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Abstract—Automatic Speech Recognition for low-resource
languages such as Amharic faces challenges due to limited high-
quality data and background noise. This study examines how
different types of training data, including clean recordings,
noisy recordings, and synthetically augmented data, affect the
performance and robustness of an Amharic speech recognition
system. The experiments use 155 hours of speech, including 110
hours of clean data from the Andreas Niirnberger Data and
Knowledge Engineering Group and 45 hours of real-world noisy
recordings. Additional synthetic data were created using noise
injection, speed perturbation, and SpecAugment techniques,
resulting in a total of 575 hours of speech data. A convolutional
neural network with bidirectional gated recurrent units and
Connectionist Temporal Classification was trained on four
conditions: clean data, noisy data, combined data, and
augmented data. The results show that models trained on
combined and augmented datasets outperform models trained
on a single dataset, achieving a word error rate of 5.49 percent
under mixed conditions, a relative improvement of 21.5 percent.
These findings highlight the importance of data diversity and
augmentation in developing robust speech recognition systems
for low-resource languages. Future work will explore the use of
visual information, such as lip movements to further improve
recognition accuracy in challenging environments.
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1. INTRODUCTION

Automatic Speech Recognition (ASR) has become an
essential part of modern computing, powering tools such as
transcription software, virtual assistants, and interactive
voice response systems [1], [2]. Recent progress in deep-
learning methods has led to remarkable accuracy for high-
resource languages such as English and Mandarin [3], [4].
However, low-resource languages like Amharic still face
serious challenges, especially when speech is recorded in
noisy or uncontrolled environments [5], [6].

Earlier ASR systems relied on hybrid designs that
combined acoustic, pronunciation, and language models
[7], [8]. While effective, these pipelines required hand-
crafted linguistic rules and expert supervision [9].
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End-to-end models simplified the process by mapping
acoustic features directly to text, using architectures such as
Connectionist Temporal Classification (CTC) [10],
encoder—decoder models [11],[21], and Conformer
networks [12]. Despite these advances, robustness to
background noise and data imbalance remains a limiting
factor for many low-resource languages [17], [18].

For Ambharic--a Semitic language spoken by more than
sixty million people--the majority of existing ASR systems
have been trained on clean, studio-quality data [19], [16].
These systems often fail in real-world conditions, where
background sounds such as traffic, voices, or electronic
interference can distort the signal [17]. Addressing this
problem requires not only architectural improvements but
also careful attention to the type and diversity of data used
for training [18].

Although several studies have introduced new neural
architectures for Amharic ASR, fewer have examined how
the composition of data influences model robustness.
Recent findings in multilingual and low-resource ASR
research suggest that data-centric approaches can be as
powerful as model-centric ones [19], [20].

Data augmentation techniques--such as SpecAugment
[21], noise injection [22], and speed perturbation [22]--
expand existing corpora and help models generalize to
unseen conditions without costly manual collection. These
strategies have been widely tested on large languages but
rarely explored in depth for Amharic. Building on this
perspective, the present study evaluates how training data
quality and diversity affect the performance of an Ambharic
end-to-end ASR model. Instead of developing a new
network architecture, we adopt a stable CNN-BiGRU-CTC
baseline [24] and train it under four data conditions: clean,
noisy, combined, and synthetically augmented.

The clean corpus (110 hours) originates from the
Andreas Niirnberger Data and Knowledge Engineering
Group [17], while the noisy dataset (45 hours) consists of
natural Amharic speech gathered in public environments
and previously used for model-development research [18].
Synthetic variations were created through well-known
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augmentation methods to simulate realistic speaking and
acoustic conditions.

This work provides an empirical view of how dataset
composition, rather than architectural complexity, shapes
model robustness for low-resource languages. The insights
gained from Amharic may also support similar efforts
across other African and morphologically rich languages
where labeled speech resources remain limited.

A. Research Questions

This study aims to explore how different types of
training data influence the robustness of Ambharic end-to-
end speech recognition systems. The work focuses on
understanding data effects rather than introducing a new
model. Accordingly, the research is guided by the following
key questions:

i. How does the performance of the Amharic ASR
model vary when trained on clean, noisy, and
combined datasets?

ii. Which training condition provides the most
stable and accurate results under varying noise
levels?

iil. How does the inclusion of synthetic (augmented)

data influence the model’s ability to generalize to
unseen speech and noise conditions?
These questions aim to clarify the relative contributions
of dataset quality, diversity, and augmentation to overall
ASR robustness.

