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ABSTRACT

Despite the high-quality results of text-to-image generation, stereotypical biases
have been spotted in their generated contents, compromising the fairness of gen-
erative models. In this work, we propose to learn adaptive inclusive tokens to
shift the attribute distribution of the final generative outputs. Unlike existing de-
biasing approaches, our method requires neither explicit attribute specification nor
prior knowledge of the bias distribution. Specifically, the core of our method is
a lightweight adaptive mapping network, which can customize the inclusive to-
kens for the concepts to be de-biased, making the tokens generalizable to unseen
concepts regardless of their original bias distributions. This is achieved by tuning
the adaptive mapping network with a handful of balanced and inclusive samples
using an anchor loss. Experimental results demonstrate that our method outper-
forms previous bias mitigation methods without attribute specification while pre-
serving the alignment between generative results and text descriptions. Moreover,
our method achieves comparable performance to models that require specific at-
tributes or editing directions for generation. Extensive experiments showcase the
effectiveness of our adaptive inclusive tokens in mitigating stereotypical bias in
text-to-image generation. The code will be publicly available.

1 INTRODUCTION

Text-to-image (T2I) generation has gained widespread usage thanks to its ability to produce visual
content from user-specified text descriptions. However, alongside the technical achievements, con-
cerns have arisen regarding the presence of stereotypical biases in the generated outputs, as analyzed
by various studies (Ghosh & Caliskan, 2023; Chinchure et al., 2023; Wang et al., 2023; Bianchi et al.,
2023; Wang et al., 2024; Jha et al., 2024).

The unfairness in the T2I generation is usually reflected by an unequal representation of different
social groups. It is observed that in circumstances where no specific attributes are specified in a
human-related prompt, the T2I models tend to generate human figures resembling certain genders
and races, reinforcing harmful social discrimination (Ghosh & Caliskan, 2023; Bianchi et al., 2023).
In particular, some occupations are strongly associated with specific genders following stereotypes,
e.g., male for doctor and female for nurse. Furthermore, negative concepts like poverty or unattrac-
tiveness lead to the generation of people from colored races (Bianchi et al., 2023; Ghosh & Caliskan,
2023; Jha et al., 2024). Exposure to such an unfair environment will strengthen the stereotypes and
biases, justify hate in our society, and undermine the rights of minority groups to be treated fairly.
While unfair training datasets are often recognized as the origins of biases in large models, the perva-
sive nature of stereotypes in our society makes the complete elimination of biases challenging. This
triggers the necessity to design de-biasing algorithms to mitigate biases in the pre-trained models.

The main goal of this paper is to devise a bias mitigation method for biased concepts1. An ideal
inclusive T2I model yields results with evenly distributed sensitive attributes across all attribute
classes when all classes are factually correct and no attribute-related instructions are provided. A
crucial aspect of a fair model is its ability to generate inclusive outcomes without direct instruction

1For clarity, we define the key terms as: sensitive attributes A refer to the attributes of interest for achieving
fairness (e.g., gender), and attribute classes Ac denotes possible classes of the attribute (e.g., female and male).
Biased concepts C describe the concepts that contain potential stereotypes (e.g., doctor).
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regarding the target attribute class. Besides, users’ unawareness of potential biases related to a target
concept should be respected. Therefore, we argue that, given a neutral concept, a good de-biasing
algorithm should (1) achieve fairer results without explicit specification of the target attribute class
during generation, and (2) require no prior knowledge of the original bias distribution associated
with the concept (e.g., the doctor concept is stereotypically biased towards males). In practice,
by specifying the sensitive attribute of interest rather than specific attribute classes in the provided
prompt (e.g., “A <gender-inclusive> doctor” instead of “A female doctor”), the users can obtain
fairer generative results regarding the attribute they care.

Achieving the aforementioned inclusive properties is non-trivial in the absence of direct attribute
specification and prior knowledge about the bias distribution. Our study shows that the simple
approach of learning a fixed inclusive token via Textual Inversion (TI) (Gal et al., 2022) fails in
mitigating biases in concepts originally biased toward different classes (see Sec. 3.1 for detailed
discussion). In addition, it also risks modifying the semantic concepts specified in the original
prompt. In this work, we follow the mainstream prompt tuning method but aim at learning adaptive
inclusive tokens that do not specify any target class, and yet can shift the bias attribute in generation
outcomes towards a more equitable distribution, regardless of the class it was originally biased to.

We hypothesize that the token embeddings of a biased concept, e.g., the doctor concept, encode
information regarding its bias distribution. Hence, to enable the adaptability of the learned inclusive
tokens across various biased concepts, a lightweight adaptive mapping network can be used to
find the optimal inclusive token, taking into account the target concept. In addition, an anchor
loss is proposed to guide the desired properties of the inclusive token, minimizing the discrepancy
between de-noising UNet predictions of prompt with inclusive token and prompt with the ground
truth attribute class. The anchor loss ensures the inclusive token has an aligned impact with attribute
class tokens and alternates among all possible classes.

Our proposed method is validated on the widely adopted Stable Diffusion (SD) framework (Rom-
bach et al., 2022). Utilizing small-scale balanced datasets generated by the SD model itself to train
our adaptive inclusive tokens, the fairness of the final model outputs is significantly improved. No-
tably, the learned adaptive inclusive tokens demonstrate generalizability to unseen concepts and
prompts, and can be concatenated to mitigate multiple biases along various attributes.

The contributions of our work are as follows: We introduce a simple yet effective prompt-tuning ap-
proach to achieve inclusive text-to-image generation without attribute specification or prior knowl-
edge of biased concepts. In particular, we propose the adaptive mapping network together with
the anchor loss to address the issue of generalizability across different attribute class dominations.
Extensive experiments show the effectiveness of our method both quantitatively and qualitatively.

