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ABSTRACT

The various interferences in the actual environment make electromagnetic sig-
nal recognition challenging, and this topic has extremely important application
value. In this paper, a novel interference signal recognition transformer is pro-
posed, named Diffusion SigFormer. Firstly, we explored the interference law
of electromagnetic signals and designed a signal interference mechanism. Sec-
ondly, diffusion signal denoising modulewas proposed to denoise the input inter-
ference signal. We also use various types of noise to improve its denoising effect
on electromagnetic signals. Thirdly, SigFormer is designed to extract and clas-
sify the denoised signal. For the characteristics of electromagnetic signals, Sig-
Former leverages 1-D Patch Embedding and combines transformer with convolu-
tion. Finally, we conducted experimental verification on datasets RML2016.10a,
RML2016.10b and BT dataset. The experimental results show that the proposed
method has excellent anti-interference ability.

1 INTRODUCTION

Electromagnetic signal recognition is a challenging task in the field of signal processing Sun et al.
(2024); Zhai et al. (2024). It is essentially a typical pattern recognition problem, which refers
to extracting features from corresponding electromagnetic signals and automatically predicting the
category label of the signal. Electromagnetic signal recognition has a wide range of applications in
various fields, such as radar Guo et al. (2022); Lang et al. (2021), communication Zhang et al. (2022),
human activity recognition Lin et al. (2022); Seong et al. (2024), human expression recognitionChen
et al. (2020), etc. This paper specifically studies modulation signals and bluetooth signals.

For electromagnetic signal recognition, analyzing the essential characteristics and mechanisms of
signals and achieving electromagnetic signal recognition in complex environments is of great sig-
nificance. Early electromagnetic signal recognition methods can be generally divided into two cate-
gories: likelihood based (LB) methods Dulek (2017); Zheng & Lv (2018); Ramezani-Kebrya et al.
(2013); Hameed et al. (2009) and feature-based (FB) methods Majhi et al. (2017); Headley et al.
(2008); Alarabi & Alkishriwo (2021); Huang et al. (2016). LB methods use probability theory,
hypothesis testing theory, and appropriate decision criteria for electromagnetic signal recognition,
while FB methods use feature extraction and classification. In feature extraction, expert systems
are used to extract various statistical features of instantaneous amplitude, phase and frequency, such
as high-order statistics (HOS) and cyclostationary features. During the classification process, clas-
sification algorithms such as Decision Tree, Support Vector Machine (SVM) and Artificial Neural
Network (ANN) are designed to identify electromagnetic signals. Although LB methods are optimal
in Bayesian estimation, they heavily rely on prior knowledge and parameter estimation. Compared
with LB methods, FB methods have stronger robustness and effectiveness, but its recognition per-
formance depends on manually designed features and classifiers.

In recent years, with the continuous development of artificial intelligence, deep learning methods
have become a research hotspot in the field of electromagnetic signal recognition. By constructing
neural network models, deeper information can be learned from different electromagnetic signal
data, improving the precision and efficiency of recognition. MCNet Huynh-The et al. (2020) is a
cost-effective Convolutional Neural Network (CNN). It has several specific convolution blocks to
simultaneously learn spatiotemporal signal correlations through different asymmetric convolution
kernels. MCLDNN Xu et al. (2020) is a three stream Deep Learning framework that integrates
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one-dimensional (1-D) convolution, two-dimensional (2-D) convolution, and long short-term mem-
ory (LSTM) layers to more effectively extract features from both temporal and spatial perspectives.
CGDNet Njoku et al. (2021) is a cost-effective hybrid neural network consisting of shallow convo-
lutional networks, gated recurrent units, and deep neural networks. DAE Ke & Vikalo (2022) based
on LSTM denoising autoencoder is designed for automatic modulation recognition (AMC).

However, there are many interference factors such as channel fading and background noise. The
electromagnetic environment is becoming increasingly complex, and electromagnetic signals are
dynamically unstable. These factors pose significant challenges to signal recognition models. Deep
learning models are susceptible to various interferences, leading to a decrease in recognition accu-
racy. It is crucial to develop an anti-interference electromagnetic signal recognition model to meet
practical needs.

