
Paper review: Score-Based Generative Modeling through Stochastic Differential
Equations

Grégoire Retourné
ENSAE, France

gregoire.retourne@gmail.com

Abstract

This memoir focuses on generative modeling [2] [6] [4],
and more precisely score based generative modeling. While
other downstream tasks such as classification or even
detection [12] [15] [7] have been successfully tackled with
deep learning, generative modeling has proven to be more
challenging. First promising results were obtained with
Generative Adversarial Networks (GANs) [5], but they
are known to be hard to train (as it is a highly unstable
process) and to suffer from mode collapse. More recently,
diffusion models [8] have been proposed, and have shown
great results on image generation, take for instance OpenAI
DALLE-2 [13] a stunning text-to-image model. However,
diffusion models are computationally expensive, and
still cannot attain the same generation speed as GANs.
Similarly to diffusion models, score based generative
models [17] attempt to generate images by iteratively
applying a sequence transformations to a noise sample, to
go from the noise distribution (which is known) to the data
distribution (which is learnt). This denoising process is
done by estimating a particular gradient field (know as the
score) on the perturbed data distribution, to then learn how
to revert the noise corruption step. High-level wise, this
process iteratively transports a sample from a particular
distribution, to another one, which is an interesting theory
that is already applied to other tasks [3] [10]. In this
study, inspired by the work and code provided by Song
et al. [17], we conducted experiments using a score
based generative model trained on the FashionMNIST
dataset, that uses Stochastic Differential Equations (SDE)
to revert the noise corruption step. Our code is made
available at https://github.com/greg2451/
score-based-generative-modeling.git and
allows to easily train a score based generative model on
FashionMNIST, and to play with image generation using
various SDE solvers.

1. Score-Based Generative Modeling: classical
approach

1.1. The score function

In order to generate samples from a distribution, we first
need a way to represent it. A common technique is to di-
recty model the probability density function (p.d.f.) using

pθ(x) =
e−fθ(x)

Zθ
, (1)

where fθ(x) is a real-valued function parameterized by
a learnable parameter θ, and Zθ is a normalizing constant
such that the integral of pθ(x) over x is 1.

We then train θ by maximizing the log-likelihood of the
data:

max
θ

N∑
i=1

log pθ(xi). (2)

But the issue in equation 2 is that it requires to compute
Zθ, which is often feasible. One particular solution in this
case, is to restrict the class of estimators to tractable ones,
where the normalizing constant is equal to one by design,
but this is a rather big limitation.

Another less restrictive solution is to estimate the gradi-
ent of the log-likelihood, which is called the score function,
and which does not depend on the normalizing constant:

sθ(x) = ∇x log pθ(x) = −∇xfθ(x)−∇x logZθ︸ ︷︷ ︸
=0

= −∇xfθ(x).

(3)
Then, to train the model, we minimize the Fisher diver-

gence between the model and the data distributions:

Ep(x)[∥∇x log p(x)− sθ(x)∥22] (4)

The issue here is that if we are trying to estimate a dis-
tribution function, it is highly unlikely that we have access

https://github.com/greg2451/score-based-generative-modeling.git
https://github.com/greg2451/score-based-generative-modeling.git


to the score function of the data distribution ∇x log p(x),
which is required to compute the Fisher divergence. This
is where score matching [19] comes in, which is a fam-
ily of methods that minimize the Fisher divergence with-
out knowledge of the ground-truth data score. Finally, this
whole process allows great flexibility in the choice of the
model, since no assumptions are made on the form of fθ(x),
except that it should be correct in terms of dimensions.

1.2. Langevin dynamics and its pitfalls

Once a score function has been estimated, let’s use it to
generate samples from the distribution, using an iterative
procedure called Langevin dynamics [16].

This method provides a Markov Chain Monte Carlo [18]
(MCMC) procedure, that first starts with a sample drawn
from a prior distribution (from which we have knowledge),
and then iterates the following equation:

xi+1 ← xi + ϵ∇x log p(x) +
√
2ϵ zi, i = 0, 1, · · · ,K,

(5)

where zi ∼ N (0, I) is a Gaussian noise, and ϵ is a step
size. When K is sufficiently large, xK converges to a sam-
ple from p(x) under some regularity conditions.