2 RELATED WORK

2.1 BIAS IN TEXT-TO-IMAGE GENERATION

Comprehensive analyses have been conducted to study the bias and unfairness observed in T2I gen-
eration (Bianchi et al., 2023; Chinchure et al., 2023; Ghosh & Caliskan, 2023; Jha et al., 2024; Wang
et al., 2023; 2024). Wang et al. (2023) first introduce the Implicit Association Test (IAT) (Green-
wald et al., 1998) from social psychology to measure biases in the task of T2I. IAT is designed to
reveal implicit biases that an individual may hold unconsciously towards certain concepts. By ex-
perimenting with the valence and stereotype IATs on T2I output images, it is found that valence and
stereotypical biases exist in state-of-the-art T2I models at various scales, e.g., the pleasant attitude is
significantly biased towards straight sexual orientation than homosexual ones. Bianchi et al. (2023)
study a wide range of stereotypes related to gender, race, nationality, and other identities associated
with traits, occupation, and even object descriptions. They conclude that attempts to either specify
counter-stereotype prompts by users or add system “guardrails” cannot prevent stereotypes from
spreading in the T2I results. Ghosh & Caliskan (2023) spot the over-representation of Caucasian
males in general terms like “person” and the over-sexualization of women of color without specifi-
cation. TIBET (Chinchure et al., 2023) proposes to identify and measure biases in any T2I models
using counterfactual reasoning, which breaks the limitation of pre-defined bias axes in previous
studies. Wang et al. (2024) propose BiasPainter which provides an automatic and systematic study
of gender, race, and age biases. It augments a seed image of a clear identity with queries of profes-
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sions, activities, types of objects, and personality traits and compares the attributes of the identity
between augmented and seed images to identify biases in queries. Jha et al. (2024) focus on explor-
ing geo-cultural stereotypes in T2I models with a large scale of nationality-based identity groups.
It is revealed that the severity of bias varies for different identity groups and the “default” (without
specification on bias attributes) representations of identity groups contain stereotypical appearances.

2.2 BIAS MITIGATION IN TEXT-TO-IMAGE GENERATION

Various approaches have been developed to alleviate stereotypical biases in T2I generation, includ-
ing model fine-tuning (Runway, 2023; Kim et al., 2023; Shen et al., 2024), prompt tuning (Gal
et al., 2022; Bansal et al., 2022; Zhang et al., 2023; Li et al., 2023), concept editing (Orgad et al.,
2023; Gandikota et al., 2024), and inference guidance (Friedrich et al., 2023; Parihar et al., 2024).
A straightforward strategy is to fine-tune the entire T2I model on a large-scale dataset that is care-
fully synthesized to cover various classes of bias attributes (Runway, 2023). Besides, techniques of
fine-tuning the sampling process of the diffusion model have been proposed so that distributional
constraints on the generative outputs, which is the direct interpretation of fairness, can be applied
(Kim et al., 2023; Shen et al., 2024). However, such fine-tuning methods require a heavy load of
computations. Prompt tuning-based methods aim to modify or add textual tokens to affect the T2I
generation outputs. Gal et al. (2022) learn a fairer word for a biased concept from a small dataset.
Bansal et al. (2022) explore the impact of ethical interventions added to the original prompts on the
fairness of generative results. Li et al. (2023) introduce a fair mapping network that projects the
text embeddings of a neutral prompt to the middle of prompts with all possible classes. The above
prompt tuning methods do not modify the prompt to provide explicit guidance during generation.
On the contrary, Zhang et al. (2023) propose to overfit one class token for each attribute class by
image prompts and apply ad-hoc post-processing to loop over all combinations of target attributes
to achieve inclusive generation. Orgad et al. (2023) and Gandikota et al. (2024) apply model editing
to enforce the generation of non-stereotypical classes by optimizing the cross-attention weights of
the diffusion models. However, determining the appropriate editing strengths is challenging con-
sidering the large variations in bias strengths across different concepts and classes. Another line
of retraining-free approaches involves incorporating desired guidance during inference. Friedrich
et al. (2023) apply fair guidance at inference by steering biased concepts in predefined directions
to enhance fairness. While this method avoids the need for training or fine-tuning, it relies on prior
knowledge of the biased concept and requires each generation to be guided by a specific semantic
direction. Similarly, Parihar et al. (2024) employ a pre-trained h-space classifier to provide explicit
distribution guidance during inference. Although this method does not require retraining the dif-
fusion model, it demands additional effort to train the classifier and increases the computational
cost of inference due to classifier-guided optimization. Our approach adopts the prompt tuning ap-
proach without necessitating heavy model fine-tuning or prior knowledge about the original bias
distribution, making it computationally efficient and highly generalizable.

2.3 PROMPT TUNING

Prompt tuning is a technique that adapts a large language model (LLM) to new concepts by opti-
mizing some prompt parameters with the model weights fixed. Prompt tuning has been applied to
various downstream tasks such as image classification (Zhou et al., 2022b;a), customized generation
(Gal et al., 2022; Ruiz et al., 2023), and bias mitigation (Gal et al., 2022; Kim et al., 2023). Zhou et
al. (Zhou et al., 2022b;a) propose to optimize trainable context tokens in class prompts to boost the
performance of zero-shot classification using CLIP classifier (Radford et al., 2021) and further tai-
lor the tokens to be input-conditioned for better generalization to unseen classes. Textual Inversion
(Gal et al., 2022) is proposed to invert a visual concept from a small set of images to a new pseudo
word and customize generation on the visual concept. Similarly, Ruiz et al. (2023) and Kumari et al.
(2023) update a trainable token together with some parts of the model to represent a particular visual
content. The ability of prompt tuning to mitigate biases has been demonstrated by Gal et al. (2022)
as mentioned in the previous subsection. Kim et al. (2023) adopt a similar prompt tuning approach.
However, they optimize the tokens on the sampling stage of the diffusion model, leading to an ex-
tensive amount of computation and memory required. Our method tackles the limitation of fixed
inclusive tokens on the transferability to different domination classes, as observed in both previous
methods, by learning adaptive inclusive tokens.
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3 METHODOLOGY

