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Abstract

Large Language Models (LLMs) exhibit a notable performance ceiling on complex,1

multi-faceted tasks, as they often fail to integrate diverse information or adhere to2

multiple constraints. We posit that such limitation arises when the demands of a3

task exceed the LLM’s effective cognitive load capacity. This interpretation draws4

a strong analogy to Cognitive Load Theory (CLT) in cognitive science, which ex-5

plains similar performance boundaries in the human mind, and is further supported6

by emerging evidence that reveals LLMs have bounded working memory character-7

istics. Building upon this CLT-grounded understanding, we introduce CoThinker,8

a novel LLM-based multi-agent framework designed to mitigate cognitive overload9

and enhance collaborative problem-solving abilities. CoThinker operationalizes10

CLT principles by distributing intrinsic cognitive load through agent specialization11

and managing transactional load via structured communication and a collective12

working memory. We empirically validate CoThinker on complex problem-solving13

tasks and fabricated high cognitive load scenarios, demonstrating improvements14

over existing multi-agent baselines in solution quality and efficiency. Our analysis15

reveals characteristic interaction patterns, providing insights into the emergence16

of collective cognition and effective load management, thus offering a principled17

approach to overcoming LLM performance ceilings.18

1 Introduction19

The increasing prevalence and capability of Large Language Models (LLMs) are transforming diverse20

domains, moving beyond basic text generation towards complex reasoning and problem-solving21

applications [Chang et al., 2024, Zhao et al., 2024, Li et al., 2024a]. Aligning these powerful models22

with human intent and fostering effective thinking pattern is paramount for unlocking their full23

potential [Shen et al., 2023]. In-Context Learning (ICL) is increasingly employed for alignment,24

offering adaptation via prompts without parameter updates [Brown et al., 2020]. In this work, we25

adopt a broad definition of ICL, referring to the general strategy of guiding an LLM’s behavior26

by providing any contextual information relevant to the task to perform the task [Lampinen et al.,27

2024]. Compared to traditional finetuning [Song et al., 2024, Lee et al., 2023], evidence suggests28

both methods often operate through similar mechanisms—primarily modulating the model’s thinking29

style rather than altering core knowledge [Lin et al., 2024, Zhao et al., 2025, Yang et al., 2024]; ICL’s30

parameter-free nature, and adaptability make it a widely adopted paradigm for this purpose.31

While ICL offers flexibility, it suffers from a notable performance ceiling when applied to multi-32

faceted tasks requiring integration of diverse information sources [He et al., 2024, Li et al., 2023b,33

Kirk et al., 2023]. In such scenarios, LLM agents frequently exhibit degeneration of thought, lack34

of diversity, or inability to follow multiple requirements [Liang et al., 2023, Huang et al., 2023,35

Kamoi et al., 2024, Lu et al., 2024] when using ICL. Despite increasing empirical studies on ICL’s36
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limitations, the root causes remain under-explored. Concurrently, recent efforts to overcome the37

ceiling via agent-based solutions have yielded limited success, often relying on heuristics without38

cognitive grounding [Liu et al., 2023, Zhang et al., 2024c].39

To address the first challenge—the lack of theoretical understanding behind performance ceiling—we40

turn to cognitive science for explanatory insight. Similar patterns of performance degradation have41

long been studied in cognitive science, where complex tasks involving high element interactivity42

often induce [Sweller, 2011, 2003]. According to Cognitive Load Theory (CLT), cognitive overload43

happens when working memory capacity is exceeded [Baddeley et al., 1986b]. Recent work suggests44

LLMs also exhibit bounded working memory with human-like failure modes under overload [Zhang45

et al., 2024b, Gong et al., 2024]. These shared characteristics allow us to draw an analogy that46

explains the observed performance degradation in LLM agents: The performance ceiling observed in47

LLM agents arises when their effective cognitive load capacity is exceeded, closely mirroring the48

theoretical limits described by CLT.49

Building on this analogical reasoning above—that the performance ceiling observed when applying50

In-Context Learning (ICL) to complex tasks stems from cognitive overload—we present CoThinker,51

a multi-agent ICL architecture that directly operationalizes insights from CLT to enhance the effec-52

tiveness of ICL and improve reasoning capacity through structured cooperation among LLM agents.53

Specifically, CoThinker translates the concept of collective working memory [Kirschner et al., 2018]54

into a practical architecture. Just as human groups distribute cognitive demands through division of55

labor and shared memory structures [Wilson et al., 2004, Dunbar, 1998, Tomasello, 2009], CoThinker56

employs specialized agents for parallel thinking and coordinates their outputs via a shared memory57

mechanism. This collaborative architecture enables the LLM agents to offload and manage high58

element interactivity, thereby mitigating the cognitive overload experienced by individual agents. To59

demonstrate the effectiveness of leveraging CLT in this manner, we test CoThinker on a range of60

complex general problem-solving tasks and specifically fabricated high cognitive load scenarios. In61

sum, this paper makes the following key contributions:62

• First, we are the first to explain the performance ceiling of using ICL in LLM agents by63

drawing a strong analogy to Cognitive Load Theory, suggesting that these limitations stem64

from exceeding the LLM’s effective cognitive load capacity.65

• Second, based on these theoretical insights, we design and introduce CoThinker, a novel66

multi-agent ICL architecture. CoThinker operationalizes CLT principles, through agent67

specialization, transactive memory, and communication moderator to mitigate cognitive68

overload and enhance complex cooperation.69

• Third, we empirically validate CoThinker on complex tasks, demonstrating its ability to70

surpass existing multi-agent baselines. Furthermore, our analysis uncovers characteristic71

interaction patterns among agents, providing insights into the emergence of collective72

cognition within the architecture.73

2 Related Work74

2.1 Multi-Agent LLM Collaboration75

The development of LLMs has catalyzed significant research into multi-agent systems (MAS) where76

LLMs function as collaborative agents, aiming to tackle more complex problems than single agents77

can alone [Guo et al., 2024, Wang et al., 2024a, Qian et al., 2025]. Current approaches explore78

various interaction structures including multi-agent debate, where agents exchange and critique79

ideas [Liang et al., 2023, Lu et al., 2024, Wang et al., 2024b, Du et al., 2023], iterative reflection80

mechanisms, enabling agents to self-correct [Shinn et al., 2023, Madaan et al., 2023, Yao et al., 2023].81

Role-playing and functional specialization are also prominent, assigning distinct tasks or personas82

to different agents to divide labor, particularly in complex, multifaceted domains [Li et al., 2023a,83

Qian et al., 2023, Hong et al., 2023]. Architecturally, research investigates optimal communication84

topologies to enhance information flow [Li et al., 2024b], the dynamic formation and adaptation85

of agent networks [Liu et al., 2023, Wu et al., 2023], diversity of mental set [Liu et al., 2025b],86

and hierarchical structures for coordination [Zhang et al., 2024a]. However, while these systems87

demonstrate advancing capabilities, their designs often draw from intuition or focus on communication88

efficiencies, with less explicit grounding in cognitive theories that explain effective collaboration and89

the management of processing limitations [Pan et al., 2025]. Specifically, the systematic integration90
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of Cognitive Load Theory (CLT) [Sweller, 2011] remains largely underexplored in the design of91

LLM MAS. Our work, CoThinker, directly addresses this gap by operationalizing CLT to mitigate92

cognitive overload in LLMs and enhance collective problem-solving.93

2.2 LLM for Human Simulation94

The capacity of Large Language Models (LLMs) to exhibit human-like intelligence [Liu et al.,95

2025a] and emulate nuanced social behaviors [Zhou* et al., 2024] is foundational to their use as96

artificial agents. Research has demonstrated LLMs’ ability to simulate human decision-making [Xie97

et al., 2024], generate believable individual and collective behaviors in social simulations [Chuang98

et al., 2024a], and adopt distinct personas [Chuang et al., 2024b] Critically, these parallels extend to99

cognitive characteristics; recent studies suggest LLMs possess bounded working memory and exhibit100

failure modes under cognitive overload akin to humans [Zhang et al., 2024b, Gong et al., 2024],101

as discussed in our introduction. Furthermore, interactions between LLM agents can mirror social102

psychological phenomena [Zhang et al., 2024c, Guo et al., 2024]. This confluence of human-like103

cognitive traits, including limitations, and social capabilities provides a strong rationale for applying104

principles from human cognitive science—particularly theories like Cognitive Load Theory (CLT)105

that address cognitive limits—to the design of more effective LLM-based collaborative systems.106

3 Cognitive Foundations for Enhanced LLM Performance107

This section establishes the theoretical basis for our approach by drawing parallels between human108

cognitive limitations and observed performance ceilings in LLMs. We begin (Section 3.1) by109

discussing analogous constraints in working memory between humans and LLMs, a concept central110

to Cognitive Load Theory (CLT). Building on this, we then (Section 3.2) use CLT to interpret LLM111

performance degradation under complex task demands. Subsequently (Section 3.3), we examine how112

humans overcome individual cognitive limitations by naturally forming collective cognitive systems,113

and finally, we posit that these principles can inform the design of a more capable LLM architecture.114
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Figure 1: Analogical reasoning on how to mirror Cognitive load in human to LLM Agent to explain
the performance ceiling observed when applying In-Context Learning (ICL) to LLM Agents for
complex tasks, and use Cognitive Load Theory (CLT) to resolve it.