In addition, most of the existing deep learning methods for electromagnetic signals are based on
CNN LeCun et al. (1998) or RNN Zaremba (2014). Although CNN can extract local features of im-
ages and signals well, its indispensable pooling layer will inevitably lead to information loss; RNN
(or LSTM Gers et al. (2000), GRU Cho (2014), etc.) can only be calculated unidirectionally. There
are two issues with this mechanism. Firstly, the computation of time slices relies on the results of
previous time steps, which greatly restricts the parallelism of the model. Secondly, prior informa-
tion is lost during the sequential calculation process. Although gate structures have been proposed,
they only partially alleviate the loss of long-term dependencies. The self-attention mechanism in
Transformer Vaswani (2017) can effectively solve the above problems. It can not only extract global
contextual information, but also has strong parallelism.

Recently, diffusion models have shown great potential in the field of image generation. The dif-
fusion model has several advantages over other generative models, such as Generative Adversarial
Networks (GANs) Goodfellow et al. (2014); Mirza & Osindero (2014); Radford (2015); Zhu et al.
(2017). They are easier to train and do not experience issues such as pattern crashes or low-quality
output. However, electromagnetic signal denoising based on diffusion models has not been fully
explored.

In this paper, inspired by the powerful denoising ability of diffusion models and considering the
interference of a large number of signals in reality, combined with the powerful temporal processing
capability of transformers, we propose a novel signal recognition method based on diffusion model
and transformer. The main contribution of this paper can be summarized as follows:

1) An anti-interference signal recognition method named Diffusion SigFormer is proposed. It con-
sists of Diffusion signal denoising module (DSDM) and classification model SigFormer.

2) A mechanism for electromagnetic signal interference is designed. This mechanism is used to
add an appropriate amount of interference to clean signals, facilitating subsequent research on anti-
interference electromagnetic signal recognition.

3) In DSDM, we fix the time t and improve its denoising effect on electromagnetic signals by chang-
ing the interference rate and type of noise.

4) The basic block of SigFormer combines convolution and Transformer, which enables the model
to have excellent local feature extraction ability and global context modeling ability.

2 METHOD

In this section, we first present the overall architecture of the proposed method. Secondly, the
signal interference mechanism is introduced. Thirdly, the structure of diffusion signal denoising
module and its denoising process are expounded. Finally, we provide a detailed introduction to the
SigFormer.

2.1 OVERALL ARCHITECTURE

The overall framework of Diffusion SigFormer is shown as Fig. 1. It is generally divided into three
parts: signal interference module, diffusion signal denosing module and SigFormer. The backbone
of the diffusion model is the encoder-decoder structure Ronneberger et al. (2015), and SigFormer
consists of several SigFormer Blocks and a classifier.
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Figure 1: Overall framework of our proposed Diffusion SigFormer

Specifically, the interfered signal is first input into the diffusion model, which denoises it and outputs
the clean signal as the input to the SigFormer. Next, SigFormer performs 1-D Patch Embedding on
the interfered signal, converts the continuous signal into a series of tokens, adds positional encoding,
and adds a class token for classification. These tokens are then input into SigFormer Block for
feature extraction. It is worth noting that only the class token is used for the final prediction.

2.2 SIGNAL INTERFERENCE MECHANISM

Intuitively, the amplitude of noise should match certain dimensions of the signal itself, and neither
too large nor too small can effectively distinguish the changes in signal recognition accuracy caused
by noise interference. We define signal interference rate (SIR) as the ratio of the root mean square
amplitude of the interference noise to the root mean square amplitude of the original electromagnetic
signal, as shown in follows.

SIR =
γ√∑

i A
2
signali

(1)

where γ is the coefficient of noise. For the interference process, We first calculate the root mean
square amplitude of the original signal, take the disturbance rate value and multiply it by the am-
plitude to obtain the magnification of the added noise. After multiplying the unit noise by the
magnification, we add it to the original signal to obtain the interference signal.

2.3 DIFFUSION SIGNAL DENOISING MODULE

The diffusion model has strong physical properties, as well as natural adaptability and affinity for
physical signals. Here, we applied it to the field of electromagnetic signals, and its structure is
shown in Fig. 2. It gradually adds noise to clean signals, and as the amount of noise increases, the
signal becomes increasingly chaotic. When the amount of noise is large enough, the original clean
signal becomes almost pure noise. During the process of adding noise, use neural networks such as
U-net to predict the amount of noise added. When denoising, a noisy signal is input and the neural
network gradually denoises it to obtain a clean signal.