3.1 PRELIMINARIES

Diffusion Model. Stable Diffusion (Rombach et al., 2022) is a commonly used latent diffusion
model for image generation. With classifier-free guidance of textual conditions, SD demonstrates
excellent performance in the T2I generation task. During each training step, a training image x0

is first encoded into a latent space as z0 by a pre-trained image encoder E(·). Then, a noise latent
and a de-noising timestep t are sampled to compute the ground truth noise ϵ, which will be added to
the encoded image to obtain the noisy latent zt in the current timestep. On the other side, a textual
prompt T that describes the image is tokenized to token embeddings vT and encoded to textual
embeddings eT by the pre-trained CLIP text encoder (Radford et al., 2021). Subsequently, a de-
noising UNet ϵθ (Ronneberger et al., 2015) takes in the noisy image latent, the de-noising timestep,
and the textual condition to predict the noise added to the image latent. The learning objective of
the de-noising stage is formulated as follows:

Ldenoise = Ez0,ϵ∼N (0,1),t,eT

[
∥ϵ− ϵθ (zt, t, eT )∥22

]
. (1)

During inference, the de-noising UNet predicts the noise to be removed at each timestep from a
Gaussian noise latent, conditioned on textual input.

Is Textual Inversion Effective for De-biasing? Our method is inspired by the Textual Inversion
framework introduced by Gal et al. (2022). Their paper briefly discussed the application of the
Textual Inversion technique on bias reduction and provided a simple demonstration. Specifically,
they curate a small and diverse dataset for a particular concept and learn a fairer word to substitute
the original concept. The effectiveness of Textual Inversion in bias mitigation demonstrates that the
fairness of T2I results can be significantly affected by the text condition, and it is feasible to invert a
more balanced distribution to pseudo words from a small set of images. To enable the generalizabil-
ity to unseen concepts, we revise their approach by disentangling the concept information from the
learned tokens, making them solely represent the inclusiveness of a biased attribute. To elaborate,
while the original Textual Inversion paper proposes learning a pseudo word <inclusive-doctor> to
replace the original word “doctor”, the revised variant learns a pseudo word <gender-inclusive>
applicable to any human-related concepts for a fairer generation in gender. The experimental results
of this naı̈ve revised version of the Textual Inversion approach (labeled as TI), are reported in Tab. 1.

Although the approach effectively reduces bias in gender and race attributes numerically, it exhibits
two notable limitations in its generated outputs. Firstly, a single learnable inclusive token is inad-
equate in mitigating biases in concepts originally biased towards different classes. Secondly, the
semantic meanings of certain concepts have been altered by the learned inclusive token. Upon test-
ing with unseen occupations that are stereotypically associated with different genders (e.g., “soft-
ware developer” and “flight attendant” are stereotypically dominated by male and female figures,

Method MD FD Imbalance

SD1.5 0.5166 0.4401 0.0765
TI 0.4147 0.2720 0.1427

Ours 0.1436 0.1216 0.0220

(a) Quantitative comparison of the distribu-
tion discrepancy DKL ↓ across occupations
stereotypically dominated by different gen-
ders. Each domination group consists of 5
unseen occupations (detailed lists are pro-
vided in the supplementary materials). MD:
male-dominated occupations. FD: female-
dominated occupations.

(b) Visual results. All images are generated with the
same random seed. The caption above indicates the base
prompt T (c). Top: Rombach et al. (2022); Middle: re-
vised Gal et al. (2022); Bottom: ours.

Figure 1: Limitations of revised Textual Inversion method with fixed inclusive token for de-biasing.
(a) Imbalanced results across different bias distributions. (b) semantic drifting of visual concepts.
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Figure 2: Framework of our proposed adaptive inclusive token for text-to-image generation. The
blue color indicates frozen weights, and the green color indicates trainable weights. Left: single
training stage. Right: details of text model with adaptive mapping network. The adaptive inclusive
token is concept-specific. TokenIDs are for illustration only.

respectively), results in Fig. 1a indicate that the revised Textual Inversion method significantly en-
hances fairness in occupations dominated by females. However, it shows less effectiveness in male-
dominated occupations when using a single inclusive token. This leads to an increased imbalance in
distribution discrepancy across different gender-dominated groups. This observation aligns with the
findings by Kim et al. (2023), who conclude that the transferability of their de-stereotyping prompt
is limited to unseen classes sharing the same dominant attribute class. Such sub-optimal results
suggest that the token learns to simply generate more male figures instead of understanding the fair
distribution. In addition, as illustrated in Fig. 1b, the term “chief” appears to deviate from its original
semantic in the SD model under the influence of the inclusive token learned via the revised Textual
Inversion method. Though the drifted representations of “chief” figures are not erroneous, given
the term’s broad definition, our objective is to ensure the learned inclusive tokens exclusively affect
the biased attributes of the generated human figures without altering the semantics of the biased
concepts.

3.2 ADAPTIVE INCLUSIVE TOKEN

To address the aforementioned limitations, instead of employing a fixed inclusive token for all con-
cepts, we introduce a lightweight adaptive mapping network to predict the inclusive token tailored
for each specific concept. To prevent the learned token from capturing irrelevant information from
the training set that potentially causes semantic drift on bias concepts and degrades fairness in the
generated results, an anchor loss is proposed to constrain the effect of the token. The framework of
our method is illustrated in Fig. 2. Details of our proposed modules are described below.