3.1 Working Memory Analogies115

Human cognition relies fundamentally on working memory, a capacity-limited cognitive system116

associated with the prefrontal cortex, essential for temporarily holding and manipulating information117

during complex cognitive tasks such as reasoning and learning [Baddeley et al., 1986a, Cowan, 2010].118

Human working memory can only hold a limited number of information chunks simultaneously,119

typically around 4 to 7 [Miller et al., 1956]. This system employs selective attention to filter120

and prioritize information [Roussy et al., 2021]. LLMs exhibit intriguing functional parallels;121

their core attention mechanisms perform a form of sparse, selective focus on input data [Vaswani122

et al., 2017]. Recent studies have begun to characterize a functional "working memory" in LLMs,123

identifying capacity limits and failure modes under high informational demands that echo human124

working memory phenomena [Zhang et al., 2024b, Gong et al., 2024]. Thus, a key analogy emerges:125

both humans and LLMs operate with limited cognitive resources for the concurrent processing of126
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information, providing a shared foundation for understanding their processing constraints. This127

analogy sets the stage for applying cognitive theories developed for human reasoning to interpret128

performance limits in LLMs (See details in Appendix).129

3.2 Cognitive Load and Performance Limits130

The finite nature of working memory is central to CLT [Sweller et al., 1998, Sweller, 2011]. CLT131

distinguishes between intrinsic load, determined by the inherent complexity and element interactivity132

of a task, and extraneous load, which can arise from how a task or its accompanying instructions are133

presented. When the combined load exceeds working memory capacity, cognitive overload ensues in134

humans [Paas et al., 2003, Sweller, 2011]. The provided guidance, meant to help, can paradoxically135

hinder performance if it contributes to exceeding cognitive capacity. LLM agents demonstrate136

analogous performance degradation when LLM agents are tasked with complex problems and guided137

by In-Context Learning (ICL). This often causes agents to fail at tasks they are capable of solving. For138

instance, tasks requiring extensive multi-step reasoning or the integration of numerous, potentially139

conflicting, constraints via ICL can lead to degeneration of thought, lack of diversity, or inability to140

follow multiple requirements [Liang et al., 2023, Huang et al., 2023, Kamoi et al., 2024, Lu et al.,141

2024] (further illustrated in Appendix). This often causes agents to fail at tasks they, in principle,142

are capable of solving. Drawing upon the working memory analogies and these observed patterns,143

we contend that such performance ceilings when applying ICL in LLMs can be understood as a144

manifestation of cognitive overload, where total demands surpass their effective processing capacity.145

To identify ways to alleviate this overload, we next examine how humans naturally overcome similar146

limitations through collective cognition.147

3.3 Human Collective Intelligence148

To surmount individual cognitive limitations, humans exhibit a capacity for collaborative problem-149

solving, leading to the emergence of a collective intelligence or collective mind that is more powerful150

than the sum of its individual constituents [Woolley et al., 2010, Malone et al., 2010, Shteynberg151

et al., 2023]. This is not simply an aggregation of independent efforts but results from sophisticated152

social-cognitive abilities, including shared intentionality, theory of mind, and nuanced communication153

for establishing common ground [Tomasello et al., 2005, Frith and Frith, 2005]. Such collective154

entities effectively expand cognitive resources by distributing processing. Key aspects include155

the formation of a collective working memory, often through Transactive Memory Systems where156

knowledge and responsibilities are shared [Wegner, 1987, Kirschner et al., 2018] and individuals have157

meta-knowledge about who knows what [Hollingshead, 2001] so that they can rely on each other158

for information sharing and retrieval [Hollingshead and Brandon, 2003]; the engagement in parallel159

thinking through a division of cognitive labor, which reduces the intrinsic load on each individual160

[Dunbar, 2003]; and the use of organized communication to integrate diverse information and161

maintain a shared attentional focus [Hutchins, 1995]. These spontaneously formed group structures162

allow humans to manage complexities that would overwhelm an individual, demonstrating a natural163

solution to cognitive overload.164

Inspired by these human collective cognitive strategies and human-LLM cognitive similarity discussed165

above, the subsequent section introduces CoThinker, a multi-agent ICL architecture designed to166

operationalize these principles to overcome LLM performance ceilings whe using ICL.167

4 CoThinker168

CoThinker is a multi-agent ICL architecture designed to enhance collaborative problem-solving by169

systematically managing cognitive load. Simply aggregating outputs from LLM agents often proves170

insufficient for complex tasks, as naive collaboration can introduce significant transactional costs—the171

cognitive effort required to coordinate, communicate, and integrate—without a corresponding increase172

in solution quality [Pan et al., 2025]. As Cognitive Load Theory (CLT) suggests, these transactional173

costs can quickly lead to extraneous cognitive overload, negating the benefits of parallel thinking174

[Kirschner et al., 2009, 2018]. To overcome these challenges within the ICL paradigm, CoThinker175

operationalizes the principles of human collective intelligence discussed in Section 3, aiming to create176

a "collective mind" that distributes cognitive load. We leverage the insights from CLT to design an177

architecture that mirrors how human groups effectively solve complex problems.178
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Figure 2: The CoThinker Architecture. A high Cognitive Load (CL) task is initially processed by
diverse agents via Agent Parallel Thinking. The Transactive Memory System (TMS) facilitates shared
understanding by updating and allowing retrieval of collective knowledge. The Communication
Moderator manages inter-agent information flow, leveraging a trade-off to form a cognitive small-
world network, which then feeds into the Synthesizer to produce a final solution, resulting in a lower
effective CL for the overall system.

To operationalize these insights, the CoThinker architecture (Figure 2) comprises four main modules:179

Agent Parallel Thinking (Section 4.1), Transactive Memory System (Section 4.2), Communication180

Moderator (Section 4.3), and Synthesizer (Section 4.4). Each module is directly guided by CLT181

principles to emulate aspects of the human collective mind. Agent Parallel Thinking fosters initial182

cognitive diversity, potentially splitting the intrinsic load of the task. The Transactive Memory System183

boosts inter-agent understanding and tracks consensus, reducing cognitive load from redundant184

processing. The Communication Moderator balances intrinsic and extraneous loads by structuring185

information exchange. Finally, the Synthesizer integrates refined collective insights. Let A =186

{A1, . . . , AM} be the set of M agents. Let Tmax be the total number of generation rounds. Agent187

Ai’s output at the end of round t is denoted x(t)i .188

4.1 Agent Parallel Thinking189

This module promotes a division of cognitive labor and parallel thinking by assigning diverse190

thinking styles. Unlike assigning pre-defined roles, which require domain-specific foresight and191

impose extraneous cognitive load from role adherence, CoThinker uses an adaptive approach. A192

Thinking Style Orchestrator generates a task-specific style ϕi for each agent Ai based on a general193

base thinking style inventory ψ [Sternberg, 1997] and the task D:194

{ϕi}Mi=1 = Orch(D,ψ) (1)

This yields diverse thinking styles {ϕi}Mi=1, employed in subsequent stages. Further details on the195

prompting strategy for style generation and thinking style inventory are in the Appendix.196

4.2 Transactive Memory System (TMS)197

Human groups effectively manage complex information by developing Transactive Memory Systems198

(TMS), which involve a shared understanding of who knows what, how to access information held by199

others, and a collective agreement on the information itself [Wegner, 1987, Hollingshead, 2001]. This200

distributed cognitive system allows individuals to specialize and rely on others, reducing individual201

cognitive load and enhancing group problem-solving [Lewis, 2003]. To emulate these benefits202

and foster a collective working memory in CoThinker, we implement a structured mechanism for203

maintaining and accessing shared knowledge. At each round t, an evolving representation of the204
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group’s collective knowledge, denoted µ(t), is updated based on contributions from all agents:205

µ(t+1) = UpdateMem(µ(t), {x(t)j }Mj=1) (2)
This aims to enhance shared awareness and efficient integration of distributed knowledge. The206

specific prompt-based emulation of TMS components is detailed in the Appendix.207

4.3 Communication Moderator208

Effective inter-agent communication is crucial, yet it incurs transactional costs—the cognitive effort209

for message processing and integration—which can impose extraneous cognitive load, a key concern210

in Collaborative Cognitive Load Theory [Kirschner et al., 2009, 2018]. To mitigate these costs,211

the Communication Moderator structures information exchange by selecting N reference messages212

P(t−1)
i for each agent Ai. This process navigates the critical trade-offs between Network Density213

vs. Sparsity (high exposure and cost vs. low cost and potential information loss) and Information214

Homogeneity vs. Heterogeneity. The latter involves balancing the ease of integrating cognitively215

similar inputs (low extraneous load but risk of echo chambers [Runkel, 1956]) against the benefits of216

diverse perspectives for distributing intrinsic load [Aral and Van Alstyne, 2011]).217

Communication Topology and Algorithm: The selection of references defines a directed commu-218

nication graph G(t−1) = (A, E(t−1)) for each round, where an edge (Au, Av) ∈ E(t−1) exists if219

agent Av receives a message from agent Au generated in round t− 1. Motivated by how small-world220

networks efficiently balance local clustering with global connectivity [Watts and Strogatz, 1998], our221

moderator employs the following algorithm to construct this graph:222

a. Set Fixed In-Degree (N ): Each agentAi (nodeAv) has an in-degree ofN , capping its processing223

load and respecting LLM working memory [Zhang et al., 2024b, Gong et al., 2024].224

b. Define Cognitive Distance between Agent Outputs: The cognitive distance d(x(t−1)
u , x

(t−1)
v ) =225

1− sim(x
(t−1)
u , x

(t−1)
v ) is based on the semantic similarity of previous outputs.226

c. Connection Establishment via Probabilistic Rewiring (β): For each agent Ai, its N incoming227

edges (references P(t−1)
i ) are established by primarily choosing messages from cognitively228

similar peers (low distance), but with a probability β, "rewiring" some connections to randomly229

chosen, diverse peers.230

Resulting Network Properties and Cognitive Balance: This rewiring process fosters dynamic231

communication networks G(t−1) with small-world properties. Such networks exhibit high local232

clustering (facilitating efficient refinement of similar ideas, reducing extraneous load locally) and233

short average path lengths (enabling rapid global propagation of diverse insights, aiding intrinsic load234

distribution). This structure offers a principled balance between focused collaboration and broad235

information access, managing cognitive load more effectively than purely random or regular lattice236

networks. Further details are in the Appendix.237

4.4 Synthesizer238

The Synthesizer consolidates information into a final solution after Tmax rounds. It can be an External239

Agent (dedicated LLM) or an In-group Agent (team member) [Lu et al., 2024, Shinn et al., 2023].240

This draws from Collaborative Cognitive Load Theory [Kirschner et al., 2018] and Observational241

Learning [Bandura and Walters, 1977] (See details in Appendix)242

CoThinker Process Flow243

The process for task D with M agents over T rounds:244

Initialization:245

{ϕi}Mi=1 = Orch(D,ψi), x
(0)
i = Agent(D,ϕi), µ(0) = UpdateMem({x(0)i }Mi=1) (3)

Iterative Refinement: For each agent Ai and round t:246

P(t)
i = SelectRefs

(
{x(t)k }k∈A\{Ai}, x

(t)
i , N, β

)
(4)

x
(t+1)
i = Agent

(
D,ϕi, µ

(t), x
(t)
i ,P(t)

i

)
(5)

µ(t+1) = UpdateMem
(
µ(t), {x(t+1)

i }Mi=1

)
(6)
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Final Synthesis:247

yfinal = Synth
(
{x(T−1)

i }Mi=1, µ
(T−1), D

)
(7)

5 Experiments and Results248

This section details our experimental methodology and presents the empirical evaluation of CoThinker.249

We first outline the experimental setup, including the base LLMs, benchmarks, and baselines. We250

then present the main results on LiveBench and CommonGen-Hard, followed by ablation studies and251

a discussion of our findings through the lens of Cognitive Load Theory (CLT).252

5.1 Experimental Setup253

Models and Configuration. We use three Gemini models [Team et al., 2024] with varying capaci-254

ties: gemini-1.5-flash-8b (lightweight), gemini-1.5-flash (mid-tier), and gemini-1.5-pro255

