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Abstract001

Electromyography (EMG) tables are crucial for002
diagnosing muscle and nerve disorders, and003
advancing the automation of EMG diagnos-004
tics is significant for improving medical effi-005
ciency. EMG tables contain extensive contin-006
uous numerical data, which current Large Lan-007
guage Models (LLMs) often struggle to inter-008
pret effectively. To address this issue, we pro-009
pose EMGLLM, a data-to-text model specifi-010
cally designed for medical inerination tables.011
EMGLLM employs the EMG Alignment En-012
coder to simulate the process that doctors com-013
pare test values with reference values, align-014
ing the data into word embeddings that re-015
flect health degree. Additionally, we construct016
ETM, a dataset comprising 17,276 real cases017
and their corresponding diagnostic results, to018
support medical data-to-text tasks. Experimen-019
tal results on ETM demonstrate that EMGLLM020
outperforms various baseline models in un-021
derstanding EMG tables and generating high-022
quality diagnoses, which represents an effec-023
tive paradigm for automatic diagnosis genera-024
tion from medical examination table.025

1 Introduction026

Electromyography (EMG) refers to the pattern of027

electrophysiological signal concomitant with mus-028

culations recorded with an electromyograph (Ni029

et al., 2020), which plays a significant role in030

evaluating human activities (Cooray et al., 2022;031

Smedemark-Margulies et al., 2023; Rakhmatulin,032

2024). In medicine, the EMG is one of the ma-033

jor diagnostic tools for identifying and characteriz-034

ing motor unit disorders (Daube, 2002), which is035

commonly used to examine nerve and muscle ex-036

citability and conduction functions, thereby deter-037

mining the functional status of peripheral nerves,038

neurons, neuromuscular junctions, and the mus-039

cles themselves. After the EMG examination, the040

physicians perform a two-step analysis based on041

the records of the electrical signals. They first an- 042

alyze the waveforms, converting the complex elec- 043

trical signals into easily interpretable data tables, 044

which contain essential information for medical di- 045

agnosis, such as amplitude, conduction velocity, 046

and latency. Subsequently, by completing quanti- 047

tative analysis, the doctors interpret the converted 048

table data to render their final diagnosis and form 049

a diagnostic report (Boon et al., 2008). In this pa- 050

per, we focus on the data-to-text task of automatic 051

diagnosis generation from EMG tabular data. 052

Figure 1 shows an anonymized EMG diagnosis 053

including two parts, Findings and Impression. In 054

the context of an EMG examination, Findings re- 055

fer to observations of tables, aiming to objectively 056

describe the phenomena reflected by the data, thus 057

facilitating further analysis by the physician. To ac- 058

curately identify various neuromuscular disorders 059

within tabular data and translate them into Find- 060

ings, physicians must possess a deep understand- 061

ing of the distinct patterns associated with neuro- 062

muscular junction disorders, radiculopathies, up- 063

per motor neuron lesions, and so on. In terms 064

of Impression, it consists of two aspects: a sum- 065

mary and interpretation of the test results, as well 066

as an analysis of the clinical significance of the 067

Findings, which may include diagnostic sugges- 068

tions or potential issues. Therefore, Impression re- 069

quires a certain level of clinical experience from 070

doctors. (Katirji, 2002) Basically, EMG diagnosis 071

writing can be error-prone and tedious for under- 072

experienced physicians, and onerous and time- 073

consuming for experienced physicians. Therefore, 074

considering the powerful reasoning and text gener- 075

ation capabilities of large language models (LLMs) 076

in the medical field (Fan et al., 2024), we are mo- 077

tivated to explore methods for using LLMs to pro- 078

cess examination tables and automatically generate 079

medical EMG diagnoses. 080

The automatic generation of EMG diagnoses in- 081

volves two major challenges: 082
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• Reference value comparison: This task re-083