II. DATA

We yes This study utilized a total of 155 hours of Amharic
speech data collected from clean and noisy environments, later
expanded to an effective 575 hours through systematic data
augmentation. The data were designed to represent diverse
acoustic conditions and speaker characteristics for developing
a noise-robust ASR model.

A. Clean Dataset

The clean dataset, totaling 110 hours, was obtained from
the Andreas Niirnberger — Data and Knowledge Engineering
Group. These recordings were produced in controlled acoustic
environments with minimal background interference. The
corpus includes both male and female speakers of various ages
and regional accents, ensuring diversity in speech rate and
pronunciation style. The recordings are of high quality,
sampled at 16 kHz, and serve as the baseline for evaluating
clean-condition ASR performance.

B. Noisy Dataset

The noisy dataset, totaling 45 hours, was collected in the
Sidama region of Ethiopia, where Amharic is widely used as
a second language. This region was intentionally chosen for
its linguistic diversity and mixture of urban and rural
environments. Speech was recorded from 50 speakers, each
reading 400 distinct sentences, producing 20,000 utterances.
Each audio clip ranged from 4 to 20 seconds.

Recordings were made in natural noisy locations—cafés,
streets, parks, and marketplaces—where background sounds
such as traffic noise, wind, birdsong, and human conversation
were present. Equal participation of male and female speakers
aged 18 — 50 years ensured demographic balance. All

recordings were manually transcribed into Amharic script to
provide accurate ground truth for model training.

C. Combined and Synthetic Data

To improve model robustness and generalization, the clean
(110 h) and noisy (45 h) datasets were merged, forming a 155-
hour combined corpus. Three augmentation techniques were
then applied to expand the training diversity:

Speed Perturbation: Each utterance was resampled at
+10% speed variations, creating two additional versions per
sample.

— Adds 2 X the original data (310 h new), simulating
different speaking rates.

Noise Injection: Background noise was added to each
clean recording at 5 — 25 dB SNR, producing one additional
noisy version of the clean corpus.

— Adds 110 h of new data, capturing varied interference
levels.

SpecAugment: Applied on-the-fly during training by
masking time and frequency regions in spectrograms,
improving robustness without increasing stored data size.

After augmentation, the effective training data totaled
approximately 575 hours. This expanded dataset offers richer
acoustic and temporal diversity, helping prevent overfitting
and improving performance in real-world conditions.

D. Feature Extraction

All audio signals were transformed into spectrograms
using the Short-Time Fourier Transform (STFT). Each
waveform was divided into overlapping frames (25 ms
window, 10 ms stride), and a Fourier transform was applied to
extract the frequency components of each frame. The resulting
magnitude spectrograms provide a two-dimensional time—
frequency representation, which preserves both spectral and
temporal dynamics of Amharic speech. These spectrograms
were normalized and used as input features for model training.

The dataset was split into training, validation, and test
subsets in an 80/10/10 ratio. Transcriptions are paired with
audio filenames, as illustrated in Fig. 1. For feature extraction,
audio was converted into spectrograms using Short-Time
Fourier Transform (STFT). These spectrograms serve as input
to the neural network models. The complete dataset is openly
available at:

https://figshare.com/articles/dataset/Yohannes_A_Ejigu
Ambharic ASR_Dataset zip/24959727

The transcribed text paired with the file name of the audio
is presented in Fig. 1 below.

normalized_transcription

0 ¢+ APEF FPCOEF @ ANALLTFO AATIE +C WIR P © Fe7 tr_2_tro10!
1 ATREA 0 AR PPFAR &4 P 4ROPO- S A AP T PhC ot tr 9 tr01009 - Co
2 Akt FPUCH AF PNE € PATHA + THIZA tr_14_tr010

Fig. 1 presents the top 3 rows of the data
III. SYSTEM DESCRIPTION

The proposed system is an end-to-end Amharic Automatic
Speech Recognition (ASR) model designed to maintain high
performance across varying acoustic conditions. It integrates
convolutional, recurrent, and alignment-free decoding layers,
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forming a hybrid architecture optimized for low-resource and
noise-prone environments.

Unlike prior works that focused primarily on network
depth or feature engineering, this research emphasizes the
interaction between data diversity and model robustness,
evaluating performance under clean, noisy, and augmented
training conditions.

A. Model Architecture

The model follows a CNN-RNN-CTC framework widely
adopted in modern speech recognition systems [17], [18]. The
convolutional front end extracts spatial and spectral cues from
spectrograms, the recurrent layers capture sequential and
contextual dependencies, and the Connectionist Temporal
Classification (CTC) layer aligns the predicted and reference
sequences without requiring frame-level annotations.

