VeoU (Hkv X,i)) et
E [eA+] N N Ay

i=1

. H]E[Wka} WE|’

E[Wi] Wi,

where we have let W, = e“* and Fk = VU (0, X) for notational brevity, whilst sample based

approximations, W = SN e v and WF = SN VoU (6, X) 4" are indicated by an
overset bar.

24

We follow the proof of Theorem 1 in (). First, we note that the following
inequality holds,

E [VoU(0k, Xp)e] SN, VoU (61, X)eAd | ’E[Wka] _ WF,
E [e?] AR EWi] Wi |
_ [EWLF] Wy — WE, E[W,]|
N E[W]| W] ’
 [WHEWLE] — WEFy) + WE (W), — E[Wy])|
B [E[W]| [W | ’
< ’Wk| ’E[Wka] —Wk’ + ‘W]J ’Wk —]E[Wk”
- [E[W]| W] ’
EWiFy] — WEFe| 1 1
-H |E[ém| S EWi ~ el
E[Wj,Fy] — WEy — Wy —E[W;
< B |E[T]/Vk]| ’+||Fk\|oo|Wk‘ E[VVk]‘EVk] ;
_ |E[WiFi] — WFy| +IF (W), — E[Wy]|
E[W] °EWR

where in the first inequality we have repeatedly applied the triangle inequality, and in the fourth
equality simply divided the denominator through each term. Furthermore, in the second inequality

we have made use of the fact that S~ | VU (6, X,gi))e“‘g) <|IVoUlloo SN, e recalling that
we assume || VU || o < oo, for any § € RP and X € R,

Now, utilising the fact that (a + b)? < 2(a? + b?), and taking the expectation of both sides, we obtain

EW,F] W | E[W,Fy] — WE, Wi —EW|\"
- H I[E[Wk]} Tl R <| E[Wi] |+||Fk||oo4‘ E[W4] ’) ’
2E [(E[WFL] — WFy)? E [(Wy —E[W])?
<2 EW.])? o (E7)? g
_ 2 BUWeFo)*] — EWeF])?) | 20 Fel3 (BIVE] ~ E[Wi)?)
N (E[WE])? N (E[Wi])? ’
_ 2EE (EIVE] - (BIWL])?) n 2| Fr % (E[WR] - (E[Wk)?)
- N (E[W])? N (E[Wy])? 7
4|1, (EWE] - (E[Wi])?)
N (E[Wy])? ’
4| Fe| 3 E[WE]
- N (EWR]Y

giving the desired result, where in the first equality we have leveraged the fact that the numerators, on
the right-hand side, are perfect Monte Carlo estimates, and so this equality holds through a standard
variance decomposition. We also note that in the second inequality we have again used the fact that
F =VoU(b, X)) is bounded by || F'||sc = ||VoU]| o, SO that

(WiFi)? < B2 WE = E[(WaFy)?] < || Eel 3 EWZ],
(WeF| < [[FrllooWe| = [E[WiFi]| < E[WiFy]] < || FillocE[[Wil]
which implies that (E[W} Fy])? < || Fx||% (E[Wk])?. Next, we can also show the implication
= E[(WiF)?] — (EWiFL])® < [[Fell% (EWE] — (E[WR])?) .
To conclude, we exploit assumption Al
URL BV _AIRd E0V)
N (EW)? T N (B[]

(29)

25

B.3 Proof of Theorem 1
We specifically leverage Theorem 4 from (), ensuring that the respective
assumptions are satisfied.

AS. There exist constants, A, B, C, b, c > 0, such that the gradient estimator, g(0), for every 6 € R?
satisfies

(VV(6),E[g(0)]) = b VV(O)]|* - c, (30)
E [llg@®)?] <24(V(0) = V*) + B|VV()]* - C. €1V
where V, = V (0.).
Theorem 3. Let Assumptions A2, A3, and A5 hold. Choose a step size, vy, such that

. b 1
0<V<mm{L(A+uB)’ub}’ (32)
then we have, for every k € N,
LC~y ¢
E[V(0;) — V*] < (1 —yub)F6y + —- + — 33
[V(0k) = V*] < (1 —yub) 0+2ub+ub’ (33)

where 5o = V (6p) — V™.

In light of Assumption A5 lacking an intuitive explanation, we turn to Assumption 7 of
(2023):
A6. Forall € RY, there exists A > 0 such that

E [lg(6) — VV(0)[°] < A?, (34)

We remark that A6 is notably a stronger assumption than that of A5, and through Theorem 13 of
() we have that Assumption A6 implies Assumption A5 with A =0, B = 2,

— _ 1 _ A
C—2A2,b—§,andc—7.

Critically, if the assumptions of Proposition 2 hold, we have that

AC ||V,U |12
E[IVaV(0r) - g00)I7] < A% A% = % (35)
where C' = sup, E {(e“‘k)z} / (E [eA’»‘])Q and so Assumption 7 of (2023) is

satisfied for this A.

Thus, if Assumptions A2 and A3 hold, as well as those of Proposition 2, we have that, for a step size
: b 1 : 5 1 }
0<y<ming ——,— p=ming ——=——, — 5
! {L(A+MB) ub} {L<o+2m z

. 1 2
=min<{ —, —
4L7M)

forevery k € N,

Cy ¢
E[V () —V*] < (1 —yub)*dy + —L + —
[V (0r)] < (1 —yub)™do + 20 R
I 2A% Ly &
(1 YHK 8LA||VeU |2, 4| VoU 12,
=(1 5 V%0 + N C+ N C,

where 09 = V (6y) — V*.
To conclude, we note that V' (0),) — V* = log pg- (y) — log pe,. (v).

26

C Experimental details

C.1 Implementation details

In this section, we outline the details of implementation for our method.

The resampling step in Algorithm 1 proceeds as follows. Given that it is triggered at step k-, first
we resample the walkers X ikr using the normalized weights wfr as probability of picking the i-th

particle and we reset Af = 0. Several routines for resampling have been developed in the context
of particle filtering, cfr. (); (). In our experiments we decided
to adopt systematic resampling, since not only is it computationally efficient, with order O(N), but
also the variance of the number of resampled particles is reduced, compared to that of say stratified
resampling (,). As described in (), an extra stage is then necessary to
track Zj, through the resampling step, that is adopting

1L
Zk:ZkrﬁzeAz
=1

for all £k > k, until the next resampling step.