Adaptive Mapping Network. As shown in the right side of Fig. 2, the adaptive mapping net-
work Fam is introduced after the token embedding lookup and before the text transformer in our
framework. The inclusive prompt Ti contains an inclusive token denoted by a placeholder <i>
∈ {<ig>,<ir>,<ia>}, representing <gender-inclusive>,<race-inclusive>,<age-inclusive>, re-
spectively. The placeholder is processed by the text tokenizer and the token embedding lookup table
along with other words, resulting in an initial inclusive token embedding vi. Then, the inclusive
token embedding vi and the biased concept embeddings vc are jointly fed into the adaptive map-
ping network to predict a concept-adaptive inclusive token vci . The fundamental hypothesis is that
the token embeddings of a concept inherently contain necessary information about its bias distribu-
tion. Therefore, customizing the inclusive tokens for each concept facilitates the selection of a more
suitable token to effectively shift the final distribution towards fairness regardless of its original dis-
tribution. Finally, the adaptive inclusive token vci substitutes vi in the original token embeddings vTi

to form vcTi
, which is then forwarded to the text transformer model. The overall process of the text

model with adaptive mapping is outlined in Algorithm 1.

Anchor Loss. Given the issue of concept drifting in the revised Textual Inversion results, as dis-
cussed in Sec. 3.1, we hypothesize that the issue may stem from ambiguous instructions on what
information to be captured by the inclusive token during training. To guide the learnable token

5
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Algorithm 1 Text Model with Adaptive Mapping Network

1: Input: Tokenizer Ftokenizer, Token lookup table L, Text transformer Ftext

2: Input: Inclusive prompt Ti = [T (c);<i>], where T is the base prompt with biased concept c
and <i> ∈ {<ig>,<ir>,<ia>} is the inclusive placeholder

3: Input: Adaptive Mapping Network Fam

4: TokenIDs = Ftokenizer(Ti)
5: Token embeddings: vTi = L(TokenIDs) = [vT ; vi]
6: Concept-adaptive inclusive token embedding: vci = Fam(vi, vc)
7: Update vTi to vcTi

= [vT ; v
c
i ]

8: Text embedding: ecTi
= Ftext(v

c
Ti
)

9: Return ecTi

on the desired property for it to learn and promote fairness, we add constraints to the UNet noise
prediction with inclusive text condition, as it represents the influence of text condition on the final
generative outputs. Previously, Li et al. (2023) interpret fairness constraints as requiring the text
embeddings of a de-biased prompt to be of equal distances from those of all class-specific prompts
for one bias attribute. However, we argue that the notion of fairness and inclusiveness should not
entail an average distance across all possible classes, but involve an equal-possibility shifting within
those classes. Therefore, we proposed an anchor loss that is formulated as follows:

Lanchor = Ez0,ϵ∼N (0,1),t,ecTi
,eTa

[∥∥ϵθ (zt, t, ecTi

)
− ϵθ (zt, t, eTa

)
∥∥2
2

]
. (2)

The common de-noising process notations follow Eqn. (1). Here, ecTi
indicates the text embeddings

of inclusive prompt Ti, and eTa
represents the text embeddings of anchor prompt Ta = [T (c); a]

where the inclusive token is replaced by the ground truth attribute class a of the training sample. For
example, for a training sample of a female firefighter with gender as the target bias attribute, if Ti

is “a photo of a <ig> firefighter” then Ta will be “a photo of a female firefighter”. Rewarding the
similarity of UNet noise prediction under ecTi

and eTa
conditions has two potential benefits. Firstly,

it provides indications that the learned inclusive token should specifically affect certain attributes
of the output, e.g., gender, as the anchor words. Secondly, it facilitates inclusive generations by
allowing the effect of the inclusive token to shift among all possible classes.

The overall training objective for our adaptive inclusive token is defined as:

L = Ldenoise + λ · Lanchor, (3)

where Ldenoise is calculated based on the inclusive prompt Ti, and λ is the weighting parameter.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Scope. We validate our adaptive inclusive token in mitigating three commonly studied bias attributes
- gender, race, and age: A ∈ {gender, race, age}. These attributes reflect harmful sexism, racism,
and ageism observed in real life. Regarding gender bias, we consider binary classes of male and
female, acknowledging its limitation in representing non-binary genders. However, we argue that
identifying certain appearances as non-binary genders may reinforce stereotypes within these less-
represented social groups, and therefore should be avoided until more carefully collected public
data on non-binary genders is available. For racial bias, we refer to the seven racial groups from
the FairFace dataset (Karkkainen & Joo, 2021). To simplify the analysis, we group East Asian and
Southeast Asian into a single category Asian, resulting in six distinct groups: White, Black, Asian,
Middle Eastern, Indian, and Latino Hispanic. As for age bias, binary groups of young and old people
are examined. In this study, we focus on neutral bias concepts related to human figures, particularly
in occupations: C ∈ {neutral occupations2}.

2Neutral occupations refer to those that are factually correct with all attribute classes. e.g., “waitress” is not
a neutral occupation since it infers female figures in its definition.
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Table 1: Comparisons with baseline methods on fairness, quality, and text alignment of generative
results across three bias attributes (See evaluation metrics details in Sec. 4.1). Abbreviations are
used for simplicity: SD1.5: Rombach et al. (2022). ITI-GEN: Zhang et al. (2023). TIME: Orgad
et al. (2023). FD: Friedrich et al. (2023). EI: Bansal et al. (2022). FM: Li et al. (2023). TI: Gal
et al. (2022). ∗ indicates editing-based methods that require careful tuning of editing strengths to
achieve reasonable results. The best fairness results in each category are marked by bold.

