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Abstract—Automatic Speech Recognition for low-resource 

languages such as Amharic faces challenges due to limited high-

quality data and background noise. This study examines how 

different types of training data, including clean recordings, 

noisy recordings, and synthetically augmented data, affect the 

performance and robustness of an Amharic speech recognition 

system. The experiments use 155 hours of speech, including 110 

hours of clean data from the Andreas Nürnberger Data and 

Knowledge Engineering Group and 45 hours of real-world noisy 

recordings. Additional synthetic data were created using noise 

injection, speed perturbation, and SpecAugment techniques, 

resulting in a total of 575 hours of speech data. A convolutional 

neural network with bidirectional gated recurrent units and 

Connectionist Temporal Classification was trained on four 

conditions: clean data, noisy data, combined data, and 

augmented data. The results show that models trained on 

combined and augmented datasets outperform models trained 

on a single dataset, achieving a word error rate of 5.49 percent 

under mixed conditions, a relative improvement of 21.5 percent. 

These findings highlight the importance of data diversity and 

augmentation in developing robust speech recognition systems 

for low-resource languages. Future work will explore the use of 

visual information, such as lip movements to further improve 

recognition accuracy in challenging environments. 

Keywords—Amharic ASR, noise robustness, data 

augmentation, end-to-end models, low-resource languages 

I. INTRODUCTION 

Automatic Speech Recognition (ASR) has become an 
essential part of modern computing, powering tools such as 
transcription software, virtual assistants, and interactive 
voice response systems [1], [2]. Recent progress in deep-
learning methods has led to remarkable accuracy for high-
resource languages such as English and Mandarin [3], [4]. 
However, low-resource languages like Amharic still face 
serious challenges, especially when speech is recorded in 
noisy or uncontrolled environments [5], [6]. 

Earlier ASR systems relied on hybrid designs that 
combined acoustic, pronunciation, and language models 
[7], [8]. While effective, these pipelines required hand-
crafted linguistic rules and expert supervision [9]. 

End-to-end models simplified the process by mapping 
acoustic features directly to text, using architectures such as 
Connectionist Temporal Classification (CTC) [10], 
encoder–decoder models [11],[21], and Conformer 
networks [12]. Despite these advances, robustness to 
background noise and data imbalance remains a limiting 
factor for many low-resource languages [17], [18]. 

For Amharic--a Semitic language spoken by more than 
sixty million people--the majority of existing ASR systems 
have been trained on clean, studio-quality data [19], [16]. 
These systems often fail in real-world conditions, where 
background sounds such as traffic, voices, or electronic 
interference can distort the signal [17]. Addressing this 
problem requires not only architectural improvements but 
also careful attention to the type and diversity of data used 
for training [18]. 

Although several studies have introduced new neural 
architectures for Amharic ASR, fewer have examined how 
the composition of data influences model robustness. 
Recent findings in multilingual and low-resource ASR 
research suggest that data-centric approaches can be as 
powerful as model-centric ones [19], [20]. 

Data augmentation techniques--such as SpecAugment 
[21], noise injection [22], and speed perturbation [22]--
expand existing corpora and help models generalize to 
unseen conditions without costly manual collection. These 
strategies have been widely tested on large languages but 
rarely explored in depth for Amharic. Building on this 
perspective, the present study evaluates how training data 
quality and diversity affect the performance of an Amharic 
end-to-end ASR model. Instead of developing a new 
network architecture, we adopt a stable CNN–BiGRU–CTC 
baseline [24] and train it under four data conditions: clean, 
noisy, combined, and synthetically augmented. 

The clean corpus (110 hours) originates from the 
Andreas Nürnberger Data and Knowledge Engineering 
Group [17], while the noisy dataset (45 hours) consists of 
natural Amharic speech gathered in public environments 
and previously used for model-development research [18]. 
Synthetic variations were created through well-known 
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augmentation methods to simulate realistic speaking and 
acoustic conditions. 

This work provides an empirical view of how dataset 
composition, rather than architectural complexity, shapes 
model robustness for low-resource languages. The insights 
gained from Amharic may also support similar efforts 
across other African and morphologically rich languages 
where labeled speech resources remain limited. 

A. Research Questions 

This study aims to explore how different types of 
training data influence the robustness of Amharic end-to-
end speech recognition systems. The work focuses on 
understanding data effects rather than introducing a new 
model. Accordingly, the research is guided by the following 
key questions: 

i. How does the performance of the Amharic ASR 

model vary when trained on clean, noisy, and 

combined datasets? 

ii. Which training condition provides the most 

stable and accurate results under varying noise 

levels? 

iii. How does the inclusion of synthetic (augmented) 

data influence the model’s ability to generalize to 

unseen speech and noise conditions? 

