
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Embracing Domain Gradient Conflicts: Domain Generalization
Using Domain Gradient Equilibrium

Anonymous Authors

ABSTRACT
Single domain generalization (SDG) aims to learn a generalizable
model from only one source domain available to unseen target
domains. Existing SDG techniques rely on data or feature augmen-
tation to generate distributions that complement the source domain.
However, these approaches fail to address the challenge where gra-
dient conflicts from synthesized domains impede the learning of
domain-invariant representation. Inspired by the concept of me-
chanical equilibrium in physics, we propose a novel conflict-aware
approach named domain gradient equilibrium for SDG. Unlike prior
conflict-aware SDG methods that alleviate the gradient conflicts
by setting them to zero or random values, the proposed domain
gradient equilibrium method first decouples gradients into domain-
invariant and domain-specific components. The domain-specific
gradients are then adjusted and reweighted to achieve equilibrium,
steering the model optimization toward a domain-invariant direc-
tion to enhance generalization capability. We conduct comprehen-
sive experiments on four image recognition benchmarks, and our
method achieves an accuracy improvement of 2.94% in the PACS
dataset over existing state-of-the-art approaches, demonstrating
the effectiveness of our proposed approach.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Neural net-
works; Image representations.

KEYWORDS
domain shift, medical image analysis, adversarial domain augmen-
tation, random convolution

1 INTRODUCTION
Deep neural networks have achieved remarkable performance on
various tasks under standard supervised learning settings where
training and test data share the same distribution [14, 21]. However,
their performance often deteriorates substantially when the test
distribution diverges from the training data because of domain
shift, a pervasive challenge that impedes real-world application
[29, 32, 56]. For instance, models trained on images from DSLR
cameras might underperform on smartphone images because of
variations in resolution, noise levels, and other factors. Such domain
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shifts are ubiquitous in real-world situations, making it imperative
for models to generalize across distributional shifts.
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(a) Gradient-Conflicting Case

Figure 1: Comparison of different approaches addressing
gradient conflicts in domain generalization. (a) An example
of the gradient-conflicting issue. (b) Agr-Sum [25] sets do-
main gradients to zero, and (c) Agr-Rand [25] assigns them
to random values when their signs are inconsistent. (d) Our
approach first decouples gradients into domain-invariant
and domain-specific components. Subsequently, we adjust
the domain-specific components to achieve equilibrium, di-
recting model optimization towards a domain-invariant ori-
entation.

Many existing works attempt to tackle this problem via unsuper-
vised domain adaptation (UDA) [28, 35, 38] or multiple domain gen-
eralization (MDG) [4, 15, 54]. Unsupervised domain adaptation re-
duces domain gaps by image translation [3, 49] or adversarial train-
ing [12, 35]. Unlike UDA, MDG methods extract domain-invariant
features from multiple source domains without requiring access
to data from the target domain. This enables better generaliza-
tion to the unseen target domain data. Recent MDG methods learn
domain-invariant representations via feature alignment [4, 18] and
meta-learning [11, 19] using data aggregated from multiple source
domains. However, collecting data from multiple domains is often
infeasible due to cost or privacy concerns, particularly in some sce-
narios such as clinical practice [23, 27], motivating the exploration
of using single source domain to learn domain-invariant feature
representations. Single domain generalization (SDG) approaches
learn generalizable visual representation via self-supervised learn-
ing [2, 45] and data augmentation [31, 52]. However, self-supervised
schemes tend to be task-specific and tedious in design, while data
augmentation approaches rely heavily on the choice of enhance-
ment techniques. Therefore, these methods may not adequately

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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handle more complex domain distribution shifts, hindering their
effectiveness in enhancing model generalization.

Unlike existing SDG methods, our approach strategically uti-
lizes the direction of gradients during the optimization process to
cultivate domain-invariant features. Our inspiration stems from
recent works that analyze gradient conflicts in multi-task learning
(MTL) [5, 22, 36], in which conflicts arise between gradients of
different tasks. By contrast, for domain generalization, conflicts
emerge across mini-batches of different domains. Such domain
gradient interference in each mini-batch can lead models to over-
fit certain domains, degrading the generalization capability of a
model. A recent study [25] introduced the Agr-Sum and Agr-Rand
strategies, which address domain gradient conflicts by setting in-
consistent gradients to zero and assigning them random values,
respectively. However, by discarding or randomizing inconsistent
gradients, these strategies may lose pivotal gradient information
and limit generalization capabilities. As illustrated in Fig. 1, a com-
parison between Agr-Sum, Agr-Rand, and the proposed approach
is provided.

