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ABSTRACT

We present a novel algorithm – convex natural evolutionary strategies (CoNES) –
for optimizing high-dimensional blackbox functions by leveraging tools from con-
vex optimization and information geometry. CoNES is formulated as an efficiently-
solvable convex program that adapts the evolutionary strategies (ES) gradient
estimate to promote rapid convergence. The resulting algorithm is invariant to the
parameterization of the belief distribution. Our numerical results demonstrate that
CoNES vastly outperforms conventional blackbox optimization methods on a suite
of functions used for benchmarking blackbox optimizers. Furthermore, CoNES
demonstrates the ability to converge faster than conventional blackbox methods on
a selection of OpenAI’s MuJoCo reinforcement learning tasks for locomotion.

1 INTRODUCTION

Policy optimization in reinforcement learning (RL) can be posed as a blackbox optimization problem:
given access to a “blackbox” in the form of a simulator or robot hardware, find a setting of policy
parameters that maximizes rewards. This perspective has led to significant recent interest from
the RL community towards scaling blackbox optimization methods and has catapulted the use of
blackbox optimizers from low-dimensional hyperparameter tuning (Golovin et al., 2017; Hutter et al.,
2019) to training deep neural networks (DNNs) with thousands of parameters (Salimans et al., 2017;
Choromanski et al., 2019a;b; Liu et al., 2019; Conti et al., 2018; Mania et al., 2018). Despite these
promising advances, the sample complexity of blackbox methods remains high and is the subject of
ongoing research.

In this paper we study a class of blackbox optimization methods called evolutionary strategies (ES)
(Rechenberg & Eigen, 1973; Salimans et al., 2017). ES methods maintain a belief distribution on the
domain of candidates. At each iteration, a batch of candidates is sampled from this distribution and
their fitness is evaluated. These fitness scores are used to obtain a Monte-Carlo (MC) estimate of
the loss function’s gradient with respect to the parameters of the belief distribution. In the domain
of ES for RL, approaches that adapt the sampling rate from the belief distribution and reuse sam-
ples from previous iterations have been proposed to improve the sample complexity (Choromanski
et al., 2019a;b). However, standard ES methods are not invariant to re-parameterizations of the
belief distribution. Hence, the choice of belief parameterization (e.g., encoding the covariance as a
symmetric positive definite matrix vs. a Cholesky decomposition) can affect the rate of convergence
and cause undesirable behavior (e.g., oscillations) (Wierstra et al., 2014). In contrast, ES techniques
based on the natural gradient (Amari, 1998; Sun et al., 2009; Wierstra et al., 2014) are parameter-
ization invariant and can demonstrate improved sample efficiency. However, these methods have
not been thoroughly exploited in RL due to the difficulties in computing the natural gradient for
high-dimensional problems; in particular, the challenging estimation of the Fisher information matrix
is necessary for computing the natural gradient.

In this paper, we present a novel algorithm – convex natural evolutionary strategies (CoNES) –
that leverages results on the natural gradient (Amari, 1998; Sun et al., 2009; Wierstra et al., 2014)
from information geometry (Amari, 2016) and couples them with powerful tools from convex
optimization (e.g., second-order cone programming (Boyd & Vandenberghe, 2004) and geometric
programming (Boyd et al., 2007)) to promote rapid convergence. In particular, CoNES refines a
crude gradient estimate by transforming it through a convex program that searches for the direction
of steepest ascent in a KL-divergence ball around the current belief distribution. The relationship to
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natural evolutionary strategies (NES) (Wierstra et al., 2014) comes from the fact that the limiting
solution of the KL-constrained optimization problem (as the “radius” of the KL-divergence ball
shrinks to zero) corresponds to the natural gradient. However, in contrast to NES (Wierstra et al.,
2014), CoNES circumvents the estimation of the Fisher information matrix by directly solving the
convex KL-constrained optimization problem. Furthermore, tuning the radius of the KL-divergence
ball facilitates better alignment of the update direction with the update step size, yielding faster
convergence than NES (which provides the steepest ascent direction for infinitesimal steps lengths).

Our theoretical results establish that CoNES is invariant to the parameterization of the belief dis-
tribution (e.g., encoding the covariance as a symmetric positive definite matrix or a Cholesky
decomposition does not affect the solution of the CoNES optimization problem). Parameterization
invariance ensures that we are working with the intrinsic mathematical object (i.e., probability dis-
tribution) and the specific encoding of these objects do not affect the outcome. Moreover, CoNES
is agnostic to the method that generates the crude gradient estimate and can thus be potentially
combined with various existing ES methods, such as (Salimans et al., 2017; Choromanski et al.,
2019a;b). Through our numerical results we demonstrate that CoNES vastly outperforms various
conventional blackbox optimizers on a suite of 5000-dimensional benchmark functions for blackbox
optimizers: Sphere, Rosenbrock, Rastrigin, and Lunacek. We also demonstrate the
improved sample complexity achieved by CoNES on the following OpenAI MuJoCo RL tasks:
HalfCheetah-v2, Walker2D-v2, Hopper-v2, and Swimmer-v2.