Gender Race Age
Methods

DKL ↓ FID↓ CLIP↑ DKL ↓ FID↓ CLIP↑ DKL ↓ FID↓ CLIP↑
SD1.5 0.3584 281.12 0.2823 0.5973 281.12 0.2823 0.2319 281.12 0.2823

With attribute specification or prior knowledge on the bias distribution

ITI-GEN 0.0078 278.21 0.2753 0.3699 247.05 0.2679 0.1560 243.09 0.2648
TIME∗ 0.2908 277.79 0.2733 0.5463 270.03 0.2663 0.2285 271.09 0.2738
FD∗ 0.2420 278.10 0.2718 0.4987 277.64 0.2738 0.2246 280.33 0.2740

Without attribute specification

EI 0.1666 283.52 0.2758 0.6033 281.11 0.2745 0.2258 289.82 0.2773
FM 0.1174 222.82 0.2341 0.3722 220.37 0.2391 0.3823 255.72 0.2402
TI 0.2590 283.38 0.2777 0.8065 275.32 0.2799 0.3113 286.22 0.2823
Ours 0.1298 272.35 0.2789 0.3625 277.15 0.2808 0.2168 268.53 0.2798

Training Data. We use 24 occupations that span diverse bias attributes as our training occupations.
For each occupation and attribute class, 20 images are generated using SD1.53 (Rombach et al.,
2022) with 50 de-noising steps. The RetinaFace detector (Deng et al., 2020) is applied to filter
generation without valid faces. In total, there are (24 × 2 × 20) images for gender attribute, (24 ×
6 × 20) for race, and (24 × 2 × 20) for age. Details on preparing training data can be found in the
supplementary materials.

Implementation Details. Our main experiments are conducted on the SD1.5 network, yet the gen-
eralizability to other models is demonstrated in Appendix Sec. E.7. By default, the inclusive token
vi is initialized to the embedding of the token “individual”, which we find to be a natural inclusive
token (detailed discussion on natural inclusive tokens can be found in the supplementary materials).
The length of our adaptive inclusive token is set to 1, resulting vci ∈ R1×768, as 768 is the token em-
bedding dimension of the SD1.5 text model. The models are trained for 3000 steps with batch size
= 1 (gradient accumulation steps = 4), taking approximately 1 hour on one NVIDIA A100 GPU.
The base learning rate is set to 5 × 10−4 and we employ the AdamW optimizer. As for training
prompts, we follow Textual Inversion (Gal et al., 2022) to use the ImageNet templates describing
objects, but add adjectives to describe the attribute of interest. The template training prompts can
be found in the supplementary materials. For the adaptive mapping network, we use transformer
architecture with six attention heads and four transformer blocks.

Evaluation Protocols. To evaluate the performance of mitigating stereotypical biases in T2I genera-
tions, we construct a test set of unseen 24 occupations excluded from the training set. For each biased
concept, we analyze 100 images with valid faces to measure the distributions of different attributes.
All images for evaluation are generated using the test prompt “a photo of a <i> {occupation}” with
25 de-noising steps. The racial inclusive token <ir> is introduced after 10 sampling steps on base
prompt T (c) to better balance six classes. Attribute classifiers are employed to detect and gather
statistics on the distributions among various attribute classes in the generated images. Following
previous works (Zhang et al., 2023; Gandikota et al., 2024; Kim et al., 2023), we utilize the CLIP
(Radford et al., 2021) zero-shot classifier to classify sensitive attributes, prompting with “a photo of
a [attribute] person”.

Evaluation Metrics. Three metrics are used for evaluation. Firstly, following Zhang et al. (2023),
the fairness of de-biased attribute distribution is assessed by the KL divergence (DKL)↓ against an
even distribution. Secondly, Fréchet Inception Distance (FID)↓ is used to quantify the image quality.

3runwayml/stable-diffusion-v1-5
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(a) Visual evaluation on stereotypically male-dominated occupations.

(b) Visual evaluation on stereotypically female-dominated occupations.

Figure 3: Qualitative evaluation on gender bias mitigation. All images are generated with the same
random seed. The captions above indicate the base prompt T (c).

Table 2: Ablation studies on proposed components for single-bias mitigation.

Lanchor Fam Gender DKL ↓ Race DKL ↓ Age DKL ↓

0.2590 0.8065 0.3113
✓ 0.1822 0.3540 0.3999

✓ 0.3981 0.8090 0.2581
✓ ✓ 0.1298 0.3625 0.2168

Lastly, to evaluate the extent of concept drifting, we report the alignment between generated images
and prompts using the CLIP-Score (CLIP)↑.

4.2 EXPERIMENTAL RESULTS

Single Bias. The quantitative comparisons of our proposed method against baselines in mitigating
single bias are shown in Tab. 1. The implementation details of baseline methods can be found in
appendix Sec. C. The methods are categorized into two groups: those with attribute specification
or editing direction guidance and those without. As shown in the table, the methods with attribute
specification generally yield good inclusive results. However, as mentioned in Sec. 1, we believe
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(a) Visual evaluation on race bias mitigation.

(b) Visual evaluation on age bias mitigation.

Figure 4: Qualitative evaluation on race and age biases mitigation. All images are generated with
the same random seed. The captions above indicate the base prompt T (c).

achieving fairer results without specifying attribute classes or editing direction poses a more mean-
ingful and challenging task. Our approach excels in mitigating race and age biases without requiring
additional information and is comparable to the best performance in gender bias mitigation in terms
of numerical metrics. Qualitative comparisons of approaches that do not rely on additional informa-
tion are shown in Fig. 3 and Fig. 4. Our method promotes better inclusiveness while maintaining
the semantic meaning of a given concept. In addition, our method is model-agnostic and generalizes
to any T2I models as long as the text encoder can handle newly learned embeddings. Our results
on the SD2.1 (Rombach et al., 2022) and SDXL (Podell et al., 2024) models are shown in appendix
Sec. E.7.

Despite the lower distribution discrepancy of Li et al. (2023) in gender bias (FM in Table 1), its
CLIP-Score suffers a considerable decline, indicating a lack of visual semantics related to the target
occupation in its generated images. Such severe semantic drifting from input prompts is evident
in the qualitative evaluation (Fig. 3 and Fig. 4). Additionally, Bansal et al. (2022) which achieves
comparable performance with our method in age bias mitigation (EI in Table 1), tends to generate
multiple individuals in one image to meet the inclusive requirement in the ethical interventions. We
argue that these results also demonstrate a misalignment with the given prompt, which specifically
requests “a {occupation}”, implying a single individual.

9
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Table 3: Performance of combining adaptive inclusive tokens to mitigate multi-biases.

