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ABSTRACT

Point cloud sampling plays a pivotal role in facilitating efficient analysis of large-
scale point clouds. Recently, learning-to-sample methods have garnered growing
interest from the community, particularly for their ability to be jointly trained
with downstream tasks. However, previous learning-based sampling methods ei-
ther lead to unrecognizable sampling patterns by generating a new point cloud
or biased sampled results by focusing excessively on shape details. Moreover,
they all fail to take the natural point distribution variations over different shapes
into consideration and learn a similar sampling strategy for all point clouds. In
this paper, we propose a Sparse Attention Map and Bin-based Learning method
(termed SAMBLE) to learn shape-specific sampling strategies for point cloud
shapes, striking a superior balance between the overall shape outline and intri-
cate local details for the sampling process. In particular, we first propose sparse
attention map by integrating both local and global information. Based on this,
multiple point-wise sampling score computation methods are proposed and ex-
plored by leveraging heatmaps as a guiding tool. Subsequently, we introduce
a binning strategy that partitions points within each point cloud based on these
scores. Finally, additional learnable tokens are introduced during the attention
computation phase to acquire sampling weights for each bin, thereby enabling the
development of shape-specific sampling strategies for an optimized sampling pro-
cess. Extensive experiments demonstrate that our method adeptly strikes a refined
balance between sampling edge points for local details and preserving uniformity
in the global shape, leading to superior performance across common point cloud

downstream tasks and even in scenarios involving few-point cloud sampling.

1 INTRODUCTION

Point cloud sampling is a less explored research area
within the realm of this data representation. Traditional
random sampling (RS) and farthest point sampling (FPS)
remain the most commonly employed methods when
sampling is required for point cloud learning and pro-
cessing. With the advancement of neural networks, sev-
eral methods have emerged for point cloud sampling in a
downstream task-oriented learning framework, including
S-Net|Dovrat et al.|(2019), SampleNet|Lang et al.[(2020),
MOPS-Net|Qian et al.| (2020), etc. However, these meth-
ods essentially generate a new, smaller-sized point cloud
instead of directly sampling points from the original in-
put, rendering the techniques akin to black boxes of neu-
ral network models with limited interpretability. Conse-
quently, discerning geometric patterns in their qualitative
results becomes challenging, as their outcomes closely re-

APES (local) APES (global) Ours

semble those obtained through random sampling. More recently, APES |Wu et al.| (2023a) pioneers
the direction of using neural networks to learn point-wise sampling scores, with which it subse-
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quently samples points whose scores are higher. However, with its score computation design and
the Top-M sampling strategy, APES excessively focuses on local details of edge points, resulting in a
deficiency in preserving good global uniformity of the input shapes. Consequently, the interpolation
operation becomes impractical during the upsampling process, and the sampling quality of few-point
sampling is notably subpar. In this paper, we introduce a novel point cloud sampling method that
addresses the limitations of prior approaches, aiming to achieve a refined balance between capturing
local details and preserving global uniformity.

The concept originates from rethinking the mathematical characteristics of local details within point
cloud shapes. Typically, these local details are represented by edge points that define the shape’s
outline and sharpest features. Is there a point property that can easily distinguish between different
categories, such as edge points and non-edge points? The answer is affirmative. In our investigation,
we have uncovered an extremely fundamental yet crucial observation: if point p; is one of the k-
nearest neighbors of point p;, it does not necessarily imply that p; is also among the k-nearest
neighbors of p;. Consequently, it leads to the conclusion that the frequency of each point being
chosen as a neighbor exhibits variation across a single point cloud.

We explore and demonstrate the im-
portance of this point property with a o) o; w5

e o o o ) ]
simple example as illustrated in Fig. 1 e1¢ o o o eses s ,
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bor). Note that in the triangular and
rectangular cases, they each has a
“quantum-entangled” twin point pair,
in which two points share the possi-
bility of being chosen as the neigh-
bor. While an equal number of neighbors is selected for each point in the input point cloud, points
at different positions are chosen as neighbors with varying frequencies, as presented on the right
part of Fig. From it, we can observe that in addition to the edge point and non-edge point cat-
egories, there is also another noteworthy point category of close-to-edge points. Moreover, within
each category, the points can be further grouped into more sub-categories. Overall, this point prop-
erty effectively captures the local characteristics of a shape, especially for shape outline and sharp
details. Building on this point property, we propose a Sparse Attention Map (SAM) and introduce
new methods for computing point-wise sampling scores to effectively balance the trade-off between
local and global sampling. More details are presented in Sec.

Figure 1: When selecting an equal number of neighbors for
each point in the input point cloud, points at different posi-
tions are chosen as neighbors with varying frequencies.

On the other hand, after the point-wise sampling scores are computed, previous methods employ a
Top-M sampling strategy for all point cloud shapes, which exacerbates the issue of oversampling
edge points. We argue that the top-M sampling strategy may not be optimal across all point cloud
shapes for downstream tasks. For example, sampling more non-edge points enhances global unifor-
mity, while sampling more close-to-edge points “thickens” the edge, both of which can potentially
improve the performance on downstream tasks |Wu et al.|(2023a). To address this, we introduce
a novel bin-based method to explore better sampling strategies shape-specifically by leveraging all
point categories. This approach enables the sampling of points with smaller sampling scores, fur-
ther optimizing the local-global trade-off. As a result, our method dynamically adjusts the sampling
strategy for each shape, leading to more tailored and efficient sampling for improved performance.

In this paper, our main contributions can be summarized as follows:

* We propose a sparse attention map that combines the local and global information on the attention
map level directly for point cloud sampling. Multiple methods for computing point-wise sampling
scores are designed and explored.

* We present a novel method to learn bin boundaries for partitioning points within individual shapes,
and tailor shape-specific sampling strategies for them leveraging additional bin tokens.