2 RELATED WORK

Blackbox optimization. Various engineering problems require optimizing systems for which the
governing mechanisms are not explicitly known; e.g., system identification of complex physical
systems (Amaran et al., 2016) and mechanism design (Audet & Kokkolaras, 2016). Blackbox
optimization techniques such as Nelder-Mead (Nelder & Mead, 1965), evolutionary strategies (ES)
(Rechenberg & Eigen, 1973), simulated annealing (Kirkpatrick et al., 1983), genetic algorithms
(Holland, 1992), the cross-entropy method (De Boer et al., 2005), and covariance matrix adaptation
(CMA) (Hansen, 2016) were developed to address such problems. Recently, the growing potential
of these methods for training control policies with reinforcement learning has reignited interest in
blackbox optimizers (Salimans et al., 2017; Mania et al., 2018; Choromanski et al., 2019a;b; Liu et al.,
2019; Conti et al., 2018; Chatzilygeroudis et al., 2017; Ha, 2019). In this paper, we will primarily
consider the class of blackbox optimizers that fall under the purview of ES.

Evolutionary strategies for reinforcement learning. In RL tasks, the advantages of ES – high
parallelizability, better robustness, and richer exploration – were first demonstrated in (Salimans et al.,
2017). Spurred by these findings, a plethora of recent developments aimed at improving ES for RL
have emerged, some of which include: explicit novelty search regularization to avoid local minima
(Conti et al., 2018), robustification of ES and efficient re-use of prior rollouts (Choromanski et al.,
2019a), and adaptive sampling for the ES gradient estimate (Choromanski et al., 2019b). We remark
that all the above papers focus on improving the ES MC gradient estimator. In contrast, this paper
presents a method that refines the ES gradient estimate – regardless of where that estimate comes
from – by solving a convex program.

Natural gradient. Our method is directly motivated by the concept of the natural gradient (Amari,
2016). The application of natural gradient in learning was initially pioneered in (Amari, 1998) and
was later demonstrated to be effective for RL (Kakade, 2002), deep learning with backpropagation
(Pascanu & Bengio, 2013), and blackbox optimization with ES (Sun et al., 2009; Wierstra et al.,
2014). However, the latent potential of the natural gradient has not been completely realized due
to the difficulty in estimation of the Fisher information matrix. Much of the prior work employing
natural gradient has focused on efficient estimation or computation of the Fisher information matrix
(Wu et al., 2017; Sun et al., 2009; Pascanu & Bengio, 2013). In contrast, CoNES does not work
directly with the Fisher information matrix. Instead, we approximate the update direction by solving
a convex program that maximizes the loss while being constrained to a KL-divergence ball around the
current belief distribution; as the radius of the KL-divergence ball goes to zero, the limiting solution
of this convex program corresponds to the natural gradient (see Proposition 1).

Trust-regions for blackbox optimization. Recent work on trust region methods for blackbox
optimizers (Liu et al., 2019; Miyashita et al., 2018; Abdolmaleki et al., 2017) performs updates on
the belief distribution by optimizing the loss on a KL-divergence ball. However, (Abdolmaleki et al.,
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2017; Miyashita et al., 2018) perform the constrained optimization on a discretization of the belief
distribution. The approach in (Liu et al., 2019) computes the KL-divergence for each dimension
individually and bounds their maximum; the resulting optimization problem is approximated via a
clipped surrogate objective similar to proximal policy optimization (PPO) (Schulman et al., 2017).
In contrast, we exactly solve a KL-constrained problem whose solution approximates the natural
gradient (as outlined above and formally discussed in Section 4.1) using powerful tools from convex
optimization (e.g., second-order cone programming and geometric programming).

3 NOTATION

We denote a blackbox loss function by l̂ : X → R with X ⊆ Rm as its domain. Let P be a
distribution on the domain X that signifies our belief of where the optimal candidate for l̂ resides. We
assume that P belongs to the statistical manifold P (Suzuki, 2014) which is a Riemannian manifold
(Petersen et al., 2006) of probability distributions. Any point P ∈ P is expressed in the coordinates
θ ∈ Rn. Rather than optimizing l̂ directly, we will work with the loss function l : P → R which
provides the expected loss P 7→ Ex∼P [l̂(x)] under the belief distribution P . When referring to the
manifold in a coordinate-free setting, we express the loss as l : P → R, whereas, when we work with
a particular coordinate system on P , we express the loss as l : Rn → R; the abuse of notation creates
no confusion as it will always be clear from context.