(high-capacity). All models run with the initial generation temperature set to 0.25 to encourage256

diverse outputs. In multi-agent settings, subsequent rounds use temperature 0.0 and a frequency257

penalty of 0.5 to reduce repetition. By default, multi-agent methods use M=6 agents interacting over258

T=3 rounds. For CoThinker, we set N=3 references and exploration parameter β=0.3.259

Evaluation Benchmarks. We evaluate on two challenging benchmarks: (1) LiveBench [White260

et al., 2025], a recent diverse suite drawing from Big-Bench Hard [Suzgun et al., 2023], AMPS261

[Hendrycks et al., 2021], and IFEval [Zhou et al., 2023], covering domains such as mathematics,262

coding, language, instruction following, and data analysis; and (2) CommonGen-Hard [Madaan263

et al., 2023], a cognitively demanding variant of CommonGen [Lin et al., 2020], which evaluates264

multi-sentence generation under high element interactivity. We adopt a 10-dimensional metric for265

CommonGen-Hard evaluation [Li et al., 2018]. See full details in the Appendix.266

Baselines. We compare CoThinker with both single-agent and multi-agent approaches. (i) Single267

Agent (IO) is a standard mode of prompting. (ii) Single Agent (CoT) incorporates Chain-of-Thought268

prompting [Wei et al., 2022]. (iii) Single Agent (Self-Refine) uses iterative self-critique and revision269

[Madaan et al., 2023]. (iv) Multi-Agent Debate (MAD): employs interactive agent discussion with270

consensus formation [Du et al., 2023, Liang et al., 2023]. (v) Diverse MAD (DMAD): introduces271

heterogeneous prompting to avoid fixed mental sets [Liu et al., 2025b]. See details in the Appendix.272

5.2 Main Results on LiveBench273

Table (1) presents the performance of CoThinker and baseline methods across the LiveBench suit274

for gemini-1.5-flash-8b, gemini-1.5-flash, and gemini-1.5-pro. Scores are reported as275

relative improvements over the respective gemini-8b-flash’s IO (Standard Prompt) baseline. An276

average score is calculated as the arithmetic mean of these relative scores across the main LiveBench277

categories (Math, Reasoning, Instruction, Data, Language).278

gemini-1.5-flash-8b gemini-1.5-flash gemini-1.5-pro

Method Math Data Reas. Lang. Instr. Avg. Math Data Reas. Lang. Instr. Avg. Math Data Reas. Lang. Instr. Avg.
IO 1.00 1.00 1.00 1.00 1.00 1.00 1.47 2.03 1.63 1.41 1.10 1.53 2.00 2.92 1.87 1.43 1.03 1.85
CoT 1.04 0.90 1.11 1.09 1.02 1.03 1.47 2.07 1.74 1.30 1.10 1.54 1.86 2.72 1.82 1.54 1.02 1.79
SR 0.92 0.34 0.80 0.89 0.81 0.75 1.45 0.90 1.55 1.06 0.87 1.17 1.93 1.33 1.80 1.22 0.72 1.40
MAD 1.13 0.58 1.21 1.03 0.87 0.97 1.51 1.46 1.92 1.46 1.01 1.47 2.29 3.15 1.78 1.58 0.77 1.92
DMAD 1.13 0.64 0.85 1.02 0.89 0.91 1.49 2.51 1.94 1.44 1.06 1.69 2.31 3.32 1.88 1.74 1.02 2.05
CoThinker 1.11 1.32 1.22 0.98 0.80 1.07 1.57 2.44 1.97 1.52 0.99 1.70 2.40 3.39 1.95 1.76 0.95 2.09

Table 1: LiveBench[White et al., 2025] performance with all scores normalized by
gemini-1.5-flash-8b-io baseline. The abbreviations corresponded to Math, Data Analysis,
Reasoning Language, and Instruction Following

Analysis of LiveBench Results. CoThinker consistently achieves strong average performance across279

all base model families, with particularly notable gains in complex categories like Data Analysis,280

Reasoning, and often Math, but low performance on Instruction Following. We posit this perfor-281

mance pattern reflects two distinct task categories: those with high intrinsic cognitive load and282

those with low intrinsic load. The former, characterized by tasks like Data Analysis and Reason-283

ing, demonstrates a clear scaling in baseline performance as model capability increases (e.g., from284

7



gemini-1.5-flash-8b to gemini-1.5-pro), indicating that greater raw cognitive power inher-285

ently improves outcomes. For these high-load tasks, CoThinker excels by effectively decomposing286

complex problems and orchestrating collaborative agent contributions, therefore, splitting the intrinsic287

load to enhance performance.288

Conversely, tasks with low intrinsic load, such as instruction following (Instr.), show minimal or289

inconsistent performance gains when moving from weaker to stronger base models; for instance,290

the gemini-1.5-pro IO baseline on Instruction Following does not substantially outperform that291

of gemini-1.5-flash-8b. This suggests the primary bottleneck is not cognitive load. In such292

scenarios, the added communication overhead inherent in CoThinker can outweigh the benefits of293

collaboration. For tasks demanding straightforward adherence rather than sophisticated reasoning, this294

introduced more extraneous cognitive load, explaining why CoThinker may not show an advantage295

or can even underperform on these low-load, execution-focused tasks.296

5.3 Main Results on CommonGen-Hard297

In CommonGen-Hard, which emphasizes managing high element interactivity, CoThinker demon-298

strates notable performance improvements. Figure 3 presents these results, with Figure 3a illustrating299

its balanced strengths across evaluation dimensions and Figure 3b showing performance trends over300

interaction rounds.301

(a) (b)
Figure 3: CoThinker performance on CommonGen-Hard using gemini-1.5-flash. (a) The radar
plot illustrates a multi-dimensional performance profile, where CoThinker typically shows well-
rounded and superior strengths compared to baselines. (b) The rounds plot depicts the total score
trend across interaction rounds (T ), often indicating an optimal number of rounds before performance
plateaus or declines.

Analysis of CommonGen-Hard Results.302

CoThinker demonstrates strong overall performance on CommonGen-Hard (Figure 3), effectively303

managing its high element interactivity. The multi-dimensional profile (Figure 3a) typically shows304

CoThinker excelling in key areas like coherence and concept integration, albeit with occasional305

trade-offs in aspects such as conciseness. This aligns with Cognitive Load Theory (CLT); the306

high intrinsic load of the task is managed by CoThinker’s distributed processing and transactive307

memory. Notably, its performance trajectory versus interaction rounds (Figure 3b) highlights a key308

advantage: CoThinker achieves sustained constructive refinement over several rounds, effectively309

managing cognitive load. This contrasts with the multi-agent baseline where performance degrades310

due to rapidly accumulating extraneous load from inefficient coordination or information overload.311

CoThinker’s architecture appears more adept at balancing these loads, delaying diminishing returns.312

5.4 Ablation Studies on LiveBench Subsets313

Ablation studies were conducted on gemini-1.5-flash-8b using averaged scores from selected314

LiveBench subtask categories (Math, Reasoning, Data Analysis, and Instruction). These studies315

investigated the impact of CoThinker’s reference set size (N ), exploration rate (β), and the number316

of agents (M ). Unless otherwise specified, default parameters were T = 3. For N ablation,317

8



M = 6, β = 0.3. For β ablation, N = 2,M = 6. For M ablation, N = 3, β = 0.3. All scores are318

normalized by the I/O baseline performance for each subtask before category averaging.319

Figure 4: Ablation studies on CoThinker parameters (N, β,M ) using gemini-1.5-flash-8b. Per-
formance is shown for four LiveBench task categories (Math, Reasoning, Data Analysis, Instruction),
normalized by IO baseline performance (1.0). Top row: Effect of Reference Set Size (N ), varying
N ∈ {0, 2, 3, 4, 5} with M = 6, β = 0.3, T = 3. Middle row: Effect of Exploration Rate (β),
varying β ∈ {0.1, 0.3, 0.6, 1.0} with N = 2,M = 6, T = 3. Bottom row: Effect of Number of
Agents (M ), varying M ∈ {6, 12, 18} with N = 3, β = 0.3, T = 3. Optimal parameter settings are
task-dependent, indicating varying sensitivities to peer input diversity and information overload.

Analysis of Ablation Studies.320

Figure 4 demonstrates CoThinker’s hyperparameter sensitivity, offering insights into cognitive load321

management as theorized in Section 3. The reference set size (N , top row) directly impacts extraneous322

cognitive load. An optimal N (e.g., 2-3) balances diverse peer input against cognitive overload,323

respecting LLM working memory limits. Too few references limit collaboration; too many overwhelm.324

The exploration rate (β, middle row) governs the trade-off between exploiting similar ideas (low β,325

lower extraneous load for integration) and exploring diverse ones (high β, high extraneous load). Task-326

dependent optima, like higher β for Reasoning, reflect this balance, managed by the Communication327

Moderator’s cognitive small-world network. The number of agents (M , bottom row) shows that while328

more agents can distribute intrinsic load, increasing M also elevates transactional (extraneous) load329

from coordination. Non-monotonic performance indicates that beyond a point, these transactional330

costs negate the benefits of parallelism, aligning with CLT’s predictions for group overload. These331

findings affirm that CoThinker’s parameters are crucial for managing cognitive load, enabling the332

emergence of an effective "collective mind" by mitigating overload.333

6 Conclusion334

This work addresses the performance limitations of LLMs on complex tasks, particularly when335

employing In-Context Learning (ICL), by drawing an analogy to Cognitive Load Theory (CLT). We336

posit that observed performance ceilings arise from exceeding an LLM’s effective cognitive load337

capacity when processing intricate task details and extensive in-context guidance. We introduced338

CoThinker, a multi-agent architecture that operationalizes CLT principles. Through agent specializa-339

tion, a transactive memory system, and moderated communication, CoThinker mitigates overload340

and enhances collaborative problem-solving, especially for tasks that challenge single agents using341

ICL. Empirical evaluations on benchmarks like LiveBench and CommonGen-Hard demonstrated342

CoThinker’s superior performance over existing baselines on high-load tasks. Analyses validated343

CoThinker’s effective management of cognitive load, fostering a more robust "collective mind." By344

grounding multi-agent LLM design in CLT, this research offers a principled path towards overcoming345

performance bottlenecks encountered when applying ICL to demanding problems, contributing to346

more powerful collaborative AI systems through the lens of cognitive science.347
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Appendix603

A Cognitive Foundations: Elaborations604

A.1 Human Working Memory and Attentional Control605

Human working memory (WM) is a core cognitive faculty for actively holding and manipulating a606

limited amount of information relevant to ongoing tasks, operating through attentional mechanisms607

that select and maintain internal representations, often associated with sustained neural activity in608

regions like the prefrontal cortex [Baddeley et al., 1986a, Cowan, 2010, Postle, 2006]. Given that609