1) Input Representation:

Each audio sample is converted into a time—frequency
spectrogram through the Short-Time Fourier Transform
(STFT). This representation encodes both temporal and
frequency variations essential for recognizing Ambharic’s
complex syllabic structure. Spectrograms are normalized to
ensure consistent dynamic ranges across speakers and
recording conditions.

2) Convolutional Feature Extraction:

Two-dimensional convolutional layers are used to capture
local acoustic features, such as formant transitions and energy
contours. Each convolutional block is followed by batch
normalization and ReLU activation, improving training
stability and reducing sensitivity to amplitude variations. The
convolutional stage provides noise tolerance by learning
invariant frequency—time patterns.

3) Temporal Modeling (BiGRU):

The convolutional features are reshaped and fed into a
stack of Bidirectional Gated Recurrent Unit (BiGRU) layers,
each with 512 hidden units. Bidirectionality enables the model
to process information from both forward and backward time
directions, improving its ability to model long contextual
dependencies.

4) Dense Projection and CTC Decoding:

The recurrent output is passed through a fully connected
projection layer that maps the hidden states to character
probabilities. A CTC decoding layer aligns these predictions
with the ground-truth transcripts by introducing a “blank”
token between consecutive labels. This allows the model to
learn flexible mappings between variable-length audio and
text sequences without explicit segmentation.

The overall architecture is illustrated in Fig. 2, showing the
full pipeline from spectrogram input to character-level
transcription.

The overall architecture is illustrated in Fig. 2, showing the
flow from spectrogram input to character-level output.
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Fig2. Proposed Architecture of the model [17,18]

A. Model Implementation

The The Ambharic end-to-end ASR model was
implemented using the TensorFlow/Keras framework. The
design follows a CNN-BiGRU-CTC structure, chosen for its
simplicity and robustness in handling speech variations across
different noise levels and accents. The model architecture is
shown in Fig. 2.

Input Representation and Preprocessing: Audio recordings
from all dataset conditions--clean, noisy, combined, and
augmented--were first converted into spectrograms using the
Short-Time Fourier Transform (STFT). This representation
captures both temporal and spectral information, which is
essential for distinguishing speech features in low-resource
languages like Amharic. Each spectrogram was normalized
and reshaped into 3D tensors before being passed to the neural
network to ensure consistent input dimensions.

Feature Extraction via CNN: The spectrograms were fed
into two 2D convolutional layers, each followed by batch
normalization and ReLU activation. These layers capture local
acoustic patterns, such as formants and harmonics, while
providing resilience to background noise and speaker
variations. The convolutional outputs were then flattened
along the frequency dimension to prepare them for sequence
modeling.

Temporal Modeling with BiGRU: The flattened features
were passed through a stack of Bidirectional GRU (BiGRU)
layers, each containing 512 hidden units in both forward and
backward directions. This configuration allows the model to
process contextual information from both past and future
frames, which is particularly valuable for Ambharic’s
morphologically rich structure. A dropout rate of 0.5 was
applied to mitigate overfitting. For comparative analysis, a
BiLSTM variant was also trained under identical settings to
evaluate trade-offs between accuracy and computational
efficiency.

Dense and Output Layers: Outputs from the recurrent
layers were passed through a fully connected dense layer to
project the learned representations into the character
probability space. Finally, a softmax layer produced the output

Label



distributions, including the “blank” token required for
Connectionist Temporal Classification (CTC) training.

Sequence Alignment and Decoding: The model was
optimized using the CTC loss function, which enables
alignment-free training between input speech and text
transcriptions. During inference, decoding was performed
using both beam search (for accuracy) and greedy decoding
(for speed) to convert predicted probability sequences into
readable text. errors.

B. Model Compilation

Training was carried out with the Adam optimizer
(learning rate = 1x107*). The combination of CTC loss and
Adam optimization ensured stable convergence for variable-
length Ambharic speech data. The system was trained for
multiple epochs, with early stopping based on validation loss
to prevent overfitting.

Let y be the ground truth label sequence, x be the input
sequence, and y* be the predicted label sequence. The CTC
loss function is defined as:

CTC Loss (x,y)=—log P(m,lx)
melign (xy) (1)

where:
T is the length of the input sequence X,

T represents a possible alignment between x and y

Align (x,¥) is the set of all valid alignments
between x and y,

Tt is the label assigned to time step t in the alignment
n, and

P(m.1x) is the probability assigned to label e at

time step t by the neural network model. [17,18]

C. Evaluation Metric

Model performance was assessed using the Word Error
Rate (WER), a widely adopted measure in ASR research.
WER is defined as the proportion of substitutions, deletions,
and insertions required to transform the system output into the
reference transcription. It is computed as

@

where S, D, and I denote the number of substitutions,
deletions, and insertions, respectively, and N is the total
number of words in the reference. Lower WER values
correspond to higher transcription accuracy, making the
metric useful for both model evaluation and hyperparameter
tuning.