The (Euclidean) gradient operator is denoted by ∇; the natural gradient operator is denoted by ∇̃;
and the solution of CoNES is denoted by ∇̂. The KL-divergence between two distributions is denoted
by D(·||·) and the Euclidean inner product between two vectors is denoted by 〈·, ·〉.

4 BACKGROUND

4.1 NATURAL GRADIENT

It is a commonly-held belief that the steepest ascent direction for a loss function l : P → R is given by
its gradient ∇l. However, this is only true if the domain P is expressed in an orthonormal coordinate
system in a Euclidean space. If the space P admits a Riemannian manifold structure (Petersen et al.,
2006), the steepest ascent direction is then given by the natural gradient ∇̃l instead (Amari, 2016,
Section 12.1.2). Besides providing the steepest ascent direction on P , the natural gradient possesses
various attractive properties: (a) natural gradient is independent of the choice of coordinates θ on the
statistical manifold P; (b) natural gradient avoids saturation due to sigmoidal activation functions
(Amari, 2016, Theorem 12.2); (c) online natural-gradient learning is asymptotically Fisher efficient,
i.e., it asymptotically approaches equality of the Cramér-Rao bound (Amari, 1998). These qualities
lay the foundation of our interest in leveraging the natural gradient in learning applications. In the
rest of this section we will present two explicit characterizations of the natural gradient relevant to
this paper.

Let F (θ) be the Fisher information matrix for the Reimannian manifold of distributions P described
in the coordinates θ; e.g., Gaussian distributions can be expressed in the coordinates θ = (µ,vec ◦
upper-triangle(Σ)) where µ, Σ denote the mean and the covariance, respectively. The natural
gradient then satisfies the following relation with the Euclidean gradient:

∇̃l(θ) = F (θ)−1∇l(θ) . (1)

For the second characterization of the natural gradient we will need the Fisher-Rao norm ‖ · ‖F :

P → [0,∞) defined as ‖θ‖F :=
√
〈θ, F (θ)θ〉 (Liang et al., 2017, Definition 2). Using this norm we

can express the natural gradient as follows:
Proposition 1. [Adapted from (Ollivier et al., 2017, Proposition 1)] LetP be a statistical manifold,
each point of which is a probability distribution Pθ parameterized by θ. Let l : P → R be a loss
function which maps a probability distribution Pθ to a scalar. Then, the natural gradient ∇̃l(θ) of
the loss function computed at any θ satisfies:

∇̃l(θ)
‖∇̃l(θ)‖F

= lim
ε→0

arg max
v∈Rn

l(θ + εv) (2)

s.t. D(Pθ+εv||Pθ) ≤ ε2/2 .
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Proposition 1 states that the natural gradient is aligned with the direction v which maximizes the
loss function in an infinitesimal KL-divergence ball around the current distribution Pθ. To avoid
confusion, it is worth clarfiying that the maximization in Proposition 1 computes the natural gradient
which can then be passed to a gradient-based optimizer to minimze the loss.
Remark 1. Proposition 1 also holds true for the linear approximation of the loss function l(θ + εv)
at θ. Intuitively, the reason for this is that the linear approximation locally converges to the loss
function for arbitrarily small ε > 0.

4.2 NATURAL EVOLUTIONARY STRATEGIES

The evolutionary strategies (ES) framework performs a Monte-Carlo estimate of the gradient of the
loss with respect to the belief distribution (Wierstra et al., 2014, Section 2):

∇l(θ) = ∇ E
x∼Pθ

[l̂(x)] = E
x∼Pθ

[l̂(x)∇ lnPθ(x)] . (3)

This gradient estimate is then supplied to a gradient-based optimizer to update the belief distribution.
Note that equation 3 provides an estimate of the Euclidean gradient. Instead of using the Euclidean
gradient equation 3, Natural Evolutionary Strategies (NES) (Wierstra et al., 2014; Sun et al., 2009)
estimates the natural gradient by transforming the Euclidean gradient estimate equation 3 through
equation 1.

5 CONVEX NATURAL EVOLUTIONARY STRATEGIES

Despite the various advantages offered by the natural gradient, the computationally expensive
estimation of the Fisher information matrix F (θ) and its inverse makes it difficult to scale to very
high-dimensional problems. Proposition 1 offers an alternative to compute the natural gradient while
obviating the need to estimate F (θ); however, equation 2 is a challenging non-convex optimization
problem. To develop CoNES we “massage” the optimization problem in equation 2 into an efficiently-
solvable convex program.

