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Abstract

Fundamental questions remain about why adversarial examples (AExs) arise in
neural networks (NNs). In this paper, we argue that adversarial vulnerability can
emerge from efficient information encoding in NNs. Specifically, we show that
superposition – where networks represent more features than they have dimensions
– creates arrangements of latent representations that adversaries can exploit. We
demonstrate that adversarial perturbations leverage interference between super-
posed features to craft attacks, making attack patterns predictable from feature
arrangements. Our framework provides a mechanistic explanation for two known
phenomena: adversarial attack transferability between models with similar training
regimes and class-specific vulnerability. In synthetic settings with precisely con-
trolled superposition, we establish that superposition suffices to create adversarial
vulnerability. We then demonstrate that these findings persist in a vision trans-
former (ViT) trained on CIFAR-10. These findings reveal adversarial vulnerability
can be a byproduct of networks’ representational compression, rather than flaws in
the learning process or non-robust inputs. We release our implementation under:
https://circle-group.github.io/AdversarialSuperposition/.

1 Introduction

Despite extensive research on AExs [Szegedy et al., 2014, Goodfellow et al., 2014, Bartoldson
et al., 2024], no consensus exists on their fundamental causes, leaving us unable to predict which
perturbations succeed, explain why attacks transfer between models, or design principled defences.
This paper presents a mechanistic interpretability perspective demonstrating that AExs can exploit
interference between learned representations in superposition—a mechanism that normally enables
additional representation capacity—to craft effective perturbations that manipulate model outputs.

Existing explanations broadly fall into two camps [Nakkiran, 2019]: the bug perspective views
adversarial perturbations as exploiting model-specific vulnerabilities in arbitrary directions unrelated
to the true distribution [Schmidt et al., 2018, Nakkiran, 2019, Fawzi et al., 2016], whilst the feature
perspective argues they exploit predictive but non-robust statistical patterns in the data [Ilyas et al.,
2019]. Neither approach reconciles how representational constraints interact with data semantics. We
bridge this divide, demonstrating how adversarial vulnerability emerges from the interaction between
architectural constraints and data semantics (i.e. human-interpretable properties of the data).

Our account draws on the linear representation hypothesis (LRH) [Park et al., 2024] and the theory of
superposition [Elhage et al., 2022]. The LRH posits that input features—fundamental abstractions of
data—are represented as linear directions in a network’s representation space. It is hypothesised that
NNs can represent significantly more of these features than they have neurons through superposition,
enabling networks to efficiently pack multiple features into shared dimensions at the cost of introduc-
ing interference. Such interference means perturbing one feature can affect others in non-obvious
ways. This paper investigates whether this interference creates vulnerabilities that AExs exploit, and
what insights this offers for understanding adversarial phenomena.

Mechanistic Interpretability Workshop at NeurIPS 2025.
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Contributions: Using toy models with controlled superposition under projected gradient descent
(PGD) attacks we reveal a mechanistic pathway: input correlations constrain feature arrangements,
these arrangements determine interference patterns, and these interference patterns dictate attack
characteristics and transferability. This framework enables prediction of which perturbations succeed
and why they transfer between models. We replicate these findings in a ViT trained on CIFAR-10 with
an engineered bottleneck. This framework reveals adversarial vulnerability can arise from efficient
information encoding rather than learning flaws or non-robust features.

2 Background
We outline the tools used in our analysis: the LRH, superposition, and PGD, with full definitions in
App. A. Let x ∈ X denote the input and h(l) ∈ Rdl the activation vector of the l-th layer.

Linear representation and superposition. The LRH posits that NNs represent many variables
of their computation such as semantic properties of their inputs, as linear directions in activation
space, which can be used as abstractions for reasoning [Park et al., 2024, Guerner et al., 2023]. We
conceptualise these as a set of M semantically meaningful latent features (e.g. concepts such as
“presence of shape”) as linear directions {vj}Mj=1 ⊂ Rdl , such that h(l)(x) ≈

∑M
j=1 aj(x)vj , where

aj(x) ∈ R represents the activation magnitude. Superposition occurs when M > dl: networks
represent more features than dimensions using non-orthogonal directions {vj}Mj=1, enabled by
sparse feature activation (Ex[∥a(x)∥0] ≪ M ). This creates polysemanticity—individual neurons
representing multiple features—and interference [Elhage et al., 2022], where activating one feature
activates others.