* The proposed method strikes a better trade-off between sampling local details and preserving
global uniformity, leading to better performance both qualitatively and quantitatively.
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2 RELATED WORK

Point Cloud Sampling. Point cloud sampling is a key process in 3D data handling for simplifying
high-resolution dense point clouds. Over the past decades, non-learning-based methods Eldar et al.
(1997); Moenning & Dodgson| (2003)); |Groh et al.| (2018)) have predominantly been used for point
cloud sampling. While Farthest Point Sampling (FPS) Eldar et al.|(1997)) is the most widely used one
Qi et al.| (2017b); L1 et al.[(2018); Wu et al.| (2019); |Qian et al.| (2022); Zhao et al.| (2021), Random
Sampling (RS) has also been frequently adopted |[Zhou & Tuzel (2018);|Q1 et al.| (2020); |Groh et al.
(2018). More recently, learning-based sampling methods have shown superior performance with
task-oriented training. S-Net |[Dovrat et al.| (2019) represents a pioneering work of generating new
point coordinates from global representations, while SampleNet [Lang et al.| (2020) introduces a
soft projection operation for better point approximation. Following S-Net, multiple learning-based
methods have been proposed |Lin et al.|(2021); Wang et al.[(2021); Nezhadarya et al.| (2020); Wang
et al.|(2023). MOPS-Net |Qian et al.|(2020) learns a transformation matrix and multiplies it with the
original point cloud to generate the sampled one. By employing the attention mechanism to learn
point-wise sampling scores, APES [Wu et al| (2023a)) captures the edge points in the input point
clouds with a strong focus.

Deep Learning on Point Clouds. In contrast to the voxelization-based methods Maturana &
Scherer| (2015)); Jiang et al.| (2018); |Le & Duan| (2018)) and multi-view-based methods |Lawin et al.
(2017); Boulch et al.|(2017);|Audebert et al. (2016); Tatarchenko et al.|(2018]), point-based methods
deal directly with point clouds. The pioneer studies of PointNet |Qi et al.| (2017a) and PointNet++
Q1 et al.| (2017b) tackle point clouds through point-wise Multi-Layer Perceptrons (MLPs) and max-
pooling operations. Subsequently, other research shifts focus towards constructing more efficient
building blocks for local feature extraction, such as convolution-based ones |Li et al.[ (2018); Lin
et al.|(2020a); [Zhu et al.[(2023);/Ahn et al.[(2022); Wu et al.| (2019); Thomas et al.|(2019); |Wu et al.
(2023b) and graph-based ones [Wang et al.|(2019); |Simonovsky & Komodakis| (2017)); [Chen et al.
(2021)); Zhang et al.| (2021); [ Xu et al.| (2020); [Lin et al.| (2020b); [Liu et al.| (2019). More recently,
while MLP-based methods like PointNeXt |Qian et al.| (2022) and PointMetaBase |Lin et al.| (2023)
have rekindled people’s interest, the application of attention mechanisms to point cloud analysis has
also garnered widespread attention [Vaswani et al.| (2017); (Guo et al.| (2021)); [Zhao et al.| (2021); |Yu
et al. (2022); [Engel et al.| (2021); Wen et al.| (2023); Wu et al.| (2024a). For example, PT Zhao et al.
(2021); |Wu et al.|(2022;|2024b)) series improves the model performance by introducing subtraction-
based attention blocks, and Wu et al.| (2024a)) performs a large ablation study over attention module
designs for point cloud processing.

3 METHODOLOGY

A brief pipeline of SAMBLE is illustrated in Fig. [2| It consists of three key steps: constructing a
sparse attention map, computing point-wise sampling scores, and learning shape-specific sampling
strategies through bin partitioning.

3.1 SPARSE ATTENTION MAP

Local and Global Attention Maps. Both local and global attention maps are widely used in point
cloud analysis. A global attention map is derived from the application of classical self-attention to
point features of all points, while a local attention map concentrates on a point-centered area wherein
cross-attention is specifically applied to the central point and its neighbors.

Denote S; as the set of k-nearest neighbors of point p;, the local attention map for p; is defined as
m! = softmax (Q(pi)K(pij — pl);res/\/g) , (1

where () and K stand for the linear layers applied on the query and key input, and the square root of
the feature dimension count v/d serves as a scaling factor Vaswani et al.| (2017).

For the global attention map which is equivalent to taking all points as the neighbors for each point,
it is defined as

M9 = softmax (Q(pi)K(pj)Ijes/\/g) , 2)
where S denotes the set of all input points.
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Figure 2: A brief pipeline of our proposed method SAMBLE to learn shape-specific sampling strate-
gies for point cloud shapes.
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Figure 3: Sparse attention map.

3.2 COMPUTING POINT-WISE SAMPLING SCORE

Indexing Mode. When sampling points, the points are indexed based on the computed point-wise
sampling scores. We call the method of computing point-wise sampling scores from the full/sparse
attention map as Indexing Mode. With the original full attention map, following APES, there are
two possible indexing modes: (i) row standard deviation; and (ii) column sum. For a global attention
map MY of size N x N, denote m;; as the value of ith row and jth column in M 9. To avoid possible
confusion, we use notation p,, to denote a point only in this subsection. These two indexing modes
can be formulated as indexing modes (i) and (ii) in Tab.

With the proposed sparse attention map, there are many other possible indexing modes. As discussed
in Sec. [T} to make a better sampling trade-off between sampling edge points and preserving global
uniformity, the frequency of each point being chosen as a neighbor, i.e., the number of selected cells
in each column is the key. We consider the following ones for comparison: (iii) sparse row standard
deviation; (iv) sparse row sum; (v) sparse column sum; (vi) sparse column average; and (vii) sparse
column square-divided. Again, for a sparse attention map M* of size N x N, denote m;; as the
value of ith row and jth column in M*®. For point p,, we denote the set of indexes of the selected
k cells (indexes of KNN neighbors) in oth row as S,, and denote the number of selected cells in oth
column as n,. Details and respective formulas of these indexing modes are listed in Tab.
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Table 1: Proposed different indexing modes for computing point-wise sampling scores.

Indexing Mode | Attention Map | Formula | Remark

(i) Row standard deviation Full ap, = fs[dl\(/{rnnj [7=1,2,...,N}) | faa: Computes standard deviation for a set of values
(ii) Column sum Full (p, = Y iq Mio

(iii) Row standard deviation | Sparse ap, = fS(d({mf;j 17 €S0} S,: Set of indices of selected cells in oth row

(iv) Row sum Sparse ap, = ZJ\:I mg; Non-selected cells are all of Os

(v) Column sum Sparse ap, = 21\;1 ms,

(vi) Column average Sparse Up, = Y g My /Mo n,: Number of selected cells in oth column

(vii) Column square-divided | Sparse ap, =D iq mi,/n? n,: Number of selected cells in oth column

(i) row standard deviation (ii) column sum (i) sparse row standard deviation (iv) sparse row sum (v) sparse column sum (vi) sparse column average  (vii) sparse column square-divided

v

Figure 4: Point sampling score heatmaps under different indexing modes.