Specifically, DSDM considers the process of adding noise as a Markov process. Given the con-
dition of x0, by modeling the joint distribution from x1 to xt, the entire process can be modeled.
Combining Markov properties, the following formula can be obtained.

q (x1:T |x0) :=

T∏
t=1

q (xt|xt−1) (2)

where q (xt|xt−1) = N
(
xt;

√
1− βtxt−1,

√
βtI

)
. It can be seen that each state node in the Markov

chain follows a Gaussian distribution and is only related to the previous state, that is, the expression
of the current distribution is determined by the previous observation. If the current distribution is
known, the value of the current sample can be obtained using reparameterization techniques, as
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Figure 2: The framework of DSDM

shown in Formula 3.
xt =

√
αtxt−1 +

√
1− αtϵ (3)

where αt = 1 − βt,it is a customizable hyperparameter,ϵ ∼ N(0, I).There are currently two main
ways of defining sequences, namely linear sequences and cosine sequences.

In DSDM, reparameterization can better represent the recursive relationship between random vari-
ables. After reparameterization, xT can be recursively derived from the original input x0, as shown
in Formula 4.

xT =
√
ᾱTx0 +

√
1− ᾱT ϵ (4)

where ᾱT =
∏T

t=1 αt. The denoising process involves iterating Gaussian noise xT step by step back
to x0. For the true inverse transfer distribution function, Formula 5 can be obtained using Bayesian
formula.

q (xt−1|xt) =
q (xt|xt−1) q (xt−1)

q (xt)
(5)

Due to the unknown initial distribution, it is not possible to directly obtain the edge distribution
from the joint distribution. However, given the transition probability distribution of each state and
the properties of Markov chains, Formula 6 can be obtained.

q (xt−1|xt, x0) =
q (xt|xt−1) q (xt−1|x0)

q (xt|x0)
(6)

After further reparameterization, Formula 7 can be obtained.

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ

)
+ σtz (7)

Note that the noise ϵ is unknown.

Fitting the distribution of x0 is essentially a problem of using probability models to solve the opti-
mal parameter estimation, and the most classic method is maximum likelihood estimation. So the
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optimization is to minimize the negative logarithmic likelihood of the sample:− log (pθ (x0)), it is
equivalent to minimizing KL [q (xt−1|xt, x0) |pθ (xt−1|xt)], Simply, it equals Formula 8.

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2 (8)

In this way, the problem is transformed into an optimization problem for the noise predictor.

In the forward denoising process, according to Formula 4, the coefficient ratio of noise to signal will
vary with the change of t. In order to satisfy the interference rate relationship we define, we fix the
time t and set the coefficients of both to

√
0.5, so that the coefficient ratio of the two is 1. In this

way, to set different interference rates, we only need to change the coefficient of the noise ϵ. The
algorithm flow for training and inference of DSDM is shown in A.3.

2.4 SIGFORMER

Transformer has attracted great attention and has held a dominant position since it was proposed. It is
known that Transformer was originally used in the field of NLP. Its unique self-attention mechanism
makes it perform well in context dependent tasks. In order to transfer it to the image domain,
ViT divides the image into several patches, and encodes each patch into a vector, so that an image
is encoded into a sequence. At the same time, in order to preserve the spatial relative position
information in the image, ViT adds position encoding to each patch, so that ViT can better extract
features from the image.

Electromagnetic signals also satisfy context dependent relationships. Inspired by the ViT concept,
we proposed SigFormer. Specifically, we also divide the signal into several patches. However, unlike
images, signals are one-dimensional data, so we perform 1-D Patch Embedding on them. Similarly,
we add positional encoding to it to preserve the temporal information in the signal. After Patch
Embedding, signals are converted into a series of tokens. At this point, we concatenate these tokens
with a predefined class token and input them to the encoder. Note that only the class token are used
for the final classification. The linear layer takes class tokens as input and outputs the predicted
probabilities for each category.