C.2 Bayesian logistic regression - Wisconsin cancer data

First, we examine JALA-EM’s performance, in the context of training a Bayesian logistic regression
model, relative to that of the Particle Gradient Descent (PGD) and Stochastic Optimisation via
Unadjusted Langevin (SOUL) algorithms, as introduced in () and

() respectively. As is the case in the former paper, we utilise the setup described in the latter
paper, which we describe in detail below.

Setup. The empirical Bayesian logistic regression problem is formulated through considering the
Wisconsin Breast Cancer dataset (), which can be freely accessed at

https://archive.ics.uci.edu/ml/datasets/breast-cancer+wisconsin+(original).

In particular, this dataset contains 699 samples, obtained between January 1989 and November 1991,
where each sample consists of d,, = 9 latent variables extracted from digitised images of fine needle
aspirates (FNA) of breast masses, such as the Clump Thickness and Marginal Adhesion, as well as
the corresponding malignant or benign diagnosis. Since missing values exist within this dataset, we
opted to discard the corresponding samples, resulting in a dataset of d,, = 683 samples.

Regarding further data pre-processing, the latent variables, or features, were collated into a matrix
X € R% *dz and were then standardised column-wise to have zero mean and unit standard deviation.
To be clear, if 11; and s; are the mean and standard deviation of the j-th feature column respectively,
the normalised features, X € R%*9= are given by X.; = (X.; — u;)/s;. Furthermore, note
that the response is mapped such that y € {0, 1}, where y; = 0 represents a benign case and
y; = 1 amalignant one. Lastly, note that the pre-processed dataset, D = (X, y), was then split into a
training-validation set, Dyyqin vai and a hold-out test set Dy, via an 80-20 stratified split, so that
class proportions are maintained across said split.

Model. As mentioned above, we adopt an empirical Bayesian logistic regression framework, where,
for a single sample (z;,¥;), in which 2; € R% and y; € {0, 1}, the corresponding likelihood follows
a Bernoulli distribution,

s w) =0 (aTw)" (10 (2 w))' ™"

where, to be clear, w € R% are the regression weights, and o(z) := (1 + e~*)~! is the standard
logistic function. Following (), we assign an isotropic Gaussian prior to the
regression weights, so that

2 2
p(w|f,03) =N (w|f - 14,,0814,),
where 14, is the d,-dimensional unit vector, and o2 is the prior variance. Notably, it is the parameter

0 € R that we wish to estimate. Thus, it follows that the unnormalised negative log-posterior, or

27

https://archive.ics.uci.edu/ml/datasets/breast-cancer+wisconsin+(original)

the joint potential, for a single particle, indexed by m, conditional on the observed data (in the
training-validation set) is

|Dtrain,'vu,l |

m 1
U(w(m)’ 6| Dicainval) = Z (log (1 + e:riTw()) — (xiTw(m)>) + 57 Hw(m) — 01,
0

m=1

2

2

where we refer to Appendix D.1.1 for full details. Indeed, as outlined in Proposition 1 of
(), the marginal likelihood has a unique maximiser.

Approach. To facilitate a robust comparison of JALA-EM with PGD and SOUL, we implement a
systematic and reproducible procedure for model fitting and hyperparameter selection. A critical
aspect is the choice of step-sizes, as these significantly influence the dynamics and performance of
each algorithm. Notably, JALA-EM and SOUL permit distinct step-sizes for their particle (Langevin)
updates and their parameter (¢) updates. This flexibility is not present in PGD, where a single
step-size controls both processes. The practical importance of tuning step-sizes is underscored by
the toy hierarchical model in (), where mean-field analysis yields different optimal
step-sizes for PGD and its variants presented within the paper.

Therefore, rather than using a fixed global step-size for all algorithms, or all dataset splits, we perform
K-fold cross-validation on Di,.qin val to select the step-sizes. Specifically, this tuning is conducted
over a predefined grid for the particle update step-sizes and, where applicable (i.e. for SOUL and
JALA-EM), for the §-update step-sizes. The evaluation metric utilised for this hyperparameter tuning,
within the cross-validation folds, is the Log Pointwise Predictive Density (LPPD), which assesses the
model’s average predictive accuracy on unseen data.

LetP = {w(k) }5:1 be the ensemble of IV particles (regression weight vectors) obtained from an

algorithm run, to fit the statistical model described above. For each data point (z;,y;) € Dyar, we
first compute the predictive probability of the true observed label, y;, averaged over the N particles,

N
1) 1—-y:
Pavy(ileis P) = = > [a(x;rw(k))y" (1- ozl w™))] .
k=1

The LPPD for D,,; is then the average of the natural logarithm of these pointwise predictive
probabilities, across the respective dataset,

‘D'vall
1
LPPD(Dval) = m Z IOg Pavg(yi|$i7p)7
varl =1

where a higher LPPD value signifies superior predictive performance of the fitted statistical model,
since the mean KL divergence between our classifier and the optimal classifier will be smaller
(,). Notably this quantity is equivalent to the negative of the predictive Negative
Log-Likelihood (NLL), which we instead choose to minimise in our implementation. Having selected
step-sizes, for the respective algorithms, from our grid, we then re-run the algorithms on the entirety
of Dirain,val, Which are then ready to be evaluated on Dy

Implementation Details. As is the case in both () and (), we set
the prior variance to 08 = 5.0, and also initialise the scalar parameter (to estimate) at #, = 0 for all
algorithms. The N particles were initialised by drawing samples independently from the Gaussian
prior distribution, p(w|6y, 02), which now notably simplifies to N(0, 51,). Regarding the step-size
tuning procedure, we opt for K = 3, motivated by the computational cost of the SOUL algorithm,
scaling significantly as /V increases. We note that early stopping during the tuning occurs if the
validation LPPD does not improve by at least e, ppp = 1 X 10~° over 10 consecutive evaluations,
that are each spaced 10 iterations apart, as we argue that in such cases the stationary phase has been
reached. Furthermore, the maximum number of iterations for tuning, during each fold, was set to
K = 500. To be clear, in the case of SOUL, this refers to the number of outer steps, whereas the
number of inner steps is determined by N. Also, note that for JALA-EM, we choose C' = 1/1.05
and utilise systematic resampling in cases in which this threshold is breached, as recommended in

(2023).