This allows us to sample solely from the score function!
However, in practice, this approach did not have much suc-
cess. The culprit is the score function, which is unreliable
in low density regions. In fact, this is due to the loss func-
tion, the Fisher divergence, which is a l2-distance pondered
by the density of the data, the latter being very small in low
density regions.

1.3. Introducing noise perturbation

The previous approach fail to the score estimation func-
tion not being able to grasp the low density regions of the
data. To overcome this issue, the authors proposed to learn
the aforementioned score function on perturbed data, in-
stead of the original data. This allows to populate the low-
density regions with points, and thus alleviate the ineffi-
ciency in these regions. Indeed, too much noise would mean
losing the initial signal, but too little noise would not be
enough to populate the low-density regions, there is a trade-
off to find. To do so, the authors propose to use multiple
scales of noise perturbations at the same time, ensuring to
learn jointly from the original data and the perturbed data.
They learn a single scoring function being a weighted sum
of the scoring functions of each perturbed data. The loss
used is a weight sum of the Fisher divergences for all noise
scales, the weight often being bigger for perturbations with
bigger noise (and in their case, proportional to the variance
of the noise).

2. Infinite number of noise scales using
Stochastic Differential Equations

Intuitively, finding the right amount of noise to inject in
the process is difficult, so having a high number of noise
scales helps a lot. The authors here have managed to do
the best thing in that regard: have an infinite number of
noise scales, by using a continuous-time stochastic pro-
cess, which is a solution of a stochastic differential equation
(SDE) [17].

2.1. Continuously perturbing the data distribution

When we had a finite number of noise scales, the prob-
lem was applied to sequences. Now, since we want to have
an infinite number, it becomes an infinitesimal problem,
hence we can use differential equations, and functions of
time. The noising equation is now:

dx = f(x, t)dt+ g(t)dw, (6)

Each new variables are roughly their equivalent in a con-
tinuous setting. For example, dw is an infinitesimal white
noise, and dt is an infinitesimal time step. Tailoring the drift
coefficient f and diffusion coefficient g allows us to control
the amount of noise injected at each time step, and we can
easily find the equivalent of the previous noise scales.

Similarly, the reverse process [1] is (continuous equiva-
lent of equation 5) is:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw. (7)

The goal is to solve this equation backward in time, con-
tinuously from the step T to 0.

Importantly, to solve this reverse SDE, we need to esti-
mate the score function ∇x log pt(x) of the distribution at
each intermediate time step. Indeed, since now we have an
infinite number of noise scales, the loss function becomes:

Et∈U(0,T )Ept(x)[λ(t)∥∇x log pt(x)− sθ(x, t)∥22], (8)

This gives us all the theoretical tools to tailor a solution
to the problem, but how de wo do in practice ?

2.2. Solving SDEs in practice

There are practical solutions to solve SDEs.
First, any numerical SDE solvers can be used. For in-

stance, the Euler-Maruyama method is a simple way to
solve SDEs, but it is not very accurate, and it is not sta-
ble for large time steps. As this method approximates the
continuous process with a discrete one, it will simply solve
the previous discrete equation (equation 5) with a small
time step ∆t, hence it is not very interesting. There are

2



Figure 1. Sampling and reverse-sampling with SDE

other methods, such as the Milstein method or the stochas-
tic Runge-Kutta method, which are more adapted to solve
reverse SDEs.

Second, the authors proposed to use a predictor-corrector
method. It consists in using a predictor to estimate the next
step, based on any classic numerical method, and then use
a corrector which will use the score function to enhance the
prediction. This method proved to attain state-of-the-art re-
sults, and is very efficient.

Finally, the authors proposed to solve this SDE as an Or-
dinary Differential Equation (ODE). Indeed, any SDE can
be transformed into an ODE, which is called a probability
flow ODE.

dx =

[
f(x, t)− 1

2
g2(t)∇x log pt(x)

]
dt. (9)

The last method gives access to exact log-likelihoods
computation, which in terms allows to do fully controllable
generation.

3. Experiments
The code made available by the authors at

https://github.com/yang-song/score_
sde_pytorch, allowed us to reproduce some of
their experiments on a smaller dataset, the Fashion-
MNIST [20] dataset. The code of our experiment is
available here at https://github.com/greg2451/
score-based-generative-modeling.git and
allows to easily train a score based generative model on
FashionMNIST [20], and to play with image generation
using various SDE solvers. All instructions are available in
the README of the repository.