quires analyzing from the relative size of084

EMG test values compared to their corre-085

sponding reference values to assess the de-086

gree of health or abnormality of the test items.087

Moreover, differences in equipment, environ-088

ment, and other factors across hospitals may089

result in varying optimal reference values,090

which increases the complexity of analysis.091

• Intensive numerical data input: It is nec-092

essary for EMG diagnosis to quantitatively093

understand of medical examination tables094

containing large amounts of continuous nu-095

merical data to generate diagnostic results.096

For LLMs, directly handling numerical data097

may present certain difficulties (Golkar et al.,098

2023) since LLMs are not well-adept at com-099

paring numerical values and quantitatively di-100

agnosing the normality of these values, which101

may lead to errors.102

To address this, we proposes EMGLLM, a103

novel data-to-text framework for automatic diagno-104

sis from medical examination tables, which intro-105

duces EMG Alignment Encoder specialized in en-106

coding continuous numerical data in EMG exami-107

nation tables. The EMG Alignment Encoder can108

compare the test values with reference values, en-109

coding them into virtual tokens that represent the110

degree of abnormality, and aligning numerical data111

to diagnostic text. This allows the LLM to better112

understand EMG tables, thereby generating more113

accurate and comprehensive diagnoses. Our main114

contributions include:115

• For automatic diagnosis generation from med-116

ical examination tables, we propose a data-117

to-text model, EMGLLM, which includes an118

EMG Alignment Encoder designed to en-119

code continuous numerical values and en-120

hance data understanding.121

• We construct a dataset ETM comprising122

about 17,000 real EMG tables with their di-123

agnoses annotated by authoritative physicians,124

which can provide support for researches on125

automatic diagnosis generation.126

Compared to all baseline methods, EMG di-127

agnoses generated by EMGLLM demonstrates128

higher quality in all evaluation metrics, fully prov-129

ing the effectiveness and robustness of EMGLLM.130

This method can also be applied to other medical131

examination tables.132

2 Related Work 133

2.1 Data-to-text Generation 134

Data-to-text is a significant branch of natural lan- 135

guage processing (Sharma et al., 2024). Its goal 136

is to transform complex numerical data and tables 137

into textual descriptions, assisting users in under- 138

standing and analyzing data, thereby improving 139

the efficiency of data analysis. Data has the char- 140

acteristics of complex structure and information 141

density, and many studies have proposed methods 142

to address this challenge. For example, splicing 143

nearest neighbors (Wiseman et al., 2021) is an ef- 144

fective data-to-text policy by inserting or replac- 145

ing text segments directly from neighbor source- 146

target pairs to construct generations. Search-and- 147

learning method (Jolly et al., 2021) is aimed at 148

enhancing semantic coverage in few-shot data-to- 149

text generation. Recently, some research applied 150

LLMs to complete data-to-text. MURMUR (Saha 151

et al., 2022) and TAT-LLM (Zhu et al., 2024) re- 152

spectively enhanced data-to-text generation capa- 153

bilities through multi-step and discrete reasoning 154

frameworks. TableLLaMA (Zhang et al., 2024a) 155

and TableLLM (Zhang et al., 2024b) were imple- 156

mented supervised fine-tuning on table datasets for 157

proficiently handling tabular data. 158

In the medical fields, data-to-text generation 159

also holds vast application prospects. For instance, 160

language models can complete automatic drug de- 161

scription generation from medical information ta- 162

bles (Yermakov et al., 2021) and diagnosis from 163

examination tables (Gu et al., 2020; Guo et al., 164

2024). 165

2.2 EMG Diagnosis 166

EMG has a wide range of applications in medical 167

diagnosis (Gaso et al., 2021; Nguyen et al., 2023; 168

Li et al., 2023). EMG signals can be used to con- 169

struct an end-to-end sleep stage neural classifica- 170

tion model for diagnosing sleep disorders (Cham- 171

bon et al., 2017). They can also be classified by 172

Markov model (Bureau et al., 2021) for diagnos- 173

ing potential neuropathies. Specifically, a dataset 174

MIME (Gu et al., 2020) for EMG table tasks is 175

used to train models such as hierarchical transform- 176

ers. The model and dataset are both closed source 177

and the method is relatively simple, which cannot 178

fully adapt to complex data-to-text tasks. There- 179

fore, this paper aims to explore automatic diagnos- 180

tic generation based on EMG tables. 181
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EMG Diagnostic Report

Age: 32   Gender: Male   Height: 178 cm

Electromyogram (EMG)

被检肌肉
Examined Muscle

纤颤
Fibs

正锐
PSW

束颤
Fascics

其他
Others

MUP多相
MUP Polyph

MUP形态
MUP Form

募集相
Recur it

左 第一背侧骨间肌
L Dors.Int.I

左 指总伸肌
L Ext.Dig.Com

-

1+

-

-

-

-

-

-

-

> 5mv 
MUP

-

干扰相
Interference

混合相
Mix

... ... ... ... ... ... ... ...

Nerve Conduction Velocity (NCV) 
被检神经
Examined Nerve

项目
Type

刺激
Stim

记录
Rec

潜伏期（左）
Lat (L)

波幅（左）
Amp (L)

速度（左）
CV (L)

速度（左）
CV (R)

波幅（右）
Amp (R)

潜伏期（右）
Lat (R)

腓总神经
Reroncal

正中神经
Median

尺神经
Ulnar

运动
Motor

F波
F-wave

感觉
Sensory

腕
Wrist

踝
Ankle

中指
Dig III

拇短展肌
APE

趾短伸肌
EDB

腕
Wrist

... ... ... ... ... ... ... .........

4.2 7.0 7.0

3.4 15.03.8 14.2 46.2 44.8

50.5

Findings:
• EMG: 被检肌未见明显肌源性或神经源性损害肌电改变。
     (No denervation or reinnervation in the muscles examined. )
• NCV: 左侧正中神经运动传导潜伏期正常上限，感觉神经传导速度轻度减慢；余运动和感觉

神经传导速度和波幅正常范围。

Impression:
左侧正中神经轻度损害，CTS可考虑。
(The left median nerve is mildly damaged, and diagosis of Carpal Tunnel Syndrome could be considered)

-

(Mildly prolonged motor distal latency and slightly slowed sensory nerve conduction velocity of 
left Median Nerve is revealed. The conduction velocity and amplitude of residual motor and 
sensory nerves are within the normal range.)

Input: Examination Tables

Output: Diagnosis

Figure 1: An EMG diagnostic report example, includ-
ing EMG tables (EMG and NCV) and their correspond-
ing diagnosis (Findings and Impression). For our au-
tomatic diagosis generation task, the input is the EMG
tables and the output is the diagnosis.

3 Method182

3.1 Model183

EMGLLM is composed of two fundamental com-184

ponents: the EMG Alignment Encoder and the185

LLM. The EMG Alignment Encoder is a special-186

ized module tailored for understanding medical ex-187

amination tables such as EMG tables. As illus-188

trated in Figure 2, when an EMG table is input,189

text and discrete data are tokenized and vectorized190

by LLM’s tokenizer and embedder directly. For191

continuous numerical data, they are encoded into192

virtual tokens using the EMG Alignment Encoder.193

The model’s output is the Findings and Impression194

of the EMG tables.195

The process by which the EMG Alignment En-196

coder analyzes continuous numerical table cells is197

analogous to the approach employed by doctors. In198

EMG examinations, reference values are the most199

critical criterion for determining whether a test pa-200

rameter is within normal ranges. The reference201

range defines the upper and lower limits of nor-202

malcy for a specific examination item. The extent203

to which the test value exceeds the reference range204

reflects the degree of pathological alteration in the205

muscle or nerve. In practice, doctors first assess206

As a physician, your task is to provide a diagnosis for the 
patient based on the EMG and NCV examination tables.