Our approach addresses the challenges of domain conflicts that
arise during domain generalization. These conflicts, particularly
under domain shift conditions, are primarily attributed to gradients
pulling the model’s parameters in conflicting directions, making
it difficult for the model to generalize across different domains. To
tackle this, we introduce a novel method centered on the gradient
equilibrium concept to achieve a gradient consensus among source
domains. We start by decomposing the gradients into two compo-
nents: domain specific and domain invariant. The domain-specific
gradients, which often contribute to the conflicts, are then adjusted
and reweighted to achieve equilibrium. This ensures that while
the orientation and magnitude of domain-specific gradients are
recalibrated, the domain-invariant components—those essential for
generalization—are retained and emphasized. Our method steers
the model optimization toward the domain-invariant direction, fos-
tering more generalizable features. Unlike prior conflict-aware SDG
methods [25, 50] that might recalibrate gradients, our strategy is
unique in its use of gradient alignment based on the equilibrium
principle. In this alignment, the interference from conflicting gradi-
ents is reduced, while the domain-invariant knowledge essential
for domain generalization is preserved.

Our contributions are summarized as follows:
• We introduce a novel approach, domain gradient equilibrium,
focusing on gradient balance to advance single-domain gen-
eralization. This method innovatively addresses gradient
conflicts, leveraging mechanical equilibrium principles to
facilitate learning domain-invariant representations.

• Weachieve equilibrium by decomposing gradients into domain-
specific and invariant components and strategically adjust-
ing the domain-specific gradients. This process steers the
model optimization towards domain invariance, enhancing
generalizability.

• We validate our approach on four benchmarks: PACS, VLCS,
OfficeHome, and DomainNet, demonstrating superior per-
formance to current SOTAs. This underlines our method’s
efficacy in enhancing robust domain generalization.

2 RELATEDWORK
2.1 Domain Generalization
Domain generalization has witnessed significant progress, aim-
ing to learn representations that generalize across unseen target
distributions [43]. Earlier approaches mainly extracted domain-
invariant representations from multi-source domain data [1, 11].
However, the high costs and privacy concerns in some scenarios
often make this approach impractical. Recent research has increas-
ingly focused on SDG with only one source domain data available
for training. The proposed methods encompass self-supervised
learning [2], data augmentation strategies [31, 52], and the use
of randomized convolutions [7, 47]. Self-supervised techniques
have been employed to extract domain-invariant features [2], while
augmentation-based methods attempt to simulate target distribu-
tions by applying stacked transformations [52]. However, the de-
sign intricacies of self-supervision and the inherent limitations
of augmentations pose challenges. Several studies have explored
gradient-based strategies in domain generalization. A recent study
[25] introduced the Agr-Sum and Agr-Rand consensus strategies
to alleviate domain gradient conflicts and improve generalization
capability. However, these strategies might discard crucial gradient
information by setting inconsistent domain gradients to zero or
assigning random values, potentially compromising the model’s
generalization capabilities.

2.2 Gradient Conflicts in Multi-task Learning
Multi-task learning (MTL) [8, 40, 53] is widely used to learn effi-
cient models by sharing parameters across related tasks. However,
gradient conflict is a major challenge when simultaneously opti-
mizing multiple tasks, as gradients of different tasks could have
opposite directions [22, 36]. Earlier works [5, 13, 17] alleviated the
influence of dominant gradients by reweighting task losses using
uncertainty-based [17], norm-based [5], and difficulty-based [13]
weighting. More recent approaches directly manipulate conflicting
gradients for better alignment, such as PCGrad [50] and GradDrop
[6]. However, most methods lack convergence guarantees. Recent
research has investigated network architecture design to isolate
task-specific modules and reduce gradient conflicts, such as Recon
[33] and CoNAL [51]. Despite advancements inMTL, they primarily
address conflicts between tasks and may not be directly applicable
to domain generalization, where conflicts emerge across different
domain mini-batches. We propose a domain gradient equilibrium
method involving a gradient decomposition strategy, separating
gradients into domain-specific and domain-invariant components.
By adjusting and reweighting the domain-specific gradients to reach
equilibrium, our method capitalizes on gradient conflicts and steers
optimization towards learning domain-invariant features, improv-
ing the model’s generalization ability across various domains.

3 METHODOLOGY
Unlike prior conflict-aware SDG methods that set the conflicting
gradients as zero or random values [24, 25], we propose a novel
approach, domain gradient equilibrium, for enhancing model gener-
alization across domains, as shown in Fig. 2. The proposed approach
seeks better gradient updates in which prediction consistency is
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Figure 2: Overview of the Domain Gradient Equilibrium method. The method initiates by applying multiple augmentations
to input images to simulate domain variability. For each augmented instance, the network calculates individual losses and
the corresponding gradients. These gradients are decomposed into domain-invariant and domain-specific components. The
domain-specific components are subsequently adjusted to maintain substantial angular separation between domains, followed
by a reweighting process that equilibrates these domain-specific gradients. Finally, the reweighted domain-specific gradients
are used to derive refined domain-invariant gradients, guiding the optimization toward the domain-invariant direction, thereby
enhancing the model’s generalization capabilities.

improved across all synthesized source domains by leveraging the
conflicting gradients. Inspired by force balance, we employ a gra-
dient balancing strategy to address conflicts in gradient orienta-
tions across domains. Specifically, we decompose the gradients into
domain-specific and domain-invariant components. We then adjust
the angular directions of the domain-specific gradients using gradi-
ent projection to ensure distinct separations. Lastly, each domain-
specific gradient is reweighted to achieve balance. In this manner,
the model optimizes in the direction of the domain-invariant gradi-
ent, enhancing the acquisition of generalizable features.