Heatmap. To analyze the behavior of each indexing mode, we train a separate model for each mode,
ensuring that all other settings remain consistent. The sampling score distributions are depicted as
heatmaps in Fig. [] offering additional insights. From these heatmaps, we can see that both row-
standard-deviation-based modes (i and iii) concentrate heavily on edge points. However, because
they consistently prioritize thin or detailed regions, some areas may be overlooked. In contrast,
modes ii and iv show less emphasis on edge points and instead distribute focus across a broader
range of points, with a tendency toward other non-edge regions in a biased manner.

More interestingly, the comparison of modes v, vi, and vii, which utilize column-wise information
from SAM, reveals distinct sampling preferences and strategies across different point categories.
Mode v prioritizes non-edge points, mode vi emphasizes the global shape, and mode vii focuses
slightly more on edge points. This is because edge points typically have a smaller number of n,.
Despite these differences and unique characteristics, all three modes capture the overall shape more
uniformly compared to the former four. In our case, we aim to sample edge points without over-
emphasizing them. For instance, when sampling detailed areas like chair legs, we want to capture
some edge points without selecting them all, while also ensuring that non-edge points are sampled
to preserve better global uniformity. Given this balance, we chose mode vii as the primary index-
ing mode for most of the experiments in the following sections. The detailed ablation study over
different indexing modes is presented in Sec. [4.4]

3.3 SAMPLING WITH BINS

After point-wise sampling scores are computed with SAM, points are sampled based on certain
rules. The simplest way is to sample points with larger scores, i.e. top-M sampling. In our case, as
we aim to enhance the local-global trade-off and leverage all point categories during the sampling
process, we suggest employing a bin-based sampling strategy to allow for the sampling of certain
close-to-edge points or even non-edge points.

Bin Partitioning. The process begins with the processing of the distribution of normalized point-
wise sampling scores ap, across the shapes within the current batch. Denoting n;, as the number of
bins we used for partitioning, n, — 1 boundary values are obtained from this distribution. In each
training step, a vector v, = (v1, V9, - , Uy, —1) that ensures the equitable division of points among
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all shapes within the current batch is computed based on the point score distribution. Note that even
while v, enables an even division across the shapes of the current batch, for each individual shape,
points are not evenly partitioned with the acquired batch-based boundary values.

During the training, for the first iteration, we directly use the boundary values derived from the first
batch of data as the dynamic boundary values. Subsequently, since the second iteration, boundaries
are updated adaptively in a momentum-based manner:

v =vi1+ (1 =), 3)
where v, _1 stands for the bin partitioning boundaries used in the last iteration, and v is the updated
dynamic boundaries used for the current iteration. v € (0, 1) is the momentum update factor. With

updated boundary values v, points in each shape are divided into ny, subsets of {B1, Ba, ..., Bp, }
based on their sampling scores.

The principle idea presented here is the adaptive learning of boundary values, which are derived
from the entirety of shapes within the training dataset. These values aim to evenly partition the
distribution of point sampling scores across all shapes and points in the training data. Consequently,
for each individual shape, the acquired boundary values can effectively partition its points into bins
with a shape-specific strategy, capturing the unique characteristics of the shape while maintaining a
degree of proximity to other shapes within the dataset.

Tokens for Learning Bin Weights. With points already being partitioned into bins for each
shape, the next step is to learn a shape-specific sampling strategy, i.e., to learn shape-specific sam-
pling weights for each bin. Inspired by ViTDosovitskiy et al.| (2020), VilTKim et al.| (2021), and
Mask3DSchult et al.| (2023) —which leverage additional tokens during the computation of attention
maps to extract and convey information across the entire feature map or specific groups of points
or pixels — we introduce additional tokens specifically for learning bin sampling weights. In our
case, attention maps are computed shape-specific during the downsampling process, facilitating the
learning of bin sampling weights also in a shape-specific manner.

Using the former proposed bin partitioning method, points in each shape are partitioned into 7
subsets of {81, Ba,. .., By, }. The sampling weight w; for bin B,(j = 1,2,...,ny) is established
based on the distinctive features of each shape. Fig. [5|gives the network structure of our proposed
downsampling layer and illustrates the idea of using additional tokens. n; bin tokens are introduced
during the attention computation, where each token corresponds to a specific bin. As shown in
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Fig. [ the bin tokens are initially concatenated with the input point-wise features for Key and
Value. Subsequently, the combined features are subjected to a cross-attention mechanism with the
original point-wise features as Query. The attention map is split into two parts of a point-to-point
sub-attention map and a point-to-token sub-attention map. For the point-to-point attention map, the
methods proposed in Sec. and Sec. [3.2] are applied to it to obtain point-wise sampling scores.
Note that in this case, the row-wise sum is not exactly equal to 1 but still very close to 1 since n, is of
a very small quantity compared to N. With computed point scores, dynamic boundary values v; are
obtained for bin partitioning. Using the information regarding the allocation of points to respective
bins, a mask operation is performed on the point-to-token sub-attention map as illustrated in Block
B of Fig. [5] The sampling weights w; are then subsequently acquired with

1
wj=ReLU(=— Y mp,5,), 4)
ﬁj pq‘,GB]‘

where 3; stands for the number of points in bin B;, and my,, 5, represents the element in the energy
matrix corresponding to point p; in row and B; in column.

In-Bin Point Sampling. For each shape, by considering the number of points contained within bins
B = (B1,P2,--.,0n,) alongside the determined bin sampling weights w = (w1, wa,...,wWn,),
the specific numbers of points to be selected from each bin k = (k1,Kz2,...,Kn,) need to be
determined. Direct multiplication of 3 and w does not yield a sum that aligns with the total number
of down-sampled points M required by the network structure. To address this discrepancy, a scaling
method is applied to first scale bin sampling weights w;. Furthermore, to prevent «; from surpassing
the available number ; in any bin, any excess points are proportionately redistributed to other bins
that have not been fully sampled. The detailed pipeline is described in Algorithm 1.