To form our grid of step-sizes, relevant to the particle updates, we compute a baseline step-size, which
we denote heyer. Specifically, heqyer is computed to provide a theoretically grounded scale reflecting

28

the curvature of the energy landscape, and to this end we compute the worst-case upper bound on the
Hessian, Hpoyund, to obtain a single, globally relevant Lipschitz constant, L, for determining hey e
Indeed, this is a constant matrix that is larger, in the positive semi-definite sense, than any Hessian
encountered, and thus its largest eigenvalue provides an upper bound on L valid across the entire
parameter space. In fact, for the Bayesian logistic regression model, this bound takes the form

1 1
Hbound = ZXtTrain,valXtrain,val + ;gldwy
where the largest eigenvalue is estimated numerically through the power iteration method

(), giving our global estimate of L. Lastly, to incorporate a small margin of safety, we take
heuter = 0.99/L. The grid for the particle update step-size was then constructed as 10 linearly spaced
values in the range [0.2 X Aeyler, 2.0 X heyier], whereas we limit the grid of §-update step-sizes to be
simply {0.05,0.1,0.15}, again due to the significant time it takes to tune SOUL as N becomes large.

Having selected a step-size, each algorithm was run once on the entire of Diyqin,val, Using said
step-sizes, for which trajectories were limited to a wall-clock duration of 5.0 seconds, with an iteration
milestone of 200 steps, that we indicate, if reached, in the respective visualisations. To be clear,
we did not run the algorithms here for the same number of total iterations, but instead the same
wall-clock duration.

Results. Here, we present the comparative performance of JALA-EM against PGD and SOUL for the
Bayesian logistic regression task described above, for the cases that N = 100, N = 50, and N = 10,
which is explicitly visualised within Figures 4, 5, and 6 respectively. In particular, we focus on the
convergence of the estimates of the global parameter 6, the Kernel Density Estimates (KDEs) for the
representative regression weight, wo.

0.45
m
A 0.304
N
0.15
- 0.00
0 0.1 1 2 3 4 5 -2 -1 0 1 2 3 4
Time (s) wa
—— PGD SOUL —— JALA-EM o 200 Iter.

Figure 4: Bayesian logistic regression: Parameter estimates for PGD, SOUL, and JALA-EM, for
N = 100 and tuned step-sizes, with a iteration milestone of 200 indicated (left). KDE of the second
coordinate of the posterior approximation for the model weights (right).

1.0 =
0.8 0.454
0.6
< 2 0304
0.4 >
.24l 0.151
0.04
: : : — 0.00— ‘ ‘ ‘ : : ‘
0.1 1 2 3 4 5 22 -1 0 1 2 3 1
Time (s) woy
—— PGD SOUL —— JALA-EM © 200 Iter.

Figure 5: Bayesian logistic regression: Parameter estimates for PGD, SOUL, and JALA-EM, for
N = 50 and tuned step-sizes, with a iteration milestone of 200 indicated (left). KDE of the second
coordinate of the posterior approximation for the model weights (right).

29

0.60

0.6 m
N S 030 /

0.4

0.2 0.154

0.0

0.00-==
0 0.1 1 2 3 4 5 -1 0 1 2 3 4

Time (s) wo
—— PGD SOUL —— JALA-EM o 200 Iter.

Figure 6: Bayesian logistic regression: Parameter estimates for PGD, SOUL, and JALA-EM, for
N = 10 and tuned step-sizes, with a iteration milestone of 200 indicated (left). KDE of the second
coordinate of the posterior approximation for the model weights (right).

Across the particle counts, JALA-EM demonstrates rapid convergence for the parameter 6, consistently
matching or even outperforming PGD and SOUL in terms of wall-clock time, while reaching the
same estimated value. Although across algorithms all posterior approximations, for the representative
regression weight wo, are comparable at N = 100, the posterior fidelity of PGD and SOUL noticeably
degrades as N decreases. In contrast, JALA-EM maintains high-quality approximations, even with
fewer particles, which we attribute to its effective particle management due to reweighting. Although
JALA-EM requires an additional step-size to be tuned compared to PGD, it provides a compelling
combination of fast parameter estimation and accurate posterior approximation in this setting.

C.3 Bayesian neural network

To investigate the performance of JALA-EM in a more challenging setting, we opt to apply it to the
task of training a Bayesian neural network (BNN). This setting is generally more challenging due to
the higher dimensionality of the parameter space and the commonly complex, multimodal nature of
the posterior distribution over network weights. Again, we compare JALA-EM with PGD and SOUL.

Setup. To begin, we focus on the setup of the binary classification problem, since the multi-class
setting is a natural extension. To be clear, using the MNIST handwritten digit dataset, the task is to
distinguish between images of the digits 4 and 9, which we remap to classes 0 and 1 respectively.
Initially, we filter the dataset for these two digits, and then in the interest of computational speed, as
done in (), we draw a subsample of 1000 images, f; € RD==28x28=784 44 their
corresponding labels [; € {0, 1}, ensuring class balance is maintained through stratified sampling.
This 1000-sample dataset, Db, forms the basis for further processing. Then, image features are
standardised by subtracting the pixel-wise mean and dividing by the pixel-wise standard deviation,
with statistics computed over Dy,,. Subsequently, the processed Dy, is split into a final training set,
Dirain, and a hold-out test set, Dy, using an 80-20 stratified split to preserve class proportions.

In the multi-class setting, we instead aim to distinguish between images of the digits 2, 4, 7, and
9, which we remap to the classes 0, 1, 2, and 3 respectively. Again, the dataset is initially filtered
for these digits, from which we then draw a subsample of 2500 images through stratified sampling,
forming Dy, here. Subsequently, Dy, and Dy are formed in the exact same manner as described
in the binary setting above.

Model. We employ a two-layer fully connected Bayesian neural network, with a notable simplification
in the architecture in that the bias parameters are set to zero in both layers. This model structure,
including the absence of biases and the empirical Bayes treatment of prior variance hyperparameters
(see below), aligns with () and ().

Specifically, the first layer maps the input feature vector f; € R+ to a hidden representation using
weights W; € RP»*P= and a hyperbolic tangent activation function, with D;, = 40 hidden units.
The second layer then maps the hidden representation to the output logits z; € RP¢, using weights
Wy € RPoxDnr where D, = 2 for binary classification and D, = 4 in the multi-class setting.
With this in mind, the logits for the c-th class of the i-th sample are then z;. = (W5 tanh(W1 f;))e,

30

while the likelihood for a single data point, (f;,1;), is p(l;|fi, W1, W3) = (softmax(z;));,. Note
this is equivalent to using a categorical cross-entropy loss where the log-likelihood term is
(log softmax(z;));