### EMG Test:
Examined Muscle|Fibs|PSW|Fascics|Others|MUP Polyph|MUP Form|Recurit
L Ext.Dig.Com    |-      |1+    |-          |-         |-                    |-                 |Interference
L Dors.Int.I          |-      |-       |-          |-         |-                    |-                 |Mix
...

### NCV Test:
Examined Nerve|Type     |Stim     |Rec   |Lat(L)|Kat(R)|Amp(L)|Amp(R)|CV(L)|CV(R)
Median               |Motor   |Elbow   |APE  |6.2     |6.1      |5.8       |6.4        |60.5     |59.2
Median               |Motor   |Wrist    |APE  |2.4     |2.3       |6.1       |7.0        |NaN    |NaN
Median               |Sensory|Digit III|Wrist|2.4      |2.5       |25       |20          |61.9    |61.9
Median               |F-wave |Wrist     |APE  |23.3    |23       |NaN    |NaN      |NaN   |NaN
Ulnar                  |Sensory|ADM     |Wrist|2.4      |2.5      |25       |20          |61.9    |61.9
Ulnar                  |Motor   |Below Elbow|ADM|5.4|5.3    |6.2      |6.7         |58.8    |59.1
Ulnar                  |Motor   |Above Elbow|ADM|7.5|7.7    |6.0      |6.3         |57.1    |58.1
Radial                 |Sensory|Forearm|Opisthenar|2.3|1.9    |22       |23          |71.0    |86.8
...

Please generate your diagnosis:

Instruction

LLM 

Instruction
Text or discrete numerical data Continuous numerical data

LLM Tokenizer 
Embedder

EMG Alignment 
Encoder

Embeddings

Figure 2: EMGLLM Framework. Medical examination
tables contain a large amount of continuous data. The
numbers marked in blue in the instruction could be en-
coded by the EMG Alignment Encoder.

the relative magnitude of test values based on ref- 207

erence values, then make a annotation within the ta- 208

ble cell to indicate the degree of abnormality. The 209

EMG Alignment Encoder is designed to emulate 210

this process by comparing the continuous test data 211

with multiple reference ranges and encoding the ab- 212

normality degree semantically into virtual tokens 213

that are more interpretable by the LLM. 214

Reference Value Acquisition In practice, doc- 215

tors rely on their clinical experience to make ap- 216

propriate adjustments to reference values for cer- 217

tain individual cases. This process involves strong 218

subjectivity. Therefore, we propose a method 219

for mining reference values based on percentiles 220

from the training dataset. We filter out the com- 221

pletely healthy cases without any abnormalities 222

from the training dataset and statistically analyze 223
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Reference Matrix

Conv2d

Linear

flatten

Upper 
Reference Values

Lower 
Reference Values

Test Values�� ��

��
�1 ��

�2 ��
�3 ��

�4 ��
�5 ��

�6 ��
�7

��
�1 ��

�2 ��
�3 ��

�4 ��
�5 ��

�6 ��
�7

�� �� �� �� ��

  LLM Vocabulary Word Embeddings

Text Prototypes

Multi-head Attention

Continuous Data Embeddings

EMG Alignment Encoder Structure

(Query)

high   prolonged   normal     low   decreased slowed significantly  ...

Linear

(Key) (Value)

 ...

Figure 3: EMG Alignment Encoder Structure. EMG
Alignment Encoder regards the reference matrix of the
test values as an image, extracts features using the con-
volutional layer, and aligns continuous data with text
through the Attention mechanism.