Large Language Models exhibit emergent sparse attention—where specific attention heads specialize610

in processing distinct patterns rather than diffusely attending to all input tokens [Vaswani et al., 2017,611

Voita et al., 2019]—it prompts an intriguing question: does this selective information processing612

within a finite context window imply the existence of a functional analogue to human WM in LLMs?613

This emergent selectivity, where not all information in the context is equally weighted or actively614

processed at any given step, forms a crucial part of the analogy we draw to understand potential615

capacity limitations and cognitive load phenomena in these models, particularly when handling tasks616

with high element interactivity through In-Context Learning.617

A.2 Using Cognitive Load Theory to Explain Phenomena in LLM Performance618

Cognitive Load Theory (CLT) offers a valuable lens to interpret puzzling LLM performance issues,619

positing that LLMs, like humans, have finite processing capacity. Exceeding this capacity leads to620

performance degradation. This section concisely analyzes several such cases through CLT.621

1. Degradation of Thought in Self-Reflection: Liang et al. [2023] found LLMs may rigidly stick622

to incorrect initial answers during self-reflection, failing to correct meaningfully.623

• CLT Explanation: Self-reflection (holding problem, solution, critique, and revision process624

concurrently) is highly demanding. If initial analysis already consumes most capacity, the625

LLM may lack resources for genuine re-evaluation, defaulting to superficial agreement due to626

cognitive overload.627

2. Performance Degradation with More In-Context Examples (Many-Shot ICL): Agarwal628

et al. [2024] noted LLM performance can degrade with more in-context examples, especially on629

complex tasks (e.g., MATH).630

• CLT Explanation: While few examples scaffold, excessive examples increase total cognitive load631

beyond capacity. The LLM struggles to synthesize all information, akin to CLT’s "redundancy632

effect" where too much information, even relevant, overwhelms working memory.633

3. Performance Degradation Despite Increasing "Confidence" (NLL Trends): Agarwal et al.634

[2024] also found that performance degradation in many-shot ICL wasn’t always explained by635

NLL (confidence) trends; NLL could improve as performance worsened.636

• CLT Explanation: Under cognitive overload, LLMs (like humans) may resort to heuristics.637

Overwhelmed by many examples, an LLM might latch onto superficial patterns, yielding outputs638

that are stylistically plausible (good NLL) but incorrect. This "overconfidence" in a flawed639

heuristic stems from an inability to allocate resources for deeper reasoning.640

4. Reduced Diversity after RLHF for Instruction Following: Kirk et al. [2023] and others641

observed that RLHF, while improving instruction following, can reduce output diversity.642

• CLT Explanation: Intense RLHF training on narrow preferences imposes a high "germane load"643

for conformance. To manage this, and the extraneous load of deviating from rewarded paths,644

the model may operate in a constrained output space, reducing the cognitive effort of exploring645

diverse (potentially unrewarded) responses. The "cost" of diversity becomes too high.646

These instances suggest CLT is a powerful analogical framework for understanding LLM limitations647

under demanding informational or processing conditions.648
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B CoThinker Architecture: Implementation and Prompting649

B.1 Prompt Architecture for Agent Parallel Thinking650

The Agent Parallel Thinking module in CoThinker aims to foster a beneficial division of cognitive651

labor by assigning diverse thinking styles to agents. This approach is grounded in theories of thinking652

styles, such as Sternberg’s Theory of Mental Self-Government [Sternberg, 1997], which posits653

that styles are preferred ways of using one’s abilities, not abilities themselves. This distinction is654

crucial: CoThinker leverages thinking styles as preferential orientations for LLM agents, assuming655

the base model possesses a broad set of underlying capabilities. The assigned style guides how these656

capabilities are applied to the task, rather than attempting to imbue a new, fixed skill or enforce a rigid657

behavioral script as a predefined "role" might. This aligns with findings that In-Context Learning658

often modulates an LLM’s thinking style rather than altering its core knowledge [Lin et al., 2024,659

Zhao et al., 2025].660

Adherence to a flexible thinking style is hypothesized to impose less extraneous cognitive load on an661

LLM agent compared to maintaining a complex, predefined role persona. This allows more of the662

agent’s cognitive resources to be dedicated to the primary task. Furthermore, while core thinking663

styles are often seen as relatively stable, they are also understood to be somewhat malleable and can664

be adapted to specific task demands [Sternberg, 1997]. CoThinker operationalizes this adaptability665

through a two-stage prompting strategy:666

1. Style Orchestration (Orch function): The Thinking Style Orchestrator (itself an LLM) is667

provided with the overall task description D and a Thinking Style Inventory. This inventory consists668

of base thinking styles derived from Sternberg’s theory, encompassing dimensions such as Functions669

(Legislative, Executive, Judicial), Forms (e.g., Monarchic, Hierarchic), Levels (Global, Local), Scope670

(Internal, External), and Leanings (Liberal, Conservative). The Orchestrator’s objective is to generate671

a diverse yet task-relevant set of M specific thinking styles {ϕ1, . . . , ϕM}, one for each agent Ai.672

For each agent, the Orchestrator takes one or a combination of Sternberg’s dimensions as a base style673

ψi and adapts it to the given task D. The Orchestrator is guided to ensure the resulting set of styles674

{ϕi} promotes varied perspectives on the problem, reflecting the value of different styles for different675

task facets.676

An example prompt for the Orchestrator, given a base combination from Sternberg (e.g., ψi =677

"Legislative-Global style"):678

Given the primary task: "{Task D}"679

And the base thinking style profile (from Sternberg’s Theory of680

Mental Self-Government): "{Base Style profile psi_i, e.g.,681

Legislative function with a Global level preference}"682

683

Generate a concise (1-2 sentences) task-specific adaptation684

of this thinking style profile that would be most beneficial685

for an agent contributing to this primary task. The agent686

should focus its reasoning and output according to this687

adapted style.688

Task-Specific Style for an agent:689

This process results inM distinct, task-contextualized thinking styles {ϕ1, . . . , ϕM}. By dynamically690

adapting general styles to the specific task, CoThinker aims to harness the benefits of stylistic691

diversity while mitigating risks such as pigeonholing or oversimplification associated with static style692

assignments.693

2. Agent Instruction (Agent function - style incorporation): Each agent Ai then receives its694

specific thinking style ϕi as part of its instruction prompt, guiding its approach throughout the695

problem-solving process. An excerpt of an agent’s prompt showing style incorporation:696

You are Agent {num}. Your assigned thinking style for this697

task is: "{Style phi_i generated by Orchestrator}".698

The overall task is: "{Task D}".699

[Other contextual information, e.g., from TMS mu^(t),700

references P_i^(t-1), own previous thought x_i^(t-1)]701
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702

Keeping your assigned thinking style in mind, please provide703

your thoughts/solution:704

This method encourages agents to approach the problem from varied cognitive angles, promoting705

comprehensive exploration of the solution space and distributing the intrinsic cognitive load of the706

task, without the cognitive burden of strict role-playing.707

B.2 Prompt Architecture for Transactive Memory System (TMS) Emulation708

As introduced in Section 4.2, CoThinker incorporates a mechanism to emulate a human Transactive709

Memory System (TMS). A TMS is a collective cognitive resource developed by groups, encompass-710

ing a shared understanding of who knows what (metamemory or expertise directory), how to access711

and integrate this distributed knowledge, and a level of trust in the information provided by different712

members [Wegner, 1987, Hollingshead, 2001, Lewis, 2003]. Effective TMS functioning involves713

processes of knowledge encoding (assigning information to members or recognizing expertise), stor-714

age (individuals retaining specialized knowledge), and retrieval (accessing and using the distributed715

knowledge), facilitated by member specialization, perceived credibility, and inter-agent coordination716

[Yoo and Kanawattanachai, 2001]. This systematic division and integration of cognitive labor allows717

groups to handle more complex information and solve problems more effectively than individuals or718

less coordinated groups.719

CoThinker’s emulation of TMS centers on the generation and presentation of the collective memory720

state, µ(t), at each round t. This is not merely an aggregation of past messages but a structured721

synthesis designed to reflect key TMS components. Specifically, an auxiliary LLM agent (the722

"TMS Manager") is tasked with populating a predefined "TMS Template" based on all agent outputs723

{x(t−1)
j }Mj=1 from the previous round and the existing memory state µ(t−1), to produce the updated724

µ(t). This template explicitly guides the TMS Manager to synthesize information reflecting:725

1. Expertise Directory ("Who Knows What"): The template prompts the TMS Manager to list726

the key contributions from each agent Aj in the previous round, often implicitly linking these727

contributions back to their assigned thinking style ϕj or emergent problem-solving role. For728

example, µ(t) might state: "Agent A (Analytical Thinker) identified three inconsistencies in the729

data, while Agent B (Creative Ideator) proposed two novel solutions based on X." This helps all730

agents maintain an updated awareness of which peer is focusing on, or has provided significant731

input regarding, specific facets of the task. This corresponds to the encoding of expertise and732

facilitates targeted retrieval cues.733

2. Shared Knowledge Store (Consensus and Artifacts): The template requires the TMS Manager734

to identify and articulate points of emerging consensus, established facts, or partial solutions that735

the group has collectively built. For instance: "Consensus: The primary bottleneck is resource736

allocation. Established: The budget cannot exceed Y." This component of µ(t) serves as the737

repository of stored, validated collective knowledge, reducing the need for agents to re-derive738

information and providing a foundation for subsequent reasoning.739

3. Differential Insights and Unresolved Issues (Focus for Coordination): A crucial part of the740

TMS template prompts the TMS Manager to highlight discrepancies between agent outputs,741

unresolved questions, conflicting perspectives, or aspects of the problem that remain unaddressed.742

Example: "Divergence: Agent C suggests strategy Alpha, while Agent D advocates for Beta.743

Unresolved: The feasibility of implementing X within the given timeframe." This explicitly flags744

areas requiring further discussion, debate, or focused problem-solving in the next round, thereby745

guiding inter-agent coordination and ensuring that cognitive effort is directed towards the most746

critical, unresolved aspects of the task assigned to most relavent agents.747

The structure of µ(t), as generated by this templated process, is then presented to each agent Ai at the748

beginning of round t as part of its input prompt. An excerpt illustrating this presentation is:749

[Agent’s assigned thinking style: {Style_phi_i}]750

[Overall Task: {Task_D}]751

752

Collective Summary from Previous Round (reflecting shared understanding mu^(t)):753

"{Text of mu^(t) generated by the TMS Manager using the TMS Template}"754
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755