Now, isotropic Gaussian priors are then assigned to the weights of both layers, so that p(W;|a) =
N(W1|0,e2*Ip, «p,) and p(Ws|B) = N (W>|0,e%’Ip «p,). The parameters o € R and 3 € R
control the logarithm of the standard deviation of these priors and are themselves estimated from the
data as part of an empirical Bayes procedure, collectively denoted § = (a, 8). Let Dy, = Dy D,
and Dy, = D, D), be the total number of parameters in W; and W, respectively. Then, the joint
Dlrain
2
P(W1, Wa, Liin|0) = pWile)p(Wal8) [pllalfi, Wa, Wa).
(fl Wi) € Lirain

The unnormalised negative log-posterior, relevant for the Langevin-based algorithms, is then
U (W1, Wa, 0| Liain) = — log p(W1, Wa, Liain|0), which implicitly includes the log-prior terms.

probability density of the weights and the training labels, Lyain = {(fi, 1) , given 0, is:

Approach. The primary goal is to compare the efficacy of JALA-EM against PGD and SOUL
in training this BNN. Both the LPPD and classification Test Error on Dy are used to evaluate

performance. Indeed, given an ensemble of N particles {(Wl(k), Wz(k))}{cvzl, the average predictive
probability for the true label [; of a test sample f; is

N

k k 1 k k
PagUl i AV WL = < 37 [softmax(w5" tann(W,))]
k=1 ‘
The LPPD for Dy is then:

1 _
LPPD(Diw) := o > log(max(107, Pu (5l fi { (W, ;") }L1),
Drea|
fisli) €EDeest
where probabilities are clipped here in the interest of numerical stability.

Implementation Details. First, we describe the details for the binary classification setting. Regarding
initialisation, the initial parameter values are oy = 0.0 and 8y = 0.0. For all algorithms, N = 100
particles are initialised by drawing weights from their respective priors p(Wi|ag) and p(Wa|5),
which simplifies to A (0, 1) given oy = By = 0. Furthermore, each algorithm runs for K =
Keommon_iters = 000 iterations. In contrast to the Bayesian logistic regression experiment (see
Appendix C.2), this experiment utilises a global, fixed step-size of 0.1, for all algorithms, rather than
tuning them via K -fold cross-validation, as this is an example where computational (or expertise)
limitations prohibit comprehensive fine-tuning. As such, all algorithms, including JALA-EM, are
implemented in JAX. Note that for JALA-EM, we choose C' = 1/1.05 as was the case before. We
also note that, in the interest of numerical stability some extra clipping occurs for significantly large
norms, and the gradients used for updates are normalised as in (). The most notable
change in the multi-class setting is that we instead utilise N = 50 particles, for all algorithms, in the
interest of computational speed.

Results. In the binary classification scenario, we observe short transient phases in the evolution of
parameter estimates—albeit converging to different local maxima—as well as in evaluation metrics
for PGD, SOUL, and JALA-EM, as illustrated in Figure 3. Notably, the predictive performance of
JALA-EM is comparable to that of SOUL, which is to be expected due to the correlations that exist
between particles due to the resampling mechanism present in JALA-EM. Although PGD converges
faster in terms of wall-clock time, it does not support marginal likelihood estimation, which is a key
advantage of our method. In the multi-class scenario we obtain average final misclassification error
rates (and standard deviations) of 4.74% (0.34%), 9.24% (0.93%), and 9.20% (1.27%) for PGD,
JALA-EM, and SOUL respectively, across 10 repeats. Indeed, one can vary the number of hidden
neurons, and to this end we repeated the experiment for D;, = 512 hidden neurons, resulting in a
BNN of 403,456 latent variables, where note we had BNNs of 31,440 and 31,520 latent variables
previously, for the binary and multi-class scenarios respectively. In this higher-dimensional case, the
average final misclassification error rates (and standard deviations) obtained were 4.98% (0.42%),
7.20% (0.81%), and 8.02% (1.02%) for PGD, JALA-EM, and SOUL respectively, across 10 repeats.

Overall, this example highlights the reasonable scalability of our proposal to more complex and
high-dimensional inference problems.

31

C.4 Error model selection - Bayesian regression

Having investigated JALA-EM’s efficacy in parameter estimation within both a straightforward and
more complex task, we now examine the algorithm’s capability to estimate marginal likelihoods. In
fact, this is a dual capability since parameters of interest are still estimated. In particular, we consider
the distinct, yet related challenge of Bayesian model selection.

Setup. We consider a model selection problem for a dataset, D = {(x;, yl)} 21, generated by an
underlying model, G, where x; € R4 and y; € R, which we collate into X € Rv*d= gpd Yy € Ry
respectively. Specifically, we focus on Bayesian linear regression models for D, that aim to capture
the relationship y; = X;w + ¢; through a latent weight vector w € R%, where ¢; represents the
observation error. Indeed, JALA-EM can not only be leveraged to estimate the parameters of a given
model, but also can be used to estimate the marginal likelihood, facilitating model selection through
the use of, say, a Bayes Factor.

Models. In this experiment, we consider a pair of competing, nested Bayesian linear regression
models, where for both models, an isotropic Gaussian prior is placed on these weights, p(w|a) =
N(0,a11,,), where a > 0 is the precision, however, the models importantly differ in their
assumptions about €;.

The first model we consider, namely the Gaussian regression model, M ¢, assumes independent and
identically distributed (i.i.d.) Gaussian errors, £; ~ N(0, 02), leading to the likelihood,

Yy
pyIX,w,0%, Ma) = [[N (i Xiw, 0%) = N (y|Xw,0°14,),
i=1
where, for numerical stability, and to ensure the positivity of both o2 and a, we choose to work with
the logarithmic parametrisations of the parameters of interest. To be clear, we estimate 6 = ($1, ¢2),
with ¢1 = log o2 and ¢» = log a..

The second model we consider is the Student-t regression model, M7, which assumes i.i.d. Student-t
distributed errors, &; ~ Student-t(0, 02, v/), leading to greater robustness to outliers, and results in
the likelihood

dy o —(v+1)/2
p(y|X,w,02,1/,MT) _ H P((V + 1)/2) (1 + (yz)gzw)) ,

i1 D(v/2)Vrvoe? vo
where the additional parameter, v, is the degrees of freedom. Here, an exponential prior is placed on
v, that is p(v|\,) = A\, e~ ¥, with the rate parameter, \,, = 0.1 fixed throughout all experiments.
Again, for numerical stability, and to ensure positivity, we work with logarithmic parametrisations,
and so estimate 07 = (¢1, @2, ¢3), with ¢3 = log v, while ¢; and ¢- are as before. Notably, as
v — 00, the Student-t distribution approaches the Gaussian distribution, rendering M ¢ nested within
M. To ensure that M provides distinct heavy-tailed modelling and to avoid identifiability issues
with M, particularly when G = M, we constrain v € [0.2,5.0], achieved in our implementation
by clipping ¢3 € [log(0.2),log(5.0)].