the healthy case subset for each item. For a224

given examination item i, we use the k upper225

percentiles up1i , up2i , · · · , upki and the k lower per-226

centiles lp1i , lp2i , · · · , lpki as multiple reference val-227

ues at different levels, where p1, p2, . . . , pk rep-228

resent different percentile thresholds. These per-229

centiles allow us to estimate the boundaries of the230

reference ranges from data distribution of healthy231

individuals.232

EMG Alignment Encoder Structure The input233

to the EMG Alignment Encoder for item i is a ref-234

erence matrix Xi:235

Xi =

up1i up2i · · · upki
xi xi · · · xi
lp1i lp2i · · · lpki

 (1)236

where xi denotes the continuous test value. The237

EMG Alignment Encoder views the reference ma-238

trix Xi as a form of image, where the pixels rep-239

resent the arrangement of the examined value and240

reference ranges, as illustrated in Figure 3. Us-241

ing a convolutional layer Conv with dC output242

channels, the model sequentially compares the test243

value with the reference values. Subsequently, a244

linear layer integrates the output vectors of Conv245

to produce the vector X̂i representing the feature246

of the test value xi:247

X̂i = f1(W1flatten(Conv(Xi)) + b1) (2)248

where f1 and b1 are the activation function and bias.249

When Conv outputs m vectors of dimension dC ,250

W1 ∈ Rm×N , where N represents the number of 251

vectors output by the linear layer. Consequently, 252

X̂i contains N vectors of dimension dC . 253

These data features are then aligned with the 254

word embeddings in the LLM’s vocabulary. As 255

shown in Figure 3, the alignment process first 256

involves learning a set of text prototypes E′ ∈ 257

RV ′×D from the LLM’s vocabulary E ∈ RV×D 258

through E′ = W2E, where V and V ′ refers to the 259

size of vocabulary and text prototypes respectively 260

subject to V ′ ≪ V , D denotes dimension of the 261

LLM embeddings, and W2 ∈ RV×V ′ . Text proto- 262

types E′ serve as a compressed version of the vo- 263

cabulary capable of semantically implying health 264

or abnormality in medical diagnosis, such as ”pro- 265

longed”, ”slowed”, and ”decreased”. The EMG 266

Alignment Encoder then connects the continuous 267

data features X̂i in Equation 2 to these text proto- 268

types via a multi-head attention layer: 269

EMGAlignmentEncoder(Xi) 270

= MultiHeadAttention(Qi,K, V, nhead) (3) 271

where Qi = X̂iWQ, K = E′WK , V = E′WV , 272

nhead is the number of heads, WQ ∈ RdC×d. 273

WK ,WV ∈ RD×d, d = ⌊dC/nhead⌋. The output 274

of EMG Alignment Encoder isN data embeddings 275

of dimensionD. In Equation 3, Query is computed 276

from the continuous data in tables, while the Key 277

and Value are derived from the LLM embeddings. 278

The EMG Alignment Encoder leverages this Atten- 279

tion mechanism to associate continuous data with 280

text. 281

The additional reference value information and 282

reasonable continuous data encoding contribute to 283

enhancing the performance of LLMs in data-to- 284

text medical tasks. Another advantage of the EMG 285

Alignment Encoder lies in its continuous function, 286

where similar numeric values are encoded into cor- 287

respondingly similar virtual tokens. In contrast, 288

standard LLMs tokenize numeric values, a process 289

that discretizes the table’s data. For instance, two 290

numerically close values, such as 9.99 and 10.0, 291

may result in significantly different word embed- 292

dings in LLMs, which may be not reasonable in 293

data-to-text scenario. 294

Finally, EMGLLM integrates the EMG Align- 295

ment Encoder with the LLM. With the assistance 296

of the EMG Alignment Encoder, the LLM gains 297

better understanding of the EMG table. Combined 298

with the LLM’s strong generative capabilities, this 299
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Figure 4: Examples of two pre-training tasks for EMG
Alignment Encoder. [Embedding] represents the vir-
tual tokens encoded by the EMG Alignment Encoder
from a reference matrix Xi in Equation 1, which is re-
quired to enable pre-trained LLMs to complete single
data diagnosis without fine-tuning EMG data.

enhancement endows EMGLLM with better auto-300

mated diagnostic abilities.301

3.2 Training302

EMG Alignment Encoder Pre-training Before303

training on EMG diagnosis task, we pre-train the304

EMG Alignment Encoder to ensure it can prop-305

erly perform data understanding in a single contin-306

uous test value. The purpose of pre-training is to307

help the model understand the underlying medical308

semantics behind the relative size relationship be-309

tween a test value with its reference values. Freez-310

ing the LLM, two types of pre-training tasks based311

on one test value are applied: (1) Classification of312

abnormality. (2) Making LLM generate a diagnos-313

tic description of a word. The loss function in pre-314

training is same as the supervised fine-tuning of315

LLM.316

Figure 4 presents examples of the pre-training317

data. The instructions for pre-training tasks require318

EMG Alignment Encoder to provide reasonable319

virtual tokens so that the base LLM can clearly un-320

derstand their meaning. In pre-training dataset con-321

struction, the test value xi and the reference val-322

ues ui and li can be obtained by sampling from the323

diagnosis generation training dataset, and the out-324

put labels can be constructed directly from manu-325

ally defined rules. For example, if a test value ex-326

ceeds the u0.02i by 20%, the virtual tokens should327

convey the meaning of ”significantly high”. This328

rule-based approach does not rely on any authori-329

tative reference values from hospitals, but can nat-330

urally learn an understanding of reference values331

from the data distribution of healthy individuals,332

which has good generality.333

Measurement Value
# of Samples 17,276
Avg # of Continous Numerical Data 33.14
Avg Length (Findings) 85.04
Avg Length (Impression) 26.82

Table 1: Dataset Statistics

Model Fine-tuning Upon the completion of pre- 334

training, we proceed with supervised training for 335

the EMG data-to-text task. In the fine-tuning 336

phase, we further train both the LLM and the EMG 337

Alignment Encoder on EMG train dataset, where 338

LLM is efficiently trained by the Low-Rank Adap- 339

tation (LoRA) (Hu et al., 2021) method. 340

Through the aforementioned steps, the EMG 341

Alignment Encoder’s representation of continu- 342

ous numerical data can be enhanced, enabling the 343

EMGLLM to better understand continuous data 344

and diagnose from EMG tables. 345

4 Experiments 346

4.1 ETM Dataset 347

In this section, we introduce a high quality EMG 348

diagnostic report dataset ETM (Electromyogram 349

Table Mart) derived from Huashan Hospital Affil- 350

iated to Fudan University 1 with high authenticity, 351

accuracy, and authority, which contains a total of 352

17,276 diagnostic reports from 2006 to 2013, and 353

each data includes: 354

• Basic information of real anonymized patients 355

(age, gender, and height). 356

• EMG tables (EMG and NCV tests) from the 357

real EMG examination in the hospital. 358

• Diagnosis (Findings and Impression) person- 359

ally written by experienced physicians. 360

The data format is shown in Figure 1. The full 361

dataset is further proportionally divided into train- 362

ing, validation, and testing set, with data volumes 363

of 13820, 1728, and 1728 respectively, which can 364

effectively support medical data-to-text research. 365

Some statistical information of the ETM dataset 366

is displayed in Table 1 basic statistics for our Some 367

statistics information ETM dataset. The average 368

number of continuous numerical data in tables is 369

33.14, indicating that the model’s input contains 370

dense numerical information. The automatic diag- 371

nostic task requires the model to have a sufficient 372

understanding of continuous test values. 373

1https://www.huashan.org.cn/
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Model Automatic Model Human
ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 Correctness Completeness Human

Overall

DeepSeek-V2 (zero-shot) 60.19(0.88) 42.91(1.25) 51.53(1.10) 49.67(0.87) 42.22(1.04) 37.16(1.16) 3.44 3.61 3.41
Lattice 71.59(0.94) 56.82(1.25) 65.25(0.96) 55.97(0.82) 46.57(0.85) 39.41(0.83) 3.46 3.28 3.50