WER = S+D+I

IV. RESULTS

The experiments were designed to examine the impact of
different training conditions--clean, noisy, combined, and
synthetically augmented--on the robustness of the Amharic
ASR model. Each model was trained under identical settings
using the CNN-BiGRU-CTC architecture and evaluated on
both clean and noisy test sets.

A. Dataset-Based Performance Comparison

To address the first research question, three baseline
models were trained separately on clean, noisy, and combined
datasets. The results show that the model trained solely on
clean speech achieved the lowest error rate in quiet test
conditions but performed poorly in noisy environments.
Conversely, the model trained only on noisy data generalized
well to unseen noise but exhibited reduced accuracy on clean
speech. The combined dataset offered a balanced trade-off,
performing consistently across both conditions.

Table I presents performance comparison in WER

Training Dataset Test Condition WER (%)
Clean only (110 h) clean 74

Clean only Noisy 14.8

Noisy only (45 h) Noisy 10.25

Noisy Clean 134
combined(155 hrs) clean 6.88
combined Noisy 1.7

These findings (in table I) demonstrate that combining
clean and noisy data during training significantly improves
model generalization without introducing overfitting to
specific noise types.

B. Effect of Synthetic Augmentation

To investigate the third research question, three standard
augmentation techniques--noise injection, speed perturbation,
and SpecAugment—were applied to the combined dataset,
producing a total of 575 hours of effective training data.

The augmented model achieved a Word Error Rate (WER)
of 5.49% on mixed test conditions, outperforming all
baselines. This indicates that synthetic data plays a substantial
role in enhancing robustness, especially when authentic noisy
data is limited. Among the augmentation techniques,
SpecAugment provided the most noticeable gain by helping
the network become invariant to time—frequency distortions,
while speed perturbation contributed to improved speaker and
tempo diversity. The effect of synthethic augmentation is seen
in Table 2 below.

Table2. presents effects of synthetic augmentation

Training Data ) 5
Augmentation | WER Relative
applied (%) improvement

Combined (155 h) None 6.88
(Gomlliad) o 5psse) | o 621 9.74%
Perturbation
Cqml:_pined + Noise Yes 618 1017%
Injection
Combined + All Yes
Technigues (575 h 5.49 21.51%
total)




V. DISCUSSIONS

The experimental results confirm that data diversity
significantly enhances ASR robustness. Models trained solely
on clean data performed best in noise-free conditions (7.1%
WER) but degraded under noisy settings (14.8%), while
noisy-only training improved noise tolerance but reduced
accuracy on clean inputs. The combined dataset achieved
balanced performance (6.88% WER clean, 11.7% noisy),
aligning with prior studies that emphasize mixed-domain
exposure for improved generalization.

Further, synthetic augmentation yielded substantial gains.
Using noise injection, speed perturbation, and SpecAugment
increased the effective dataset size to 575 hours and reduced
WER to 5.4%, representing a 21.5% relative improvement.
This confirms that data augmentation can effectively
compensate for limited real recordings in low-resource
settings [3], [4]. The BiGRU-based model demonstrated
stable convergence and superior efficiency over other
alternatives, consistent with earlier ASR findings . Overall, the
combination of authentic and augmented data proved effective
for enhancing robustness and generalization in Ambharic
speech recognition.

VI. CONCLUSIONS

This study presented an end-to-end Amharic Automatic
Speech Recognition (ASR) framework using a CNN-—
BiGRU-CTC architecture. The system was rigorously
evaluated on clean, noisy, and combined datasets, as well as
with synthetic data augmentation. The results showed that
training on both clean and noisy speech improves
generalization, while augmentations such as SpecAugment,
noise injection, and speed perturbation further enhance
robustness--reducing the Word Error Rate by over 21%.

The findings highlight that integrating authentic and
synthetic data is an effective approach for advancing ASR
performance in low-resource languages. The BiGRU-based
model achieved strong accuracy with lower computational
overhead than BILSTM counterparts, confirming its
suitability for real-world and resource-constrained
deployments.

Future work will explore multimodal ASR systems that
integrate both audio and visual information, particularly lip
movement cues, to enhance robustness against noise and
improve intelligibility in  challenging  acoustic
environments. This direction holds promise for developing
inclusive and resilient speech technologies for
underrepresented languages such as Amharic.
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