Your Previous Output (x_i^(t-1)):756

"{Text of x_i^(t-1)}"757

758

Reference Outputs from Peers (P_i^(t-1)):759

Reference 1 (from Agent A_k): "{Text of x_k^(t-1)}"760

Reference 2 (from Agent A_l): "{Text of x_l^(t-1)}"761

...762

763

Based on all the above, and keeping your thinking style in mind,764

provide your refined thoughts/contribution for the current round:765

This deliberate structuring of µ(t) to reflect an expertise directory, a shared knowledge store, and a766

pointer to unresolved issues distinguishes CoThinker’s approach from simple multi-agent cooperation767

or discussion. While basic cooperation might involve information sharing, it often lacks the systematic768

assignment of knowledge domains, explicit tracking of expertise, and focused mechanisms for769

integrating specialized insights that a TMS provides. CoThinker’s TMS emulation aims to create a770

more efficient and powerful "group mind" by embedding these principles directly into the information771

environment of the agents, thereby reducing redundant effort and enhancing the quality of collective772

problem-solving.773

B.3 Communication Moderator: Cultivating an Efficient Network via Strong and Weak Ties774

The Communication Moderator in CoThinker (Section 4.3) strategically structures inter-agent com-775

munication by implicitly leveraging principles from social and complex network theories. This design776

fosters a network optimized for managing cognitive load and enhancing collective intelligence.777

Local Cohesion via Strong Cognitive Ties and High Clustering The primary reference selection778

mechanism (with probability 1 − β) connects agent Ai to peers whose prior outputs x(t−1)
k are779

most cognitively similar to Ai’s own x(t−1)
i . This promotes the formation of local clusters where780

agents process highly related information. From a social network perspective, these connections781

are analogous to strong ties [Granovetter, 1983], fostering cohesive subgroups. In network science,782

this behavior inherently leads to a high local clustering coefficient, indicating dense intra-group783

connectivity.784

• Rationale: Such local clustering facilitates focused refinement of shared ideas and reduces the785

extraneous cognitive load associated with integrating highly similar information.786

Global Integration via Weak Cognitive Ties and Small-World Properties Exclusive reliance787

on strong ties (i.e., β = 0) could lead to network fragmentation, where clusters become isolated788

"echo chambers." This corresponds to a lack of "bridging capital" across structural holes in social789

network theory [Burt, 2004], and a long average path length in network science, hindering the global790

distribution of diverse insights and the effective management of overall intrinsic cognitive load.791

The probabilistic "rewiring" mechanism (with probability β) counteracts this by compelling agents to792

also reference randomly chosen peers, irrespective of immediate cognitive similarity.793

• Mechanism and Analogy: These random connections function as weak ties [Granovetter, 1983],794

which are crucial for bridging disparate network segments and transmitting novel information.795

• Network Outcome: Introducing such weak ties into a highly clustered network is a hallmark of796

small-world networks [Watts and Strogatz, 1998]. These networks advantageously combine high797

local clustering with short global average path lengths.798

• Rationale: In CoThinker, these β-driven connections ensure efficient propagation of diverse799

perspectives across cognitive clusters. This shortens the information path length, promotes the800

synthesis of varied knowledge, helps distribute the intrinsic cognitive load of the overall task, and801

prevents premature convergence.802

In essence, the Communication Moderator dynamically cultivates a network with small-world803

characteristics. By balancing the formation of strong-tie local clusters for specialized processing with804

weak-tie bridges for global integration, it supports both deep, focused collaboration and the broad805

synthesis of diverse insights, crucial for effective collective problem-solving.806
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B.4 Synthesizer Module: Consolidation and Cognitive Grounding807

The Synthesizer module (Section 4.4) consolidates outputs from all agents ({x(T−1)
i }Mi=1) and the808

final Transactive Memory System state (µ(T−1)) into a single solution for the task D. The design809

choice for the Synthesizer can vary, with different cognitive implications:810

1. External Agent Synthesizer (Observational Learning): This involves a dedicated LLM instance,811

distinct from the collaborating agents, to produce the final output. This agent receives all final812

individual perspectives and the collective memory summary.813

• Cognitive Analogy: This setup mirrors Observational Learning [Bandura and Walters, 1977].814

The External Synthesizer observes the diverse problem-solving behaviors and refined outputs815

of the specialist agents. By analyzing these varied "models" of thought and their collective816

synthesis (µ(T−1)), it can construct a comprehensive solution, potentially integrating insights in817

a novel way without having been part of the iterative load distribution.818

2. In-group Agent Synthesizer (Collaborative Leading/Shared Regulation): One of the existing819

collaborating agents (e.g., an agent identified as a leader or one with a consistently high-quality820

output, or a randomly chosen one) can be tasked with synthesizing the final solution. This agent821

uses its own understanding, the collective memory µ(T−1), and the final outputs of its peers. align822

• Cognitive Analogy: This aligns with principles from Collaborative Cognitive Load Theory823

(CCLT) [Kirschner et al., 2018], specifically aspects of shared regulation and distributed824

leadership. The synthesizing agent, having participated in the collaborative process, leverages825

its deep contextual understanding and the established collective working memory (µ(T−1))826

to guide the final integration. Its synthesis is an act of "collaborative leading" by taking827

responsibility for the final product based on the group’s efforts.828

Sample Prompt for an External Agent Synthesizer (Synth):829

Original Task: "[Task Description D] "830

After collaborative thinking, the final individual831

perspectives from M=[Number of Agents] agents are:832

Agent 1: "[x(T−1)
1 ] "833

...834

Agent M: "[x(T−1)
M ] "835

The final collective understanding synthesized during their836

collaboration is:837

"[µ(T−1)] "838

Based on all this information, please generate a839

comprehensive, high-quality, and coherent final solution to840

the original task.841

This prompt structure ensures the Synthesizer has all necessary context to perform its role effectively.842

C Experimental Setup: In-Depth Information843

C.1 Detailed Benchmark Descriptions844

LiveBench [White et al., 2025] LiveBench serves as a dynamic and robust benchmark for eval-845

uating LLM capabilities, characterized by its frequent updates (monthly) to minimize test data846

contamination and its focus on objectively scorable, challenging tasks. It draws from established hard847

benchmarks like Big-Bench Hard and AMPS, as well as introducing novel problems. The tasks span848

a broad range of domains, including:849

• Mathematics: Encompassing competitive programming problems, olympiad-level mathe-850

matics, and algebraic simplification.851

• Reasoning: Covering logical deduction and spatial reasoning.852

• Language: Focusing on nuanced understanding and manipulation.853

• Instruction Following: Testing adherence to complex instructions854

• Data Analysis: Requiring structured data manipulation855
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CommonGen-Hard [Madaan et al., 2023] CommonGen-Hard, an extension of the CommonGen856

dataset [Lin et al., 2020], is specifically designed to impose high cognitive load by increasing element857

interactivity. The core task is to generate a coherent, multi-sentence paragraph incorporating a858

small set of 3-5 target concepts. The difficulty is amplified by including a large number (approx-859

imately 30) of irrelevant distractor concepts from which the model must select and use only the860

targets, while maintaining narrative coherence and commonsense plausibility. Given its generative861

nature, evaluation employs an LLM-based evaluator (gemini-1.5-pro) guided by a detailed rubric862

assessing ten dimensions. These dimensions are: (1) Relevance to Query (appropriateness and863

focus, highest weight); (2) Conciseness (brevity without losing essential content); (3) Clarity &864

Understandability (ease of comprehension); (4) Readability & Fluency (natural language flow,865

grammatical correctness); (5) Comprehensiveness & Completeness (addressing all prompt aspects);866

(6) Demonstrated Knowledge (accurate commonsense or domain knowledge); (7) Logic & Coher-867

ence (internal consistency and logical structure); (8) Originality & Creativity (novelty in ideas or868

framing); (9) Engagement & Interest (compelling nature of the response); (10) Insightfulness &869

Depth (analytical richness beyond surface content, lowest weight). Each dimension is scored (e.g.,870

1-10), and an aggregated total score is used. This setup directly tests the model’s ability to manage871

high element interactivity and filter relevant information, key aspects related to cognitive load.872

C.2 Detailed Baseline Method Descriptions873

The baseline methods used for comparison are implemented as follows:874

• Single Agent (Standard Prompt - IO): The base LLM is given the task instruction directly,875

without any specialized prompting techniques, serving as a fundamental measure of its raw876

capability.877

• Single Agent (CoT): Chain-of-Thought prompting [Wei et al., 2022] is employed, where the878

LLM is prompted to "think step by step" or provided with few-shot examples demonstrating879

a reasoning process before arriving at the final answer.880

• Single Agent (Self-Refine - SR) [Madaan et al., 2023]: This method involves an iterative881

process (T = 3 iterations). The LLM first generates an initial solution. Subsequently, it is882

prompted to critique its previous output and then to generate an improved version based on883

that critique.884

• Multi-Agent Debate (MAD) [Liang et al., 2023, Du et al., 2023]: Multiple LLM agents885

(M = 6) initially generate individual solutions. In subsequent iterative rounds (T = 3 total886

generations), each agent receives the solutions from all other agents from the previous round887

and is prompted to consider these peer solutions, critique them if necessary, and refine its888

own solution. The final answer is typically derived from the best-performing agent’s output889

after the debate rounds.890

• Diverse Multi-Agent Debate (DMAD) [Liu et al., 2025b]: DMAD extends MAD by891

promoting diverse reasoning methods from the outset. Each agent is assigned a distinct892

prompting strategy (e.g., standard IO, Chain-of-Thought, Step-Back Prompting) to generate893

its initial solution, aiming to break "fixed mental sets." These diverse initial solutions are894

then shared and refined through iterative debate rounds, similar to MAD.895

C.3 General Implementation Details896

Experiments were conducted using Python and Google’s Generative AI SDK. LLM API Parameters:897

For all baseline methods (IO, CoT, SR) and the initial generation round (t = 0) of multi-agent methods898

(MAD, DMAD, CoThinker), the API temperature was set to "0.25" to encourage some diversity. For899

subsequent iterative rounds (t > 0) in CoThinker, MAD, and DMAD, the temperature was set to900

"0.0" and "frequency_penalty" to "0.5" to promote focused refinement and reduce repetition. Other901

API parameters (e.g., "top_p", "top_k") were left at their default values. Maximum output tokens902

were set appropriately for each task.903

CoThinker Default Configuration: Unless specified otherwise in ablation studies, CoThinker used904

M = 6 agents, Tmax = 3 interaction rounds (initial generation + 2 refinement rounds), a reference905

set size N = 3 (each agent receives messages from 3 peers), and an exploration rate β = 0.3.906
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D Detailed Experimental Results and Ablation Studies907

This appendix provides supplementary experimental results, including comprehensive raw scores908

for all subtasks across various model families and prompting methodologies. Furthermore, it details909

ablation studies conducted to investigate the sensitivity of model performance to key hyperparameters.910

D.1 Raw Subtask Performance Scores911

The subsequent tables (Table 2 through Table 4) itemize the raw performance scores achieved on each912

subtask. Scores are reported to two decimal places. A hyphen (-) signifies missing or non-numeric913

data. Each table is dedicated to a distinct base model family.914

Table 2: Raw scores for each subtask for gemini-1.5-flash-8b models across different prompting
methods.