3.1 Gradient Decomposition
Our approach to gradient decomposition is similar to the method
presented in [37]. While both techniques utilize gradient decompo-
sition, they diverge in strategy and purpose. The method in [37]
partitions the gradient of a prior task into two parts: one shared
among all previous tasks and another specific to the task at hand to
mitigate catastrophic forgetting in continual learning. Conversely,
our approach decouples domain gradients into domain-specific and
domain-invariant components, targeting a balanced gradient to bol-
ster a model’s resilience to domain variations. Specifically, we first
computed losses over the synthesized source domains generated
by performing data augmentation 𝜏 (·) on the source domain data,

as formulated below:

L𝑖 (𝜃 ) =
𝑀∑︁
𝑗=1

L𝑐𝑒 (𝜏𝑖 (𝑥 𝑗 ), 𝑦 𝑗 ;𝜃 ), (1)

where 𝑀 represents the number of the samples for each domain,
L𝑐𝑒 is the cross-entropy loss, and 𝜏𝑖 (·) denotes the 𝑖𝑡ℎ data augmen-
tation function performed on the source domain D𝑠 = {𝑥 𝑗 , 𝑦 𝑗 }𝑀𝑗=1.
The data augmentation function 𝜏𝑖 (·) was implemented using Ran-
dAugment [9] with 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 randomly selected data augmen-
tation operations to bolster the diversity of augmentations. Sub-
sequently, the gradient vectors for 𝐾 domains, {g0, g1, ..., g𝐾−1},
are derived via backpropagation. The updated gradients are sub-
sequently decoupled into domain-invariant and domain-specific
components:

g = g𝑖𝑛𝑣 + g𝑠𝑝𝑒𝑐 , (2)
where g𝑖𝑛𝑣 denotes the domain-invariant gradient, and g𝑠𝑝𝑒𝑐 rep-
resents the domain-specific gradient. Under the assumption that
the domain-invariant gradient exhibits the minimum divergence
from each gradient vector [37], the optimization problem can be
reformulated as follows:

min
g𝑖𝑛𝑣

𝐾∑︁
𝑖=1

| |g𝑖𝑛𝑣 − g𝑖 | |22, (3)

where | | · | |22 represents the squared 𝐿2 norm. By solving this op-
timization problem, the coarse domain-invariant gradient ĝinv =
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(g0 + g1 + ... + g𝐾−1)/𝐾 can be derived, which constitutes the mean
of all gradient vectors. Finally, the domain-specific gradient for the
𝑘-th domain is formulated as:

g𝑘𝑠𝑝𝑒𝑐 = g𝑘 − ĝ𝑖𝑛𝑣 (4)

By decomposing each gradient vector into domain-invariant
and domain-specific components, the domain-specific gradients
can be individually adjusted to ensure the retention of the domain-
invariant gradient direction throughout model optimization. Such
adjustments mitigate cross-domain discrepancies and facilitate the
learning of generalizable representations.

Domain 1
Domain 2

𝑔𝑖𝑛𝑣
1

𝑔𝑠𝑝𝑒𝑐
1

𝑔𝑠𝑝𝑒𝑐
2

𝑔2
𝑔1

Domain-invariant gradient

Domain-specific gradient

Domain 1
Domain 2

𝑔𝑖𝑛𝑣

𝑔sp𝑒𝑐1 𝑔sp𝑒𝑐2

𝑔2
𝑔1

Domain-invariant gradient

Domain-specific gradient for domain 1

Domain-specific gradient for domain 2

𝑔𝑖𝑛𝑣
2

Domain gradient

Figure 3: Illustration of gradient decomposition for two dis-
tinct domains. For each domain, the gradient is decomposed
into domain-specific and domain-invariant components.