TableLLM-7B 74.41(0.42) 58.03(0.80) 67.37(0.55) 65.48(0.56) 58.31(0.67) 53.22(0.79) 3.72 3.70 3.88
Chinese-Alpaca-2-7B-16K 79.24(0.33) 65.15(0.70) 73.18(0.45) 71.26(0.50) 65.18(0.50) 60.67(0.74) 4.02 3.92 4.21

EMGLLM (Ours) 80.44(0.23) 66.26(0.50) 74.24(0.26) 72.86(0.51) 66.70(0.58) 62.14(0.64) 4.11 4.09 4.38

Findings

DeepSeek-V2 (zero-shot) 60.29(0.70) 42.20(0.90) 52.00(0.80) 45.21(0.76) 38.66(0.82) 34.15(0.85) 3.53 3.74 3.53
Lattice 71.83(0.73) 56.80(0.71) 65.67(0.71) 54.73(0.56) 46.33(0.56) 39.69(0.53) 3.63 3.41 3.56

TableLLM-7B 74.19(0.58) 57.45(0.81) 66.93(0.67) 64.55(0.65) 57.35(0.74) 51.92(0.81) 3.85 3.86 3.90
Chinese-Alpaca-2-7B-16K 79.02(0.66) 64.35(0.77) 72.43(0.66) 70.11(0.73) 63.91(0.78) 59.16(0.80) 4.03 4.00 4.36

EMGLLM (Ours) 80.36(0.52) 66.03(0.69) 73.92(0.53) 71.83(0.54) 65.75(0.61) 61.05(0.66) 4.10 4.13 4.40

Impressions

DeepSeek-V2 (zero-shot) 51.83(0.72) 33.10(0.80) 48.54(0.81) 40.89(1.02) 33.10(0.90) 28.02(0.83) 3.36 3.48 3.30
Lattice 65.06(0.56) 46.51(0.74) 63.04(0.59) 50.77(0.59) 39.60(0.60) 30.19(0.63) 3.29 3.14 3.43

TableLLM-7B 70.36(0.54) 51.53(0.79) 67.91(0.60) 62.69(0.66) 53.60(0.72) 46.87(0.81) 3.59 3.54 3.86
Chinese-Alpaca-2-7B-16K 76.68(0.34) 61.04(0.55) 74.72(0.40) 70.41(0.50) 62.85(0.59) 57.14(0.62) 4.01 3.85 4.06

EMGLLM (Ours) 77.21(0.41) 61.49(0.86) 75.26(0.43) 70.91(0.36) 63.29(0.64) 57.38(0.86) 4.13 4.05 4.36

Table 2: Main Results. Average results (standard deviation) of EMGLLM and baseline models on the ETM test
set. All automatic evaluations are tested with 5 random seeds.

Model Automatic Evaluation Model Evaluation
ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 Correctness Completeness

Overall Chinese-Alpaca-2-7B-16K 77.48(0.71) 62.82(0.71) 70.86(0.62) 68.25(0.80) 61.97(0.78) 57.48(0.78) 3.88 3.85
EMGLLM (Ours) 79.48(0.65) 65.73(0.76) 73.51(0.70) 71.64(0.72) 65.63(0.77) 61.25(0.80) 3.93 3.92

Findings Chinese-Alpaca-2-7B-16K 77.63(0.65) 62.81(0.72) 70.48(0.59) 67.72(0,81) 61.54(0.81) 56.83(0.82) 3.88 3.91
EMGLLM (Ours) 79.30(0.48) 65.36(0.53) 72.92(0.46) 70.64(0.54) 64.71(0.55) 60.14(0.56) 3.90 3.93

Impressions Chinese-Alpaca-2-7B-16K 73.36(0.71) 55.17(0.88) 71.16(0.66) 65.82(0.74) 57.07(0.78) 50.92(0.87) 3.87 3.78
EMGLLM (Ours) 76.91(1.10) 60.56(1.85) 74.63(1.20) 70.02(1.31) 62.16(1.76) 56.38(2.10) 3.95 3.92

Table 3: Data-intensive Results. Average results (standard deviation) of experiment on a subset with larger average
amount of continuous values. EMGLLM demonstrates more significant advantages. All automatic evaluations are
tested with 5 random seeds.

4.2 Setup374

4.2.1 Baseline Methods375

We select various baseline models capable of per-376

forming automatic EMG diagnosis, including both377

general text-to-text generation models and models378

specifically designed for data-to-text tasks.379

Chinese-Alpaca-2-7B-16K Chinese-Alpaca-380

2-7B-16K (Cui et al., 2023) is a widely used381

LLM. It also serves as the base LLM module for382

EMGLLM. The prompt template for Chinese-383

Alpaca-2-7B-16K is fully consistent with that of384

EMGLLM, with the only difference being that385

Chinese-Alpaca-2-7B-16K directly process the386

continuous data in textual form. Besides, this387

model is similarly fine-tuned using the LoRA388

method, with training hyperparameters consistent389

with those of EMGLLM. The comparison with390

EMGLLM can clearly demonstrate the effect of391

the EMG Alignment Encoder on the automatic392

generation of diagnostic results.393

TableLLM-7B TableLLM (Zhang et al., 2024b)394

is an LLM specifically designed for tabular data395

inputs, fine-tuned on a large dataset of table396

tasks. Since the base model used by TableLLM,397

CodeLlaMA-7B (Rozière et al., 2023), does not 398

support Chinese, we replicate the training using 399

the official code on Chinese-CodeLlaMA-7B to de- 400

velop a Chinese version TableLLM , and subse- 401

quently fine-tune it on ETM dataset. 402

Lattice Lattice (Wang et al., 2022) is a data-to- 403

text generation model with a structure-aware self- 404

attention mechanism and a tranformation-invariant 405

positional encoding mechanism improved from T5- 406

base. 407

DeepSeek-V2 (zero-shot) We conduct experi- 408

ments on DeepSeek-V2 (DeepSeek-AI, 2024), a 409

powerful general Chinese model with 236B param- 410

eters, in a zero-shot setting. In addition to the basic 411

prompt template, we provide several output exam- 412

ples to guide the model in generating Findings and 413

Impressions in the correct format. 414

4.2.2 Implementation Details 415

For the implementation of EMGLLM, we first ob- 416

tain reference values from the ETM training set. 417

From a total of 13,820 samples, we filter out 7,166 418

(52%) completely healthy samples based on text 419

rules and perform quantile statistics on each ex- 420

amination item i to determine reference values 421
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Model ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3