We begin by relaxing the requirement lim ε→ 0 and instead choosing a fixed ε > 0, resulting in the
following optimization problem:1

v∗(θ) ∈ arg max
v
{l(θ + εv) | D(Pθ+εv||Pθ) ≤ ε2, v ∈ Rn}, (4)

where ε is now a hyperparameter which can be as large as necessary. Using v∗(θ) as the update
direction could yield faster convergence than ∇̃l(θ). This may seem counter-intuitive because the
natural gradient is the steepest ascent direction, as discussed in Section 4.1; however, it is worth
noting that this holds true only for an infinitesimal step length. The flexibility of choosing an ε
permits us to align the search for the steepest ascent direction with the desired step-length of the
update, yielding rapid convergence.

We are interested in settings where the landscape of the loss function l is unknown and querying
loss values of individual candidates is expensive. Even if the analytical form of l was available to
us, equation 4 may be a non-convex problem and hence challenging to solve. To make this problem
more tractable, we perform a Taylor expansion of the loss function l(θ + εv) ≈ l(θ) + 〈∇l(θ), εv〉
and work with the following optimization problem:

v∗(θ) ∈ arg max
v
{l(θ) + 〈∇l(θ), εv〉 | D(Pθ+εv||Pθ) ≤ ε2, v ∈ Rn}. (5)

In equation 5, l(θ) is a constant offset which does not affect the choice of v and can hence be ignored.
Further, we denote δθ := εv and restate equation 5 as:

∇̂l(θ; ε) ∈ arg max
δθ
{〈∇l(θ), δθ〉 | D(Pθ+δθ||Pθ) ≤ ε2, δθ ∈ Rn}. (6)

Despite these relaxations, the optimization problem equation 6 may still be intractable due to the lack
of convexity of the feasible set. However, in the following theorem we establish for the Gaussian
family of probability distributions that equation 6 is convex and can be solved in polynomial time.

1Without loss of generality, we are replacing ε2/2 with ε2.
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Theorem 1. The optimization problem in equation 6 is:

• a semidefinite program (SDP) with an additional exponential cone constraint if P is the
space of Gaussian distributions;

• a second-order cone program (SOCP) with an additional exponential cone constraint if P is
the space of Gaussian distributions with diagonal covariance.

Proof. As the objective function of equation 6 is linear, we only need to verify the convexity of
the feasible set. We will first consider the case when P is the space of Gaussian distributions. Let
Pθ+δθ = N (µ,Σ) and Pθ = N (µ0,Σ0). Then:

D(Pθ+δθ||Pθ) =
1

2

(
Tr(Σ−1

0 Σ) + (µ− µ0)TΣ−1
0 (µ− µ0)− log det(Σ) + log det(Σ0)− n

)
(7)

which is convex because Tr(Σ−1
0 Σ) is linear, (µ− µ0)TΣ−1

0 (µ− µ0) is positive-definite quadratic,
and − log det(Σ) is convex. Finally, noting that log det constraints can be formulated as an SDP
with an additional exponential cone constraint (log) completes the proof of this part.

Now we consider the family of Gaussian distributions Pθ+δθ = N (µ,Σ) and Pθ = N (µ0,Σ0) with
diagonal covariance. We denote the mean as µ = (µ1, · · · , µn) and µ0 = (µ0,1, · · · , µ0,n). The
diagonal elements of the covariance Σ and Σ0 are expressed as (σ1, · · · , σn) and (σ0,1, · · · , σ0,n),
respectively. Then, the KL-divergence between two distributions in this family is:

D(Pθ+δθ||Pθ) = −1

2

n∑
i=1

(
1 + log σ2

i − log σ2
0,i −

(µi − µ0,i)
2

σ2
0,i

− σ2
i

σ2
0,i

)
. (8)

From equation 8, it follows that equation 6 for this family of distributions is an SOCP with an
additional exponential cone constraint (that arises from the log terms), completing the proof.

θ

∇̂l(θ)
∇̃l(θ)

〈∇θl(θ), δθ〉

l(θ)

Figure 1: Geometric illustration of CoNES.

Restricting the class of belief distributions to those in The-
orem 1 gives rise to CoNES: a family of convex programs
that draws motivation from the concept of the natural gradi-
ent to transform the Euclidean gradient. To geometrically
visualize CoNES, consider the illustration in Fig. 1. The
orange surface is the loss landscape and the gray surface
is the linearization of the loss at the point denoted by θ; in
differential geometric terms, the orange surface is more ac-
curately characterized as the manifold given by the graph
of the loss l(θ) while the gray surface is the manifold’s
tangent space at (θ, l(θ)). The green arrow represents the
solution of CoNES for a KL-divergence ball (light green
region) with a very small ε which can also be regarded as the natural gradient (modulo the norm) at θ
by Remark 1. The red arrow is the solution of CoNES for a KL-divergence ball (light red region) with
a larger ε. Note that this figure is an illustration; the KL-divergence balls may not necessarily manifest
in the depicted shapes. The NES gradient is the sharpest ascent direction for an infinitesimal step size,
but, it may not be ideal for a larger step size. With CoNES, we can tune the scalar parameter ε to
better align the update direction with the gradient-based optimizer’s step size (learning rate), yielding
faster updates. Indeed, the choice of ε is important to the performance of CoNES as demonstrated in
our numerical results in Section 7.2. The mechanism for selecting (or adapting) the hyperparameter ε
is beyond the scope of this paper and will be explored in our future work.