3.2 Gradient Adjustment
Existing MTL approaches mainly focus on identifying and depress-
ing conflicting gradients to resolve gradient conflicts [5, 22, 36].
Unlike these methods, we propose embracing gradient conflicts
by guaranteeing sufficiently large angles between domain-specific
gradients. The rationale is to harness the balancing principle for
attenuating the interference of domain-specific gradients, thereby
optimizing the model toward domain-invariant gradient orienta-
tion and enhancing model generalization capability. Specifically,
let g𝑖𝑠𝑝𝑒𝑐 denote the domain-specific gradient for domain 𝑖 , and
let g𝑗𝑠𝑝𝑒𝑐 represent the domain-specific gradient for domain 𝑗 . The
adjustment procedures are described as follows:

(1) Compute the cosine similarity between g𝑖𝑠𝑝𝑒𝑐 and g𝑗𝑠𝑝𝑒𝑐 .
(2) If the similarity is above a given threshold 𝛼 , project the

domain-specific gradient g𝑠𝑝𝑒𝑐
𝑖

onto the normal plane of the other
domain-specific gradient g𝑠𝑝𝑒𝑐

𝑗
:

g𝑖𝑠𝑝𝑒𝑐 = g𝑖𝑠𝑝𝑒𝑐 +
g𝑖𝑠𝑝𝑒𝑐 · g

𝑗
𝑠𝑝𝑒𝑐

| |g𝑗𝑠𝑝𝑒𝑐 | |22
g𝑗𝑠𝑝𝑒𝑐 , 𝑗 ≠ 𝑖 (5)

This step seeks to decrease the similarity among domain-specific
gradients, ensuring that the angle between these domain-specific

gradients is increased to achieve equilibrium. The threshold 𝛼 is
empirically set at 0.5, considering similarity ranges [0,1].

(3) Repeat this process by modifying g𝑖𝑠𝑝𝑒𝑐 against the gradients
of other domains g𝑗𝑠𝑝𝑒𝑐 in the current batch.

3.3 Gradient Reweighting
After adjusting the domain-specific gradients, assigning appropriate
weights to each gradient is essential to achieve optimal equilibrium.
Therefore, we aim to find optimal weights W = {𝑤1,𝑤2, ...,𝑤𝑘 }
to linearly combine multiple domain-specific gradients into a zero
vector:

𝑤1g1𝑠𝑝𝑒𝑐 +𝑤2g2𝑠𝑝𝑒𝑐 + ... +𝑤𝑘g𝑘𝑠𝑝𝑒𝑐 = 0. (6)

With these weights, we can mitigate the conflicts of domain-
specific gradients and steer the model optimization toward the
domain-invariant direction. To this end, we formulate the following
objective function:

min
𝑤𝑘

| |𝑤1g1𝑠𝑝𝑒𝑐 +𝑤2g2𝑠𝑝𝑒𝑐 + ... +𝑤𝑘g𝑘𝑠𝑝𝑒𝑐 | |22
𝑠 .𝑡 . 0 ≤ 𝑤𝑘 ≤ 1. (7)

Using gradient descent, the weight update rules are as follows:

𝑤
(𝑡+1)
1 = max

(
0,min

(
1,𝑤 (𝑡 )

1 − 𝜂 𝜕𝐿

𝜕𝑤1

))
,

.

.

.

𝑤
(𝑡+1)
𝑘

= max
(
0,min

(
1,𝑤 (𝑡 )

𝑘
− 𝜂 𝜕𝐿

𝜕𝑤𝑘

))
, (8)

where 𝜂 is the learning rate. The iterative reweighting process is
designed tomitigate the influence of domain-specific gradients. This
ensures that the model optimization is consistently aligned with
the domain-invariant gradient direction, facilitating the learning of
transferable representations. Finally, for each domain 𝑘 , the refined
domain-invariant gradient g𝑘

𝑖𝑛𝑣
can be derived from the reweighted

domain-specific gradients, which can be formulated as follows:

g𝑘𝑖𝑛𝑣 = g𝑘 −𝑤𝑘g𝑘𝑠𝑝𝑒𝑐 , (9)

where g𝑘 is the total gradient for domain 𝑘 , g𝑘𝑠𝑝𝑒𝑐 is the domain-
specific gradient for domain 𝑘 , and𝑤𝑘 is the weight assigned to the
domain-specific gradient. For a simple comparison, the number of
augmented source domains 𝐾 is set to 3. The complete procedure of
the domain gradient equilibrium approach is outlined inAlgorithm
1.

During the training process, we sequentially use the domain-
invariant gradient g𝑘

𝑖𝑛𝑣
of each domain to update the model param-

eters. This approach ensures that the model is optimized towards
a domain-invariant direction for each domain while reducing the
influence of domain-specific information.

4 EXPERIMENTS
We evaluate the effectiveness of the proposed approach for SDG us-
ing four widely used image recognition benchmarks, namely, PACS
[20], VLCS [39], OfficeHome [42], and DomainNet [30]. PACS [20]
is a widely used benchmark for domain generalization with four
domains: Photo (P), Art Painting (A), Cartoon (C), and Sketch (S).
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Algorithm 1 Domain Gradient Equilibrium
1: Input: Training data from 𝑁 source domains 𝐷 =

{𝐷1, 𝐷2, . . . , 𝐷𝑁 }, learning rate 𝑙𝑟
2: Output: Updated model parameters 𝜃
3: Initialize model parameters 𝜃 , weights𝑤1,𝑤2, ...,𝑤𝐾
4: for 𝑡 = 1 to 𝑇 do
5: Sample a mini-batch of size 𝐵 from 𝐷

6: Compute losses over the augmented domains using Eq. 1.
7: Compute ĝ𝑖𝑛𝑣 using Eq. 3.
8: Compute g𝑘𝑠𝑝𝑒𝑐 using Eq. 4.
9: Adjust the domain-specific gradients using Eq. 5.
10: Update weights using Eq. 8.
11: Compute g𝑘

𝑖𝑛𝑣
using Eq. 9.