In addition, we found that when the Transformer encoder is directly used to extract signal features,
the classification accuracy is average and the training is unstable. Therefore, we have made modifi-
cations to the Transformer’s encoder. Specifically, we added residual convolution between Attention
and MLP to enable the model to better focus on local fine-grained features without losing global con-
textual information, while making training more stable. We name the modified module SigFormer
Block, and its structure is shown in Fig. 3.

Input Sequence

Output Sequence

Layer Norm

Multi-Head

Attention

MLP

Layer Norm

1-D Conv

Figure 3: The details of SigFormer Block
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Set input X ∈ RC×L, the forward propagation process is shown in Formula 9.
X = Attention(Norm(X)) +X

X = Act(Conv(X)) +X

X = MLP (Norm(X)) +X

(9)

where Norm is Layer Normalization, and Act is ReLU activation function.

2.5 LOSS FUNCTION

2.5.1 DENOISING LOSS

The process of training DSDM is essentially to reduce the distribution difference between predicted
noise and real noise. The mean squared error (MSE) loss function is used to optimize this process,
as shown in follows.

MSE =
1

2N
∥ϵ− ϵ̂∥2 (10)

where ϵ is real noise, ϵ̂ is predicted noise.

2.5.2 CLASSIFICATION LOSS

The cross entropy loss function is used to optimize SigFormer, as shown in Formula 11.

CrossEntropy = − 1

N

N∑
i=1

K−1∑
K=0

yik log ŷik (11)

where N is the number of samples, yik is the true label of the i-th sample belonging to the k-th
category, and ŷik is the predicted probability that the i-th sample belongs to the k-th category.

3 EXPERIMENT

3.1 DATASET

The RML2016.10a dataset is a widely used modulation recognition dataset in the field of wireless
communication. The dataset consists of 11 modulation modes, including 8 digital modulation modes
and 3 analog modulation modes. For digital modulation, the Shakespearean ASCII format was used.
For analog modulation, a continuous speech signal is used as the data source, mainly composed of
some raw speech with off time.

The RML2016.10b dataset has a larger scale compared to the RML2016.10a dataset, which has
1200000 samples and includes 8 digital modulation modes and 2 analog modulation modes. The
data source also comes from Shakespeare’s works and TV series. .

BT dataset is a large-scale Bluetooth signal dataset. It is collected by two data acquisition systems.
The first acquisition system collected Bluetooth signals from different smartphone devices at three
sampling rates of 5, 10, and 20Gsps, while the second acquisition system collected Bluetooth signals
at a sampling rate of 250Msps. To collect Bluetooth signal data, a total of 27 different smartphones
were used. This dataset collected Bluetooth signal data from 86 smartphones, with each device
recording 150 samples and a total of approximately 12900 records. More detailed information of
the three datasets can be seen in A.4.

3.2 EVALUATION METRICS

For the above three datasets, we use precision as our evaluation metric, which is defined as follows.

precision =
TP

TP + FP
(12)

where TP represents the number of correctly predicted positive samples, and FP represents the num-
ber of incorrectly predicted positive samples.

6
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3.3 IMPLEMENTATION DETAILS

The Adam algorithm is used to train DSDM and SigFormer. For DSDM, we set the learning rate
to 2e-4. For SigFormer, the learning rate is set to 1e-5. For RML2016.10a and RML2016.10b, we
trained on data with a signal-to-noise ratio of 18dB and set the batch size to 500. For BT, we trained
on data with a sampling rate of 5 and set the batch size to 25. To maintain fairness and consistency,
we divided the training and validation sets in a ratio of 4:1. We trained using the Pytorch framework
on 1× NVIDIA 3090 GPU.

For signal interference, we investigated various types of noise present in electromagnetic signal envi-
ronments and studied the characteristics of the three most common types of noise, namely Gaussian
noise, Rayleigh noise, and Periodic noise. The characteristic of Gaussian noise is that it has a con-
stant power spectral density at all frequencies, resulting in equal capacity random fluctuations at
different frequencies. Rayleigh noise has the characteristics of randomness and irregularity. The
distribution of its noise values in time and space is random, and the amplitude is irregular. Periodic
noise is a spatial domain noise related to a specific frequency, typically manifested as pulse pairs of
sine waves in an image.