Subtask IO CoT SR MAD DMAD CoThinker
Connections 13.50 18.17 17.33 17.67 17.00 19.33
CTA 54.00 50.00 30.00 48.00 52.00 54.00
Math Comp. 26.09 23.91 21.74 28.26 30.43 26.09
Olympiad 23.82 27.64 23.84 28.25 25.87 29.00
Paraphrase 74.27 72.82 38.42 65.22 66.55 46.02
Simplify 70.33 70.70 62.78 63.88 61.08 70.25
Spatial 34.00 28.00 18.00 34.00 22.00 28.00
Story Gen. 73.08 68.75 62.92 66.75 67.00 65.08
Summarize 69.35 71.27 50.43 58.32 62.62 42.32
Table Join 5.44 4.10 0.00 2.00 1.78 12.02
Table Reformat 80.00 82.00 36.00 38.00 50.00 60.00
Zebra Puzzle 16.00 22.25 17.25 22.75 17.00 25.75

Table 3: Raw scores for each subtask for gemini-1.5-flash models across different prompting
methods.

Subtask IO CoT SR MAD DMAD CoThinker
Connections 28.17 24.00 22.83 33.17 28.50 33.67
CTA 56.00 56.00 36.00 56.00 54.00 52.00
Math Comp. 41.30 39.13 39.13 41.30 41.30 41.30
Olympiad 32.20 34.37 33.35 34.41 33.27 36.89
Paraphrase 80.70 78.17 52.22 80.58 82.22 72.35
Simplify 75.83 77.68 67.57 72.07 74.40 69.00
Spatial 50.00 50.00 36.00 58.00 52.00 52.00
Story Gen. 76.25 77.50 57.92 60.75 80.75 79.50
Summarize 77.55 75.92 54.05 68.47 74.33 68.97
Table Join 21.64 22.78 8.12 15.00 32.60 31.20
Table Reformat 86.00 80.00 44.00 48.00 44.00 50.00
Zebra Puzzle 28.50 32.00 32.50 34.25 37.50 38.50

D.2 Subtask Descriptions915

The evaluation benchmark comprises a diverse array of subtasks, each designed to assess specific916

reasoning and generation capabilities of the models. Concise descriptions for each subtask category917

are provided below:918

Connections: Assesses the model’s aptitude for identifying and comprehending relationships (e.g.,919

logical, causal, shared attributes) between disparate textual elements or conceptual ideas.920

CTA (Call to Action): Evaluates the model’s effectiveness in generating or interpreting persuasive or921

directive language aimed at eliciting a targeted response or action.922
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Table 4: Raw scores for each subtask for gemini-1.5-pro models across different prompting
methods.

Subtask IO CoT SR MAD DMAD CoThinker
Connections 31.17 36.50 35.17 44.67 44.50 46.00
CTA 56.00 58.00 36.00 56.00 60.00 58.00
Math Comp. 47.83 36.96 45.65 54.35 56.52 56.52
Olympiad 51.79 54.77 50.16 59.63 58.46 62.72
Paraphrase 75.37 73.78 34.18 48.50 73.88 65.17
Simplify 74.77 75.72 54.48 55.43 72.88 66.37
Spatial 44.00 48.00 36.00 34.00 38.00 38.00
Story Gen. 69.72 68.05 42.55 56.85 67.30 73.05
Summarize 68.92 67.17 46.23 52.83 69.05 65.72
Table Join 35.98 32.56 16.16 43.82 42.32 44.18
Table Reformat 88.00 88.00 28.00 28.00 86.00 78.00
Zebra Puzzle 39.00 35.75 40.75 41.00 42.25 44.50

Math Comp. (Mathematical Computation): Measures the model’s proficiency in executing mathe-923

matical calculations and resolving problems necessitating computational procedures.924

Olympiad: Challenges the model with highly complex mathematical problems, characteristic of925

mathematics Olympiads, which demand profound reasoning and multi-step solution strategies.926

Paraphrase: Tests the model’s ability to accurately rephrase given text while preserving its original927

semantic content, thereby demonstrating linguistic understanding and versatility.928

Simplify: Assesses the model’s capacity to transform complex textual information into a more readily929

understandable format, typically by employing simpler vocabulary and sentence structures without930

loss of core meaning.931

Spatial: Evaluates the model’s spatial reasoning faculties, including its ability to understand and932

reason about objects in two or three-dimensional space, their interrelations, positions, and transfor-933

mations.934

Story Generation: Measures the model’s creative ability to produce coherent, engaging, and contex-935

tually relevant narratives derived from specified prompts or constraints.936

Summarize: Assesses the model’s proficiency in condensing extended passages of text into succinct937

summaries that encapsulate the principal points and essential information.938

Table Join: Evaluates the model’s comprehension of relational data structures by requiring it to939

identify appropriate mechanisms for combining or linking multiple data tables based on common940

columns or keys.941

Table Reformat: Tests the model’s capability to manipulate tabular data by converting a table from942

one structural or data representation format to another, adhering to provided instructions.943

Zebra Puzzle: Assesses the model’s deductive reasoning and constraint satisfaction abilities through944

logic puzzles (such as Einstein’s Puzzle) that necessitate deriving a solution from a given set of clues.945

D.3 Ablation Study: Impact of Reference Set Size (N)946

This study investigates the influence of varying the reference set size (hyperparameter N) on model947

performance across selected subtasks. N dictates the number of prior examples or "thoughts"948

considered by the model during generation. Values of N from 0 (representing a baseline, e.g.,949

standard CoT where N/A) to 5 were evaluated using the gemini-1.5-flash-8b model. The results950

are illustrated in Figure 5.951

Analysis of Figure 5:952

• The general trend in performance on these reasoning-intensive (’olympiad’, ’spatial’, ’ze-953

bra_puzzle’) and language-based (’connections’) tasks is examined to determine if it im-954

proves, plateaus, or reveals an optimal N value.955

• Performance at N=0 (baseline) is contrasted with N>0 configurations to ascertain whether956

the introduction of a reference set confers a tangible advantage for these specific tasks.957
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Figure 5: Effect of Reference Set Size (N) on performance for selected subtasks (’connections’,
’olympiad’, ’zebra_puzzle’, ’spatial’) using the gemini-1.5-flash-8b model. Subtasks are color-
coded by their primary category.

• The differential sensitivity of subtasks to variations in N is analyzed, particularly for compu-958

tationally demanding tasks like ’olympiad’ (Math) or ’zebra_puzzle’ (Reasoning) relative to959

’connections’ or ’spatial’.960

• The investigation seeks to identify if a particular N value (e.g., N=2 or N=3) consistently961

yields superior scores or an advantageous performance-cost balance across these subtasks.962

• Evidence for diminishing returns is sought, where increasing N beyond a certain point might963

lead to marginal gains or even performance degradation, potentially due to the introduction964

of noise or distracting elements from an overly large reference set.965

Contextual Note: Reasoning and mathematical tasks are often hypothesized to benefit from a moder-966

ately sized, diverse reference set. While N=0 or N=1 might provide insufficient context, excessively967

large N values could introduce irrelevant information.968

D.4 Ablation Study: Impact of Exploration Rate (Beta)969

This ablation study explores the effect of the exploration rate (hyperparameter Beta) on model970

performance for selected subtasks, maintaining a fixed reference set size of N=2. Beta influences the971

diversity of thoughts or solutions generated by the model. The gemini-1.5-flash-8b model was972

employed for this analysis (Figure 6).973

Analysis of Figure 6:974

• The analysis aims to identify an optimal or effective range for Beta where performance peaks975

for the selected subtasks, which include data analysis (’tablejoin’), instruction following976

(’story_generation’, ’simplify’), and mathematical computation (’math_comp’).977

• The impact of extreme Beta values (both very low, indicating minimal exploration, and978

very high, indicating extensive exploration) on performance is examined for potential979

suboptimality.980

• Differential responses to Beta across subtasks are investigated, for instance, whether cre-981

ative tasks like ’story_generation’ benefit from a different Beta regime compared to more982

structured tasks such as ’math_comp’ or ’tablejoin’.983
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Figure 6: Effect of Exploration Rate (Beta) on performance for selected subtasks (’tablejoin’,
’story_generation’, ’math_comp’, ’simplify’) using gemini-1.5-flash-8b with N=2. Subtasks are
color-coded by their primary category.

• The stability of performance across the spectrum of Beta values is assessed, noting any984

significant fluctuations versus relatively consistent scores within particular ranges.985

Contextual Note: A moderate Beta value (e.g., 0.3-0.6 in analogous systems) often represents a986

balance. Excessively low Beta values might risk premature convergence on suboptimal solutions,987

while overly high values could lead to an excessively diverse, and potentially lower-quality, set of988

outputs.989

D.5 Ablation Study: Impact of Number of Agents (M)990

This study assesses the influence of the number of agents (hyperparameter M) on performance across991

all subtasks, with the reference set size fixed at N=3. M denotes the number of independent reasoning992

paths or "thinkers" utilized by the model. The gemini-1.5-flash-8b model was used for this993

evaluation (Figure 7).994

Analysis of Figure 7:995

• The overall impact of increasing M on performance is analyzed to determine if it generally996

leads to improvements across most subtasks or if the effects are heterogeneous.997

• A cost-benefit perspective is considered, as higher M values, while potentially enhancing998

performance, also incur increased computational overhead. The study seeks an M value that999

offers a good trade-off.1000

• Subtasks that derive particular benefit from a larger number of agents are identified; for1001

example, complex reasoning tasks or those requiring diverse perspectives might exhibit1002

more substantial gains.1003

• The analysis looks for a saturation point where the benefits of increasing M diminish or1004

where performance might even degrade for some (or all) tasks.1005

Contextual Note: Employing a greater number of agents can enhance the robustness and breadth1006

of exploration. However, an excessive number might not yield significant incremental value or1007

could potentially introduce noise if the aggregation of outputs from multiple agents is not optimally1008

managed.1009
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Figure 7: Effect of Number of Agents (M) on performance across all subtasks for
gemini-1.5-flash-8b with N=3. Each facet corresponds to a subtask, color-coded by its pri-
mary category.

D.6 Ablation Study: Performance for Specific M/N1010

This analysis evaluates performance across three distinct (M, N) configurations for the1011

gemini-1.5-flash-8b model: M6_N3, M12_N6, and M18_N3. These evaluations are conducted1012

under the "With Style" configuration, with Beta fixed at 0.3 and T (temperature or trials) at 3. Results1013

are presented in Figure 8.1014

Figure 8: Subtask performance for specific M/N configurations (M6_N3, M12_N6, M18_N3) using
gemini-1.5-flash-8b under the configuration (Beta=0.3, T=3). Faceted by subtask.