The psuedo-code for our implementation of CoNES as a blackbox optimizer is detailed in Algorithm 1.
We use the ES gradient estimate (presented in Section 4.2) as the GRADIENT-ESTIMATOR in Line 5
of Algorithm 1; any estimator of the Euclidean gradient, such as (Choromanski et al., 2019a;b), can
be used here. We use Adam (Kingma & Ba, 2014) as our gradient-based optimizer in Line 7; any
gradient-based optimizer can be used.

6 PARAMETERIZATION INVARIANCE OF CONES

An important property of the natural gradient is its independence to the parameterization of the belief
distribution; e.g., for Gaussian distributions it does not matter whether we use the covariance matrix
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Algorithm 1 CoNES
1: Hyperparameters: radius ε of KL-divergence ball, number of candidates N drawn at each iteration
2: Initialize: θ ← θ0, OPTIMIZER
3: repeat
4: {x̂i}Ni=1 ← Draw N samples from the belief distribution Pθ
5: ∇θl(θ)← GRADIENT-ESTIMATOR({xi}Ni=1, {l̂(xi)}Ni=1)
6: ∇̂θl(θ)← CONES(∇θl(θ), ε) . solve equation 6
7: θ ← OPTIMIZER(θ, ∇̂θl(θ))
8: until Termination conditions satisfied
9: return θ

or its Cholesky decomposition. The natural gradient inherits this property by construction as the
covariant gradient on the statistical manifold (Amari, 2016). Parameterization invariance ensures
that we are working with the intrinsic mathematical objects (probability distributions here) and the
specific encoding of these objects will not affect the outcome. From a practical perspective, we derive
the benefit of fewer properties to “engineer”.

A natural question to ask is whether CoNES (equation 6) exhibits the same property. Proposition 1
ensures that the CoNES optimization exhibits this property in the limit of ε tending to zero, as the
update direction then coincides with the natural gradient. However, establishing this property for an
arbitrary ε > 0 is not immediately obvious.

We will work with the loss function l rather than its linearization with the understanding that if the
parameterization invariance holds for an arbitrary function l, it will automatically hold for the linear
function in equation 6. With a slight abuse of notation, we will express the loss function l : Rn → R
in the coordinates θ on the statistical manifold instead of the coordinate-free notation of l : P → R.
Now we are ready to present the main result of this section:
Theorem 2. Consider the optimization problem:

OPTθ : l∗θ = max{l(θ + εvθ) | D(Pθ+εvθ ||Pθ) ≤ ε2, vθ ∈ Rn}. (9)

Let Φ : Rn → Rn be a smooth invertible mapping which performs a coordinate change from
θ 7→ φ := Φ(θ). Consider the following optimization problem OPTφ in the new coordinates:2

OPTφ : l∗φ = max{l ◦ Φ−1(φ+ εvφ) | D(Pφ+εvφ ||Pφ) ≤ ε2, vφ ∈ Rn}. (10)

Then, there exists an invertible mapping Φv : Rn → Rn such that v∗θ ∈ arg maxv OPTθ ⇐⇒
Φv(v

∗
θ) ∈ arg maxv OPTφ, ensuring that l∗θ = l∗φ.

Theorem 2 shows that expressing the belief distribution P ∈ P in different coordinates θ or φ
provides the same optimal loss and the same set of possible solutions (upto a bijective mapping). Of
course, we cannot ensure that the solution, i.e., the arg max of the CoNES optimization is the same
due to the potential lack of uniqueness of the optima; e.g., consider the maximization of x2

1 + x2
2 in

x2
1 + x2

2 ≤ 1 initialized at (x1, x2) = (0, 0) – all directions v from the initial point are equally good.

Intuitively, Theorem 2 holds because the KL-divergence is independent of the parameterization of the
distribution (Kullback & Leibler, 1951, Corollary 4.1), i.e., for θ, φ, and Φ as defined in Theorem 2,
we have:

D(Pθ+εvθ ||Pθ) = D(PΦ(θ+εvθ)||PΦ(θ)) . (11)
The proof of Theorem 2 is detailed in Appendix A.