Overall

w/o Reference Value 79.02(0.38) 64.32(0.53) 72.79(0.47) 70.81(0.58) 64.44(0.64) 59.85(0.71)
w/o Encoder Pre-training 79.24(0.18) 64.98(0.38) 73.02(0.12) 71.44(0.36) 65.26(0.40) 60.77(0.45)
EMGLLM (rule-based) 79.86(0.28) 65.50(0.62) 73.69(0.30) 72.38(0.43) 66.09(0.54) 61.45(0.62)
w/o Encoder Fine-tuning 80.07(0.12) 65.92(0.33) 74.09(0.12) 72.66(0.27) 66.47(0.35) 61.91(0.40)

EMGLLM 80.44(0.23) 66.26(0.50) 74.24(0.26) 72.86(0.51) 66.70(0.58) 62.14(0.64)

Findings

w/o Reference Value 79.03(0.36) 64.26(0.58) 72.36(0.36) 70.03(0.58) 63.81(0.66) 59.05(0.72)
w/o Encoder Pre-training 79.00(0.45) 64.20(0.59) 72.27(0.46) 70.21(0.52) 63.96(0.57) 59.19(0.63)
EMGLLM (rule-based) 79.45(0.35) 64.60(0.52) 72.76(0.32) 70.89(0.32) 64.56(0.39) 59.67(0.45)
w/o Encoder Fine-tuning 79.83(0.26) 65.18(0.31) 73.29(0.28) 71.42(0.36) 65.15(0.37) 60.34(0.41)

EMGLLM 80.36(0.52) 66.03(0.69) 73.92(0.53) 71.83(0.54) 65.75(0.61) 61.05(0.66)

Impressions

w/o Reference Value 74.88(0.29) 57.68(0.54) 72.62(0.24) 67.93(0.29) 59.56(0.40) 53.37(0.47)
w/o Encoder Pre-training 76.27(0.29) 60.19(0.48) 74.15(0.38) 69.94(0.47) 62.16(0.53) 56.31(0.59)
EMGLLM (rule-based) 76.93(0.49) 60.79(0.81) 74.83(0.54) 70.56(0.69) 62.69(0.83) 56.71(0.95)
w/o Encoder Fine-tuning 77.45(0.55) 61.72(0.70) 75.49(0.42) 71.15(0.48) 63.52(0.60) 57.58(0.66)

EMGLLM 77.21(0.41) 61.49(0.86) 75.26(0.43) 70.91(0.36) 63.29(0.64) 57.38(0.86)

Table 4: Ablation Study Results. All automatic evaluations are tested with 5 random seeds.