Analysis of Figure 8:1015

• The investigation aims to identify which of the tested (M, N) pairs yields the most favorable1016

performance, either broadly across subtasks or for specific, critical subtasks.1017

• The trade-off between computational cost and performance gain is considered, as the1018

configurations (M6_N3, M12_N6, M18_N3) entail different computational demands.1019

• The interaction between M and N is observed by comparing configurations; for instance,1020

whether simultaneous increases in M and N (e.g., M6_N3 to M12_N6) lead to consistent1021
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improvements. The M18_N3 configuration provides insight into a different scaling strategy1022

(higher M, moderate N).1023

• Consistency in the ranking of these (M, N) configurations across different subtasks is1024

examined.1025

Contextual Note: This study assists in identifying potentially effective fixed configurations by explor-1026

ing varied scaling strategies for the hyperparameters M and N within the "With Style" framework.1027

E Limitations and Future Work1028

While CoThinker demonstrates promising results in managing cognitive load and enhancing collabo-1029

rative LLM performance, this work has several limitations that also point towards avenues for future1030

research.1031

Limitations include the scope of LLM evaluation, which primarily utilized models from the Gemini1032

family. The generalizability of specific performance benefits and optimal hyperparameter settings1033

across a wider range of LLM architectures requires further exploration. Additionally, while we1034

argue that CoThinker manages transactional costs associated with multi-agent collaboration, a more1035

fine-grained quantitative analysis of these costs versus the gains in solution quality would offer a1036

more complete efficiency profile. The "thinking styles" currently rely on an LLM orchestrator and1037

base styles; the true emergent specialization and their direct impact on distributing intrinsic load1038

warrant deeper investigation.1039

Future Work could explore several promising directions. Developing adaptive CoThinker archi-1040

tectures that dynamically adjust parameters (number of agents, communication topology) based on1041

real-time task assessment is a key area. Deeper integration of CLT principles, such as explicitly1042

modeling and minimizing extraneous load from prompt design or fostering germane load via so-1043

phisticated scaffolding, could further enhance performance. Creating methods for explainability of1044

collective cognition within CoThinker—tracing information flow, identifying critical contributions,1045

and characterizing shared understanding evolution—would improve transparency. Extending the1046

framework for human-AI collaboration, incorporating human users as specialized agents, could lead1047

to powerful human-LLM group cognition. Finally, the prospect of such fused intelligence necessitates1048

proactive examination of its societal implications, including equity, potential for misuse, account-1049

ability, and ethical considerations, demanding robust frameworks for responsible development and1050

governance. Addressing these limitations and pursuing these future directions will further advance1051

our understanding of how to build truly collaborative and cognitively capable LLM-based systems.1052
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NeurIPS Paper Checklist1053

1. Claims1054

Question: Do the main claims made in the abstract and introduction accurately reflect the1055

paper’s contributions and scope?1056

Answer:[Yes]1057

Justification: The abstract and introduction clearly state the main contributions: (1) ex-1058

plaining LLM performance ceilings via an analogy to CLT, (2) introducing CoThinker as a1059

CLT-operationalizing multi-agent architecture, and (3) empirically validating CoThinker.1060

These claims are reflected in the theoretical discussions (Section 3, 4) and experimental1061

results (Section 5).1062

Guidelines:1063

• The answer NA means that the abstract and introduction do not include the claims1064

made in the paper.1065

• The abstract and/or introduction should clearly state the claims made, including the1066

contributions made in the paper and important assumptions and limitations. A No or1067

NA answer to this question will not be perceived well by the reviewers.1068

• The claims made should match theoretical and experimental results, and reflect how1069

much the results can be expected to generalize to other settings.1070

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1071

are not attained by the paper.1072

2. Limitations1073

Question: Does the paper discuss the limitations of the work performed by the authors?1074

Answer: [Yes]1075

Justification: We have include a section talking about our limitation and future work in the1076

appendix E1077

Guidelines:1078

• The answer NA means that the paper has no limitation while the answer No means that1079

the paper has limitations, but those are not discussed in the paper.1080

• The authors are encouraged to create a separate "Limitations" section in their paper.1081

• The paper should point out any strong assumptions and how robust the results are to1082

violations of these assumptions (e.g., independence assumptions, noiseless settings,1083

model well-specification, asymptotic approximations only holding locally). The authors1084

should reflect on how these assumptions might be violated in practice and what the1085

implications would be.1086

• The authors should reflect on the scope of the claims made, e.g., if the approach was1087

only tested on a few datasets or with a few runs. In general, empirical results often1088

depend on implicit assumptions, which should be articulated.1089

• The authors should reflect on the factors that influence the performance of the approach.1090

For example, a facial recognition algorithm may perform poorly when image resolution1091

is low or images are taken in low lighting. Or a speech-to-text system might not be1092

used reliably to provide closed captions for online lectures because it fails to handle1093

technical jargon.1094

• The authors should discuss the computational efficiency of the proposed algorithms1095

and how they scale with dataset size.1096

• If applicable, the authors should discuss possible limitations of their approach to1097

address problems of privacy and fairness.1098

• While the authors might fear that complete honesty about limitations might be used by1099

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1100

limitations that aren’t acknowledged in the paper. The authors should use their best1101

judgment and recognize that individual actions in favor of transparency play an impor-1102

tant role in developing norms that preserve the integrity of the community. Reviewers1103

will be specifically instructed to not penalize honesty concerning limitations.1104

3. Theory assumptions and proofs1105

28



Question: For each theoretical result, does the paper provide the full set of assumptions and1106

a complete (and correct) proof?1107

Answer: [NA]1108

Justification: The paper’s theoretical contribution is primarily an analogical framework (CLT1109

applied to LLMs) and a conceptual architecture (CoThinker) rather than formal mathematical1110

theorems or proofs. The justification for the architecture’s design is rooted in established1111

cognitive science principles (Section 3).1112

Guidelines:1113

• The answer NA means that the paper does not include theoretical results.1114

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1115

referenced.1116

• All assumptions should be clearly stated or referenced in the statement of any theorems.1117

• The proofs can either appear in the main paper or the supplemental material, but if1118

they appear in the supplemental material, the authors are encouraged to provide a short1119

proof sketch to provide intuition.1120

• Inversely, any informal proof provided in the core of the paper should be complemented1121

by formal proofs provided in appendix or supplemental material.1122

• Theorems and Lemmas that the proof relies upon should be properly referenced.1123

4. Experimental result reproducibility1124

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1125

perimental results of the paper to the extent that it affects the main claims and/or conclusions1126

of the paper (regardless of whether the code and data are provided or not)?1127

Answer: [Yes]1128

Justification: Section 5.1 and section C.3 in appendix details the base LLMs, benchmarks,1129

baselines, and all configuration parameters (temperature, agent count, rounds, CoThinker1130

parameters N, β). The CoThinker architecture and process flow are described in Section 4.1131

Further details on detailed prompts will be included in the Supplementary Material.1132

Guidelines:1133

• The answer NA means that the paper does not include experiments.1134

• If the paper includes experiments, a No answer to this question will not be perceived1135

well by the reviewers: Making the paper reproducible is important, regardless of1136

whether the code and data are provided or not.1137

• If the contribution is a dataset and/or model, the authors should describe the steps taken1138

to make their results reproducible or verifiable.1139

• Depending on the contribution, reproducibility can be accomplished in various ways.1140

For example, if the contribution is a novel architecture, describing the architecture fully1141

might suffice, or if the contribution is a specific model and empirical evaluation, it may1142

be necessary to either make it possible for others to replicate the model with the same1143

dataset, or provide access to the model. In general. releasing code and data is often1144

one good way to accomplish this, but reproducibility can also be provided via detailed1145

instructions for how to replicate the results, access to a hosted model (e.g., in the case1146

of a large language model), releasing of a model checkpoint, or other means that are1147

appropriate to the research performed.1148

• While NeurIPS does not require releasing code, the conference does require all submis-1149

sions to provide some reasonable avenue for reproducibility, which may depend on the1150

nature of the contribution. For example1151

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1152

to reproduce that algorithm.1153

(b) If the contribution is primarily a new model architecture, the paper should describe1154

the architecture clearly and fully.1155

(c) If the contribution is a new model (e.g., a large language model), then there should1156

either be a way to access this model for reproducing the results or a way to reproduce1157

the model (e.g., with an open-source dataset or instructions for how to construct1158

the dataset).1159
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(d) We recognize that reproducibility may be tricky in some cases, in which case1160

authors are welcome to describe the particular way they provide for reproducibility.1161

In the case of closed-source models, it may be that access to the model is limited in1162

some way (e.g., to registered users), but it should be possible for other researchers1163

to have some path to reproducing or verifying the results.1164

5. Open access to data and code1165

Question: Does the paper provide open access to the data and code, with sufficient instruc-1166

tions to faithfully reproduce the main experimental results, as described in supplemental1167

material?1168

Answer: [No]1169

Justification: At the time of submission, the code for CoThinker and specific experimental1170

scripts are not publicly released. However, the paper provides detailed descriptions of1171

the architecture (Section 4) and experimental setup (Section 5.1) to facilitate conceptual1172

replication. The datasets used (LiveBench, CommonGen-Hard) are publicly available.1173

Guidelines:1174

• The answer NA means that paper does not include experiments requiring code.1175

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1176

public/guides/CodeSubmissionPolicy) for more details.1177

• While we encourage the release of code and data, we understand that this might not be1178

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1179

including code, unless this is central to the contribution (e.g., for a new open-source1180

benchmark).1181

• The instructions should contain the exact command and environment needed to run to1182

reproduce the results. See the NeurIPS code and data submission guidelines (https:1183

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1184

• The authors should provide instructions on data access and preparation, including how1185

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1186

• The authors should provide scripts to reproduce all experimental results for the new1187

proposed method and baselines. If only a subset of experiments are reproducible, they1188

should state which ones are omitted from the script and why.1189

• At submission time, to preserve anonymity, the authors should release anonymized1190

versions (if applicable).1191

• Providing as much information as possible in supplemental material (appended to the1192

paper) is recommended, but including URLs to data and code is permitted.1193

6. Experimental setting/details1194

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1195

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1196

results?1197

Answer: [Yes]1198

Justification: ection 5.1 specifies the base LLMs, temperature settings, agent count (M = 6),1199

interaction rounds (T = 3), and CoThinker-specific hyperparameters (N = 3, β = 0.3) for1200

the main experiments. Ablation studies (Section 5.4) explore variations of these. Details on1201

data (benchmarks used) are also provided, with further specifics referenced to the Appendix.1202