It is found that when unit noise is directly added to all feature points, the recognizability of the
signal significantly decreases. In order to explore a suitable interference scale that can effectively
distinguish changes in accuracy, we took the interference length as the independent variable and
conducted experiments on RML2016.10a dataset with a series of different values. We also plotted
time-domain waveform diagrams corresponding to the interference length, as shown in Fig.4. We
ultimately chose a interference length of 20. When interfering BT dataset with noise, considering
its large feature dimension, we selected 50 consecutive feature points for noise interference.

Figure 4: Time-domain waveform diagrams of interference with various length

We conducted signal interference experiments with interference rates ranging from 1 to 10 inte-
gers.The interference effect is visualized in Fig.5.

3.4 EXPERIMENTS ON RML2016.10A

On RML2016.10a dataset, we conducted comparative experiments between our method and some
classic deep learning methods, and the results are shown in Table 1. For ViT and Mamba Gu &
Dao (2023), we used the same preprocessing method as SigFormer, which is to use 1-D convo-
lution for Patch Embedding, divide the signal into several patches, and add positional encoding.
As can be seen, our method has the highest recognition accuracy. Compared to CNN-based meth-
ods such as CGDNet and DCNNPF, SigFormer demonstrates significant advantages, highlighting

7
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Figure 5: Time-domain waveform diagrams of interference with various rate

Table 1: Results without noise interference on RML2016.10a dataset

Model 8PSK AM-DSB AM-SSB BPSK CPFSK GFSK PAM4 QAM16 QAM64 QPSK WBFM total

CGDNet 0.894 0 0.951 0.662 0.971 0.958 0.817 0.412 0.094 0.015 0.914 0.541
DCNNPF 0 0.922 0.016 0.088 0 0 0.107 0.646 0.264 0 0.36 0.263

LSTM 0.186 0.959 0.736 0.319 0.377 0.947 0.482 0.793 0.818 0.255 0.36 0.607
ViT 0.824 0.831 0.989 0.966 0.981 0.942 0.97 0.551 0.71 0.852 0.518 0.798

Mamba 0.484 0.744 0.951 0.946 0.99 0.984 0.914 0.879 0.896 0.520 0.624 0.825
SigFormer 0.761 0.991 0.973 0.980 0.986 0.953 0.975 0.891 0.927 0.821 0.381 0.883

the importance of global contextual information for electromagnetic signal modulation recognition.
Compared to Vision Transformer, SigFormer has an accuracy 10% higher, demonstrating the ef-
fectiveness of combining convolution and attention. In addition, the accuracy of SigFormer is also
higher than that of the new architecture Mamba, and the potential of Mamba in the field of signal
recognition still needs to be explored.

We used Gaussian noise, Rayleigh noise, and periodic noise to interfere the data in RML2016.10a
dataset, and the identification results are summarized in Table 2. We randomly select 20 consecu-
tive feature points and interfere all samples with noise. It can be seen that as the interference rate
increases, the recognition precision of the model gradually decreases, and the magnitude of the de-
crease becomes smaller. We use the above-mentioned noise for training DSDM. It can be seen that
the accuracy of denoising and recognition remains at a high level, and is very close to the accuracy
without noise interference.

Table 2: Results of noise interference on RML2016.10a dataset

Noise type Denoising SIR
1 2 3 4 5 6 7 8 9 10

Gaussian No 0.707 0.620 0.595 0.572 0.560 0.557 0.555 0.551 0.549 0.546
Yes 0.853 0.860 0.858 0.857 0.853 0.852 0.862 0.854 0.855 0.851

Rayleigh No 0.709 0.690 0.677 0.662 0.649 0.641 0.635 0.632 0.629 0.623
Yes 0.853 0.860 0.858 0.857 0.853 0.852 0.862 0.854 0.855 0.851

Periodic No 0.648 0.614 0.588 0.582 0.582 0.582 0.575 0.566 0.563 0.562
Yes 0.838 0.846 0.849 0.847 0.852 0.845 0.845 0.842 0.845 0.837

8
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Table 3: Results without noise interference on RML2016.10b dataset