ui and li. Subsequently, 7 quantile thresholds422

{p1, p2, p3, ..., p7} = {0.02, 0.05, 0.08, ..., 0.2}423

are set to construct the reference matrix X̂i.424

In the EMG Alignment Encoder, the output425

channel number dC = 64, the number of output426

embeddings N = 2, the size of text prototypes427

V ′ = 192 , and the number of heads nhead = 8.428

For the LLM component of EMGLLM, we se-429

lect the widely-used Chinese-Alpaca-2-7B-16K as430

base model. Pre-training of EMG Alignment En-431

coder is conducted for 2000 steps, followed by 5432

epochs of fine-tuning, with a batch size of 1 and433

a gradient accumulation step of 16. Optimiza-434

tion is performed using the Adam optimizer, with435

a learning rate of 5e-5. The LLM is trained us-436

ing the LoRA method, with a rank of 8, an alpha437

value of 16, and the training target set to [’q_proj’,438

’v_proj’].439

For the training of baseline models, we prepro-440

cess the dataset according to the input and output441

formats required by the model and employ the rec-442

ommended hyperparameters of the projects.443

4.2.3 Metrics444

To comprehensively evaluate the quality of EMG445

automatic diagnosis, we use multidimensional met-446

rics. The automatic metrics include:447

• ROUGE (Recall-Oriented Understudy for448

Gisting Evaluation) (Lin, 2004): It measures the449

generation quality by comparing the overlap be-450

tween texts. ROUGE-1, ROUGE-2, and ROUGE-451

L are selected as metrics.452

• BLEU (Bilingual Evaluation Understudy)453

(Papineni et al., 2002): It compares the n-gram454

match between texts. We use BLEU-1, BLEU-2,455

and BLEU-3 to evaluate the model’s capabilities. 456

In addition, we introduce model evaluation, us- 457

ing GPT-4o (OpenAI, 2023) as a judge to assess 458

the quality of the model-generated diagnoses. We 459

provide authoritative doctors’ ground truth diag- 460

noses as a reference for GPT-4o, simultaneously in- 461

putting the model-generated results, allowing GPT- 462

4o to analyze and compare the differences between 463

the two and provide a multidimensional evaluation. 464

GPT-4o’s scoring criteria include: 465

• Correctness: evaluate whether a diagno- 466

sis falsely reports non-existent abnormalities. A 467

higher score indicates fewer false positives. 468

• Completeness: evaluate whether a diagno- 469

sis has missed reporting existing abnormalities. A 470

higher score indicates fewer missed abnormalities. 471

In model evaluation, GPT-4o evaluates the Find- 472

ings and Impressions separately, and we use the av- 473

erage of these two evaluations as the overall score 474

for the diagnosis. The evaluation template for GPT- 475

4o is presented in Appendix A. 476

Finally, we conduct the human evaluation and 477

provide human scores. We sample 50 examples 478

from the test set and rate from 1 to 5 to the gen- 479

erated outputs of each model. These human ex- 480

perts are graduate students responsible for research 481

and development projects in the medical technol- 482

ogy field. The criteria for the human evaluation 483

can be found in Appendix A. We ask human ex- 484

perts to score the Findings and Impression sepa- 485

rately based on the following scoring criteria, and 486

the average of these two scores is then taken as the 487

Overall score. 488
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4.3 Results489

4.3.1 Main Results490

Table 2 presents the main results of the EMG auto-491

matic diagnosis generation. In automatic, model492

and human evaluations, it can be observed that493

EMGLLM outperforms all baseline methods, in-494

cluding data-to-text models such as Lattice and495

TableLLM-7B. In particular, the comparison be-496

tween EMGLLM and Chinese-Alpaca-2-7B-16K497

clearly illustrates the improvement brought by the498

EMG Alignment Encoder to the LLM in EMG499

automatic diagnosis. This demonstrates that the500

EMGLLM framework effectively utilizes test val-501

ues and reference values to reasonably encode nu-502

merical data in medical tables, resulting in higher-503

quality diagnosis generation.504

Additionally, zero-shot DeepSeek-V2 shows505

lower performance, indicating that a general LLM506

without specific fine-tuning lacks the knowledge of507

medical data. This underscores the importance of508

datasets for medical tables and highlights the con-509

tribution of the ETM.510

We also observe that for all models in the experi-511

ment, the rankings of the model evaluation metrics512

are generally consistent with those of the human513

evaluation scores, indicating that GPT-4 can serve514

as a substitute for human evaluation in our task.515

4.3.2 Effectiveness on Data-intensive Input516

Scenario517

To further validate the effectiveness of data encod-518

ing method, we extract samples with a relatively519

large number of continuous numerical data from520

the ETM dataset, resulting in a data-intensive sub-521

set. This subset contains 5,000 training samples522

and 600 test samples, with an average of 43.49 con-523

tinuous numerical values per sample, higher than524

33.14 shown in Table 1. As shown in Table 3, com-525

pared to the results from training and testing on526

the full dataset in Table 2, the performance gap be-527

tween EMGLLM and Chinese-Alpaca-2-7B-16K528

widens, exceeding 3 in overall diagnoses, 2 in Find-529

ings, and 6 in Impressions in terms of ROUGE-530

2. Therefore, as the data amounts in the tables531

increase and the task becomes more challenging,532

EMGLLM demonstrates greater robustness.533

4.3.3 Ablation Study534

In Section 3.1, we propose a method for obtaining535

reference values and attempt to compare test values536

with them using the EMG Alignment Encoder. A537

natural question arises: once reference values are538

obtained, is it effective to directly convert continu- 539

ous numerical data into categorical terms such as 540

”high”, ”normal”, or ”low” based on rules without 541

the EMG Alignment Encoder? Therefore, we con- 542

duct experiment on a rule-based approach for pro- 543

cessing data input. Specifically, if the test value 544

for item i exceeds u0.05i , it is denoted as ”high”; 545

if it is below l0.05i , it is denoted as ”low”; other- 546

wise, it is denoted as ”normal”. The LLM trained 547

by this rule-based method is denoted as EMGLLM 548

(rule-based) in Table 4. It is shown that replacing 549

the EMG Alignment Encoder with rules leads to a 550

certain degradation in performance. This indicates 551

that the rule-based method is relatively inflexible 552

in handling medical examination tables. Besides, 553

to verify the necessity of introducing reference val- 554

ues, we evaluate EMGLLM without reference val- 555

ues by replacing each detection item’s reference 556

values with random numbers from a standard nor- 557

mal distribution during model fine-tuning phase. 558

As shown in Table 4, this leads to a significant 559

performance drop. 560

We also conduct ablation study over training 561

methods in Section 3.2. As shown in Table 4, pre- 562

training the EMG Alignment Encoder is essential, 563

resulting in a well-calibrated initialization. Fine- 564

tuning the EMG Alignment Encoder in conjunc- 565

tion with the LLM on real EMG diagnostic datasets 566

can further enhance the capabilities. 567

5 Conclusion 568

In this paper, we propose EMGLLM, a medical 569

data-to-text model, for the automatic diagnosis gen- 570

eration of Electromyography (EMG) tables. The 571

model framework with the EMG Alignment En- 572

coder can enhance the encoding of continuous nu- 573

merical data, enabling the model to simulate the 574

process by which physicians compare test values to 575

reference values during diagnosis. This approach 576

facilitates a better model understanding of the de- 577

gree of health and abnormality reflected by the data. 578

In addition, we construct the ETM dataset, which 579

comprises 17,276 real case examination EMG ta- 580

bles and diagnoses from authoritative doctors, to 581

support the advancement of medical data-to-text 582

research. Finally, experimental results demon- 583

strate that EMGLLM outperforms baseline meth- 584

ods in all automatic, model and human evaluations 585

for EMG diagnosis generation, confirming the ef- 586

fectiveness of the EMGLLM approach in handling 587

medical examination data for automatic diagnosis. 588
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Limitation589