Adversarial attacks. Adversarial attacks force misclassification via small perturbations δ: x′ = x+δ
with ∥δ∥p ≤ ϵ. We use PGD [Madry et al., 2018], which for untargeted attacks iteratively maximises
loss: x′(k+1) = ΠS(x

′(k)+αgk), where gk is the normalised gradient, α is step size, and ΠS projects
onto the ϵ-ball. For ℓ∞ constraints, gk = sign(∇xL(·)); for ℓ2, gk = ∇xL/∥∇xL(·)∥2.

3 Superposition geometry determines adversarial attacks
We investigate if and how adversarial attacks exploit the interference rooted in the superposition of
latent features. Specifically, we ask three questions:

1. Do adversarial perturbations exploit the interference between superposed features?
2. Do correlations in the input shape the geometric arrangement of superposed latent features?
3. Can shared latent geometry explain why attacks transfer between independently trained models?

Setup. We create a synthetic task designed to: (1) provide an intuitive classification setting for
studying AExs; (2) represent class concepts as linear directions per the LRH; (3) induce controlled
superposition between these latent features; and (4) retain a priori knowledge of how inputs correspond
to the superposed features – enabling testable predictions about adversarial mechanisms.

The input x ∈ Rd is partitioned into k groups x = [x(1), . . . ,x(k)], where x(j) ∈ Rp rep-
resents input features for class j. The task identifies which group has the largest sum: y =

argmaxj∈{1,...,k}
∑p
i=1 x

(j)
i . Each x(j)i ∼ Uniform(0, 1) at sparsity S (probability of being zero). A

two-layer network with encoder h = σ(Wex+ be) ∈ Rm (where m < k < d) compresses k class
representations into m dimensions, followed by a linear decoder for classification. Our primary setup
uses cross entropy (CE) loss without ReLUs/biases. Since input feature x(j)i affects only class j, the
columns {We[:, i] : i ∈ class j} align, and we interpret them as class representations vj . AEx are
generated with PGD and must (1) change the model’s prediction (e.g. from class A to B) whilst (2)
preserving the true class, i.e. the class with the largest sum remains the same (e.g. still class A).

3.1 Empirical results

We present our empirical findings qualitatively here, but provide quantitative details in App. C.
Results remain consistent across a range of hidden dimensions, classes, and features per class.

Attacks exploit geometric interference. An attack must move a sample across a decision boundary
to change its class, but what determines the required input perturbations? Two contrasting intuitions
exist: the feature intuition suggests increasing input features of the target class, while the bug intuition
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Figure 1: An adversarial attack exploiting superposition geometry (k = 7, m = 2). (a) The
original sample. (b) The adversarially perturbed sample, whose ground truth remains the same but is
misclassified. The sign and magnitude of an input perturbation is determined by the configuration
of latent representations. (c) The original and adversarial sample in activation space. The coloured
arrows are the column vectors of We, the latent representations of the input features.

suggests adversarial perturbations modify inputs in unpredictable ways, with knowledge of feature
representations providing no insight.

Fig. 1 shows a typical AEx in our setting, showing an input of Class 2 (orange) and its perturbed
value that misclassifies it as Class 6 (brown). The perturbations appear arbitrary – we clearly do not
simply increase the target class features, contradicting the feature intuition. Yet these perturbations
are not random either. Instead, they follow a precise pattern with a systematic correspondence
between δ and the configuration of latent features. This relationship suggests a third intuition: attacks
are mediated by latent geometry. Each input feature is perturbed (both magnitude and sign) in
proportion to how its latent representation aligns with the vector travelled to cross the decision
boundary (∆h = hadv −horig). We quantify this observation by comparing PGD-discovered attacks
with theoretically optimal perturbations that we show leverage superposition (derived in Sec. 3.2),
finding near-perfect alignment.

Finding: Adversarial attacks systematically exploit interference between superposed features.
Successful PGD attacks are predictable given specific superposition geometry, rather than arbitrary.

Correlations determine geometry. Data correlations constrain how features arrange in latent space.
Fig. 2 shows three correlation patterns: (a) with i.i.d. data, representations order randomly between
different model seeds; (b) with pairwise correlations (input feature pairs that co-activate, as per Elhage
et al. [2022]) models develop partially constrained structures with correlated features orthogonal;
(c) with global correlations (cyclic correlations where adjacent classes are more likely to co-occur),
models converge to a fixed ordering (up to rotation). The mechanism at play is interference avoidance:
frequently co-activating features are arranged to minimise mutual interference.