Finally, within bin Bj;, «; points are selected through random sampling with priors. The sampling
probabilities pp,, is determined by performing a softmax operation over the normalized point sam-
pling score ap, with a temperature parameter 7:

e%p; /T

ap, /7"
Zpiij €

Pp; = o)

4 EXPERIMENTS

4.1 CLASSIFICATION

Experiment Setting. ModelNet40 classification benchmark |Wu et al.|(2015) contains 12,311 manu-
factured 3D CAD models in 40 common object categories. For a fair comparison, we use the official
train-test split, in which 9,843 models are used for training and 2,468 models for testing. From each
model mesh surface, points are uniformly sampled and normalized to the unit sphere. Only 3D co-
ordinates are used as point cloud input. For data augmentation, we randomly scale, rotate, and shift
each object point cloud in the 3D space. We use n, = 6 bins for point partitioning. The momentum
update factor v = 0.99 for updating boundary values. The temperature parameter 7 = 0.1. More
training details are provided in the Appendix.

Qualitative and Quantitative Results. Qualitative results of SAMBLE are presented in Fig. [6]
including sampling score heatmaps, learned bin partitioning strategy with bin sampling ratios, and
the final sampled results. From it, we can see that SAMBLE successfully samples enough edge
points which construct the general structure of the shape. It also captures better global uniformity
by not focusing heavily on edge points, especially for those thin/detailed parts (e.g. chair legs).
From the logged shape bin histograms, we can see that shape-specific sampling strategies have
been successfully learned. More visualization results are provided in the appendix, showcasing an
intriguing pattern where shapes of the same category exhibit similar histogram distributions and
sampling strategies. Overall, SAMBLE successfully achieves a better trade-off between sampling
edge points and preserving global uniformity. Quantitative result is given in Tab. 2] Our method
performs better than other methods and achieves state-of-the-art performance.
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Figure 6: Qualitative results of our proposed SAMBLE. Apart from the sampled results, sampling
score heatmaps and bin histograms along with bin sampling ratios are also given. All shapes are
from the test set. Zoom in for optimal visual clarity.

Table 2: Numerical results on the ModelNet40
classification benchmark and the ShapeNet part
segmentation benchmark.

SAMBLE

Method Cls. Seg.
OA (%) Cat. mIoU (%)  Ins. mloU (%)
PointNet++ 91.9 81.9 85.1 : L
DGCNN 929 82.3 85.2 APES
PointConv 925 82.8 85.7
PointTransformer 93.7 83.7 86.6
PointNeXt 93.2 84.4 86.7 SAMIBLE
PointMetaBase - 84.3 86.7
APES (local) 93.5 83.1 85.6
APES (global) 93.8 83.7 85.8 Figure 7: Segmentation results of our proposed
SAMBLE 94.2 84.5 86.7 SAMBLE. All shapes are from the test set.

4.2 SEGMENTATION

Experiment setting. The ShapeNetPart dataset|Yi et al.|(2016)) is used for 3D object part segmen-
tation. It consists of 16,880 models from 16 shape categories, with 14,006 3D models for training
and 2,874 for testing. The number of parts for each category is between 2 and 6, with 50 different
parts in total. We use the sampled point sets produced in Qi et al.|(2017a)) for a fair comparison with
prior work. For evaluation metrics, we report category mloU and instance mloU. We use n, = 4
bins for point partitioning. The momentum update factor v = 0.99 for updating boundary values.
The temperature parameter 7 = 0.1. More training details are provided in the Appendix.

Qualitative and Quantitative Results. Qualitative results are presented in Fig. [/| From it, we can
observe that compared to APES which focuses heavily on edge points, our SAMBLE strikes a better
balance between sampling edge points and shape global uniformity. For example, SAMBLE exhibits
a more balanced utilization of non-edge points, as exemplified by the chair seat. It demonstrates a
thoughtful sampling strategy that takes into account different point categories, resulting in a more
comprehensive representation of the shape. Quantitative results are provided in Tab. [2] which shows
that our SAMBLE achieves state-of-the-art performance.

For the part segmentation benchmark, we fur-
ther report the performance on the intermediate
downsampled sub-point clouds in Tab. [3] Ad-
ditionally, results from PointNeXt |Qian et al.
(2022) are also presented, which is a prominent
point cloud learning method that employs FPS
for downsampling. It is evident that FPS-based
methods exhibit poorer performance when ap-
plied to intermediate downsampled sub-point
clouds. In contrast, our SAMBLE approach demonstrates improved performance with intermedi-
ate downsampled sub-point clouds, showing the superiority of our proposed sampling methods.

Table 3: Segmentation performances on interme-
diate downsampled point clouds.

Method PointNeXt SAMBLE
Point Number 2048 1024 512 2048 1024 512

Cat. mloU (%) 84.40 83.79 82.77 84.51 84.84 85.04
Ins. mIoU (%) 86.70 86.18 85.18 86.67 86.93 87.12
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Table 4: Comparison with other sampling methods. Evaluated on the ModelNet40 classification
benchmark with multiple sampling sizes.

APES APES

M Voxel RS FPS S-NET SampleNet MOPS-Net LighTN SAMBLE
(w/ pre-pro.)  (w/o pre-pro.)

512 | 73.82 8752 8834 87.80 88.16 86.67 89.91 90.81 89.81 90.58

256 | 73.50 77.09 83.64 82.38 84.27 86.63 88.21 90.40 86.78 90.18

128 | 68.15 56.44 7034 7153 80.75 86.06 86.26 89.77 84.87 90.02

64 | 5831 31.69 4642 7045 79.86 85.25 86.51 89.57 79.23 89.81

32 ] 2002 1635 2658  60.70 77.31 84.28 86.18 88.56 75.63 89.45

4.3 FEW-POINT SAMPLING

Experiment setting. We additionally compare our sampling method to previous work including
RS, FPS, and the more recent learning-based S-Net, SampleNet, LighTN, APES, etc. The same
evaluation framework from Dovrat et al.[(2019); |Wang et al.| (2023); Wu et al.| (2023a)) is used. The
point cloud is first sampled into a limited number of points, and subsequently the downsampled
result is fed into a task network for evaluation. The task here is the ModelNet40 Classification, and
the task network is PointNet. All sampling methods are evaluated with multiple sampling sizes.