These questions aim to clarify the relative contributions 

of dataset quality, diversity, and augmentation to overall 

ASR robustness. 

II. DATA 

We yes This study utilized a total of 155 hours of Amharic 
speech data collected from clean and noisy environments, later 
expanded to an effective 575 hours through systematic data 
augmentation. The data were designed to represent diverse 
acoustic conditions and speaker characteristics for developing 
a noise-robust ASR model. 

A. Clean Dataset 

The clean dataset, totaling 110 hours, was obtained from 
the Andreas Nürnberger – Data and Knowledge Engineering 
Group. These recordings were produced in controlled acoustic 
environments with minimal background interference. The 
corpus includes both male and female speakers of various ages 
and regional accents, ensuring diversity in speech rate and 
pronunciation style. The recordings are of high quality, 
sampled at 16 kHz, and serve as the baseline for evaluating 
clean-condition ASR performance. 

B. Noisy Dataset 

The noisy dataset, totaling 45 hours, was collected in the 
Sidama region of Ethiopia, where Amharic is widely used as 
a second language. This region was intentionally chosen for 
its linguistic diversity and mixture of urban and rural 
environments. Speech was recorded from 50 speakers, each 
reading 400 distinct sentences, producing 20,000 utterances. 
Each audio clip ranged from 4 to 20 seconds. 

Recordings were made in natural noisy locations—cafés, 
streets, parks, and marketplaces—where background sounds 
such as traffic noise, wind, birdsong, and human conversation 
were present. Equal participation of male and female speakers 
aged 18 – 50 years ensured demographic balance. All 

recordings were manually transcribed into Amharic script to 
provide accurate ground truth for model training. 

C. Combined and Synthetic Data 

To improve model robustness and generalization, the clean 
(110 h) and noisy (45 h) datasets were merged, forming a 155-
hour combined corpus. Three augmentation techniques were 
then applied to expand the training diversity: 

Speed Perturbation: Each utterance was resampled at 
±10% speed variations, creating two additional versions per 
sample. 

→ Adds 2× the original data (310 h new), simulating 

different speaking rates. 

Noise Injection: Background noise was added to each 
clean recording at 5 – 25 dB SNR, producing one additional 
noisy version of the clean corpus. 

→ Adds 110 h of new data, capturing varied interference 

levels. 

SpecAugment: Applied on-the-fly during training by 
masking time and frequency regions in spectrograms, 
improving robustness without increasing stored data size. 

After augmentation, the effective training data totaled 
approximately 575 hours. This expanded dataset offers richer 
acoustic and temporal diversity, helping prevent overfitting 
and improving performance in real-world conditions. 

D. Feature Extraction 

All audio signals were transformed into spectrograms 
using the Short-Time Fourier Transform (STFT). Each 
waveform was divided into overlapping frames (25 ms 
window, 10 ms stride), and a Fourier transform was applied to 
extract the frequency components of each frame. The resulting 
magnitude spectrograms provide a two-dimensional time–
frequency representation, which preserves both spectral and 
temporal dynamics of Amharic speech. These spectrograms 
were normalized and used as input features for model training. 

The dataset was split into training, validation, and test 
subsets in an 80/10/10 ratio. Transcriptions are paired with 
audio filenames, as illustrated in Fig. 1. For feature extraction, 
audio was converted into spectrograms using Short-Time 
Fourier Transform (STFT). These spectrograms serve as input 
to the neural network models. The complete dataset is openly 
available at:  

https://figshare.com/articles/dataset/Yohannes_A_Ejigu_
Amharic_ASR_Dataset_zip/24959727 

The transcribed text paired with the file name of the audio 
is presented in Fig. 1 below. 

 

Fig. 1 presents the top 3 rows of the data 

III. SYSTEM DESCRIPTION 

The proposed system is an end-to-end Amharic Automatic 
Speech Recognition (ASR) model designed to maintain high 
performance across varying acoustic conditions. It integrates 
convolutional, recurrent, and alignment-free decoding layers, 
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forming a hybrid architecture optimized for low-resource and 
noise-prone environments. 

Unlike prior works that focused primarily on network 
depth or feature engineering, this research emphasizes the 
interaction between data diversity and model robustness, 
evaluating performance under clean, noisy, and augmented 
training conditions. 

 

A. Model Architecture 

The model follows a CNN–RNN–CTC framework widely 
adopted in modern speech recognition systems [17], [18]. The 
convolutional front end extracts spatial and spectral cues from 
spectrograms, the recurrent layers capture sequential and 
contextual dependencies, and the Connectionist Temporal 
Classification (CTC) layer aligns the predicted and reference 
sequences without requiring frame-level annotations. 