Finding: Input correlations constrain feature geometry. Stronger correlations reduce geometric
degrees of freedom, forcing different initialisations to converge to similar arrangements.
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Geometric
Similarity: 0.18±0.15

Attack
Transferability: 18%±9

Geometric
Similarity: 0.47±0.07

Attack
Transferability: 32%±20

Geometric
Similarity: 0.92±0.04

Attack
Transferability: 94%±12

Figure 2: Greater input correlations create more con-
sistent geometries between initialisations, driving at-
tack transferability from 18% (uncorrelated) to 94%
(global). Error ranges show standard deviations.

Shared superposition geometry explains
transferability. When data correlations cre-
ate consistent latent geometries between mod-
els, models share similar interference patterns
between superposed features. As indicated
in Fig. 2, this shared interference determines
adversarial transfer rates: the globally corre-
lated models yield 94% transfer versus 18% for
the uncorrelated condition. Each perturbation
component amplifies or suppresses feature acti-
vations, creating constructive interference that
pushes representations across decision bound-
aries. However, when the same perturbation
is applied to a model with different feature ar-
rangements, features that previously construc-
tively interfered instead cancel out or interfere
destructively, causing the attack to fail.
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Finding: Attack transferability is governed by shared interference patterns.

Removing superposition eliminates attacks. With m = k, networks learn orthogonal class
representations and no successful attacks exist: moving a sample across the decision boundary
requires genuinely changing the class (i.e. changing the class with the highest sum). Furthermore,
forcing one class feature orthogonal to others leaves its inputs unperturbed during attacks between
other classes, confirming interference is necessary for these attacks (Appendix Fig. 4).

Finding: Adversarial attacks use their budget to exploit those features in superposition.

3.2 Formal analysis

We now formalise the mechanisms underlying our empirical observations. In our linear setting,
we can derive exact relationships between superposition interference and adversarial vulnerability,
extending our results beyond observational correlation.

We adopt the notation from our experimental setup, where We ∈ Rm×d with columns vi induces
superposition, and the decoder corresponds to the encoder transposed (as empirically observed).

Proposition 1. The optimal input perturbations δ that maximise movement from class j to class k
under constraint ∥δ∥2 = ϵ satisfy δ ∝ W⊤

e n, where n = (vk − vj) is the normal to the decision
boundary between classes.
Corollary 1 (Interference drives vulnerability) The adversarial perturbation magnitude for fea-
ture i is |δi| ∝ |v⊤

i (vk − vj)|, directly proportional to the differential interference between feature i
and the class representations.

This reveals how superposition creates adversarial vulnerability. Each input feature i is perturbed
proportionally to its interference with the class representations. Under superposition, the non-
orthogonality means semantically unrelated features interfere with the class decision—adversarial
perturbations exploit these dependencies to manipulate outputs.

Proposition 2. Models with feature representations related by orthogonal transformation Q (where
Q⊤Q = I) share identical optimal attack directions in input space.

Together with our empirical findings, these propositions establish a mechanistic pathway.
Specifically: (i) input correlations constrain feature arrangements in superposition, (ii) these
geometric arrangements determine interference patterns, (iii) interference patterns dictate
optimal perturbations via δ ∝ W⊤

e (vk − vj) (Proposition 1), and (iv) shared geometric con-
straints yield similar interference patterns across models, enabling transferability (Proposition 2):
Correlations constrain−−−−→ Feature Geometry determines−−−−−→ Interference Patterns enable−−−→ Transferability

4 Attacks in vision models
We extend our analysis to a ViT [Dosovitskiy et al., 2020] trained on CIFAR-10 [Krizhevsky, 2009]
with an engineered bottleneck to induce controlled superposition between class representations.

Setup. We train ViTs (6 layers, 512-dim embeddings, 81% accuracy) on CIFAR-10. We then replace
the classification head on these base models with a bottleneck: a linear encoder that projects down to
m dimensions followed by a decoder back to the 10 classes. We train this bottleneck with frozen
ViT weights, and the class representations are placed in superposition. We vary m ∈ {2, 3, 5, 10}
to control compression degree. AExs are generated using ℓ∞- and ℓ2-norm PGD and transferability
measured across five seeds. See App. D for complete results.