Model 8PSK AM-DSB BPSK CPFSK GFSK PAM4 QAM16 QAM64 QPSK WBFM total

CGDNet 0.502 0.976 0.731 1 0.738 0.794 0.022 0.648 0.023 0 0.507
DCNNPF 0 1 0 0 0 0 0.209 0.826 0 0.335 0.285

LSTM 0 0 0 0 0 0 0.985 0.015 0 0 0.167
ViT 0.919 1 0.98 0.994 0.982 0.988 0.587 0.594 0.934 0.331 0.789

Mamba 0.931 1 0.983 1 1 0.976 0.888 0.891 0.937 0.42 0.899
SigFormer 0.929 1 0.988 0.998 0.995 0.985 0.875 0.859 0.951 0.415 0.892

Table 4: Results of noise interference on RML2016.10b dataset

Noise type Denoising SIR
1 2 3 4 5 6 7 8 9 10

Gaussian No 0.590 0.450 0.422 0.414 0.406 0.400 0.396 0.387 0.387 0.384
Yes 0.886 0.885 0.882 0.882 0.885 0.883 0.886 0.882 0.881 0.880

Rayleigh No 0.465 0.478 0.475 0.495 0.481 0.473 0.483 0.465 0.451 0.460
Yes 0.888 0.890 0.890 0.891 0.888 0.889 0.889 0.885 0.885 0.884

Periodic No 0.393 0.383 0.382 0.377 0.388 0.377 0.367 0.372 0.367 0.362
Yes 0.885 0.885 0.884 0.884 0.886 0.885 0.885 0.883 0.882 0.882

3.5 EXPERIMENTS ON RML2016.10B

Table 3 summarizes the recognition precision of the comparative algorithms under the condition of
no noise interference on RML2016.10b dataset. Table 4 list the accuracy of three types of noise in-
terferences on RML2016.10b dataset. It can be seen that the experimental results on RML2016.10b
and RML2016.10a are similar. In the noise free interference comparison experiment, although Sig-
Former’s accuracy is not the highest, it is very close to the highest accuracy, and the accuracy is
even higher on RML2016.10b. In the noise interference experiment, the three types of noise have a
greater impact on accuracy, but the denoising effect of the diffusion model is still very good. Under
all interference rate conditions, the recognition accuracy after denoising is very close to the accuracy
without noise interference.

3.6 EXPERIMENTS ON BT

Tables 5 and 6 summarize the experimental results on the BT dataset. In the noise free interference
comparison experiment, SigFormer still achieved the highest accuracy. In the noise interference
experiment, unlike before, considering the large dimensionality of the BT dataset, we interfered 50
consecutive feature points. As can be seen, the experimental results are similar to the previous two
datasets. For three different types of noise, under all interference rate conditions, the accuracy after
denoising is very close to the accuracy without noise interference.

3.7 VISUALIZATION ANALYSIS

Confusion matrix is a visual tool used to display the difference between predicted and actual val-
ues by category. All classification results of all classes are displayed in a confusion matrix, where
each column represents the predicted modulation mode and each row represents the true modulation

Table 5: Results without noise interference on BT dataset

Model Iphone LG Samsung Sony Total

CGDNet 0.802 0 0.205 0.655 0.541
DCNNPF 1 0 0 0.516

LSTM 0.966 0.894 0.845 0.825 0.823
Transformer 0.787 0.263 0.409 0.983 0.653

Mamba 0.767 0.164 0.451 0.879 0.639
SigFormer 0.909 0.544 0.697 1 0.824
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Table 6: Results of noise interference on BT dataset

Noise type Denoising SIR
1 2 3 4 5 6 7 8 9 10

Gaussian No 0.825 0.767 0.702 0.692 0.671 0.665 0.661 0.667 0.659 0.667
Yes 0.825 0.825 0.824 0.824 0.827 0.825 0.825 0.827 0.827 0.822

Rayleigh No 0.824 0.804 0.776 0.725 0.698 0.696 0.686 0.688 0.696 0.686
Yes 0.829 0.829 0.824 0.825 0.827 0.822 0.827 0.825 0.829 0.827

Periodic No 0.804 0.782 0.765 0.749 0.7 0.671 0.653 0.663 0.659 0.661
Yes 0.825 0.824 0.827 0.825 0.824 0.825 0.827 0.822 0.820 0.822