1) Input Representation: 

Each audio sample is converted into a time–frequency 
spectrogram through the Short-Time Fourier Transform 
(STFT). This representation encodes both temporal and 
frequency variations essential for recognizing Amharic’s 
complex syllabic structure. Spectrograms are normalized to 
ensure consistent dynamic ranges across speakers and 
recording conditions. 

2) Convolutional Feature Extraction: 

Two-dimensional convolutional layers are used to capture 
local acoustic features, such as formant transitions and energy 
contours. Each convolutional block is followed by batch 
normalization and ReLU activation, improving training 
stability and reducing sensitivity to amplitude variations. The 
convolutional stage provides noise tolerance by learning 
invariant frequency–time patterns. 

3) Temporal Modeling (BiGRU): 

The convolutional features are reshaped and fed into a 
stack of Bidirectional Gated Recurrent Unit (BiGRU) layers, 
each with 512 hidden units. Bidirectionality enables the model 
to process information from both forward and backward time 
directions, improving its ability to model long contextual 
dependencies. 

4) Dense Projection and CTC Decoding: 

The recurrent output is passed through a fully connected 
projection layer that maps the hidden states to character 
probabilities. A CTC decoding layer aligns these predictions 
with the ground-truth transcripts by introducing a “blank” 
token between consecutive labels. This allows the model to 
learn flexible mappings between variable-length audio and 
text sequences without explicit segmentation. 

The overall architecture is illustrated in Fig. 2, showing the 
full pipeline from spectrogram input to character-level 
transcription. 

The overall architecture is illustrated in Fig. 2, showing the 
flow from spectrogram input to character-level output. 

 

Fig2. Proposed Architecture of the model [17,18] 

A. Model Implementation 

The The Amharic end-to-end ASR model was 
implemented using the TensorFlow/Keras framework. The 
design follows a CNN–BiGRU–CTC structure, chosen for its 
simplicity and robustness in handling speech variations across 
different noise levels and accents. The model architecture is 
shown in Fig. 2. 

Input Representation and Preprocessing: Audio recordings 
from all dataset conditions--clean, noisy, combined, and 
augmented--were first converted into spectrograms using the 
Short-Time Fourier Transform (STFT). This representation 
captures both temporal and spectral information, which is 
essential for distinguishing speech features in low-resource 
languages like Amharic. Each spectrogram was normalized 
and reshaped into 3D tensors before being passed to the neural 
network to ensure consistent input dimensions. 

Feature Extraction via CNN: The spectrograms were fed 
into two 2D convolutional layers, each followed by batch 
normalization and ReLU activation. These layers capture local 
acoustic patterns, such as formants and harmonics, while 
providing resilience to background noise and speaker 
variations. The convolutional outputs were then flattened 
along the frequency dimension to prepare them for sequence 
modeling. 

Temporal Modeling with BiGRU: The flattened features 
were passed through a stack of Bidirectional GRU (BiGRU) 
layers, each containing 512 hidden units in both forward and 
backward directions. This configuration allows the model to 
process contextual information from both past and future 
frames, which is particularly valuable for Amharic’s 
morphologically rich structure. A dropout rate of 0.5 was 
applied to mitigate overfitting. For comparative analysis, a 
BiLSTM variant was also trained under identical settings to 
evaluate trade-offs between accuracy and computational 
efficiency. 

Dense and Output Layers: Outputs from the recurrent 
layers were passed through a fully connected dense layer to 
project the learned representations into the character 
probability space. Finally, a softmax layer produced the output 



distributions, including the “blank” token required for 
Connectionist Temporal Classification (CTC) training. 

Sequence Alignment and Decoding: The model was 
optimized using the CTC loss function, which enables 
alignment-free training between input speech and text 
transcriptions. During inference, decoding was performed 
using both beam search (for accuracy) and greedy decoding 
(for speed) to convert predicted probability sequences into 
readable text. errors. 

B. Model Compilation 

Training was carried out with the Adam optimizer 
(learning rate = 1×10⁻⁴). The combination of CTC loss and 
Adam optimization ensured stable convergence for variable-
length Amharic speech data. The system was trained for 
multiple epochs, with early stopping based on validation loss 
to prevent overfitting. 