Approach. For the synthetic dataset, D, generated by the regression model G € { Mg, Mr},
we employ JALA-EM to iteratively refine our initial estimates for 6o and 67, while concurrently
estimating the corresponding model’s marginal likelihood. Indeed, after K iterations, by Proposition
1, we have that our estimate for the log marginal likelihood is given by

N
log Zp i = log Zpo + log (Z eA%> —log N = logp(y| X, 0pm k, M),

i=1
where Z 4 is the marginal likelihood evaluated at the initial estimates, &4 0. We adopt the following
version of (14) which includes resamphng as usual in SMC contexts, cfr. ():
k;
N 1 ! .
logZMszlogZMyoqLZlog NZGXP(Z Aﬁn) , ko=1 (36)
j=1 i=1 m=k;_141

where k; is the step at which the j-th resampling event occurs, with j = 1,...,.J, whilst A7, is

the log-incremental weight of particle ¢ at step m, and Zii: & A? represents the cumulative

log-weight of particle ¢ between two resampling steps.

j—1+1

32

Notably, the method for computing Z 4, is model dependent, and for M this is analytically
tractable,

1
10g Zamg,0 = log N'(y[0,0% 14, +ag ' XX 1) = —§(dy log(27) + log(det(20)) + ¥ X5 'w),

where > = O'(Q)Idy + ag LXXT (see Appendix D.2.1). To be clear, 02 and o form the initial
parameter estimate, 6 g.

For M, however, Z,. o is generally intractable, and so we estimate it using Importance Sampling
(IS), drawing S samples, {ws}sszl, from a proposal distribution ¢(w). Specifically, we choose
q(w) = N (w|pg, Xq), where 114 and X, are the posterior mean and covariance, respectively, of w
under a Gaussian likelihood model, p(w| X, y, 02, caig)p(w|ap), using the initial o3 and ag from 07 g.
The IS estimate of the initial marginal likelihood is thus

5 p |X wSaUO7VOaMT) (ws|a0)
Z/\/[T,O ~ Z q(ws) 9

where 1 also makes up 07 .

It is then natural to perform model selection using the logarithm of the approximate Bayes Factor,

given by log(BF') =~ log Zpm o, K — log Z Mo, K, Where a positive value indicates, conditioned on
the estimated 6 and 0, that the data provides greater evidence for M as the true data generating
process for D.

Implementation Details. In our numerical experiments, synthetic datasets were generated, com-
prising of d,, = 500 samples and d,, = 8 features, where to be clear, the feature vectors x;, for each
sample, were drawn i.i.d. from a standard multivariate Gaussian, N'(0, Iz). Indeed, two distinct sce-
narios for the true generating process, G, are considered, where in the first G = M, and observation
errors were drawn from g; ~ N (0, Uf), whereas in the Student-t case, G = M, observation errors
were drawn from €; ~ Student-t(0, 02, v,). In both cases, the true weight precision is v, = 1.0, as is
the true error variance o, = 1.0, while the true degrees of freedom is set to v, = 4.0. For each of the
data-generating scenarios, we note that the complete experimental trial, that is the data generation,
fitting of M and My via JALA-EM, and subsequent model selection, was repeated 100 times,
for which we report the proportion of trials in which the correct model was recovered. To be clear,
to generate a single D, a single true weight vector, w., is drawn from N (0, a; 11,) = N(0, I4,).
Indeed, we utilise different random seeds for each experimental trial to ensure variability in both the
synthetic dataset generation and in the stochastic elements of JALA-EM.

Regarding the configuration of JALA-EM, we initialise model parameters perturbed from their true
values, so that O 1,0 = (logo2+1,log s +1,...) = (1,1,...), where we set log g = log v, +1 =
log(4.0) + 1 when G = M, and log vy = log(5.0) when G = M, corresponding to the upper
limit of our constraint for v. The algorithm is run for K = 250 iterations, using N = 50 particles,
with a Langevin dynamic step-size of h = 5 x 10~°, while the parameter optimisation learning rate
isn=5x 10~3, where OPT is in fact Adam (R), with 81 = 0.9, to demonstrate
optimisers other than SGD can be leveraged. In the case of M, particles are drawn directly from
the analytically available posterior, p(w|X, y, 0G70), which is notably a Gaussian. For M7, however,
particles are generated by NV independent short MCMC runs, where each chain targets the posterior
p(w| X, y,0r,0), and is initialised from the prior p(w|ayg). Specifically, each MCMC run generates a
particle by evolving a chain for 200 steps, using Unadjusted Langevin Algorithm (ULA) updates, so
that its final state is taken as the particle sample. The ULA step size at step ¢, denoted ¢, is adapted
dynamically based on the L2-norm of the gradient of log-target density, g;: = ||V, log p(w¢|-)||. In
fact, we initialise g = 1 x 1072 and let €, ; = 0.9¢; if g; > 1000d,, and ¢; > 10~%. Conversely, if
gt < 10d, and €; < 0.1 then we let ;.1 = 1.05¢;, and otherwise ¢, is left unchanged. To ensure
we are consistent with Proposition 1, we fix the resampling threshold to C' = 0, so that particle
resampling is essentially disabled, however note that one can also track Z, through the resampling
step, as outlined in Section 5. Lastly, we note that during the IS, S = 5000 samples are drawn.

Results. We begin by commenting on the behaviour of JALA-EM for single representative (at least for
the 100 repeats) synthetic datasets, each comprising of d,, = 500 samples, as illustrated in Figure 7.
Indeed, not only is JALA-EM’s ability to converge quickly to sensible parameter estimates illustrated,
but so is its capability to differentiate between the true and misspecified model.

33

In the case where the true underlying model is Gaussian, that is G = M, JALA-EM fitting Mg
quickly estimated the ML-II (see Appendix D.2.2) values of (¢1, ¢2), and what is more, the estimated
marginal likelihood quickly stabilises close to its true analytical value. To be clear, by this we mean
the analytical value of the marginal likelihood corresponding to the true parameters, 6,, and we
denote this by log Z 6, . An important, yet subtly different quantity, is the analytical value of the
marginal likelihood corresponding to the parameters estimated at the iteration step k, which we
denote by log Z v, ¢, . As outlined above, this is a tractable quantity for M, and we observe this to
correspond exactly with the estimates generated by JALA-EM in this case, importantly corroborating
Proposition 1.