Qualitative and Quantitative Results.
Quantitative results are presented in Tab. Westmap  M-128 o -3 m=16 m=s
Note that APES Wu et al.| (2023al)

uses FPS to pre-process the input into 2M s
points while we did not. For a fair com-
parison, additional results of APES with-
out the pre-processing step are also tested
and reported. Nonetheless, even without
pre-processing, SAMBLE achieves state-
of-the-art results in the few-point sampling

SAMBLE

& y
N APES )
task as the number of sampled points de- P o pes ,
creases to smaller ones. ' ! | ! !
Qualitative results are presented in Fig. .. = oF oo

For few-point sampling, APES relies

on FPS to pre-sample the input into 2A

points due to its limitations . In contrast, Figure 8: Sampled results of few-point sampling in
our method preserves better global unifor- comparison with APES. Zoom in for optimal clarity.
mity, allowing direct few-point sampling

from the input while still achieving satisfactory sampled results, as demonstrated in Fig. [§| When
sampling very few points, APES tends to concentrate on the sharpest regions, whereas our SAMBLE
method preserves better global uniformity throughout the point cloud shape.

4.4 ABLATION STUDY

In this subsection, our emphasis is directed toward the novel designs introduced within this paper,
excluding common topics such as network width. More ablation study and further design justifica-
tions are provided in the appendix to enhance the interpretability of our proposed method.

Different Indexing Modes. Apart from the visualized heatmaps given in Fig. 4| we also report their
respective experimental results in Tab. [5] The tests are performed using top-M as the sampling strat-
egy. From it, we can observe that indexing modes vi and vii achieve relatively best performances.

Table 5: Classification and segmentation performance with different indexing modes.

Indexing Mode i ii iii iv v vi vii
Cls. OA (%) 93.92 93.78 93.63 93.66 93.40 94.11 94.08
Seg Cat. mIoU (%) 83.98 83.85 83.62 83.51 83.47 84.12 84.22

Ins. mIoU (%) 86.16 85.99 85.74 85.60 85.49 86.38 86.46
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Number of Bins. As a key parameter in SAMBLE, an ablation study is performed over the number
of bins ny,. The results are presented in Tab. [} Remarkably, increasing the number of bins does not
yield improved performance. This phenomenon is likely attributable to the subdivision of shapes
into an excessive number of point categories, leading to the gradual diminishment of score dispar-
ities across the bins. In our case, n, = 6/4 yields the best performance for the classification and
segmentation tasks respectively, and we use it for the corresponding experiments.

Table 6: Classification and segmentation performance with different number of bins.

Number of Bins 1 2 4 6 8 10 12
Cls. OA (%) 94.05 93.91 93.98 94.18 94.02 93.80 93.84

Cat. mloU (%) 84.22 84.14 84.51 84.40 84.19 83.98 84.36
Ins. mloU (%) 86.46 86.28 86.67 86.61 86.48 86.23 86.43

Seg.

Upsampling layer. An important aspect to highlight is the upsampling layer. Most point cloud
network models employ neighbor-based interpolation|Qi et al.|(2017b); Zhao et al.|(2021));|Q1an et al.
(2022) for upsampling, as FPS is typically used during the downsampling process. However, APES
introduces a cross-attention layer for upsampling to address the limitations of overemphasizing edge
points, which renders traditional neighbor-based interpolation impractical. In contrast, our method
strikes a better balance between sampling edge points and maintaining global uniformity, allowing
the use of interpolation operations during upsampling. An ablation study for evaluating various
upsampling layers and interpolation with different K, values is conducted, and the results are
presented in Table[/| The results show a performance drop for APES when interpolation is used in
place of cross-attention, while SAMBLE demonstrates superior performance with interpolation.

Table 7: Segmentation results with different upsampling layers on ShapeNet Part. The number
before *“/” is the category mloU, and the number after is the instance mloU.

Interpolation
K, =3 Ky =38 K, =16

APES (local) 82.89/85.40 82.95/85.44 82.96/85.42 83.11/85.58
APES (global)  83.16/85.53 83.19/85.59 83.17/85.55 83.67/85.81

SAMBLE 84.51/86.67 84.35/86.48 84.31/86.43 84.36 / 86.44

Upsample Cross-Attention

5 CONCLUSION

In this paper, a new point cloud sampling method has been proposed to learn shape-specific sam-
pling strategies for achieving better trade-off between sampling local details and preserving global
uniformity. Based on a sparse attention map that combines the knowledge from both local and global
information, multiple indexing modes have been designed and explored. By partitioning the points
in each shape into bins, and learning respective sampling ratios for each bin with additional tokens,
shape-specific sampling strategies are acquired for individual point cloud shapes. With the proposed
methods, we achieve a more effective balance between capturing local details and preserving global
uniformity of the input shape, resulting in improved performance on downstream tasks.

Looking forward, the trade-off between sampling local details and preserving global uniformity in
point clouds remains an open challenge. Future advancements in upsampling layers could further
benefit from leveraging previously discarded information to refine this balance. The complex inter-
action between downsampling and upsampling layers presents a promising area for further research.
Another exciting direction is adapting the proposed method to point cloud scenes rather than isolated
shapes. This shift introduces the challenge of scene boundary points being mistakenly prioritized
as significant, which calls for more sophisticated sampling algorithms. Additionally, the proposed
approach could be extended to other 3D data representations, such as 3D Gaussian Splatting, where
each point is represented as a 3D Gaussian. Given the typically large size of such 3D data, introduc-
ing effective sampling techniques could significantly enhance its processing efficiency.
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Appendix

A  NETWORK ARCHITECTURE

For a fair comparison, the same basic network architectures from APES are used in our experiments,
as illustrated in Fig. [9] The downsampling layers are replaced with our proposed ones, and the
upsampling layers are replaced with the classical interpolation-based ones.
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Figure 9: Network architectures for the classification task and the segmentation task.

B MORE TRAINING DETAILS

Classification Tasks. AdamW is used as the optimizer. The learning rate starts from 1 x 10~* and
decays to 1 x 10~8 with a cosine annealing schedule. The weight decay hyperparameter for network
weights is set as 1. Dropout with a probability of 0.5 is used in the last two fully connected layers.
We use n, = 6 bins for point partitioning. The momentum update factor v = 0.99 for updating
boundary values. The temperature parameter 7 = 0.05. The network is trained with a batch size of
8 for 200 epochs.