3.1. Training

We trained a score-based generative model on the
FashionMNIST [20] dataset, the score function is a
convolutional[12] model based on a U-Net [14] architecture
with 1,115,425 trainable parameters.

We used the following hyperparameters:

• batch size: 64

• learning rate: 10−4

• number of epochs: 100

• sigma: 25 (for the marginal probability)

The training took 10 minutes on a standard cloud
GPU to attain a loss of approximately 21. This loss
value was deemed sufficient to generate similar images
to the original dataset with high fidelity. The weights of
this trained model are available in the repository, in the
pretrained models folder. This model is optimized
for inputs of size 28x28 in black and white (1 channel).

We trained a second model, this time for images in color
(3 channels) of size 32x32, on CIFAR-10 [11] with the
same hyperparameters. This model is adapted from an-
other architecture usually used for image in-painting [9] and
modified to include cross-channel connections, this time
with 1,092,643 trainable parameters. However, we did not
manage to train this model to a satisfactory loss (value
stuck around 1000), hence generated images were not in-
terpretable (strange noise patterns). As we did not have
enough time to investigate the issue, we did not release
those weights, but the architecture is available in the repos-
itory in the models folder.

3.2. Generation

After finishing the training of the score function, we then
proceeded to generate images from the model. We used the
three methods proposed by the authors, namely the Euler-
Maruyama method, the predictor-corrector method, and the
probability flow ODE method.

We then studied the impact of the hyperparameters for
each method, all experiments were run on the FashionM-
NIST [20] dataset with a batch size of 64.

3.2.1 Euler-Maruyama

This method was the fastest to generate images, with ap-
proximately 200 denoising steps per second, which gave us
great fidelity images in between 5 and 10 seconds. The re-
sulting images were very similar to the original dataset, with
a few artifacts, but overall very good results, and nice sharp-
ness. Images generated by three different number of steps
are shown in figure 2, respectively 100, 250 and 2000 steps.

Figure 2. Images generated by the Euler-Maruyama method with
100, 250 and 2000 steps.

3

https://github.com/yang-song/score_sde_pytorch
https://github.com/yang-song/score_sde_pytorch
https://github.com/greg2451/score-based-generative-modeling.git
https://github.com/greg2451/score-based-generative-modeling.git


3.2.2 Predictor-corrector

As expected, the cost is twice as high as the Euler-
Maruyama method, as it requires two model evaluations per
step, so we had approximately 100 denoising steps per sec-
ond. This method has two hyperparameters to tune, the
number of total steps and the signal-to-noise ratio. The
signal-to-noise ratio impacts the correction step: it controls
the amount of signal inserted in the image correction. Intu-
itively, the more signal we insert at the correction step, the
more sharp the image will be, with strong borders, but the
more artifacts will be present. In contrast, a low signal-to-
noise ratio will roughly give the same output than the Euler-
Maruyama method, but with a higher computational cost (2
model evaluations per step instead of 1). The number of
steps and signal-to-noise ratio seems not to be correlated,
this is why we chose to show the results for a fixed number
of steps (2000) and varying signal-to-noise ratios, respec-
tively 0.2, 0.5 and 1.0, in figure 3.

Figure 3. Images generated by the predictor-corrector method with
2000 steps and signal-to-noise ratios of 0.2, 0.5 and 1.0.

As expected, the highest signal-to-noise ratio gives the
sharpest images, but with a lot of artifacts, the best value
being around 0.2, which gives the best images in terms of
sharpness and fidelity.

3.2.3 Probability flow ODE

This method was the slowest to generate images, since it
relies on a black-box ODE solver, which is not optimized
for the problem at hand. While the two other methods gave
roughly similar images, this method really stood out, with
a very different, more original output. The unique hyper-
parameter of this method is the error tolerance in the ODE
solver, which controls the number of function evaluations
required by the solver. The lower the error tolerance, the
more evaluations are required, and the more time it takes
to generate an image, but the better the image quality. It
is interesting to notice, that even at very high error toler-
ance (and hence very low number of steps), the convergence
seems to take a completely different path than the two pre-
vious method, with much more variety in the noise patterns.
We chose to show the results for a fixed error tolerance of
0.1, 0.001 and 1e-6, which respectively required 32, 92 and
542 evaluation steps to converge, in figure 4.

