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1 Introduction1

For almost a century, the fundamental method to estimate statistical expectation has been Monte2

Carlo with the core idea of learning a system by many random samples [1]. Although the conver-3

gence of Monte Carlo is guaranteed by the law of large numbers, its convergence rate—inversely4

proportional to the square root of the number of samples—is notoriously slow. That becomes a5

problem in scenarios where systems, such as global weather or autonomous cars, can only be eval-6

uated by expensive numerical or physical experiments, requiring an efficient method with minimum7

evaluations.8

To increase the convergence rate, a sequential Bayesian experimental design framework targeting9

statistical expectation was developed in [2, 3]. Specifically, they use the Gaussian process regression10

(GPR) as the surrogate and greedily select the next-best sample one by one which maximizes the11

information-theoretic acquisition, i.e., the information gain of adding the next sample. Although12

[2] shows that the proposed method works in several synthetic and practical cases, its sequential13

nature does bring two drawbacks. Firstly, the samples need to be evaluated one by one, making the14

duration of the whole process remarkably long. In contrast, the standard Monte Calor determines all15

samples in the beginning which can maximally utilize parallel computational resources in evaluating16

samples. Secondly, the determination of samples only focuses on the benefits of the immediate next17

sample without considering the long-term benefits, for example, the convergence after a certain18

number of samples.19

In this work, we develop a non-myopic batch Bayesian experimental design for statistical expecta-20

tion. The next batch of samples is selected, which maximizes the long-term information gain (as the21

acquisition) when they are added together. In addition, we formulate an analytic approximation of22

the acquisition to facilitate its optimization. The superior performance of the proposed algorithm,23

in terms of wall time saving and a faster or matched convergence rate than sequential sampling, is24

demonstrated in a case with arbitrary complex functions generated by RBF kernel and another case25

using a stochastic oscillator.26

2 Method27

2.1 Problem setup28

We consider an input-to-response (ItR) system described by a response function f(x) : Rd → R29

with x a d-dimensional random input. The input probability px(x) is assumed to be known and our30

objective is the statistical expectation defined as:31

q =

∫
f(x)px(x)dx. (1)
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To compute q, we take a Bayesian perspective by placing f a Gaussian process prior f ∼32

GP(0, k(x,x′)) where k is covariance function with hyperparameters θ. Given a dataset Dn =33

{Xn,Yn} consisting of n inputs Xn = {xi ∈ Rd}ni=1 and the corresponding outputs Yn =34

{f(xi) ∈ R}ni=1, the underling relation f is predicted as a posterior Gaussian process f(x)|Dn ∼35

GP(mn(x), kn(x,x
′)) with formulae of posterior mean mn and covariance kn detailed in Appendix36

A. The statistical expectation q|Dn then becomes a random variable with randomness coming from37

the epistemic uncertainties of f(x)|Dn. Our goal is to choose the most informative batch of samples38

by optimizing the acquisition function that facilitates convergence of q. In the following, we will39

discuss the form of the acquisition function.40

2.2 Acquisition function41

For selecting the next samples, a popular way is to maximize the information gain (measured by K-42

L divergence) between the current estimation q|Dn and hypothetical next estimation q|Dn, X̃s, Ỹs43

after adding s number of samples X̃s with responses Ỹs (see [2, 3] for a sequential version):44

X∗
s = argmaxX̃s

E
[ ∫

KL
(
p(q|Dn, X̃s, Ỹs) ∥ p(q|Dn)

)]
,

≡ argmaxX̃s

∫
KL

(
p(q|Dn, X̃s, Ỹs) ∥ p(q|Dn)

)
p(Ỹs|X̃s,Dn)dỸs, (2)

where Ỹs is chosen based on the current surrogate f(x)|Dn following a distribution of45

N (Ỹs;mn(X̃s), kn(X̃s, X̃s)). Another more intuitive way is to minimize the variance, as the46

predicted mean squared estimation error (MSE), of q|Dn, X̃s, Ỹs:47

X∗
s = argminX̃s

E
[ ∫

var(q|Dn, X̃s, Ỹs)
]

≡ argminX̃s

∫
var(q|Dn, X̃s, Ỹs) p(Ỹs|X̃s,Dn)dỸs

≡ argminX̃s
var(q|Dn, X̃s, Ỹs) (3)

where var(q|Dn, X̃s, Ỹs) is a constant for Ỹs.48

Indeed, these two ways are equivalent for estimating the statistical expectation (see detailed deriva-49

tions in Appendix B), and the optimization finally becomes:50

X∗
s = argmaxX̃s

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx. (4)