Segmentation Tasks. AdamW is used as the optimizer. The learning rate starts from 1 x 10~%
and decays to 1 x 10~ with a cosine annealing schedule. The weight decay hyperparameter for
network weights is 1 x 10™*. We use n, = 4 bins for point partitioning. The momentum update
factor v = 0.99 for updating boundary values. The temperature parameter 7 = 0.05. The network
is trained with a batch size of 16 for 200 epochs.
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C SAMPLING RESULTS IN COMPARISON WITH APES

Additional qualitative results in comparison with APES are provided in Fig. [T0]and Fig. [T} Both
figures indicate that APES focuses too heavily on edge points, while SAMBLE successfully achieves
a better balance between sampling edge points and preserving global uniformity, leading to better
performance on downstream tasks.
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Figure 10: Qualitative results of our proposed SAMBLE, in comparison with APES. In addition to
the sampled results, sampling score heatmaps and sampling strategies are also provided.
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Figure 11: Segmentation results of our proposed SAMBLE, in comparison with APES.
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D SAMPLING POLICIES.

An illustration of different sampling policies is provided in Fig. [T2] including Top-M sampling,
prior-based sampling, and bin-based sampling. The Top-M sampling policy samples the points with
larger sampling scores directly. The prior-based sampling policy samples points randomly according
to their converted sampling probabilities. The bin-based sampling policy further builds upon that. It
first partitions the point set into several bins, and then samples points within each bins. In each bin,
either top-M sampling or prior-based sampling can employed. In our case, we use the prior-based
sampling. The bin-based sampling policy allows for more fine-grained control over the sampling
process, tailoring it to the specific characteristics of each shape.

@ O @ ©¢ ¢ @ & ©
Sampling Score: 48 25 16 16 08 08 05 02 0.2 0.2

Sampling Policy: :D
Top-M Sampling

——————

@ O @ ©¢ o @ o o
Sampling Probability: 0.4 0.2 0.1 0.1 0.05 0.05 0.04 0.02 0.02 0.02

Sampling Policy: |:>
Prior-Based Sampling

Sampling Probability 01 034 0.22
within Each Bin: 0.45 0.25 0.1 0.1 0.05 0.05 . .22 0.22 0.22

Hoss) oz
Sampling Weights 0.64 ) 0.36 o)

(to determine point number in each bin).

sample 3 points in Bin 1 | | sample 2 points in Bin 2

Sampling Policy: |:>
Bin-Based Sampling

~——————

Figure 12: An illustration of different sampling policies. Note for bin-based sampling, either top-M
sampling or prior-based sampling may be used within each bin.
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E RELATIONSHIP BETWEEN BIN SAMPLING WEIGHTS AND RATIOS

For the sake of brevity and improved visual clarity, in the paper, the axis labels of the histograms
have been omitted. We further provide the full version of the histogram, in which the number of
points and the sampling ratio in each bin are given. A demo is provided in Fig. [I3] More detailed
histogram results are provided in Sec.

Number of Points and Sampling Ratio over Bins

400 0.9

Number of Points in Bins
8
8

Figure 13: Left: bin partitioning, each color represents the points belonging to this bin. Right: the
learned sampling strategy.

One thing worth noting is that the indicated sampling ratios r in the histogram are not simply re-
scaled sampling weights w. As in the algorithm we presented in the paper, apart from the re-scaling
operation, a redistribution operation is also applied to prevent x; surpassing the available point
number (3; in one bin. Given the point number in each bin 8 = (81, B2, . .., f»,) and the number
of points to be sampled from each bin Kk = (k1, K2, ..., kn, ), the sampling ratios presented in the
histogramisr = k/B and r € [0, 1].

The redistribution operation only happens when r; is about to surpass 3;, this means all points in
jth bin have been selected and r; = 1. We additionally count and document the likelihood of this
occurrence for all bins across all test shapes. The numbers are reported in Tab. [8] for which we can
see that for around 54% of the shapes, all points in the first bin are selected and sampled. Note that
the first bin corresponds to the points of higher sampling scores which are mostly edge points with
indexing mode vii. This observation underscores the significance of edge points. On the other hand,
there are still around 46% shapes that do not sample all edge points. It suggests that an excessive
emphasis on edge points might have adverse effects on subsequent downstream tasks, which also
aligns with the conclusion drawn by APES.

Table 8: Possibilities of all points being sampled in bins, across all test shapes.

Bin Index 0 1 2 3 4 5
Possibilities of All
Points Being Sampled

53.69% 27.11% 8.02% 2.11% 0.85% 4.98%

F DESIGN JUSTIFICATIONS OF THE BIN TOKEN IDEA - DEVIL IS IN THE
DETAILS.

Adding Bin Tokens to Q or K/V? A critical point in the idea of bin tokens lies in determining
the specific branches to which the tokens should be concatenated. In order to match the tensor
dimension for later computation in the attention mechanism, the tensor size of Key and Value should
be the same. Hence if tokens are being added to the Key branch, they also have to be added to the
Value branch. Overall, there are two possibilities of adding bin tokens to (i) the Query branch, or
(ii) the Key and the Value branches.
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It is crucial to emphasize that, due to the nature of the sampling operation where indexes are se-
lected, gradients cannot be propagated back through the sampling operation during the backward
propagation process. As a result, regardless of the selected structure, it is essential to establish an
alternative pathway to convey the information contained within the bin tokens, which have a size of
ny X N, to the downsampled features, which have a size of M x d. This pathway should ensure
the flow of relevant information despite the inability to directly backpropagate gradients through the
sampling operation.

As illustrated in the left of Fig. |14} in the former case, an attention map of tensor size (N 4+ np) x N
is obtained. After M indexes of the points to be sampled are learned with SAMBLE, M rows in the
attention map are extracted to form a new tensor for the next steps. However, note that the sub-tensor
of n, x N will never be delivered to the next steps since they do not correspond to points, hence no
gradient will be backpropagated to the tokens during the training.