(a)  RML2016.10a (b) RML2016.10b (c) BT

Figure 6: Confusion matrix of SigFormer without noise.

mode. The values on each grid represent the predicted probability of the corresponding modulation
mode. The visualization results without interference on RML2016.10a, RML2016.10b and BT are
shown in Fig.6 On RML2016.10a, it can be seen that SigFormer has a low recognition accuracy
for WBFM, and WBFM is more commonly identified as AM-DSB. By plotting the time-domain
waveform diagrams of the two, we found that WBFM and AM-DSB have a high similarity in wave-
form, both of which are close to horizontal lines, making it difficult to distinguish them.The same
situation can also be observed in the experiment on RML2016.10b dataset. On BT, the error rate of
SigFormer is higher, which may be related to the large dimensionality of Bluetooth signal features
and weak waveform regularity.

Overall, the experimental results on RML2016.10a, RML2016.10b, and BT validated the high ac-
curacy and robustness of the diffusion SigFormer. Firstly, SigFormer has demonstrated excellent
recognition ability in noise free experiments, with the highest accuracy on both the RML2016.10a
and BT, and very close to the highest accuracy on RML2016.10b dataset. For various types of noise,
under all interference rate conditions, the diffusion SigFormer can achieve an accuracy very close to
that of noise free interferences.

4 CONCLUSION

In this paper, we propose a novel method named Diffusion SigFormer for identifying interfered elec-
tromagnetic signals, aiming to solve the problem of complex and easily interfered electromagnetic
signals in practical environments. Initially, a signal interference mechanism is designed to add in-
terference to the original signal. Then diffusion signal denoising module is designed to denoise the
interfered signal. Finally the denoised signal is input to the SigFormer for recognition. SigFormer
combines Transformer with convolution, enabling the model to have excellent local feature extrac-
tion capabilities and perform well in global context modeling. The experimental results show that
our method not only has high accuracy without noise interference, but also approaches the accuracy
without noise interference in various types of noise interferences.
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A RELATED WORKS

A.1 DIFFUSION MODEL FOR SIGNAL DENOISING

Diffusion models were originally used for image generation, and compared to other generation mod-
els, they are easier to train and can generate more diverse images Ho et al. (2020); Song et al. (2020);
Dhariwal & Nichol (2021); Ho & Salimans (2022). Recently, diffusion models have been increas-
ingly applied in the field of signal denoising. In Lan & Huang (2024), a diffusion probability model
is adopted to diffuse and reverse process seismic signals, simulate noise pollution and removal pro-
cesses, and achieve effective signal recovery under different noise conditions. It overlays actual
noise and Gaussian noise as synthetic noise in the forward diffusion process, and extracts the time-
frequency characteristics of the resulting noise seismic signal as a conditional aid for model training.
In Zhu et al. (2023), the diffusion model is applied to denoise Distributed Acoustic Sensing (DAS)
vertical seismic profile (VSP) data by first training the diffusion model on a new synthetic dataset
that adapts to changes in acquisition parameters. The trained model is used to suppress noise in syn-
thesized and field DAS-VSP data. Deng et al. (2024) proposes a constrained variational diffusion
model (VDM) that extends the original VDM by combining constraint methods. By introducing
constraint conditions to control the generation process of the model. It receives noisy signals as
input and generates specific denoised signals through constrained VDM.
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A.2 ELECTROMAGNETIC SIGNAL RECOGNITION BASED ON TRANSFORMER

Transformer uses self-attention to model global contextual information, which first demonstrated
strong performance advantages in the field of natural language processing (NLP) Vaswani (2017);
Xiong et al. (2020); Devlin (2018); Radford (2018), and later successfully migrated to the field of
computer vision. Representative models include Vision Transformer Dosovitskiy (2020) and Swin
Transformer Liu et al. (2021), which have become mainstream models in the field of Computer
Vision.