Conversely, when the true underlying model is the Student-t, that is G = My, JALA-EM fitting M
is more effective at recovering the true parameter values, and importantly its log Z Mor,6, Stabilises
at a higher value. In fact, in both scenarios the estimated marginal likelihood trajectories differ
significantly, suggesting potential for JALA-EM to perform robust Bayesian model selection.

Notably, when applying the previously described procedure with d,, = 1500, instead of d,, = 500,
samples, as illustrated in Figure 8, we observe broadly consistent behaviour, albeit with more decisive
model discrimination. In fact, with more data the parameter estimates for the correctly specified
models maintain their accuracy, while the separation between estimated marginal likelihoods becomes
more distinct. This increased distinction is consistent with Bayesian principles, where the increased
amount of data provides stronger evidence, and indicates JALA-EM’s ability to effectively leverage
larger datasets for more confident model selection.

1004 True ¢1 L True ¢2
——= MgML-II ——= MgML-II

075 210

0.50

—760

4]
log Z

0.00 fes bk LA\
-780

-0.25
0.2

800
Bl I s S S AN N N N SN S S I IR U TN S SO Analytic 10g Zyt,
S OSSR SN SV S S —— Analytic Iog Zyigs,
~0.75

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

20
------ True ¢ 107y oo True ¢ s=+++ Analytic log Zy g,

\
\ —840

—860

—880

(]
=
P2
o
Y
log Z«

0.5

—900

P OO SOUOUOOR SUNUORUTE URPRIOTE o ORI SO o ,V““Fﬁ
0.4 _o20

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Tteration, K Iteration, K Iteration, K
—— JALA-EM (M) JALA-EM (M)

Figure 7: Error model selection: Parameter estimates (left & middle) and marginal likelihood
estimates (right) for JALA-EM fitting M and M, where the true underlying model is the former
(top) and the latter (bottom). Here, d, = 500, d, = 8, and N = 50. Parameter estimates are
initialised at values perturbed away from the true values.

34

1.0 | True ¢4 1.0 "\ ------ True ¢p _o125
—— MgML-II \ —— MgML-II
|
| —2150
|
0.5 08
—2175
—2200
—2225
—2250
02 ~2275
-1.0 —2300 ! ----- Analytic log Zy,
0.0 4ottt — Analytic 109 Zus.0.
2325 |
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
G=Mr
1.0 [True 104 True é» —2575
\
0.8 084 | ~2600
\
\ —2625
0.6 0.6 “.
—2650
0.4 0.4
~
s & ﬁ, —2675
0.2 0.2 °
\ —2700
004 AP e 4T S SN
—2725
0.2 0.2
—2750
-0.4 —0.4 o f["f Analytic 10g Zyq,
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Tteration, kK Iteration, K Tteration, K
—— JALA-EM (Mg) JALA-EM (M7)

Figure 8: Error model selection: Parameter estimates (left & middle) and marginal likelihood
estimates (right) for JALA-EM fitting M and M7, where the true underlying model is the former
(top) and the latter (bottom). Here, d, = 1500, d, = 8, and N = 50. Parameter estimates are
initialised at values perturbed away from the true values.

Regarding the aforementioned 100 repetitions of the core experimental trial, with model selection

being performed by selecting the model with the higher log Z M,0,» we found that the underlying
model class was correctly identified 100% of the time when G = M, and 99% of the time when
G =Mr.

C.5 Model order selection - Bayesian regression

To further evaluate JALA-EM’s performance, in a more complex model selection context, we consider
the challenge of Bayesian model selection in a polynomial regression setting. Once again, this
highlights JALA-EM’s dual capability to estimate both parameters of interest and marginal likelihoods.

Setup. In a subtly distinct manner, we now consider a model selection problem for a dataset,

D = {(ay, yi)}fil, generated by an underlying model, G, where both ; € R and y; € R. Specifically,
we focus on a family of Bayesian linear regression models that aim to capture the relationship

Yi = ¥p (a:z)T wy, + &; through a latent weight vector w, € R%, where ¢, (z;) € R% is a model
specific feature vector and ¢; represents the observation error. To be clear, we then collate ¢, (z;)
and y; into X, € R%>4» and iy € R% in a similar manner as seen in Appendix C.4.

Models. In particular, we consider a larger set of competing, nested Bayesian linear regression
models, {Mp};j:l. Notably, these models share the same probabilistic structure for both their
weights and observation errors, differing instead in the model specific features utilised.

35

Once again, for all models, an isotropic Gaussian prior, p(w|a) = N(0, a‘lldp) is placed on the
weights, as are i.i.d Gaussian errors assumed. Indeed, this leads to the likelihood,

dy
p(leP7wP’027Mp) = HN(inP(xi)TwWUQ) = N(ylxpwp7021dy)>

i=1

where we again choose to estimate 0 = (¢1, ¢2), with ¢1 = log o2 and ¢, = log a, for numerical
stability and guarantees of positivity.

Indeed, the p-th model in the candidate set, M, corresponds to a polynomial regression model
of order p, that assumes a model specific feature vector ¢, (z;) derived from the polynomial basis
expansion up to and including order p, so that ¢, (z;) = [1, 2, ..., 2%]. As a consequence, we have

that d, = p + 1, and so ¢, (z;) € RPT!, w, € RP*! and X, € R4 > P+,

Approach. For the synthetic dataset, D, generated by the true regression model G = M,, , we
utilise JALA-EM to fit each of the P candidate models, with the aim of estimating p,. For each
candidate, JALA-EM iteratively refines the initial estimates for 6, while concurrently estimating the
corresponding model’s marginal likelihood. Indeed, after K iterations, by Proposition 1, we have
that our estimate, of model M,,, for the log marginal likelihood is given by

N
log ZAMmK =log Zpm,,0 + log (Z eA}<> —log N = log p(y| Xy, Orm, x, Mp),

i=1
where Z ‘M,,,0 is the marginal likelihood evaluated at the initial estimates, 0 M,,05 for model M,,.