Let y be the ground truth label sequence, x be the input 
sequence, and y* be the predicted label sequence. The CTC 
loss function is defined as: 

          (1) 

where: 

 is the length of the input sequence x, 

 represents a possible alignment between x and y 

 is the set of all valid alignments 
between x and y, 

 is the label assigned to time step t in the alignment 
π, and 

 is the probability assigned to label  at 
time step t by the neural network model. [17,18] 

C. Evaluation Metric 

Model performance was assessed using the Word Error 
Rate (WER), a widely adopted measure in ASR research. 
WER is defined as the proportion of substitutions, deletions, 
and insertions required to transform the system output into the 
reference transcription. It is computed as 

WER =
𝑆+𝐷+𝐼

𝑁
                      (2) 

where S, D, and I denote the number of substitutions, 
deletions, and insertions, respectively, and N is the total 
number of words in the reference. Lower WER values 
correspond to higher transcription accuracy, making the 
metric useful for both model evaluation and hyperparameter 
tuning. 

IV. RESULTS 

The experiments were designed to examine the impact of 
different training conditions--clean, noisy, combined, and 
synthetically augmented--on the robustness of the Amharic 
ASR model. Each model was trained under identical settings 
using the CNN–BiGRU–CTC architecture and evaluated on 
both clean and noisy test sets. 

A. Dataset-Based Performance Comparison 

To address the first research question, three baseline 
models were trained separately on clean, noisy, and combined 
datasets. The results show that the model trained solely on 
clean speech achieved the lowest error rate in quiet test 
conditions but performed poorly in noisy environments. 
Conversely, the model trained only on noisy data generalized 
well to unseen noise but exhibited reduced accuracy on clean 
speech. The combined dataset offered a balanced trade-off, 
performing consistently across both conditions. 

Table I presents performance comparison in WER 

 

These findings (in table I) demonstrate that combining 
clean and noisy data during training significantly improves 
model generalization without introducing overfitting to 
specific noise types. 

B. Effect of Synthetic Augmentation 

To investigate the third research question, three standard 
augmentation techniques--noise injection, speed perturbation, 
and SpecAugment—were applied to the combined dataset, 
producing a total of 575 hours of effective training data. 

The augmented model achieved a Word Error Rate (WER) 
of 5.49% on mixed test conditions, outperforming all 
baselines. This indicates that synthetic data plays a substantial 
role in enhancing robustness, especially when authentic noisy 
data is limited. Among the augmentation techniques, 
SpecAugment provided the most noticeable gain by helping 
the network become invariant to time–frequency distortions, 
while speed perturbation contributed to improved speaker and 
tempo diversity. The effect of synthethic augmentation is seen 
in Table 2 below. 

Table2. presents effects of synthetic augmentation 

 



V. DISCUSSIONS 

The experimental results confirm that data diversity 
significantly enhances ASR robustness. Models trained solely 
on clean data performed best in noise-free conditions (7.1% 
WER) but degraded under noisy settings (14.8%), while 
noisy-only training improved noise tolerance but reduced 
accuracy on clean inputs. The combined dataset achieved 
balanced performance (6.88% WER clean, 11.7% noisy), 
aligning with prior studies that emphasize mixed-domain 
exposure for improved generalization. 

Further, synthetic augmentation yielded substantial gains. 
Using noise injection, speed perturbation, and SpecAugment 
increased the effective dataset size to 575 hours and reduced 
WER to 5.4%, representing a 21.5% relative improvement. 
This confirms that data augmentation can effectively 
compensate for limited real recordings in low-resource 
settings [3], [4]. The BiGRU-based model demonstrated 
stable convergence and superior efficiency over other 
alternatives, consistent with earlier ASR findings . Overall, the 
combination of authentic and augmented data proved effective 
for enhancing robustness and generalization in Amharic 
speech recognition. 

VI. CONCLUSIONS 

This study presented an end-to-end Amharic Automatic 
Speech Recognition (ASR) framework using a CNN–
BiGRU–CTC architecture. The system was rigorously 
evaluated on clean, noisy, and combined datasets, as well as 
with synthetic data augmentation. The results showed that 
training on both clean and noisy speech improves 
generalization, while augmentations such as SpecAugment, 
noise injection, and speed perturbation further enhance 
robustness--reducing the Word Error Rate by over 21%. 

The findings highlight that integrating authentic and 
synthetic data is an effective approach for advancing ASR 
performance in low-resource languages. The BiGRU-based 
model achieved strong accuracy with lower computational 
overhead than BiLSTM counterparts, confirming its 
suitability for real-world and resource-constrained 
deployments. 

Future work will explore multimodal ASR systems that 
integrate both audio and visual information, particularly lip 
movement cues, to enhance robustness against noise and 
improve intelligibility in challenging acoustic 
environments. This direction holds promise for developing 
inclusive and resilient speech technologies for 
underrepresented languages such as Amharic. 
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