12: Update model parameters 𝜃
13: end for
14: return 𝜃

VLCS [39], a commonly adopted benchmark for domain general-
ization with four different domains: VOC2007 (V), LabelMe (L),
Caltech101 (C), and SUN09 (S). OfficeHome [42] is a cross-domain
object recognition benchmark that contains four domains: Art (A),
Clipart (C), Product (P), and Real-World (R). DomainNet [30] is a
large-scale benchmark dataset for domain adaptation and general-
ization, consisting of six domains: Clipart (C), Infograph (I), Painting
(P), Quickdraw (Q), Real (R), and Sketch (S). Experiments were con-
ducted under both single and multiple source domain settings to
comprehensively evaluate the effectiveness of our method.

4.1 Single Domain Generalization on Image
Recognition

Setup and Implementation Details: In our experiments, we
utilized the ResNet-18 [14] as the backbone pre-trained on ImageNet
[10] for all compared methods. For optimization, we employed the
SGD optimizer with a momentum of 0.9 and a learning rate of 5e-4
for all tasks. The batch size was set to 10. Following the protocol
in [46], we divided the source domain dataset into training and
validation subsets. We chose the model with the best validation
performance for reporting results. For the experimental setup, one
domain was designated as the source domain for training, and the
remaining domains were used as target domains for testing. For
comparison, we used the Empirical Risk Minimization [41] as the
baseline approach, which directly employs a vanilla strategy to train
the source model. All experiments were conducted using PyTorch
1.10 on an NVIDIA A40 GPU.

Experimental Results:We first conducted our experimental
analysis on the PACS dataset, as demonstrated in Table 1. From this
result, we observed that while most data augmentation methods
enhance model performance beyond the baseline, our proposed
method consistently surpassed these techniques. Subsequently, we
extended our assessment to the OfficeHome dataset, as shown in
Table 2. Aligning with our findings from the PACS dataset, our
method yielded consistent performance elevation. Further experi-
ments were conducted on the VLCS dataset, as presented in Table
3. The domain shift in PACS and OfficeHome primarily originates
from stylistic variations, whereas in VLCS, it is due to background

Table 1: Single domain generalization accuracy (%) on PACS.
Each column denotes the source domain.

Methods A C P S Avg.

Baseline 68.48 71.68 36.76 40.18 54.28
Mixup [48] 67.60 67.13 51.59 47.04 58.34
SelfReg [18] 74.53 67.99 42.60 55.31 60.11
RandConv [47] 73.51 70.57 40.22 53.80 59.53
Pro-RandConv [7] 69.85 72.66 42.57 55.95 60.26
Fish [34] 67.73 68.56 44.86 60.01 60.29
SagNet [26] 73.79 71.39 50.75 49.77 61.43
Arg-Rand [25] 68.95 64.35 45.40 35.15 53.46
Arg-Sum [25] 74.88 76.73 55.28 58.22 66.28
GSAM [57] 68.29 67.88 38.53 29.81 51.13
SAGM [44] 65.94 70.10 42.14 53.65 57.96
Mixstyle [55] 72.87 75.42 43.14 45.70 59.28
PCGrad [50] 77.31 78.52 54.73 58.37 67.23
Ours 79.08 78.33 62.74 60.53 70.17

Results are averaged over five runs, with the best results bolded and
the second best underlined.

and viewpoint diversities. Existing methods were less effective on
VLCS, achieving marginal gains. Despite this, our method yielded
a significant improvement, elevating the baseline accuracy from
53.17% to 68.11%. We also conducted experiments on the Domain-
Net dataset, as shown in Table 4. Our method achieved the highest
average accuracy of 27.75%, outperforming strong baselines such
as Mixstyle and PCGrad by 2.52% and 0.76%, respectively. These
results, along with our findings on PACS, OfficeHome, and VLCS,
demonstrate the effectiveness and versatility of our method in
enhancing model robustness and generalization capability across
diverse domain shifts.

Table 2: Single domain generalization accuracy (%) on Office-
Home. Each column denotes the source domain.

Methods A C P R Avg.