Adding Bin Tokens to Query Adding Bin Tokens to Key and Value
Bin Tokens  Point Features Point Features  Bin Tokens
[ nxd | | Nxd | [ Nxd | | nxd |
* X i

Q K v K., W
[ tvngxd | [ nxd | [ nxd | [ venghxd || (veng) xd
N N+ny,
N+ny g N
~— 0\
N Ny
N N
SAMBLE
e |
x|
| 8
Mxd Mxd

Figure 14: Adding bin tokens to Query leads to no gradient being backpropagated to the tokens,
while adding bin tokens to Key and Value enables the gradient backpropagation.

On the other hand, as illustrated in the right of Fig. [I4] adding bin tokens to the Key and Value
branches does not have this problem and successfully enables gradient backpropagation. One thing
worth mentioning is that in this scenario, the row-wise sum is not exactly equal to 1 but still very
close to 1 due to the significantly smaller magnitude of ny, relative to N. Therefore, this is unlikely to
significantly impact the calculation of point-wise sampling scores. Concerning the design of adding
bin tokens to all branches of Query, Key, and Value, it is equivalent to case ii since the sub-tensor of
ny rows in the attention map will never be sampled and propagated.

Order of Mean-pooling and ReLU Operations. Within our design, the ReLU operation is used to
prevent the learned sampling weight from being negative. It can be performed after Mean-pooling,
as shown in Eq. [ or performed before Mean-pooling:
1
wi= g > ReLU(mp, 5,) - (6)
7 pieB;

However, the inherent distribution of values within tensors often results in a non-negligible propor-
tion being negative, especially those corresponding to points of lower importance. Directly setting
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too many values to zero would result in a significant loss of features, which is regrettable consider-
ing the potential information discarded. Therefore, instead of performing the ReL.U operation before
the mean-pooling operation, we do it the other way around, i.e., first mean-pooling, then, after this
information fusion, ReLU is performed over the pooled results.

Fig. gives the learned sampling strategies with the mean-pooling and ReLU operations applied
in different orders. Although both orders yield shape-specific sampling strategies, the sampling
ratios over bins learned with the order of ReLU first are mostly around 40% - 60%, leading to a
worse sampling performance. On the other hand, the order of mean-pool first yields better sampling
strategies as less potential information is discarded.

... > Relu -> Mean-pool -> ... ... > Mean-pool -> Relu -> ...

Number of Points and Prababiliies over Bins Number of Points and Probabilities over Bins Number of Points and Probabiliies over Bins Number of Points and Probabiliies over Bins

Nomber o Roints n B
H g H H
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E
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=

Figure 15: Learned sampling strategies with the mean-pooling and ReLU operations applied in
different orders.

We additionally count and document the likelihood of ReLU being effective, which indicates the
former pooled result is negative, for all bins across all test shapes. From the numbers reported in
Tab. 9] we can see that the likelihood of the pooled results being negative is extremely small (less
than 1%) for the first half of bins, while it goes higher for the latter bins yet the number is still
relatively acceptable.

Table 9: Possibilities of ReLLU being effective in bins, across all test shapes.

Bin Index 0 1 2 3 4 5
Possibilities of
ReLU Being effective 0.45% 0.28% 0.57% 4.25% 11.63% 13.53%

Pre-softmax or Post-softmax Attention Map for Splitting The Point-to-Token Sub-Attention
Map. When addressing the bin tokens, our initial approach involved splitting the point-to-token
sub-attention map from the post-softmax attention map M., Which seemed intuitively appropri-
ate. Furthermore, all elements within M. are inherently positive, eliminating any concern for
negative sampling weights and obviating the need for an additional ReLU operation. However, ex-
perimental findings revealed that this method proved ineffective, as it resulted in overly uniform
sampling weights across different bins.

The underlying cause of this issue was identified after we explored the underlying mathematical
principles and examined the values in the tensors during runtime. Tensors in a well-trained network
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tend to exhibit diminutive feature values as they propagate through layers. Denote m;; as one
element in the pre-softmax attention map M., given its minute magnitude, we apply the Taylor
expansion formula to yield:

2
mg;

e™i =1+m;; + +oml+my . (7)

Therefore, the corresponding element ; in the post-softmax attention map is

’ e L+ mij ®)
) N+ny N+ny
Zj:l e N +np + Zj:l msj

In our case, the values of the elements m;; in M. are approximately within the magnitude of 1073
to 1075, After a softmax operation, the resultant values m;j in Mo exhibit minimal variation,
leading to closely similar sampling weights across bins in a later step.

Efforts were undertaken to address this issue before we turned to using M, for sampling weights
acquisition. We attempted to use the logarithmic operation to restore the lost information:

s N+ny
e ™My
1n(m;j)=1n(7zmnb emﬁ)zmij—m(z €M) )
j=1 ' j=1

After the logarithmic operation, every value in the sub-attention map is negative. Therefore, a
normalization operation is necessary. However, as shown in Fig. [I6] the common normalization
methods, such as z-score and centering, will result in too many negative elements (more than half),
leading to too much information loss when passing through subsequent ReLU modules. Even if we
successfully identify or meticulously design a superior normalization method that enables manual
control over the proportion of negative elements to an applicable value, such manual intervention
strays from the original intention of this thesis, which is to discover a learning-based mapping from
sampling score to sampling probability.

>

) Norm (In( m{j))r

Figure 16: Illustrative figure of the distribution of the element values in the post-softmax attention
map, after normalization.

Through the analysis, we observed that the term m;; in Eq. E] is exactly the elements in the pre-
softmax attention map and is what we are interested in. Therefore, to avoid the potential loss of
information that could arise from the softmax operation, we opted to directly use the results from
M, for bin sampling weights acquisition.

G ADDITIONAL ABLATION STUDIES

Momentum Update Factor. The momentum update strategy is widely used within contrastive
learning frameworks in self-supervised learning. In our case, we aim to derive the bin boundary
values v from the entirety of shapes within the training dataset. These values aim to evenly partition
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the distribution of point sampling scores across all shapes and points in the training data. Hence
such an adaptive learning method is used.

An ablation study over the momentum update parameter -y is performed and the numerical results
are reported in Tab. [I0] From it, we can see that v = 0.99 yields the best performance. This actually
aligns with most current contrastive learning frameworks, where a majority use a value of v = 0.99.

Table 10: Classification performance with different values of the momentum update factor ~.