Notably, in this case, the method for computing Z a4, o is identical for all candidate models, and
since we have Gaussian errors in all cases, it is analytically tractable for all orders,

_ 1 _
10g Z 0 = log N(y[0,0%14, + ag 1XPXPT) = _i(dy log(27) + log(det(Zo)) +y ' %5 y),

where ¢ = 0(2)1% + oy 1XpoT (see Appendix D.2.1). To be clear, 08 and « form the initial
parameter estimate, 04, 0-

Model selection is thus naturally performed by simply selecting the model order that maximises this
quantity, namely p = arg me[xx] log Zm, k-
pE[P

As a competitive baseline, we compare our method to an approach that leverages Ordinary Least
Squares (OLS) for weight estimation, followed by selecting the model with the lowest Bayesian
Information Criterion (BIC). To be clear, for each candidate model, we first compute the maximum
likelihood estimate (MLE) for the weight vector, 1w, m_g by minimising the residual sum of squares
(RSS). Indeed, under the assumption of Gaussian errors, this reduces to standard OLS, whose solution
is given by

Wp MLE = (X;Xp)_lX;—yv

where X, has full rank, so that the Gram matrix is invertible and 0, mig is established as the desired
minimiser of the RSS. The MLE for the observation variance, 6, mig is computed in a similar manner,

-2

Op MLE — df”l/ - Xpwp,MLE”%a
y
from which the BIC for M,, is then calculated,

BIC, = (p +2)logd, — 2log p(y| X, Wy MLE, 67 s Mp),

where we subsequently select the model order that minimises the BIC, that is we select the model
order Ppase = arg min BIC,,.

ase pe [P] P
Implementation Details. In the numerical experiments, synthetic datasets were generated, compris-
ing of d, samples. In this case, the values of the single feature x;, from which the model specific
feature vectors are derived, were drawn i.i.d from a Uniform distribution, &/[—2.5, 2.5]. Indeed,
the observation errors were drawn from &; ~ N(0, 02), where the true error variance is 02 = 7.5,

36

whereas the true weight precision is o, = 1.0 so that the true weight vector, w,, is drawn from
N0, ;1T d4,) = N(0,1I,11). Notably, each experimental trial has an associated true polynomial
order, py, so that y; = @, (z;) T w, + €;, where we have ¢, (7;) = [1,2;,...,27"].

Regarding the configuration of JALA-EM, we again initialise model parameters perturbed from their
true values, so that O, o = (logo? + 1,log o, + 1) = (1,1). The algorithm is run for K = 200
iterations, using N = 50 particles, with a Langevin dynamic step-size of h = 1 x 1075, while the
parameter optimisation learning rate is 7 = 5 x 1073, where OPT is again Adam, with 5, = 0.9. For
all candidate models, which share a Gaussian likelihood structure, particles are drawn directly from
the analytically available posterior p(wp| X, y, 0a4,,0). Once again, to ensure we are consistent with
Proposition 1, we fix the resampling threshold to C' = 0.

Results. To evaluate the performance of JALA-EM in a robust and systematic manner, for each of
d, € {100, 250, 500} separately, we iterated through a range of true orders, p, € [2, 8], and ran 100
repeats of the core experimental trial, with different random seeds for each trial. To be clear, the task
for both JALA-EM and the aforementioned baseline is to select the true model order from a candidate
set of polynomial degrees, p € [1,10]. In order to reward close estimates, for cases in which the
estimated order is incorrect, we choose to utilise the Mean Absolute Error (MAE), over Accuracy, for
evaluation. The results, across the true orders, can be found in Table 1.

Indeed, we observe JALA-EM to match or outperform the baseline for all model orders considered,
achieving notably lower average MAE in cases where the underlying polynomial is of higher-order.
In such cases, the true model is more complex, possessing a higher-dimensional latent variable space,
in which the Bayesian treatment of JALA-EM appears more effective at balancing model fit and
complexity. In contrast, the baseline’s approach, which notably relies on a point estimate, W, MLE,
and the BIC approximation, is less reliable, and in fact exhibits a propensity to underfit, due to the
marginal improvement in log-likelihood being outweighed by increases in the complexity penalty for
our non-asymptotic regimes.

Table 1: Average MAE values of model order estimates, for true orders p, € [2, 8], obtained over
100 experimental trials, for JALA-EM and the OLS & BIC baseline. Here, d,, € {100, 250, 500} and
N = 50, whilst the candidate model orders are p € [1,10]. Parameter estimates are initialised at
values perturbed away from their true values.

True Order JALA-EM (MAE) OLS & BIC Baseline (MAE)
d, =100 d, =250 d,=500 d,=100 d, =250 d, =500
2 0.67 0.45 0.35 0.64 0.46 0.35
3 0.73 0.41 0.25 0.90 0.42 0.34
4 0.73 0.49 0.30 0.80 0.60 0.30
5 0.51 0.40 0.27 0.64 0.42 0.35
6 0.35 0.31 0.18 0.49 0.32 0.23
7 0.23 0.15 0.09 0.44 0.28 0.15
8 0.28 0.19 0.13 0.37 0.30 0.20

D Further theoretical results for experiments

D.1 Bayesian logistic regression - Wisconsin cancer data
D.1.1 Derivation of the negative log-posterior

Here, we detail the derivation of the unnormalised, negative log-posterior, for a single particle w*),
conditional on the observed data Dyin, var = { (2, ¥i) } LZ‘{““‘ wil and the parameter 6, which we denote
U(w(k)> 6|DLrain, val)-

Indeed, the posterior of the weights w and parameter 6, given the data Diyin, val, follows from Bayes’
theorem,

p(UJ, 9|Dtrain, val) X p(Dtrain, Val|w)p(w|9a Ug)p(e)

37

For a fixed 6, as is the case when evaluating the potential for a specific particle w(*), and by treating
the prior p(#) as uniform, the unnormalised posterior for w(*) is

p(w(k) |Dtrain, valy 97 0’3) X p(Dtrain, va1|w(k))p(w(k) |97 0[2))
The potential function U (w(k), 0| Dyeain, var) is defined as the negative logarithm of this quantity, albeit
up to an additive constant ¢ € R
U(w(k)7 9|Dlrain, val) = - 10gp<Dtrain, val|w(k)) - Ing(w(k) |07 0'8) + C,

for which we derive the forms of each term below.

To begin, note that the negative log-likelihood for Dysin, var 1S

"Dlrain, val ‘
_logp(Dtrain,val|w(k)) = - Z Ing(yi|xi>w(k))
i=1
| Dicain, val | .
=5 g)]
=1

Now, recall that the prior for the weights w(*), given 6 and o2, is chosen as an isotropic Gaussian,
p(w®)0,02) = N(w®|0 - 14,,0214,).
Thus we have that
pw®10,08) = i exp g [w® — 014,13
(2mod)d=/2 202 ’
and so we obtain

1 1
~togp(u®16,08) = ~1og (- exp (~grallu® ~ 01012)
0 0

1
) szl 01, 13]
0

I
I
|
—
o
09
—~
[\
3
Q
on

d, 1
= - log(2maf) + ﬁllw“) —0-1q, 3

Since the first term does not depend on either w(¥) or 6, it can be considered an additive constant for
U, and is thus absorbed into the constant c. Indeed, the relevant part of this negative log-prior is

1

— NMw® —pg.1, |2

w . .