While (4) seems straightforward, a numerical integration for the right-hand side can become pro-51

hibitively expensive. To make the optimization (likely a high dimensional problem) feasible, we52

develop an analytical approximation for the acquisition in Appendix C. With the analytical solu-53

tion, (4) is solved by a multi-start Quasi-Newton method with gradient computed through automatic54

differentiation in PyTorch1.55

2.3 Overall algorithm56

We finally show the overall algorithm in Algorithm 1. In each iteration, the number of samples to be57

selected is specified by s(t) with t the index of iterations. Setting s(t) = 1 reduces to the sequential58

algorithm in [2] and [3]. In this algorithm, one might wonder why we don’t schedule all samples59

initially, considering that the sample responses do not directly appear in (4). Regarding this, we60

note that the sample responses do influence (4) implicitly via hyperparameters θ of the Gaussian61

process. (Should we know the hyperparameters in the beginning, we can determine all samples62

in one batch where the MSE in (3) is reduced much faster compared with sequential sampling, as63

shown in Appendix D.) In other words, a sequential algorithm can update the surrogate after each64

sample, making the selection of the next sample based on a more accurate model (although in a65

myopic way). The sampling efficiency of the batch algorithm needs to be evaluated in light of the66

benefits of long-term perspective and the disadvantages of less frequent model updates, which will67

be demonstrated in the next section.68

1https://github.com/pytorch/pytorch
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Algorithm 1 Batch Bayesian experimental design for statistical expectation

Require: Number of initial samples ninit, number of batches nbatch, number of samples in each batch s(·)
Input: Initial dataset Dninit = {xi, f(xi)}ninit

i=1

Initialization t = 0
while t < nbatch do

Train f(x)|Dn

Solve (4) to find the next-best samples location X∗
s(t)

Implement simulation/experiment to get f(X∗
s(t))

Update the dataset Dn+s(t) = Dn ∪ {X∗
s(t), f(X

∗
s(t))}

t = t+ 1, n = n+ s(t)
end while

Output: Compute the statistical expectation based on the surrogate.
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Figure 1: (a) an example of two-dimensional RBF functions. Results of RBF functions with (b)
known hyperparameters and (c) learned hyperparameters: random ( ), random-gpr ( ), seq-
design ( ), and batch-design ( ) (s = 4).

3 Results69

In this section, we test the performance of the proposed batch design algorithm in two cases: (1)70

a larger number of complex functions from realizations of Gaussian processes in §3.1, and (2) a71

stochastic oscillator in §3.2. In each case, we compare the results of batch design (batch-design)72

with sequential design (seq-design), direct random sampling (random), and random sampling with73

Gaussian process surrogate (random-gpr). For random, the expectation is directly computed as the74

mean of samples, while for random-gpr the expectation is computed with a surrogate learned from75

random samples. The comparison between random-gpr and random highlights the impact of impos-76

ing a prior for f , while the advantage of choosing optimal samples over random samples is evidenced77

in the contrast between seq-design and random-gpr. Finally, the difference between batch-design78

and seq-design measures the effectiveness of picking a group of samples simultaneously instead of79

a single sample during each iteration.80

3.1 RBF functions81

We firstly test the proposed algorithm in 100 two-dimensional functions constructed from RBF82

kernel. The hyperparameters for generating these functions are θ = {4, I2} (see Appendix A for83

format of θ) with an example shown in figure 1(a).84

The results for a standard Gaussian input px(x) with the assumption of known hyperparameters are85

demonstrated in figure 1(b). Considering there are 100 different functions, we average the error86

across all functions where, in each function, the error is computed in a root mean squared form87

of 50 runs considering the randomness in drawing samples. For seq-design and batch-design, the88

sampling position is fixed, so we will directly take the fixed error. For batch-design, we sample89

only one batch in the beginning as we assume the hyperparameters are known. From figure 1(b),90

we can see that methods are ranked in an increasing performance from random to random-gpr to91

seq-design and finally batch-design. That means the prior information is useful and a careful design92

would also improve the performance. Regarding the design method, the batch design is better than93

the sequential design as it optimizes all samples as a whole.94
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Figure 2: (a) response function of the stochastic oscillator. (b) results of random ( ), random-gpr
( ), seq-design ( ), batch-design with s(t) = 4 ( ), batch-design with s(t) = 2 ( ).