Baseline 42.74 39.31 39.86 52.50 43.60
Mixup 43.69 40.68 38.56 52.12 43.76
SelfReg 50.84 44.65 42.71 56.83 48.76
RandConv 45.79 40.20 37.45 52.87 44.08
Pro-RandConv 46.06 39.20 40.41 49.46 43.78
Fish 45.10 39.74 36.67 52.09 43.40
SagNet 49.84 43.01 41.42 55.61 47.47
Arg-Rand 42.18 44.67 53.15 57.45 49.37
Arg-Sum 49.23 44.96 44.76 55.05 48.50
GSAM 28.97 41.40 41.72 51.50 40.90
SAGM 47.42 43.27 41.36 54.97 46.76
Mixstyle 51.19 48.73 46.85 55.88 50.66
PCGrad 49.91 46.61 46.11 56.31 49.74
Ours 51.77 49.09 48.59 57.82 51.81
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Table 3: Single domain generalization accuracy (%) on VLCS.
Each column denotes the source domain.

Methods C L S V Avg.

Baseline 27.89 46.82 65.64 72.34 53.17
Mixup 31.85 43.09 62.51 75.40 53.21
SelfReg 34.50 51.34 57.37 75.40 54.65
RandConv 35.90 58.89 59.22 76.46 57.62
Pro-RandConv 44.23 49.52 60.97 73.44 57.04
Fish 36.31 66.19 65.24 75.28 60.76
SagNet 73.79 71.39 50.75 49.77 61.43
Arg-Rand 54.96 60.42 61.96 76.99 63.58
Arg-Sum 56.82 64.69 65.08 77.01 65.90
GSAM 53.25 61.62 60.98 75.46 62.83
SAGM 28.17 52.58 65.97 76.36 55.77
Mixstyle 58.44 64.74 65.57 76.35 66.27
PCGrad 56.26 67.46 65.34 76.83 66.47
Ours 60.76 65.96 66.56 79.17 68.11

Table 4: Single domain generalization accuracy (%) on Do-
mainNet. Each column denotes the source domain.

Methods C I P Q S Avg.

Baseline 31.88 10.44 31.80 2.82 21.26 19.65
Mixup 33.27 10.74 32.84 3.13 23.86 20.77
SelfReg 32.38 10.89 32.65 3.84 24.06 20.77
RandConv 31.88 10.44 31.80 2.82 21.26 19.65
Pro-RandConv 34.41 10.84 32.22 4.14 22.98 20.92
Fish 33.01 10.39 32.66 2.94 22.15 20.23
SagNet 33.84 11.07 32.71 3.11 22.77 20.70
Agr-Sum 43.36 12.28 40.13 6.71 32.48 26.99
GSAM 34.59 10.40 32.79 2.72 20.85 20.27
SAGM 34.47 11.13 33.40 3.12 23.68 21.16
Mixstyle 40.36 12.80 39.41 4.48 29.11 25.23
PCGrad 42.34 13.96 41.32 5.86 31.45 26.99
Ours 41.34 12.15 38.41 6.10 30.75 27.75

The ’R’ dataset is selected as the target domain for testing, while the
remaining datasets are employed as the source domains for training.

4.2 Multiple Domain Generalization on Image
Recognition

Setup and Implementation Details: Our experimental setup for
MDG in image recognition is similar to the experimental setup used
in SDG, utilizing the same image datasets: PACS [20], VLCS [39],
and OfficeHome [42]. The main difference lies in the validation
process for MDG, where one domain is specifically chosen as the
target for validation while the others serve as source domains for
training. Regarding implementation, as our model backbone, we
continue with ResNet-18 [14] pre-trained on ImageNet [10]. We
employ the SGD optimizer with a momentum of 0.9 and a batch
size of 10. The learning rate is set to 5e-4 for all tasks.

Experimental Results: The comparative analysis of various
methods on PACS, VLCS, and OfficeHome datasets, as shown in
Table 5. Data augmentation-based, self-supervised learning-based,

and conflict-aware approaches exhibit superior performance to the
baseline, indicating the effectiveness of domain generalization tech-
niques. Our domain gradient equilibrium approach, in particular,
shows consistently enhanced performance across these datasets.
For instance, it improves the accuracy of the OfficeHome dataset
from the baseline of 57.83% to 66.84%. This improvement under-
scores our method’s capability in addressing domain generalization
challenges across various datasets.

Table 5: Multiple source domain generalization accuracy (%)
on three datasets: PACS, VLCS, and OfficeHome.

Methods PACS VLCS OfficeHome DomainNet Avg.