503 .l

Lastly, combining the relevant terms, ignoring the constant ¢, we arrive at

‘Dtrain, va]‘
U(w(k)a 0|Dtrain, val) = Z |:10g(1 + ezjw(k
=1

N T (k) Lo) 2
)~y w®) + o fw® — 0 14,3,
202 2

as desired.

D.1.2 Derivation of the Hessian upper bound

Here, we outline the derivation of Hyoyng, the weight-independent upper bound for the Hessian matrix
of the single-particle energy function U (w, 6| Dyainval) With respect to the regression weights w. To
be clear, the purpose of Hpoung is to estimate the global Lipschitz constant L of the gradient V,,U.
This constant L, taken as the largest eigenvalue of Hypoyng, Subsequently informs the calculation of a
baseline step-size heyer Used in constructing grids for tuning the particle update step-size.

38

Recall, as seen above, single-particle energy function is given by:

| Divain, val |
T 1
U(w, 0| Dyainya) = E [log (1 + e “’) - yzx;rw} oz llw—0-1g, ||§ .
pt 20

Negative Log-Likelihood (NLL) Negative Log-Prior (NLP)

We are then interested in the Hessian matrix VfUU (w, 0| Dyrain), which we decompose as

V2U = V2/(NLL) + V2 (NLP).

Since NLP(w,0) = ziz||w — 6 - 14,]|3, we observe the gradient, with respect to w, to be
0

VuoNLP(w,0) = 2% (w — 6 - 14,), and so this means that the Hessian of the NLP term, with
(70 E
respect to w, is thus constant
1
V2 (NLP) = — 1, .

2
)

The NLL term, on the other hand, gives a Hessian of the form
|D(rain,\'al |
VZ(NLL) = > zo(z] w)(1 - oz w))z/,
i=1

which can notably be expressed in matrix form as Xtrj;in,valD(w)Xtmm,va], where Xiinval 1S a
| Disain.val| X do matrix, and D(w) is @ | Dyrain.vai| X | Dirain.vai| diagonal matrix, with its i-th diagonal ele-
ment being d;; (w) = o(z; w)(1—o(x] w)). Crucially, o(z)(1—0c(z)) is bounded, and is specifically
maximised at z = 0, where o(0) = 0.5, yielding a maximum value of 0.5 x (1 — 0.5) = 0.25.

Therefore, for all x; and w,
0 <oz w)(1l—o(z] w)) <0.25,
implying that each (diagonal) element d;; (w) < 0.25, so that the matrix D(w) = 0.25Ip,, | (in
the Loewner order).
As a result, an upper bound for the NLL Hessian is given by

V?U(NLL) = Xr D (w)Xtrain,val = 0'25thr;in,vall \Dm,m\Xtrain,val = 0-25Xt¥;in,va1Xtrain,val-

train,val

Combining the Hessian for the NLP term with the upper bound for the NLL Hessian, we notably
obtain a weight-independent upper bound for the total Hessian V2, U (w, 8| Dyain.vat)
1 1
Vi;U = ZXg;in,valXtrain,val + 72[(1,,7
0
and so define the constant matrix Hyoyng as this quantity. To be clear, we have
1 1
Hyouna = ng;in,valerain,val + ?Idz- (37)
0

The largest eigenvalue of this positive semi-definite matrix Hpoung provides the global Lipschitz
constant L used to determine heyler.

D.2 Error model selection - Bayesian regression

D.2.1 Derivation of the covariance matrix for Gaussian marginal likelihood

For M, we have the Bayesian linear regression model y = Xw + ¢, with w ~ N/(0, aglldw),
e ~ N(0, crgIdy), and w and ¢ independent.

Now, the mean of y is Ely] = E[Xw + ¢] = XE[w] + E[e] = 0, while the covariance matrix
Yo = Cov(y) is given by

So=FEly-E)y—EW)=Elyy']

39

Expanding yy | gives
yy ' = (Xw+e)(Xw+ e)T =Xww' X"+ Xwe” +ew' X" +ee’,

which gives, upon taking the expectation, and using E[we '] = E[w]E[e "] = 0, due to independence
and zero means,

Yo =EXww' X"+ Elee"],
= XEww"| X" + Elee].

Since E[ww "] = Cov(w) + E[w]E[w]" = ay'1;, and E[ee "] = Cov(e) + E[¢]E[e]T = 021y
we find

y?

Yo =o0ply, +ay XX,
where X is the covariance of y under the model, p(y|X, 02, ag) = N (y|0, Xo), as desired.

D.2.2 ML-II estimation for M

Type-II Maximum Likelihood (ML-II) estimation determines hyperparameters by maximising the
marginal likelihood. Specifically, we achieve this by minimising the negative log-marginal likelihood
with respect to the logarithmic parameterisations, ¢; = log o2 and ¢ = log a.

The log marginal likelihood for M is
L(¢1,¢2) = logp(y|X,0” = e”',a = %),
= = log(2m) — 5 log(det (X)) — 5y " =71y,

where > = e¢1Idy +e 2 XXT,

The ML-II estimates for (¢1, ¢2) are found by solving arg ming, ¢, —L(¢1, ¢2) This minimisation
is performed numerically, typically using gradient-based optimisation algorithms such as L-BFGS-B,
which we choose to utilise.

40

	Introduction
	Jarzynski-adjusted Langevin algorithm
	Jarzynski-adjusted Langevin algorithm for MMLE
	Nonasymptotic bounds for JALA-EM
	Bounding the MSE of the stochastic gradient
	Nonasymptotic convergence

	Experimental results
	Bayesian logistic regression - Wisconsin cancer data
	Error model selection - Bayesian regression
	Model order selection - Bayesian regression
	Bayesian neural network

	Conclusions
	Discussion and comparisons
	Algorithmic comparison
	Theoretical comparison
	General comparison of the methods

	Theoretical results
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1

	Experimental details
	Implementation details
	Bayesian logistic regression - Wisconsin cancer data
	Bayesian neural network
	Error model selection - Bayesian regression
	Model order selection - Bayesian regression

	Further theoretical results for experiments
	Bayesian logistic regression - Wisconsin cancer data
	Derivation of the negative log-posterior
	Derivation of the Hessian upper bound

	Error model selection - Bayesian regression
	Derivation of the covariance matrix for Gaussian marginal likelihood
	ML-II estimation for MG