In recent years, Transformers have been increasingly applied in the field of signal processing, in-
cluding in the direction of electromagnetic signal modulation recognition. In Cai et al. (2022),
Transformer was first applied to AMC problem. Transformer combines the global information
of each sample sequence and uses semantically relevant information for classification. In Zheng
et al. (2022), an improved Transformer modulation recognition model based on GLU was proposed,
which combines the advantages of CNN’s efficient parallel operation and RNN’s ability to fully ex-
tract global information of temporal signal context. In Li et al. (2022), a wireless signal modulation
pattern recognition method based on Transformer was proposed. This method first segments the
data using a fixed size window. Then, the segmented data is projected onto a vector sequence and
input into the Transformer module to model and mine the relationship between the signal waveform
and modulation mode. ResSwinT–SwinT Ren et al. (2023) is a two-component signal recognition
framework. It converts the normalized grayscale time–frequency images (TFIs) of radar signals into
a Swin Transformer feature extraction network (SwinT), and the Residual Swin Transformer De-
noising Network (ResSwinT) is initialized with low signal-to-noise ratio predictions from a signal-
to-noise ratio classifier to reconstruct a clean TFI. Subsequently, the reconstructed TFI is reapplied
to SwinT and residual attention (RA) modulation recognition heads for refined prediction.

A.3 ALGORITHM FLOW OF DSDM

Algorithm 1 The training process of DSDM
1:repeat
2: x0 ∼ q(x0), x0 ∈ RC×L

3: t = 1, αt = 0.5
4: γ ∼ Uniform({1, . . . , 10})(γ is defined in Eq:1
5: ϵ ∼ N (0, I),ϵ ∈ RC×D

6: Take gradient descent step on
∇θ

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱt × γ × ϵ, t

)∥∥2
7:until converged

Algorithm 2 The inference process of DSDM
1: t = 1, αt = 0.5
2: SIR ∼ Uniform({1, . . . , 10})
3: xt =

√
ᾱtx0 +

√
1− ᾱt × γ × ϵ

4: x̂0 = xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ (xt, t)

)
5: return x̂0

A.4 DETAILED INFORMATION OF DATASETS
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Table 7: RML2016.10a Dataset Parameters

Parameter Name Parameter Values

Modulations

8 digital modulations:
BPSK, QPSK, 8PSK, QAM16,
QAM64, BFSK, CPFSK, PAM4
3 analog modulations :WBFM,

AM-SSB and AM-DSB
Number of samples 1000per SNR per Category
Length per sample 128

Signal format In-phase and quadrature(IQ)
Signal dimention 2 × 128 per sample

Sampling frequency 200 kHz
SNR range [-20 dB:2 dB:18 dB]

Total number of samples 220,000

Table 8: RML2016.10b Dataset Parameters

Parameter Name Parameter Values

Modulations

8 digital modulations:
BPSK, QPSK, 8PSK, QAM16,
QAM64, BFSK, CPFSK, PAM4

2 analog modulations :
WBFM and AM-DSB

Number of samples 6000per SNR per Category
Length per sample 128

Signal format In-phase and quadrature(IQ)
Signal dimention 2 × 128 per sample

Duration per sample 128 µs
Sampling frequency 1 MHz

SNR range [-20 dB:2 dB:18 dB]
Total number of samples 1,200,000

Table 9: BT Dataset Parameters

Dataset A(5 Gsps) Dataset B(10 Gsps) Dataset C(20 Gsps) Dataset D(250 Msps)
Brand Model Brand Model Brand Model Brand Model
Apple iPhone 5 Apple iPhone 4s Apple iPhone 5s Apple iPhone 4s
Apple iPhone 5s Apple iPhone 7 Apple iPhone 6s Apple iPhone 5
Apple iPhone 6 Apple iPhone 7 plus Apple iPhone 6s plus Apple iPhone 5s
Apple iPhone 6s LG V20 Apple iPhone 7 Apple iPhone 6

LG G4 Samsung J7 Huawei Gr5 Apple iPhone 6s
Samsung Note 3 Samsung Note 2 LG G4 Apple iPhone 7
Samsung S5 Samsung S7 Edge Samsung Note 3 Apple iPhone 7 plus

Sony Xperia M5 Xiaomi Mi6 Samsung S3 LG G4
Samsung S3 Duos LG V20
Samsung S4 Samsung J7

Sony C4 Samsung Note 2
Samsung Note 3
Samsung S5

Sony Xperia M5
Xiaomi Mi6
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