Baseline 76.72 70.74 57.83 49.30 63.65
MixUp 77.25 74.10 59.99 51.27 65.65
SelfReg 71.54 73.85 62.06 52.17 64.90

RandConv 76.04 71.62 59.28 52.43 64.84
Pro-RandConv 78.62 73.06 58.82 52.91 65.85

Fish 76.29 74.10 59.63 52.80 65.71
SagNet 77.00 73.68 57.63 52.41 65.18

Agr-Rand 85.01 78.29 62.45 44.68 67.61
Agr-Sum 73.53 72.85 49.37 52.53 62.07
GSAM 79.55 73.68 62.43 50.34 66.50
SAGM 79.01 75.16 59.44 52.65 66.57
Mixstyle 83.83 76.63 63.47 52.66 69.15
PCGrad 85.79 78.32 64.89 53.72 70.68
Ours 85.90 77.98 66.84 54.15 71.22

The last column, "Avg.," represents the average performance across the
three datasets. Results are averaged over five runs, with the best results
bolded and the second best underlined.

Table 6: Ablation study on the classification tasks. ✓ denotes
the enabled component, while × denotes the disabled com-
ponent.

Grad Adjust Grad Weight
Dataset

VLCS OfficeHome PACS

× × 66.75 47.04 68.84
✓ × 66.86 48.25 69.20
✓ ✓ 68.11 50.34 70.17

4.3 Ablation Study
Contribution of each component. In our ablation study, detailed
in Table 6, we assessed the impact of individual components within
our domain gradient equilibrium method. This study involved com-
paring our complete method against variations featuring different
combinations of the gradient adjustment and gradient weighting
modules across various domain datasets. The results reveal that
jointly employing gradient adjustment and gradient weighting mod-
ules yields the most favorable results in all datasets. This observa-
tion suggests the integral role these components play in enhancing
domain generalization. Notably, activating both modules leads to
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marked improvements in performance on the VLCS, OfficeHome,
and PACS datasets. Such enhancements indicate our method’s effi-
cacy in facilitating the learning of more generalizable features for
classification tasks.

Parameter sensitivity.
To evaluate the impact of the 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 parameter on our

method’s performance, we conducted experiments on PACS, VLCS,
and OfficeHome datasets. As shown in Fig. 4, the optimal value of
𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 varies across datasets. For PACS, the accuracy peaks
at 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 = 4 (70.17%), while VLCS shows stable performance
across different 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 settings. OfficeHome experiences a
decline in accuracy as 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 increases. These results sug-
gest that the optimal level of augmentation complexity depends
on the specific dataset and its domain variations. Based on our
experiments, a 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 value of 2 provides an optimal balance,
yielding effective generalization performance across all datasets.
We also investigated the impact of the similarity threshold 𝛼 on our
method’s performance using the PACS dataset. As illustrated in Fig.
5, the accuracy initially improves as 𝛼 increases from 0.1 to 0.5, at-
taining amaximum of 70.39% at𝛼 = 0.5. Further increasing𝛼 results
in a gradual decline in performance, with accuracy decreasing to
69.96% at 𝛼 = 0.9. These results indicate that a moderate similarity
threshold (𝛼 = 0.5) yields the optimal generalization performance.
An excessively low threshold may lead to excessive adjustment of
domain-specific gradients, while an overly high threshold may re-
sult in insufficient equilibrium of domain-specific gradients across
domains.
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Figure 4: Classification accuracy across three datasets (PACS,
VLCS, and OfficeHome) with varying 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 settings.

Impact of the number of augmented sources:We conducted
experiments on the PACS dataset with varying K (the number of
augmented sources) values: 2, 3, and 4. As shown in Table 7, we
observe a clear upward trend in model performance as K increases.
The average accuracy improves from 69.86% with K=2 to 70.17%
with K=3, and further to 70.42%with K=4. These results demonstrate
the positive impact of increasing the number of augmented sources
on domain generalization performance. The ablation study high-
lights the importance of considering multiple augmented sources to
enhance the model’s ability to learn domain-invariant features. The
consistent improvement in accuracy underscores the effectiveness
of our approach in promoting domain generalization.
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Figure 5: Classificaiton accuracy over the PACS dataset with
varying 𝛼 settings.

Table 7: Ablation study on the impact of varying the number
of augmented sources (K) on domain generalization perfor-
mance using the PACS dataset.

Setting A C P S Avg.

K=2 77.15 78.30 62.29 61.71 69.86
K=3 79.08 78.33 62.74 60.53 70.17
K=4 78.13 78.92 62.05 62.56 70.42
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Figure 6: Performance comparison of the methods using dif-
ferent backbones including the ResNet-18 [14], ResNet-50
[14], and Densenet [16] models on the PACS dataset.