Guidelines:1203

• The answer NA means that the paper does not include experiments.1204

• The experimental setting should be presented in the core of the paper to a level of detail1205

that is necessary to appreciate the results and make sense of them.1206

• The full details can be provided either with the code, in appendix, or as supplemental1207

material.1208

7. Experiment statistical significance1209

Question: Does the paper report error bars suitably and correctly defined or other appropriate1210

information about the statistical significance of the experiments?1211
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Answer: [No]1212

Justification: The current version of the paper reports point estimates for performance on1213

benchmarks. Error bars or statistical significance tests are not included, primarily due to the1214

deterministic nature of the current experimental setup with fixed temperatures (after initial1215

generation) and the focus on demonstrating architectural efficacy across diverse tasks rather1216

than fine-grained statistical variations.1217

Guidelines:1218

• The answer NA means that the paper does not include experiments.1219

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1220

dence intervals, or statistical significance tests, at least for the experiments that support1221

the main claims of the paper.1222

• The factors of variability that the error bars are capturing should be clearly stated (for1223

example, train/test split, initialization, random drawing of some parameter, or overall1224

run with given experimental conditions).1225

• The method for calculating the error bars should be explained (closed form formula,1226

call to a library function, bootstrap, etc.)1227

• The assumptions made should be given (e.g., Normally distributed errors).1228

• It should be clear whether the error bar is the standard deviation or the standard error1229

of the mean.1230

• It is OK to report 1-sigma error bars, but one should state it. The authors should1231

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1232

of Normality of errors is not verified.1233

• For asymmetric distributions, the authors should be careful not to show in tables or1234

figures symmetric error bars that would yield results that are out of range (e.g. negative1235

error rates).1236

• If error bars are reported in tables or plots, The authors should explain in the text how1237

they were calculated and reference the corresponding figures or tables in the text.1238

8. Experiments compute resources1239

Question: For each experiment, does the paper provide sufficient information on the com-1240

puter resources (type of compute workers, memory, time of execution) needed to reproduce1241

the experiments?1242

Answer: [Yes]1243

Justification: The paper specifies the LLMs used (Gemini family via API access) but does1244

not detail exact execution times per task, as these can vary based on API load and are less1245

directly controlled. Specific compute hardware and memory on the user’s side are minimal1246

as computation is offloaded. Token usage, which is a key cost factor, will be detailed in the1247

supplementary material/Appendix for transparency regarding resource consumption.1248

Guidelines:1249

• The answer NA means that the paper does not include experiments.1250

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1251

or cloud provider, including relevant memory and storage.1252

• The paper should provide the amount of compute required for each of the individual1253

experimental runs as well as estimate the total compute.1254

• The paper should disclose whether the full research project required more compute1255

than the experiments reported in the paper (e.g., preliminary or failed experiments that1256

didn’t make it into the paper).1257

9. Code of ethics1258

Question: Does the research conducted in the paper conform, in every respect, with the1259

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1260

Answer: [Yes]1261

Justification: The research focuses on developing a multi-agent LLM architecture for1262

improved problem-solving and does not involve human subjects, direct data collection from1263

individuals, or applications with immediate high-risk ethical concerns. We have reviewed1264

the NeurIPS Code of Ethics and believe our work conforms to it.1265
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Guidelines:1266

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1267

• If the authors answer No, they should explain the special circumstances that require a1268

deviation from the Code of Ethics.1269

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1270

eration due to laws or regulations in their jurisdiction).1271

10. Broader impacts1272

Question: Does the paper discuss both potential positive societal impacts and negative1273

societal impacts of the work performed?1274

Answer: [Yes]1275

Justification: Justification: Section E (Future Work subsection) discusses the broader societal1276

impacts. It outlines the potential for "Human-LLM Fused Group Cognition" to dramatically1277

enhance problem-solving for societal grand challenges (positive impact). It also explicitly1278

addresses potential negative impacts and ethical considerations, including equity of access,1279

new forms of manipulation, amplified biases, accountability in distributed decision-making,1280

and the ethics of deeply integrating AI into human deliberative processes, calling for1281

responsible development and governance.1282

Guidelines:1283

• The answer NA means that there is no societal impact of the work performed.1284

• If the authors answer NA or No, they should explain why their work has no societal1285

impact or why the paper does not address societal impact.1286

• Examples of negative societal impacts include potential malicious or unintended uses1287

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1288

(e.g., deployment of technologies that could make decisions that unfairly impact specific1289

groups), privacy considerations, and security considerations.1290

• The conference expects that many papers will be foundational research and not tied1291

to particular applications, let alone deployments. However, if there is a direct path to1292

any negative applications, the authors should point it out. For example, it is legitimate1293

to point out that an improvement in the quality of generative models could be used to1294

generate deepfakes for disinformation. On the other hand, it is not needed to point out1295

that a generic algorithm for optimizing neural networks could enable people to train1296

models that generate Deepfakes faster.1297

• The authors should consider possible harms that could arise when the technology is1298

being used as intended and functioning correctly, harms that could arise when the1299

technology is being used as intended but gives incorrect results, and harms following1300

from (intentional or unintentional) misuse of the technology.1301

• If there are negative societal impacts, the authors could also discuss possible mitigation1302

strategies (e.g., gated release of models, providing defenses in addition to attacks,1303

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1304

feedback over time, improving the efficiency and accessibility of ML).1305

11. Safeguards1306

Question: Does the paper describe safeguards that have been put in place for responsible1307

release of data or models that have a high risk for misuse (e.g., pretrained language models,1308

image generators, or scraped datasets)?1309

Answer: [NA]1310

Justification: The paper introduces an architecture (CoThinker) that utilizes existing pre-1311

trained LLMs (Gemini family). It does not release new pre-trained models or large-scale1312

datasets that would pose a high risk for misuse requiring specific safeguards beyond those1313

implemented by the original LLM providers.1314

Guidelines:1315

• The answer NA means that the paper poses no such risks.1316

• Released models that have a high risk for misuse or dual-use should be released with1317

necessary safeguards to allow for controlled use of the model, for example by requiring1318
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that users adhere to usage guidelines or restrictions to access the model or implementing1319

safety filters.1320

• Datasets that have been scraped from the Internet could pose safety risks. The authors1321

should describe how they avoided releasing unsafe images.1322

• We recognize that providing effective safeguards is challenging, and many papers do1323

not require this, but we encourage authors to take this into account and make a best1324

faith effort.1325

12. Licenses for existing assets1326

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1327

the paper, properly credited and are the license and terms of use explicitly mentioned and1328

properly respected?1329

Answer: [Yes]1330

Justification: The base LLMs used (Gemini family) are products of Google and are used via1331

their API, respecting their terms of service. The benchmarks LiveBench [White et al., 2025]1332

and CommonGen-Hard [Madaan et al., 2023] are publicly available datasets and are cited1333

appropriately (Section 5.1). Specific licenses for these benchmarks could be detailed further1334

in an Appendix.1335

Guidelines:1336

• The answer NA means that the paper does not use existing assets.1337

• The authors should cite the original paper that produced the code package or dataset.1338

• The authors should state which version of the asset is used and, if possible, include a1339

URL.1340

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1341

• For scraped data from a particular source (e.g., website), the copyright and terms of1342

service of that source should be provided.1343

• If assets are released, the license, copyright information, and terms of use in the1344

package should be provided. For popular datasets, paperswithcode.com/datasets1345

has curated licenses for some datasets. Their licensing guide can help determine the1346

license of a dataset.1347

• For existing datasets that are re-packaged, both the original license and the license of1348

the derived asset (if it has changed) should be provided.1349

• If this information is not available online, the authors are encouraged to reach out to1350

the asset’s creators.1351

13. New assets1352

Question: Are new assets introduced in the paper well documented and is the documentation1353

provided alongside the assets?1354

Answer: [NA]1355

Justification: The paper introduces a new architecture (CoThinker) but does not release new1356

datasets, code, or pre-trained models as standalone assets at this time. The architecture itself1357

is documented within the paper (Section 4).1358

Guidelines:1359

• The answer NA means that the paper does not release new assets.1360

• Researchers should communicate the details of the dataset/code/model as part of their1361

submissions via structured templates. This includes details about training, license,1362

limitations, etc.1363

• The paper should discuss whether and how consent was obtained from people whose1364

asset is used.1365

• At submission time, remember to anonymize your assets (if applicable). You can either1366

create an anonymized URL or include an anonymized zip file.1367

14. Crowdsourcing and research with human subjects1368

Question: For crowdsourcing experiments and research with human subjects, does the paper1369

include the full text of instructions given to participants and screenshots, if applicable, as1370

well as details about compensation (if any)?1371
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Answer: [NA]1372

Justification: The research presented does not involve crowdsourcing experiments or direct1373

research with human subjects.1374

Guidelines:1375

• The answer NA means that the paper does not involve crowdsourcing nor research with1376

human subjects.1377

• Including this information in the supplemental material is fine, but if the main contribu-1378

tion of the paper involves human subjects, then as much detail as possible should be1379

included in the main paper.1380

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1381

or other labor should be paid at least the minimum wage in the country of the data1382

collector.1383

15. Institutional review board (IRB) approvals or equivalent for research with human1384

subjects1385

Question: Does the paper describe potential risks incurred by study participants, whether1386

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1387

approvals (or an equivalent approval/review based on the requirements of your country or1388

institution) were obtained?1389

Answer: [NA]1390

Justification: The research presented does not involve crowdsourcing experiments or direct1391

research with human subjects, so IRB approval was not applicable.1392

Guidelines:1393

• The answer NA means that the paper does not involve crowdsourcing nor research with1394

human subjects.1395

• Depending on the country in which research is conducted, IRB approval (or equivalent)1396

may be required for any human subjects research. If you obtained IRB approval, you1397

should clearly state this in the paper.1398

• We recognize that the procedures for this may vary significantly between institutions1399

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1400

guidelines for their institution.1401

• For initial submissions, do not include any information that would break anonymity (if1402

applicable), such as the institution conducting the review.1403

16. Declaration of LLM usage1404

Question: Does the paper describe the usage of LLMs if it is an important, original, or1405

non-standard component of the core methods in this research? Note that if the LLM is used1406

only for writing, editing, or formatting purposes and does not impact the core methodology,1407

scientific rigorousness, or originality of the research, declaration is not required.1408

Answer: [Yes]1409

Justification: LLMs are a central component of the core methods investigated; specifically,1410

the CoThinker architecture is an LLM-based multi-agent system where LLMs (Gemini1411

family) function as the agents (Sections 4, 5.1). The research studies these LLM agents1412

within our novel framework. The conceptualization of this framework, the CLT analogy,1413

and the research design itself are human-derived contributions, with LLMs being the subject1414

and operational components of the proposed methodology.1415

Guidelines:1416

• The answer NA means that the core method development in this research does not1417

involve LLMs as any important, original, or non-standard components.1418

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1419

for what should or should not be described.1420
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