<ig> <ir> <ia> Gender DKL ↓ Race DKL ↓ Age DKL ↓ FID↓ CLIP↑

0.3584 0.5973 0.2319 281.12 0.2823
✓ ✓ ✓ 0.1417 0.5932 0.2272 262.95 0.2769

Table 4: Performance of adaptive inclusive tokens in complex scenes. Reported metrics are on
gender bias. Additional prompts are added to “A photo of a <ig> {occupation}”.

Metrics DKL ↓ FID↓ CLIP↑ DKL ↓ FID↓ CLIP↑ DKL ↓ FID↓ CLIP↑

Prompts + “drinking coffee.” + “reading a book.” + “listening to music.”

SD1.5 0.3567 266.75 0.3116 0.3992 326.80 0.3045 0.4246 274.67 0.3033
Ours 0.2404 264.88 0.3082 0.2669 312.87 0.3020 0.2195 275.71 0.3009

Ablation Studies. Ablation studies are conducted to evaluate the effectiveness of our proposed
components. The quantitative results are shown in Tab. 2. As demonstrated, combining two pro-
posed components generally yields the best results except for race bias. We hypothesize that it
is because most occupations are biased towards White figures as a homogenous bias distribution,
which weakens the effectiveness of our adaptive mapping network.

Multiple Biases. To validate the ability of our adaptive inclusive tokens to mitigate multiple stereo-
typical biases simultaneously, we concatenate previously single-attribute-trained inclusive tokens
during inference with prompt: “A photo of a <ig> <ir> <ia> {occupation}”. As the results in
Tab. 3 demonstrate, the adaptive inclusive tokens can be combined to achieve inclusive generation
across various attributes.

Complex Scene. We use three additional prompts describing people engaged in various activities
to assess the generalizability of our tokens to unseen and more complex prompts. The evaluation is
done on the <ig> token only for a preliminary demonstration. The results are reported in Tab. 4. It
appears that our adaptive inclusive token can be effectively generalized to more complex scenarios
with comparable text-image alignment and even better image quality.

5 CONCLUSION AND LIMITATION

In this work, we study the challenges faced by previous prompt tuning-based bias mitigation ap-
proaches. To address the limitation of generalization across different dominant attribute classes, we
propose to learn a concept-specific inclusive token through an adaptive mapping network, instead
of a fixed one. For the concept drifting issue, we introduce an anchor loss that constrains the im-
pact of the adaptive inclusive token on the final outputs. As a result, our proposed method manages
to significantly enhance inclusiveness in T2I generation, with the ability to generalize to unseen
concepts and scenarios and mitigate multiple biases simultaneously. In addition, our approach is
model-agnostic and can be applied to various T2I models to boost fairness in their outputs.

However, since our target distribution is an even distribution following previous approaches, de-
biasing is limited to neutral concepts where all attribute classes are factually correct. For non-neutral
concepts, de-biasing may introduce factual errors, such as generating black people as “the pope”
with a <race-inclusive> token. Correcting these inaccuracies would require an additional fact-
checking process. Nevertheless, these errors may not always be undesirable from an inclusive and
creative perspective. The trade-off between accuracy and fairness is a complex issue that requires
continuous discussion by researchers and policymakers. We acknowledge this limitation and hope
to address it in future work.

We hope our work can bring insights to all who care and work in this field. We believe it should be
our effort to make the world a more inclusive place, where every individual regardless of background
or identity, can feel valued and respected.
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APPENDIX

The appendix covers the following contents:

(A) Occupation lists for training and testing in Sec. A.

(B) Training data preparation details in Sec. B.

(C) Description on baseline method implementations in Sec. C.

(D) Discussion on natural inclusive tokens in Sec. D.

(E) Additional experimental results in Sec. E.

(1) Ablation study on the number of adaptive tokens.
(2) Ablation study on adaptive mapping network complexity.
(3) Ablation study on placement of adaptive mapping module in text model.
(4) Ablation study on the number of training samples.
(5) Ablation study on image sources.
(6) Ablation study on the initial token.
(7) Results on SD2.1 and SDXL.

(F) More qualitative results in Sec. F.

A OCCUPATION LISTS

The training occupations are: ["construction worker", "mechanic",
"firefighter", "police officer", "engineer", "pilot", "computer
programmer", "ceo", "surgeon", "truck driver", "electrician",
"scientist", "nurse", "teacher", "secretary", "librarian",
"receptionist", "administrative assistant", "childcare worker",
"social worker", "dental hygienist", "therapist", "pathologist",
"nutritionist"]

The testing occupations are: ["doctor", "chief", "farmer", "architect",
"software developer", "ballet dancer", "yoga instructor",
"cosmetologist", "fashion designer", "flight attendant", "artist",
"musician", "writer", "photographer", "philosopher", "athlete",
"lawyer", "politician", "journalist", "barista", "detective",
"security guard", "professor", "sports coach"]

B TRAINING DATA PREPARATION

To construct the training set with known attribute classes, we utilize the Stable Diffusion4 (SD)
model with prompts formatted as “High-quality photo of a/an [attribute] {occupation}”. The [at-
tribute] choices include male/female for gender, White/Black/Asian/Middle Eastern/Indian/Latino
Hispanic for race, and young/old for age as mentioned in the paper. The {occupation} list is given
above. We generate 20 images for each attribute-occupation combination. The RetinaFace detector
(Deng et al., 2020) is applied with a confidence filter of 0.97 to ensure a valid face is present in the
generated image. Additionally, manual screening of the generated results is conducted to ensure the
attribute class and occupation information are correct.

C BASELINES

Baseline methods implementations are briefly explained as follows: (1) Stable Diffusion (SD1.5)
(Rombach et al., 2022): we use it as the original pipeline with base prompt T (c) = “A photo
of a {occupation}”. (2) ITI-GEN (Zhang et al., 2023): we train ITI-GEN on different attributes
separately using the additional datasets provided. During generation, it loops over all classes of

4runwayml/stable-diffusion-v1-5
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Table 5: Effect of natural inclusive tokens in gender bias mitigation. The testing prompt is “A photo
of a [NIT] {occupation}” and the testing occupations consist of 10 unseen occupations (5 from each
gender domination group).