EMGLLM is designed to augment the model un-590

derstanding of continuous numerical data in med-591

ical examination tables, without addressing other592

elements of the tables. At present, our experiments593

have been conducted solely on the EMG task. We594

will extend our model to other types of medical ex-595

aminations, such as complete blood counts and uri-596

nalysis tables in future works.597

Ethics Statement598

We acknowledge the limitations of current LLMs599

and the ethical implications of their use, includ-600

ing the potential for inaccurate or misleading re-601

sponses in diagnosis. However, our research has602

shown an improvement in reliability compared to603

baseline methods. Future research may explore604

more robust methods to address these challenges.605

Our dataset is constructed from real medical diag-606

nostic reports and contains basic information about607

patients. However, the dataset we publish is com-608

pletely anonymous, and we will only disclose age,609

gender, and height information without revealing610

any other private information. The release of this611

dataset has been approved for use by Huashan Hos-612

pital Affiliated with Fudan University.613

All human participants involved in the evalua-614

tion of this research were compensated at or above615

the average local wage rate, ensuring fair remuner-616

ation for their time and contributions.617
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A Model and Human Evaluation Details 764

In Sections 4.3.1 and 4.3.2, we introduce a GPT- 765

4o-based model evaluation with 0.1 model temper- 766

ature for stability. GPT-4o is tasked with scoring 767

both the Findings and Impression sections, and we 768

use the average of these two scores as the overall 769

score of a diagnosis. The template is shown in Fig- 770

ure 5, where we provide the full scoring criteria 771

for Correctness and Completeness, allowing GPT- 772

4o to reference the authoritative doctor’s diagnosis 773

when assigning scores. 774

Your task is to grade the electromyography (EMG) diagnosis of an intern doctor.

A complete EMG diagnosis consists of two parts:
1. Findings (EMG and NCV)
2. Impressions 
You need to grade both parts separately.

I will provide you with two EMG diagnoses, one from an authoritative doctor and one from the 
intern doctor. Please evaluate the intern's diagnosis based on the authoritative doctor’s results.
Your focus should be on analyzing whether the intern correctly and comprehensively identified 
abnormalities. You don't need to pay too much attention to the description of normal findings.

Correctness (evaluating whether any abnormalities were misreported):
5 - The intern did not misreport any abnormal findings.
4 - The intern generally did not misreport any abnormalities, but there were slight inaccuracies in 
the details (such as severity, laterality, etc.).
3 - The intern misreported one abnormality, but the overall diagnostic direction remains reasonable.
2 - The intern misreported two abnormalities, affecting the accuracy of the overall diagnosis.
1 - The intern misreported three or more abnormalities.

Completeness (evaluating whether any abnormalities were missed):
5 - The intern did not miss any abnormal findings.
4 - The intern almost did not miss any abnormalities, but there were slight inaccuracies in the 
details (such as severity, laterality, etc.).
3 - The intern missed one abnormality, but the other findings were fairly comprehensive.
2 - The intern missed two abnormalities, affecting the completeness of the overall diagnosis.
1 - The intern missed three or more abnormalities, and the diagnosis is severely incomplete.

Authoritative Doctor's Diagnosis:
{Ground Truth}

Intern Doctor's Diagnosis:
{Prediction}

Please provide the diagnosis score for both the Findings and Impressions sections in the two 
dimensions (Correctness and Completeness), in the JSON format below:
{Format Examples}

Score:

Sc
or

in
g 

cr
ite

ria
Ta

sk
 D

es
cr

ip
tio

n
D

ia
gn

os
is

 E
va

lu
at

io
n

Template for GPT-4 Model Evaluation

Figure 5: Template for GPT-4o evaluation of EMG di-
agnosis generation

10

https://arxiv.org/abs/2309.04770
https://arxiv.org/abs/2309.04770
https://arxiv.org/abs/2309.04770
https://openai.com/research/gpt-4
https://arxiv.org/abs/2409.07491
https://arxiv.org/abs/2409.07491
https://arxiv.org/abs/2409.07491
https://arxiv.org/abs/2409.07491
https://arxiv.org/abs/2409.07491
https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/
https://arxiv.org/abs/2212.08607
https://arxiv.org/abs/2212.08607
https://arxiv.org/abs/2212.08607
https://arxiv.org/abs/2207.12571
https://arxiv.org/abs/2207.12571
https://arxiv.org/abs/2207.12571
https://arxiv.org/abs/2311.14675
https://arxiv.org/abs/2311.14675
https://arxiv.org/abs/2311.14675
https://arxiv.org/abs/2311.14675
https://arxiv.org/abs/2311.14675
https://arxiv.org/abs/2101.08248
https://arxiv.org/abs/2101.08248
https://arxiv.org/abs/2101.08248
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2401.13223
https://arxiv.org/abs/2401.13223
https://arxiv.org/abs/2401.13223
https://arxiv.org/abs/2401.13223
https://arxiv.org/abs/2401.13223


In the human evaluation, we ask human experts775

to score based on the following scoring criteria.776

5 - The generated diagnosis is completely iden-777

tical to the real diagnosis. Not only the con-778

clusion but also the detailed descriptions are779

fully consistent.780

4 - The generated diagnosis and the real diag-781

nosis have identical conclusions, and most of782

the detailed descriptions are accurate. There783

may be minor omissions or incomplete de-784

scriptions in certain details, but these discrep-785

ancies do not affect the overall diagnostic con-786

clusion.787

3 - The generated diagnosis and the real diagno-788

sis have the same direction, and the conclu-789

sions are generally consistent, but there are 1790

to 2 notable discrepancies and slight inaccu-791

racies in details.792

2 - The generated diagnosis is largely inconsis-793

tent with the real diagnosis, with only a few794

minor details agreeing.795

1 - The generated diagnosis is completely oppo-796

site to the real diagnosis. The conclusion is797

significantly erroneous, with a fundamentally798

incorrect assessment of the condition, which799

does not meet medical standards.800
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