Figure 4. Images generated by the probability flow ODE method
with an error tolerance of 0.1, 0.001 and 1e-6.

4. Conclusions
In this work, we have presented a score based genera-

tive model trained on the FashionMNIST [20] dataset, using
various SDE [1] solvers. We have assessed that the model is
able to generate images that are visually similar to the ones
in the dataset, and that the SDE solver has a significant im-
pact on the quality of the generated images. Moreover, tun-
ing hyperparameters of the generation part (in SDE solvers
method) gives the ability to find a trade-off between gen-
eration speed and image quality. As expected, training this
kind of model is much simpler (and stabler) than training
a GAN [5], with still good performances. Alas, the speed
of generation can be an issue, especially running from CPU
since it requires as many calls to the score model as de-
noising steps in the process. More importantly, score-based
generative modeling is a promising field, and we believe
that it will be extensively applied to other tasks than image
generation, such as audio generation [3] [10], since its goal
is to iteratively move from a distribution to another one.

4



References
[1] Brian Anderson et al. Reverse-time diffusion equation

models. Stochastic Processes and their Applications,
12(3):313–326, 1982. 2, 4

[2] Florian Bordes, Sina Honari, and Pascal Vincent.
Learning to Generate Samples from Noise through In-
fusion Training, Mar. 2017. arXiv:1703.06975 [cs,
stat]. 1

[3] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss,
Mohammad Norouzi, and William Chan. WaveGrad:
Estimating Gradients for Waveform Generation, Oct.
2020. arXiv:2009.00713 [cs, eess, stat]. 1, 4

[4] Yilun Du and Igor Mordatch. Implicit Generation and
Generalization in Energy-Based Models, June 2020.
arXiv:1903.08689 [cs, stat]. 1

[5] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversar-
ial Networks, June 2014. arXiv:1406.2661 [cs, stat].
1, 4

[6] Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli,
and Yoshua Bengio. Variational Walkback: Learning
a Transition Operator as a Stochastic Recurrent Net,
Nov. 2017. arXiv:1711.02282 [cs, stat]. 1

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition,
Dec. 2015. arXiv:1512.03385 [cs]. 1

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. De-
noising Diffusion Probabilistic Models, Dec. 2020.
arXiv:2006.11239 [cs, stat]. 1

[9] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi
Ishikawa. Globally and locally consistent image
completion. ACM Transactions on Graphics (ToG),
36(4):1–14, 2017. 3

[10] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao,
and Bryan Catanzaro. DiffWave: A Versatile
Diffusion Model for Audio Synthesis, Mar. 2021.
arXiv:2009.09761 [cs, eess, stat]. 1, 4

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.
3

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60(6):84–90, 2017. 1, 3

[13] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. Hierarchical Text-
Conditional Image Generation with CLIP Latents,
Apr. 2022. arXiv:2204.06125 [cs]. 1

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional Networks for Biomedical Im-
age Segmentation, May 2015. arXiv:1505.04597 [cs].
3

[15] Karen Simonyan and Andrew Zisserman. Very
Deep Convolutional Networks for Large-Scale Image
Recognition, Apr. 2015. arXiv:1409.1556 [cs]. 1

[16] Yang Song and Stefano Ermon. Generative Modeling
by Estimating Gradients of the Data Distribution, Oct.
2020. arXiv:1907.05600 [cs, stat]. 2

[17] Yang Song, Jascha Sohl-Dickstein, Diederik P
Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through
stochastic differential equations. In International Con-
ference on Learning Representations, 2021. 1, 2

[18] Joshua S. Speagle. A Conceptual Introduction to
Markov Chain Monte Carlo Methods, Mar. 2020.
arXiv:1909.12313 [astro-ph, physics:physics, stat]. 2

[19] Pascal Vincent. A connection between score match-
ing and denoising autoencoders. Neural computation,
23(7):1661–1674, 2011. 2

[20] Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms, Sept. 2017.
arXiv:1708.07747 [cs, stat]. 3, 4

5