Natural Inclusive Token Gender DKL ↓ FID↓ CLIP↑

None 0.4783 287.55 0.2909

“person” 0.4021 282.76 0.2936
“individual” 0.4222 287.27 0.2960

“diverse” 0.3122 299.14 0.2875

Figure 5: Visual effects of natural inclusive token in an occupation-related prompt.

certain attribute. To ensure optimal results as even distribution, we generate an equal number of
images for each class, allowing a slightly larger amount of images to be evaluated when the number
of classes is not divisible by 100. Since race attribute is not studied in their work, we do race
classification on the inclusive skin tone generation and recognize its limitations. (3) TIME (Orgad
et al., 2023): the model is trained on each test occupation individually since it cannot generalize
to unseen concepts. The editing strength parameter λ is tuned in choices of [10, 1, 0.1] to select
the best one for each occupation. (4) Fair Diffusion (Friedrich et al., 2023): we follow the default
editing parameters and edit the model to the non-stereotypical class for gender and age attributes
with binary classes. For the race attribute consisting of six classes, we loop over all six classes as
the editing directions to give a comprehensive result. (5) Ethical Intervention (Bansal et al., 2022):
we add best-performing intervention “...if all individual can be a {occupation} irrespective of their
{attribute}” as reported in their paper to the base prompt. (6) Fair Mapping (Li et al., 2023): The
model is trained on three attributes separately following the implementation details provided until
the training loss converges. (7) Revised Textual Inversion (Gal et al., 2022) method is implemented
as discussed in Sec. 3.1.

D NATURAL INCLUSIVE TOKEN

We have observed the existence of natural inclusive tokens (NIT), which we define as tokens that can
be incorporated into an occupation-related prompt to promote a fairer attribute distribution without
significantly altering the image structure of the generated results. Through experiments with prompts

14
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formatted as “A photo of a [NIT] {occupation}” on gender bias and 10 unseen occupations5 from
different domination groups following Fig.1(a) of the main paper, we have identified several neutral
words that demonstrate the effectiveness of NIT in achieving fairer attribute distributions. The
numerical results are shown in Tab. 5. As we can see, NIT can reduce the distribution discrepancy
to a certain extent. Albeit not as effective as the adaptive inclusive token that we learned in the main
paper, NIT can serve as initialization. The visual effects of NIT are illustrated in Fig. 5. We choose
to use “individual” as our initial token to obtain the adaptive inclusive token and experiment with
other NITs as initial tokens, as discussed in Sec. E.6.

E MORE ABLATION STUDIES

Additional ablation study results are presented. All evaluations are conducted following the evalua-
tion protocols described in the main paper. The face detector is disabled when generating qualitative
results to ensure the corresponding images are generated by the same noise latent, facilitating fair
and consistent comparisons.

Table 6: Ablation study on the number of adaptive tokens.

No. of Inclusive Tokens Gender DKL ↓ Race DKL ↓ Age DKL ↓

1 (Ours) 0.1298 0.3625 0.2168
2 0.1560 0.3893 0.2337
3 0.1575 0.3646 0.2131

E.1 NUMBER OF INCLUSIVE TOKENS

We try to learn different numbers of tokens to carry our inclusive requirement. Tab. 6 demonstrates
the effectiveness of a single adaptive token in achieving a more inclusive distribution in the output.

E.2 ADAPTIVE MAPPING NETWORK COMPLEXITY

We employ the transformer architecture for the adaptive mapping network and explore variations
in transformer complexities, as shown in Tab. 7. The results suggest that our adaptive inclusive to-
ken effectively reduce stereotypical bias in text-to-image (T2I) results regardless of the complexity
of the adaptive mapping network. Generally, employing more transformer blocks yields better in-
clusiveness in gender bias but shows less effectiveness in mitigating race bias. This observation is
consistent with Tab.2 of the main paper that the adaptive mapping module is less effective in race
de-bias since most occupations are biased toward White individuals, resulting in a single primary
domination group. On the other hand, age bias mitigation performance is insensitive to different
network complexities.

Table 7: Ablation study on the complexity of the adaptive mapping network.

Transformer Blocks Attention Heads Gender DKL ↓ Race DKL ↓ Age DKL ↓

SD1.5 Original Pipeline 0.3584 0.5973 0.2319

4 6 0.1298 0.3625 0.2168
2 6 0.1635 0.3156 0.2026
4 8 0.1310 0.3550 0.1989
2 8 0.1820 0.3220 0.2127
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Figure 6: Various placements of adaptive mapping module. Left: before text transformer (inclusive
embedding in token embeddings). Right: after text transformer (inclusive embedding in text em-
beddings).

Table 8: Ablation study on the placement of the adaptive mapping module.

Placement of Adaptive Mapping Gender DKL ↓ Race DKL ↓ Age DKL ↓

Before Text Transformer 0.1298 0.3625 0.2168
After Text Transformer 0.3519 0.5644 0.2667

E.3 PLACEMENT OF ADAPTIVE MAPPING MODULE

The placement of the adaptive inclusive embedding within the text model can significantly impact
its effectiveness in bias mitigation. To explore the effects of placing the inclusive embedding in
different locations, we conduct experiments by placing the adaptive mapping module before and
after the text transformer, as illustrated in Fig. 6. The results are shown in Tab. 8. Our findings
indicate that adding the adaptive mapping module after the text transformer reduces the influence of
the inclusive embedding on the final outputs, resulting in reduced effectiveness in bias mitigation.