We further consider situations where the hyperparameters are unknown with results shown in figure95

1(c). For both batch-design and seq-design, we use 4 initial samples, and the error of each function96

is also computed in a root mean squared form across different initializations. The batch-design with97

s(t) = 4 performs almost the same with seq-design, meaning the pro of a non-myopic design is98

actually offset by the con of fewer hyperparameters updates. But we note that the wall computational99

time of batch-design is only a quarter of seq-design.100

3.2 Stochastic oscillator101

We next consider a stochastic oscillator also used in [4, 5, 6]. In particular, the oscillator equation is102

formulated as103

ü(t) + δu̇(t) + F (u) = ξ(t), (5)
where u(t) is the state variable, F a nonlinear restoring force. The stochastic process ξ(t), with a104

correlation function σ2
ξe

−τ2/(2l2ξ), is approximated by a two-term Karhunen-Loeve expansion105

ξ(t) =

2∑
i=1

xiλiϕi(t), (6)

with λi and ϕi(t) respectively the eigenvalue and eigenfunction of the correlation function, x ≡106

(x1, x2) is a standard normal variable as the input to the system, satisfying px(x) = N (0, I2) with107

I2 being a 2× 2 identity matrix. The F term and values of the parameters are kept the same as those108

in the existing works. The response of the system is considered as the mean value of u(t;x) in the109

interval [0, 25]:110

f(x) =
1

25

∫ 25

0

u(t;x)dt, (7)

with contour shown in figure 2(a).111

We plot the results for different methods in figure 2(b). All results are root mean squared errors112

with randomness in random and random-gpr coming from random sampling and randomness in113

seq-design and batch-design coming from initializations. For batch-design, we test both s(t) = 2114

and s(t) = 4. It demonstrates that seq-design performs best among all while batch-design with115

s(t) = 2 is almost on par with seq-design albeit slightly less efficient.116

4 Discussion117

In this work, we develop a non-myopic batch Bayesian experimental design algorithm for statistical118

expectation, where the next batch of samples is selected to maximize the information gained (or119

equivalently to minimize the estimation uncertainty). We apply the results in two test cases, showing120

that if the hyperparameters (prior) are known, the batch design algorithm converges much faster121

than the sequential design. For more typical situations requiring learned hyperparameters, the batch122

design algorithm performs slightly worse, if not equally well, compared to the sequential design.123

However, it offers substantial savings in wall time. Further tests on additional cases with varying124

dimensions, complexities, and s(·) are ongoing and will be presented in a full paper.125
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A Gaussian process regression148

In this section, we briefly introduce the Gaussian process regression (GPR) [7], which is a prob-149

abilistic machine learning approach. Consider the task of inferring the underline relatioin f from150

dataset Dn = {Xn,Yn} consisting of n inputs Xn = {xi ∈ Rd}ni=1 and the corresponding outputs151

Yn = {f(xi) ∈ R}ni=1. In GPR, a prior, representing our beliefs over all possible functions we152

expect to observe, is placed on f as a Gaussian process f(x) ∼ GP(0, k(x,x′)) with zero mean and153

covariance function k (usually defined by a radial-basis-function (RBF) kernel):154

k(x,x′) = τ2exp(−1

2
((x− x′)TΛ−1(x− x′))), (8)

where τ (characteristic amplitude) and diagonal matrix Λ (characteristic length scales) are hyperpa-155

rameters θ = {τ,Λ} determined by maximizing the likelihood p(Yn).156

Following the Bayes’ theorem, the posterior prediction for f given the dataset D can be derived to157

be another Gaussian:158

f(x)|D ∼ GP(mn(x), kn(x,x
′)), (9)

with mean and covariance respectively:159

mn(x) = k(x,Xn)K(Xn,Xn)
−1Yn, (10)

kn(x,x
′) = k(x,x′)− k(x,Xn)K(Xn,Xn)

−1k(Xn,x
′), (11)

where matrix element K(Xn,Xn)ij = k(xi,xj).160

B Equivalence of (2) and (3)161

In this chapter, we will show formulae of (2) and (3) and their equivalence (see a similar conclusion162

for sequential design in [3]).163
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We first notice that q|Dn follows a Gaussian distribution with mean µ1 and variance σ2
1 :164

p(q|Dn) = N (q;µ1, σ
2
1), (12)

µ1 = E
[ ∫

f(x)px(x)dx|Dn

]
=

∫
mn(x)px(x)dx, (13)

σ2
1 = E

[( ∫
f(x)px(x)dx

)2|Dn

]
− E

[( ∫
f(x)px(x)dx

)
|Dn

]2
=

∫∫
kn(x,x

′)px(x)px(x
′)dx′dx. (14)

After adding s hypothetical samples {X̃s, Ỹs}, f follows an updated distribution165

f(x)|Dn, X̃s, Ỹs ∼ GP(mn+s(x), kn+s(x,x
′)) with166

mn+s(x) = mn(x) + kn(x, X̃s)Kn(X̃s, X̃s)
−1(Ỹs −mn(X̃s)), (15)

kn+s(x,x
′) = kn(x,x

′)− kn(x, X̃s)Kn(X̃s, X̃s)
−1kn(X̃s,x

′). (16)

The quantity q|Dn, X̃s, Ỹs can then be represented by another Gaussian with mean µ2 and variance167