¥ 0.9 0.99 0.999  0.9999
Cls. OA (%) 93.80 94.18 94.02 93.95

We additionally provide the bin partitioning results over the test dataset with the learned boundary
values v in Fig. It demonstrates that the boundary values adaptively learned from the training
dataset can also effectively partition the distribution of point sampling scores evenly across all shapes
and points in the test dataset.
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Figure 17: Partitioning the distribution of point sampling scores of all shapes and points in the test
dataset into bins with the learned boundary values.

Temperature Parameter. The sampling strategy is determined with the point number in each bin
B = (b1, P2, .., Bn,) and the number of points to be sampled from each bin & = (K1, K2, ..., kn, )-
Within each bin, instead of applying the top-M sampling method simply, we suggest employing
random sampling with priors. The idea is quite straightforward: process the point-wise sampling
scores into point-wise sampling probabilities, and M non-repeated points are sampled randomly
based on their sampling probabilities:

el (10)
ppi - Zi\il eaPi/T )

where the temperature parameter 7 controls the distribution of the sampling probabilities.

Within each bin, when 7 is set close to 0, the sampling result would be close to top-M; When 7 is set
close to +00, the sampling result would be close to uniform sampling; when 7 = 1, the sampling
result would be identical to the Softmax-based sampling. Hence, by manipulating this parameter, we
can tune the sampling process from uniform sampling, to the conventional Softmax-based sampling,
and further to the top-M sampling.

An ablation study over the value of 7 has been conducted. To better illustrate this idea, the pre-
softmax point sampling score heatmap and the post-softmax point sampling probability heatmap are
visualized in Fig. However, please note that since the softmax operation is performed within
each bin, it would be impossible to visualize the post-softmax sampling probabilities of different
bins in a same figure if multi-bins are used. Hence in Fig. [I§ only a single bin is used, i.e. n, = 1.
From it, we can observe that the sampling probability of points goes from having a large deviation
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Sampling Score
(pre-softmax)

Sampling Probability
(post-softmax)

Sampled Points

Figure 18: Different sampling results using different 7 in the softmax with temperature during the
sampling process. The indexing mode is the sparse column square-divided.

Table 11: Classification and segmentation performance of the model with different 7 values.

T 0.01 0.02  0.05 0.1 0.2 0.5 1 10
Cls. OA (%) 93.84 9396 94.06 94.18 93.89 93.84 93.74 93.70

Se Cat. mloU (%) 84.10 84.23 8438 84.51 8426 84.13 84.02 83.88
Ins. mloU (%) 86.44 86.48 86.60 86.67 86.51 86.42 86.29 86.23

to being uniformly distributed, just as we designed. Numerical results are reported in Tab. [T1]
where 7 = (.1 achieves the best performance. Moreover, a smaller 7, which leads to a sampling
strategy close to Top-M, does not always guarantee better performance. This is consistent with the
conclusion that sampling only edge points can be detrimental.

H MODEL COMPLEXITY

To evaluate SAMBLE’s practicality, we assess its complexity in comparison with APES and report
the results in Tab. [T2} This includes details on model parameters and FLOPs for both the entire
model and a single downsampling layer. In order to assess inference efficiency, experiments were
carried out using a trained ModelNet40 classification model on a single NVIDIA GeForce RTX

3090. The tests were conducted with a batch size of 8, evaluating a total number of 2468 shapes
from the test set.

Table 12: For model complexity, we report the number of parameters and FLOPs for both full model
and one downsampling layer. The inference throughput (instances per second) is also reported.

Params. FLOPs Throughput
Method (ins./sec.)
Full Model ~ One DS Layer Full Model ~One DS layer ~ \1S-/S€¢.
APES (local) 4.47M 49.15k 4.59G 1.09G 488
APES (global) 4.47M 49.15k 3.03G 0.05G 520
SAMBLE (n;, =1)  447M 49.15k 3.03G 0.05G 473
SAMBLE (n, = 6)  4.48M 66.56k 3.56G 0.38G 125

As shown in Tab. [I2] SAMBLE has a slightly larger number of model parameters compared to
APES, primarily due to the incorporation of additional bin tokens. Notably, when n, = 1, the
number of parameters and FLOPs of SAMBLE are identical to that of APES. This is quite reasonable
as in this case, using additional bin tokens is unnecessary and the multi-bin-based sampling policy
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degrades into the simple prior-based sampling policy. On the other hand, SAMBLE'’s inference
throughput is reduced due to the introduction of bin partitioning operations. Notably, the process
of determining the number of points to be sampled within each bin involves a CPU-intensive loop
computation, which can lead to increased inference time.

I MORE VISUALIZATION RESULTS OF LEARNED SHAPE-SPECIFIC
SAMPLING STRATEGIES

We present additional extensive results in Fig. [T9] Fig. Fig. 2] and Fig. 22] with various
categories. From them, we can observe that shape edge points are mostly partitioned into the first
two bins. Furthermore, in addition to learning shape-wise sampling strategies for individual shapes,
it is observed that analogous shapes within the same category exhibit similar histogram distributions
and sampling strategies. Conversely, point clouds from different shape categories are sampled by
distinct sampling strategies.

Figure 19: More visualization results of bin partitioning and learned shape-specific sampling strate-
gies. The chair category. Zoom in for optimal visual clarity.
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Figure 20: More visualization results of bin partitioning and learned shape-specific sampling strate-
gies. The airplane and car categories. Zoom in for optimal visual clarity.
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Figure 21: More visualization results of bin partitioning and learned shape-specific sampling strate-
gies. The guitar, lamp, plant, and flower pot categories. Zoom in for optimal visual clarity.
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Figure 22: More visualization results of bin partitioning and learned shape-specific sampling strate-
gies. The cone, bottle, toilet, and bed categories. Zoom in for optimal visual clarity.
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J MORE VISUALIZATION RESULTS OF FEW-POINT SAMPLING

We further provide more visualization results of few-point sampling in Fig. 23] and Fig. 24 No
pre-processing with FPS into 2M points was performed. From them, we can observe that when
sampling very few points from the input directly, APES can only sample points from the sharpest
regions in a concentrated manner, while our SAMBLE keeps better global uniformity.
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Figure 23: Sampled results of few-point sampling. No pre-processing with FPS into 2 points was
performed. Zoom in for optimal visual clarity.
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Figure 24: Sampled results of few-point sampling. No pre-processing with FPS into 2M points was
performed. Zoom in for optimal visual clarity.
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