We further investigate the impact of embeddings before and after text transformer with two sets
of simple experiments. Here, we denote the textual embeddings before the text transformer as
token embeddings vTi

, and the textual embeddings after the text transformer as text embeddings
eTi . Firstly, for a neutral occupation-related prompt “A photo of a {occupation}” where no gender
class is specified, we find that most of the output images still follow the occupation’s stereotypical
gender even if the embedding of the occupation’s non-stereotypical gender is added after the text
transformer. This observation suggests that the gender bias associated with the occupation is spread
to the whole text embeddings via text transformer, and late indication in text embedding does not
play a decisive role in the outcome. Secondly, to further validate this finding, we modify the prompt
to include a non-stereotypical gender class, e.g., “A photo of a male nurse”, and subsequently replace
the text embedding of “male” with that of “female” (obtained from another prompt, “A photo of
a female nurse”) after the text transformer. Surprisingly, the resulting nurse images continue to
predominantly exhibit the male gender. This result indicates that the attribute indicators have a
greater impact on the final outputs when incorporated into the token embeddings, as the effect of the
indicators can propagate throughout the entire text embedding via the transformer architecture. This

5["doctor", "chief", "farmer", "architect", "software developer",
"ballet dancer", "yoga instructor", "cosmetologist", "fashion designer",
"flight attendant"]
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Table 9: Ablation study on the number of training samples.

Samples per Attribute-Occupation Gender DKL ↓ Race DKL ↓ Age DKL ↓

20 0.1298 0.3625 0.2168
10 0.2641 0.3251 0.2177
5 0.1542 0.3636 0.2907

Table 10: Ablation study on image sources.

Image Source Gender DKL ↓ FID↓ CLIP↑

SD1.5 (888) 0.1593 263.67 0.2795
Online (888) 0.2898 269.65 0.2768

finding aligns with our observation that the adaptive inclusive token affects the attributes of the final
results more effectively when the adaptive mapping module is placed before the text transformer.

E.4 NUMBER OF TRAINING SAMPLES

The effect of the number of training samples is shown in Tab. 9. It can be seen that though the
bias mitigation performance does not improve linearly with more training samples per attribute-
occupation combination, 20 samples per combination generally yields the best results.

E.5 IMAGE SOURCES

We investigate the impact of different image sources on the bias mitigation performance. Due to the
difficulty in finding real images for certain combinations of attribute classes and occupations, this
study is limited to gender bias. We use clip-retrieval (Beaumont, 2022) to retrieve 20 images
per attribute-occupation combination from the LAION-400M dataset (Schuhmann et al., 2021) and
manually screen the retrieved images to retain those with the correct attribute classes and visual
concepts associated with the occupation. To ensure balanced training data, we maintain a consistent
number of images for each gender within each occupation category, resulting in 888 real images in
the training set. To make a fair comparison, we align the number of synthetic data generated by
SD1.5 with real data in each attribute-occupation combination, resulting in 888 synthetic images
as well. The results are shown in Tab. 10. In conclusion, the T2I results have better inclusiveness,
image quality, and textual alignment when the adaptive inclusive token is trained with synthetic
images generated by the same SD model.

E.6 INITIAL TOKEN

As discussed in Sec. D, we explore various NITs as the initial token to assess their impact on bias
mitigation performance. From Tab. 11, we can see that all initial tokens demonstrate effective bias
mitigation across all three bias attributes. Furthermore, if we deviate from the conventional practice
of initializing the pseudo token to an existing word (Gal et al., 2022) by employing randomly initial-
ized weights, our method’s performance remains comparable. This demonstrates the robustness and
effectiveness of our adaptive mapping network to predict a reasonable inclusive token regardless of
the token initialization.

E.7 RESULTS ON SD2.1 AND SDXL

The generalization ability of our method on more advanced SD models SD2.16 (Rombach et al.,
2022) and SDXL7 (Podell et al., 2024) is evaluated. Tab. 12 showcases the generalizability of our
method to SD2.1 model. Following the data preparation procedure outlined in Sec. B, training data
is generated using the SDXL model. The adaptive mapping module is integrated into the first text

6stabilityai/stable-diffusion-2-1
7stabilityai/stable-diffusion-xl-base-1.0
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Table 11: Ablation study on different NIT as the initial token.

Initial Token Gender DKL ↓ Race DKL ↓ Age DKL ↓

“individual” 0.1298 0.3625 0.2168
“person” 0.1410 0.3518 0.2273
“diverse” 0.1413 0.3699 0.2070

Random Weights 0.1288 0.3839 0.1865

model of SDXL, while the second text model remains unchanged. The results are presented in
Tab. 13. The qualitative results are shown in Fig. 7, 8, 9. Both quantitative and qualitative results
demonstrate that our adaptive inclusive token method can be generalized to a more advanced SD
model to achieve more inclusive T2I outcomes.

Table 12: Performance on Stable Diffusion 2.1.

Diffusion Model Gender DKL ↓ Race DKL ↓ Age DKL ↓

SD2.1 (Rombach et al., 2022) 0.4166 0.5819 0.2062
SD2.1 with ours 0.3074 0.5722 0.1934

Table 13: Performance on SDXL.

Diffusion Model Gender DKL ↓ Race DKL ↓ Age DKL ↓

SDXL(Podell et al., 2024) 0.4919 0.6796 0.1965
SDXL with ours 0.1816 0.3986 0.1924

F MORE QUALITATIVE RESULTS

More qualitative results of applying our adaptive inclusive token on the SD1.5 model are presented
in Fig. 10, 11, 12.
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Figure 7: Qualitative results of gender bias mitigation on SDXL. All images are generated with the
same random seed.
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Figure 8: Qualitative results of race bias mitigation on SDXL. All images are generated with the
same random seed.
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Figure 9: Qualitative results of age bias mitigation on SDXL. All images are generated with the
same random seed.
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Figure 10: Qualitative results of gender bias mitigation on SD1.5. All images are generated with the
same random seed.
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Figure 11: Qualitative results of race bias mitigation on SD1.5. All images are generated with the
same random seed.
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Figure 12: Qualitative results of age bias mitigation on SD1.5. All images are generated with the
same random seed.
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