7 RESULTS

In this section, we use CoNES on two classes of problems: (a) a standard suite of high-dimensional
loss functions used to benchmark blackbox optimizers, and (b) a selection of OpenAI’s MuJoCo
suite of RL tasks. We compare CoNES against existing methods including ES, natural evolutionary
strategies (NES), and covariance matrix adaptation (CMA). We custom-implemented ES, NES, and

2From a geometric perspective, θ and φ are coordinates on the statistical manifold P , either of which can be
used to express a distribution P ∈ P . The directions vθ and vφ lie in the tangent space TPP of P at P .
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Figure 2: Average loss (solid curve) with standard deviation (shaded region) across 10 seeds for ES, NES,
CMA, and CoNES on Sphere, Rosenbrock, Rastrigin, and Lunacek.
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Figure 3: Average step size (solid) with standard deviation (shaded region) of the belief distribution’s mean
across 10 seeds for ES, NES, and CoNES on Sphere, Rosenbrock, Rastrigin, and Lunacek.

CoNES, while CMA is adapted directly from the open-source PyCMA package (Hansen et al., 2019);
our code is available in the supplementary material.

The family of Gaussian belief distributions with diagonal covariance is used for ES, NES, and CoNES.
This family of belief distributions permits the implementation of NES exactly (i.e., without having to
numerically estimate the Fisher information matrix (Sun et al., 2009)) for high-dimensional problems,
serving as a strong baseline to compare CoNES against. For CMA, PyCMA’s default family of belief
distributions – Gaussian distributions with non-diagonal covariance – is used. For ES, NES, and
CoNES we compute an estimate of the gradient direction and pass it to the Adam optimizer (Kingma
& Ba, 2014) to update the belief distribution. For each of these methods we perform antithetic
sampling and rank-based fitness transformation (Salimans et al., 2017). Unlike (Salimans et al.,
2017), we also update the variance of the belief distribution; we circumvent the non-negativeness
constraint of the variance by updating the log of variance with the Adam optimizer instead. The
resulting convex optimization problems for CoNES are solved using the CVXPY package (Diamond
& Boyd, 2016) and the MOSEK solver (MOSEK ApS, 2019).

7.1 BENCHMARK FUNCTIONS

We first test our approach on four 5000-dimensional functions: Sphere, Rosenbrock,
Rastrigin, and Lunacek (Hansen et al., 2009) which are provided in Appendix C. These
functions are commonly-used benchmarks for blackbox optimization methods (Hansen et al., 2016;
Teytaud & Rapin, 2018). Hyperparameters for ES, NES, and CoNES are shared across all problems
(see Appendix B) while the hyperparameters of CMA are the default values chosen by PyCMA.
Training for these benchmark functions was performed on a desktop with a 3.30 GHz Intel i9-7900X
CPU with 10 cores and 32 GB RAM. Fig. 2 plots the average and standard deviation (shaded region)
of the loss curves across 10 seeds. The rapid drop of the loss for CoNES demonstrates significant
benefits in terms of the sample complexity over other methods. Fig. 3 shows that the step size
for CoNES is smaller than ES and NES, which coupled with its lower loss implies that the update
direction for CoNES is more accurate than ES and NES. The run-time for a single seed is ∼1 minute
for ES and NES, ∼5 minutes for CoNES, and ∼35 minutes for CMA.

7.2 REINFORCEMENT LEARNING TASKS

Next, we benchmark our approach on the following environments from the OpenAI Gym suite
of RL problems: HalfCheetah-v2, Walker2D-v2, Hopper-v2, and Swimmer-v2. We
employ a fully-connected neural network policy with tanh activations possessing one hidden layer
with 16 neurons for Swimmer-v2 and 50 neurons for all other environments. The input to the
policies are the agent’s state – which are normalized using a method similar to the one adopted
by (Mania et al., 2018) – and the output is a vector in the agent’s action space. The training for
these tasks was performed on a c5.24xlarge instance on Amazon Web Services (AWS). Fig. 4
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Figure 4: Average reward (solid curve) with standard deviation (shaded region) across 10 seeds for ES, NES,
CMA, and CoNES on HalfCheetah-v2, Walker2D-v2, Hopper-v2, and Swimmer-v2.