4.4 Further Analysis
Evaluation on different backbones. We conducted experiments
to assess the effectiveness of our domain gradient equilibrium
method across different architectures, including ResNet-18, ResNet-
50, and Densenet, on the PACS dataset. The results, as presented in
Figure 6, demonstrate that our method consistently outperforms
other state-of-the-art methods such as Agr-Sum, Mixstyle, GSAM,
and PCGrad across all architectures. Specifically, ourmethod achieved
an average performance of 70.17% with ResNet-18, 74.22% with
ResNet-50, and 73.17% with Densenet-121 across the datasets, show-
casing its robustness and effectiveness in enhancing the generaliza-
tion capability of models across various architectures.
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Effectiveness of gradient equilibrium beyond simple gra-
dient averaging: We conducted experiments to evaluate the effec-
tiveness of our domain gradient equilibrium method in comparison
with a direct approach that utilizes the average domain gradient
for optimization. The experiments were conducted under SDG and
MDG settings, as presented in Table 8. The results indicate that sim-
ply using the average domain gradient (ours_gradAvg) fails to fully
capture domain-invariant representations. It becomes especially
evident in the SDG setting in which the performance disparity be-
tween ours and ours_gradAvg is more noticeable. For instance, on
the PACS dataset under SDG, our method achieved a performance
of 70.17%, a significant improvement over the 67.23% achieved by
the ours_gradAvg method. Moreover, under the MDG setting, our
approach continuously outperformed the ours_gradAvg method
across all datasets. This result suggests that the domain-invariant
gradient refined by our method is more closely aligned with the
actual domain-invariant gradient, thereby enhancing the model to
learn better domain-invariant representations.

Table 8: Comparison of model performance using domain
gradient equilibrium (ours) versus direct average domain
gradient optimization (ours_gradAvg) under SDG and MDG
settings on the PACS, VLCS, and OfficeHome datasets.

Settings Methods PACS VLCS OfficeHome Avg.

MDG
ours_gradAvg 85.01 76.92 64.85 75.59

ours 85.90 77.98 66.84 76.91

SDG
ours_gradAvg 67.23 67.75 50.33 61.77

ours 70.17 68.11 51.81 63.36

Impact of data augmentation on domain generalization:
To investigate the effectiveness and versatility of our proposed gra-
dient equilibrium method, we conducted experiments on the PACS
dataset using various data augmentation techniques. As shown
in Table 9, GE consistently improves the performance across all
augmentation settings, demonstrating its ability to enhance domain
generalization. Notably, GE combined with RandAugment achieves
the highest average accuracy of 70.17%, outperforming the baseline
by 3.46%. Furthermore, even with simple augmentations like ran-
dom rotation and brightness augmentation, GE boosts the average
accuracy by 4.28% and 3.70%, respectively. These results suggest
that the effectiveness of GE is not limited to specific augmenta-
tions but can be applied in conjunction with various techniques to
improve domain generalization performance. The consistent im-
provements achieved by GE across different settings highlight its
potential as a general-purpose method for enhancing the robustness
and transferability of models in domain generalization tasks.

To further verify that our method’s improvements extend be-
yond the augmentation process, we compared our approach with
the vanilla baseline across different numbers of random augmenta-
tion operations (𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠). As shown in Figure 7, our method
consistently outperforms the vanilla baseline at each level of aug-
mentation, with the performance gap widening as the number of
𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 increases. The consistent improvements over the base-
line across various augmentation settings underscore the robustness
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Figure 7: Comparison of model accuracy with varying
𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑝𝑠 settings.

Table 9: Comparison of the performance of different data
augmentation methods on the PACS dataset.

Methods A C P S Avg.

baseline+rotation 68.77 70.98 37.09 48.77 56.40
GE+rotation 74.94 72.33 42.58 52.86 60.68

baseline+brightness 71.73 73.25 40.69 51.57 59.31
GE+brightness 76.82 75.99 44.79 54.43 63.01

baseline+rotation+brightness 68.10 71.47 38.80 51.31 57.42
GE+rotation+brightness 72.98 74.74 44.14 57.05 62.23

baseline+RandAugment 74.12 76.26 56.22 60.23 66.71
GE+RandAugment (Ours) 79.08 78.33 62.74 60.53 70.17
’GE’ represents ’Gradient Equilibrium’. Random rotation augmentation is applied with the
rotation angle randomly selected from the range [-30, 30] degrees, and random brightness
augmentation is performed with the brightness adjustment factor randomly chosen from the
range [0.7, 1.3].

and effectiveness of our approach in enhancing domain generaliza-
tion performance beyond simple data augmentation. These findings
provide strong evidence that our method’s benefits are not primar-
ily derived from the augmentation process but from its innovative
design and ability to capture domain-invariant features.

5 CONCLUSION
We introduced domain gradient equilibrium, a novel approach that
embraces domain gradient conflicts to enhance domain general-
ization. Unlike previous methods that attempted to mitigate gradi-
ent conflicts through gradient modification, our method acknowl-
edges and leverages these conflicts. By decomposing gradients into
domain-specific and domain-invariant components, the domain-
specific gradients are carefully adjusted and reweighted to achieve
equilibrium, steering the model optimization toward a domain-
invariant direction. Our experiments across various datasets and
architectures in the image recognition task demonstrate the ap-
proach’s robustness and effectiveness. In future work, we will ex-
plore our methods with more architectures, such as vision trans-
formers, and expand to more vision tasks.
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