σ2
2 :168

p(q|Dn, X̃s, Ỹs) = N (q;µ2(X̃s, Ỹs), σ
2
2(X̃s)), (17)

µ2(X̃s, Ỹs) =

∫
mn+s(x)px(x)dx

= µ1 +

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1(Ỹs −mn(X̃s)), (18)

σ2
2(X̃s) =

∫∫
kn+s(x,x

′)px(x)p(x
′)dx′dx

= σ2
1 −

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx. (19)

With (12) and (17), one can simplify the objective function in (2):169 ∫
KL

(
p(q|Dn, X̃s, Ỹs) ∥ p(q|Dn)

)
p(Ỹs|X̃s,Dn)dỸs

=

∫∫
p(q|Dn, X̃s, Ỹs) log

p(q|Dn, X̃s, Ỹs)

p(q|Dn)
dq p(Ỹs|X̃s,Dn))dỸs

=

∫ (
log(

σ1

σ2(X̃s)
) +

σ2
2(X̃s)

2σ2
1

+
(µ2(X̃s, Ỹs)− µ1)

2

2σ2
1

− 1

2

)
p(Ỹs|X̃s,Dn)dỸs

= log(
σ1

σ2(X̃s)
) +

1

2σ2
1

(
σ2
2(X̃s)− σ2

1 +

∫
(µ2(X̃s, Ỹs)− µ1)

2p(Ỹs|X̃s,Dn)dỸs

)
= log(

σ1

σ2(X̃s)
) +

1

2σ2
1

(
σ2
2(X̃s)− σ2

1

+

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx

)
= log(

σ1

σ2(X̃s)
). (20)

Since σ1 does not depend on X̃s, (2) can be reformulated as170

X∗
s = argminX̃s

σ2
2(X̃s) (21)

= argmaxX̃s

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx, (22)

where (21) is exactly (3). The final optimization problem (22) ((4) in §2.2) is obtained by substituting171

(19) into (21).172
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Figure 3: The standard deviation of q|Dn computed by sequential design ( ) and batch design
( ) for Gaussian input x ∼ N (0, I2) and known hyperparameters θ = {4, I2}.

C Analytical approximation of (4)173

In computing the right-hand side of (4), the heaviest computation involved is the integral174 ∫
kn(x̃,x)px(x)dx. Expanding kn with (11), we have:175 ∫

kn(x̃,x)px(x)dx = K(x̃)− k(x̃,Xn)K(Xn,Xn)
−1K(Xn), (23)

with176

K(x) =

∫
k(x,x′)px(x

′)dx′, (24)

If the input x is Gaussian with mean w and covariance Σ, (24) has analytical expression for RBF177

kernel with characteristic length Λ:178 ∫
k(x,x′)N (x;w,Σ)dx′ = |ΣΛ−1 + I|− 1

2 k(x,w; Σ + Λ). (25)

To make K analytically tractble for arbitrary px(x), we approximate px(x) with the Gaussian mix-179

ture model [8] with nGMM Gaussian functions:180

px(x) ≈
nGMM∑
i=1

αiN (x;wi,Σi). (26)

(24) can then be formulated as:181

K(x) ≈
nGMM∑
i=1

αi

∫
k(x,x′)N (x′;wi,Σi)dx

′

=

nGMM∑
i=1

αi|ΣiΛ
−1 + I|− 1

2 k(x,wi; Σi + Λ). (27)

D Potential improvement on sampling efficiency182

In this section, we show the accelerated reduction of MSE in (3) for batch sampling over sequential183

sampling. This serves as theoretical evidence of the potential for enhanced sampling efficiency.184

In figure 3, we plot the standard deviation of q|Dn (square root of MSE in (3)) with batch design (one185

batch) and sequential design for standard Gaussian input and known hyperparameters θ = {4, I2}186

with I2 being a 2 × 2 identity matrix. It shows the batch design performs much better than the187

sequential design which is anticipated as we get the ‘free lunch’—the benefits of a long-term per-188

spective without any side effects from fewer model updates. The sampling positions of sequential189

design and batch design are plotted in figure 4. The batch samples show beautiful symmetric struc-190

tures fitting the symmetric input and hyperparameters. In contrast, sequential samples show a strong191

greedy pattern. For example, when we have three samples, the sequential samples clearly favor one192

direction while batch samples form an equilateral triangle. (see next page for figure 4)193

7



-5

0

0

5

x 2 5
-5

5 0 5
x1

-5

0

0

5

x 2 5
-5

5 0 5
x1

5 0 5
x1

5 0 5
x1

5 0 5
x1

Figure 4: Sampling position of sequential design ( ) and batch design ( ) for Gaussian input x ∼
N (0, I2) and known hyperparameters θ = {4, I2}.
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