# Timesteps to attain target average reward
Environments Target Avg. Reward ES NES CMA CoNES

HalfCheetah-v2 3500 3.23× 107 3.01× 107 – 1.40× 107

Walker2D-v2 2000 – 3.07× 107 – 2.10× 107

Hopper-v2 1400 – – – 4.15× 107

Swimmer-v2 340 1.99× 107 3.60× 106 8.33× 106 3.01× 106

Table 1: Timesteps to attain a target average reward (over 10 seeds) for RL tasks. For each environment
the timestep for the best performing blackbox method is displayed in bold. Hyphen ( – ) is used for
the method that failed to achieve the target average reward in 2× 107 timesteps for Swimmer-v2
and 5× 107 timesteps for all other environments.

presents the average and standard deviation of the rewards for each RL task across 10 seeds against
the number of time-steps interacted with the environment. Fig. 4 as well as Table 1 illustrate that
CoNES performs well on all these tasks. For each environment we share the same hyperparameters
(excluding ε) between ES, NES, and CoNES; for CMA we use the default hyperparameters as chosen
by PyCMA. It is worth pointing out that for RL tasks, CoNES demonstrates high sensitivity to
the choice of ε. The results for CoNES reported in Fig. 4 and Table 1 are for the best choice of
ε from [

√
0.1,
√

1,
√

10,
√

100,
√

1000]. Exact hyperparameters for the problems are provided in
Appendix B. Each seed of HalfCheetah-v2, Walker2D-v2 and Hopper-v2, takes ∼4-5
hours with ES, NES, CoNES and ∼10 hours with CMA. Each seed of Swimmer-v2 takes ∼2 hours
with ES, NES, CoNES and ∼4 hours with CMA.

8 CONCLUSIONS AND FUTURE WORK

We presented convex natural evolutionary strategies (CoNES) for optimizing high-dimensional
blackbox functions. CoNES combines the notion of the natural gradient from information geometry
with powerful techniques from convex optimization (e.g., second-order cone programming and
geometric programming). In particular, CoNES refines a gradient estimate by solving a convex
program that searches for the direction of steepest ascent in a KL-divergence ball around the current
belief distribution. We formally established that CoNES is invariant under transformations of the
belief parameterization. Our numerical results on benchmark functions and RL examples demonstrate
the ability of CoNES to converge faster than conventional blackbox methods such as ES, NES, and
CMA.

Future Work. This paper raises numerous exciting future directions to explore. The performance
of CoNES is dependent on the choice of the radius ε2 of the KL-divergence ball. Furthermore, a
suitable choice of ε in one region of the loss landscape may not be suitable for another. Hence, an
adaptive scheme for choosing the radius of the KL-divergence ball could substantially enhance the
performance of CoNES. Another potentially fruitful future direction arises from the observation that
Proposition 1 — which serves as the cornerstone of CoNES — holds for any3 f -divergence (Csiszár
& Shields, 2004). Hence, we can generalize CoNES to arbitrary f -divergences; this may afford
greater flexibility in tuning it for the specific loss landscape and further improving performance.
We can increase the flexibility afforded by CoNES even more by expanding beyond the family of
Gaussian belief distributions. Finally, we are also exploring the empirical benefits of adaptively
restricting the covariance matrix model (Akimoto & Hansen, 2016; Choromanski et al., 2019b) in
order to further enhance sample complexity.

3This is an outcome of the fact that the Hessian of all f -divergences is the Fisher information (Makur, 2015).
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APPENDIX

A PROOF OF THEOREM 2

To formally prove Theorem 2, we will first establish two lemmas. The first lemma shows the existence
of a bijective mapping between vθ and vφ.
Lemma 1. Let θ, φ, and Φ be as defined in Theorem 2. Then, there exists a bijective mapping
Φv : Rn → Rn, defined as

vθ 7→
Φ(θ + εvθ)− Φ(θ)

ε
. (12)

Proof. First we will check the injectivity of Φv:

Φv(vθ) = Φv(v
′
θ) ⇐⇒ Φ(θ + εvθ) = Φ(θ + εv′θ) ⇐⇒ vθ = v′θ (since Φ is injective). (13)

Next, to check the surjectivity of Φv , let vφ ∈ Rn be arbitrary. Then there exists vθ := (Φ−1(Φ(θ) +
εvφ)− θ)/ε which satisfies Φv(vθ) = vφ.

In the following remark, we express the result of Lemma 1 in a form that is more conducive to our
forthcoming proof.
Remark 2. Lemma 1 ensures that the following relation holds for any vθ ∈ Rn:

vφ = Φv(vθ) ⇐⇒ φ+ εvφ = Φ(θ + εvθ) ⇐⇒ θ + εvθ = Φ−1(φ+ εvφ)

where the first equivalence relation holds by using the expression of Φv equation 12 and the second
equivalence relations hold from the bijectivity of Φ.
Lemma 2. Let Bθ := {v ∈ Rn | D(Pθ+εv||Pθ) ≤ ε2} and Bφ := {v ∈ Rn | D(Pφ+εv||Pφ) ≤ ε2}
be the feasible sets of OPTθ and OPTφ, respectively. Let Φv be defined as in Lemma 1. Then,
Bφ = {Φv(v) | v ∈ Bθ}.

Proof. Let vφ ∈ {Φv(v) | v ∈ Bθ}, then there exists a vθ ∈ Bθ such that vφ = Φv(vθ). Therefore,
Remark 2 ensures that φ+ εvφ = Φ(θ + εvθ), which further gives us:

D(Pφ+εvφ ||Pφ) = D(PΦ(θ+εvθ)||PΦ(θ)) = D(Pθ+εvθ ||Pθ) ≤ ε2, (14)

where the last equality follows from equation 11 and the inequality follows from the fact that vθ ∈ Bθ.
From equation 14 we have that vφ ∈ Bφ implying that {Φv(v) | v ∈ Bθ} ⊆ Bφ.

Now, let vφ ∈ Bφ. By the surjectivity of Φv from Lemma 1, there exists a vθ ∈ Rn such that
vφ = Φv(vθ). With this, Remark 2 ensures that φ+ εvφ = Φ(θ + εvθ). Hence, using equation 11,
followed by φ+ εvφ = Φ(θ + εvθ) gives:

D(Pθ+εvθ ||Pθ) = D(PΦ(θ+εvθ)||PΦ(θ)) = D(Pφ+εvφ ||Pφ) ≤ ε2 (15)

where the last inequality follows from the fact that vφ ∈ Bφ. Therefore, by equation 15, we
have that vθ ∈ Bθ, which, on combining with the earlier assertion that vφ = Φv(vθ) implies that
vφ ∈ {Φv(v) | v ∈ Bθ}. Thereby, ensuring that Bφ ⊆ {Φv(v) | v ∈ Bθ} and completing the
proof.

Proof of Theorem 2. The proof follows from the following chain of arguments:

v∗θ ∈ arg max
v

OPTθ ⇐⇒ l(θ + εv∗θ) ≥ l(θ + εvθ), ∀vθ ∈ Bθ (16)

⇐⇒ l ◦ Φ−1(φ+ εΦv(v
∗
θ)) ≥ l ◦ Φ−1(φ+ εΦv(vθ)), ∀vθ ∈ Bθ (17)

⇐⇒ l ◦ Φ−1(φ+ εΦv(v
∗
θ)) ≥ l ◦ Φ−1(φ+ εvφ), ∀vφ ∈ Bφ (18)

⇐⇒ Φv(v
∗
θ) ∈ arg max

v
OPTφ , (19)

where equation 17 follows from Remark 2 (Lemma 1) and equation 18 follows from Lemma 2.
Further, because l(θ + εv∗θ) = l ◦ Φ−1(φ+ εΦv(v

∗
θ)) from Remark 2, we get l∗θ = l∗φ.
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B HYPERPARAMETERS

The parameters for the Adam optimizer were chosen according to (Kingma & Ba, 2014, Algorithm 1)
for all results in Section 7.

Benchmark Functions. For all the results in Section 7.1 the initial belief distribution is chosen to
be the normal distribution N (0, I). The hyperparameters for ES, NES and CoNES were chosen as
follows: the number of function evaluations performed per iteration is 100 and the learning rate for
the mean and log of the variance is 0.1. Additionally, ε is set to 100 for CoNES.

RL Tasks. The hyperparameters for ES, NES, and CoNES for the results in Section 7.2 are detailed
in Table 2 below; some of these hyperparameters were borrowed from (Pagliuca et al., 2019).

Initial Distribution Learning Rate # policies evaluated # envs interacted
Environments mean (µ) std (σ) µ log(σ2) per itr (N) per policy (m) ε

HalfCheetah-v2 0 0.02 0.01 0.01 40 1
√

1000
Walker2D-v2 0 0.02 0.01 0.01 40 1

√
1000

Hopper-v2 0 0.02 0.01 0.01 40 1 1
Swimmer-v2 0 1 0.5 0.1 40 1 10

Table 2: Hyperparameters for RL tasks.

C BENCHMARK FUNCTIONS

Let x ∈ Rn be expressed in its coordinates as x = (x1, · · · , xn).

• Sphere: x 7→ xTx

• Rosenbrock: x 7→
∑n−1
i=1 (100(x2

i − xi+1)2 + (1− xi)2)

• Rastrigin: x 7→ 10n+
∑n
i=1(x2

i − 10 cos(2πxi))

• Lunacek: First define the constants

µ1 = 2.5, s = 1− 1

2
√
n+ 20− 8.2

, d = 1, µ2 = −
√
µ2

1 − d
s

.

Using these constants the function can be expressed as x 7→ min{
∑n
i=1(xi − µ1)2, dn +

s
∑n
i=1(xi − µ2)2}+ 10

∑n
i=1(1− cos(2π(xi − µ1))).
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