Results. Three key findings emerge that mirror our toy model observations from Sec. 3:

(1) As bottleneck dimension decreases, normalised robust accuracy decreases (81%→60%) and
attack transferability across different model initialisations increases (25%→45%) (Fig. 3, right). The
increased transferability follows from our findings that higher superposition reduces the degrees of
freedom in potential feature geometry. With a more constrained representational space available, the
network has fewer viable geometric arrangements for its class features. This leads to different model
initialisations converging to more similar superposition geometries and, consequently, more shared
interference patterns, resulting in greater attack transferability.
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Figure 3: Left: CIFAR-10 class representation structure remains similar between models across
different seeds. Right: Attack transferability and robust accuracy as bottleneck dimension is increased.

(2) Despite random initialisation, models converge to similar class arrangements, as measured by
cosine similarity (Fig. 3, left). This consistency, akin to findings in Sec. 3, suggests that correlations
guide the formation of a superposed geometry. Notably, semantically related classes (‘cat’/‘dog’,
‘car’/‘truck’) consistently cluster together.

(3) When AExs from bottlenecked models are run through the base ViTs they produce similar relative
logit changes—both models respond consistently to the same perturbations. This indicates the
perturbations are not solely an artefact of the bottleneck. However, without the increased compression
these do not lead to misclassifications.

5 Related work

Superposition & latent representations. Research identifies data correlations as shaping latent
arrangements: Elhage et al. [2022] demonstrate correlated features become orthogonal; Chan [2024]
identify correlations as driving superposition; and Prieto et al. [2025] as creating semantic clustering.
Gurnee et al. [2023] discuss interference patterns and mitigation via non-linearities. Representation
geometry is further shaped by factors including spectral biases [Rahaman et al., 2019], neural
collapse [Kothapalli, 2023], and optimisation objectives [Casper, 2023].

Explanations of adversarial vulnerability broadly fit into two camps, the bug perspective and the
feature perspective [Nakkiran, 2019]. Bug perspectives include limited training data [Schmidt et al.,
2018], finite-sample overfitting [Nakkiran, 2019], and properties of decision boundaries in high-
dimensional spaces [Fawzi et al., 2016]. The feature perspective proposes AExs exploit predictive
yet non-robust statistical patterns in the data [Ilyas et al., 2019]. Elhage et al. [2022] suggest
superposition’s link to adversarial examples, built on by Gorton and Lewis [2025], and debated
by Casper [2023]). Other works describe perturbations pushing representations across boundaries
[Zhang et al., 2021]; show PGD targets final layers [Ganeshan et al., 2019]; and find dataset-specific
patterns Maiya et al. [2021]. Transferability is attributed to representation similarities [Li et al., 2023,
Wang et al., 2024], with Wiedeman and Wang [2022] reducing transfer by decorrelating features
between models.

6 Discussion & concluding remarks

We demonstrate that adversarial attacks can exploit interference patterns arising from superposed
feature geometry in NNs. Data properties—correlations and sparsity—induce specific superposition
geometries creating predictable vulnerabilities. These geometric arrangements determine attack
characteristics and explain phenomena including transferability and class-specific susceptibility. This
mechanistic account reveals superposition as a sufficient condition for adversarial vulnerability. Our
new perspective frames adversarial vulnerability as a potential, inherent consequence of how networks
efficiently encode vast amounts of information via superposition.

Limitations & future work. Our insights derive from simplified settings which use class features in
engineered superposition. As large-scale models involve interference between unknown, unlabelled
features across multiple layers, future work should study such interference, as well as investigating
different attack types and how robust training reshapes feature geometry.
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Appendix

A Definitions

The LRH posits that NNs represent many variables of their computation, such as semantic properties
of their inputs, as linear directions in their activation space, which can be used as abstractions for
reasoning [Park et al., 2024, Guerner et al., 2023]. This bias towards representing linear features is
hypothesised because linear separability allows networks to easily recognise and manipulate features,
and because dot products with subsequent layer weights efficiently process such directional features.
Growing research supports this [Gurnee et al., 2023, Park et al., 2024]. Let C = {c1, . . . , cM} denote
a set of M semantically meaningful latent features (e.g. concepts like “presence of shape,” or “indoor
vs. outdoor”). Formally:

Definition 1 (Linear Representation Hypothesis (LRH)) A neural network layer with activations
h(l) ∈ Rdl satisfies the LRH if it represents the latent features C = {c1, . . . , cM} as linear directions
{vj}Mj=1 ⊂ Rdl such that:

h(l)(x) ≈
M∑
j=1

aj(x)vj

where aj(x) ∈ R represents the activation magnitude of feature cj , and vj is the corresponding
linear direction. The features are linearly accessible [Costa et al., 2025]: inputs x0,x1 ∈ X that
differ mainly in the value of feature cj while holding other features approximately constant (i.e.,
aj(x1)− aj(x0) = k and |ai(x1)− ai(x0)| < λ for all i ̸= j and some small λ > 0) satisfy:

h(l)(x1)− h(l)(x0) ≈ kvj

where k reflects the change in cj .

Superposition and sparsity NNs are capable of representing many more latent features than
there are available dimensions in activation space: M > dl. For example, LLMs can reference
many more place names than they have residual stream dimensions. One framework for analysing
this phenomenon is superposition, according to which networks use an overcomplete and non-
orthogonal set of feature directions {vj}Mj=1. This leverages the fact that 2Θ(dϵ2) almost orthogonal
vectors (< ϵ cosine similarity) can be represented in d-dimensional space [Tkocz, 2012], and that
sparse vectors can be accurately recovered after projection into lower-dimensional spaces [Elhage
et al., 2022, Bereska and Gavves, 2024, Sawmya et al., 2025]. This creates two challenges. First,
polysemanticity [Scherlis et al., 2022, Lecomte et al., 2023] emerges where individual neurons
contribute to multiple different features, meaning a neuron’s activation does not correspond to a single
interpretable concept. Second, non-orthogonal feature directions create interference between features
– activating one feature activates others. Networks can mitigate these issues through non-linear
operations (e.g. ReLU, softmax) that disambiguate superposed features [Gurnee et al., 2023].

Definition 2 (Superposition Hypothesis) A network layer represents features in superposition if:

1. The number of latent features exceeds layer dimensionality: M > dl
2. There exists non-orthogonal feature directions: ∃ i, j with i ̸= j such that vi · vj ̸= 0
3. Latent feature activations are sparse: Ex[∥a(x)∥0] ≪M , where a(x) = [a1(x), . . . , aM (x)]T

The network trades representational capacity against feature interference by packing more features
than dimensions.

B Omitted proofs & theoretical results

To understand how adversarial attacks exploit feature representations, we prove that optimal perturba-
tions weight each input dimension by how much its corresponding feature aligns with the path to the
decision boundary. We analyse our linear models without ReLU activation functions.

Consider input x ∈ Rd encoded via ϕ(x) = We x to latent representation h ∈ Rm, where the
columns of We ∈ Rm×d are an overcomplete dictionary {vi}di=1 (m < d). For our argmax task,
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we empirically observe that the trained encoder-decoder pair has the decoder as the transpose of
the encoder: Wd = W⊤

e . This means the logit for class j is computed as zj = v⊤
j h, where vj is

the j-th column of We. The predicted class is ŷ = argmaxj zj . Input perturbations map to latent
perturbations as ∆h = Weδ, where δ = (δ1, . . . , δd)

⊤ are the perturbation coefficients.

The decision boundary between classes j and k is the set of points where their logits are equal:
Bjk = {h : zj = zk}, or equivalently {h : (vk − vj)

⊤h = 0}. The vector n = (vk − vj) acts as
the normal to this pairwise decision boundary, pointing in the direction that maximally increases the
margin zk − zj . We briefly recall the propositions before providing corresponding proofs.

Proposition 1 (Optimal targeted attack) The optimal input perturbations δ that maximise move-
ment from class j toward class k under constraint ∥δ∥2 = ϵ satisfy:

δ ∝ W⊤
e n

Proof. To move a sample from being classified as j to being classified as k, we need to maximise the
logit margin zk − zj . Under perturbation δ, the new margin becomes:

z′k − z′j = v⊤
k (h+∆h)− v⊤

j (h+∆h) (1)

= (vk − vj)
⊤(h+Weδ) (2)

= (vk − vj)
⊤h+ (vk − vj)

⊤Weδ (3)

The change in margin is (vk − vj)
⊤Weδ = δ⊤W⊤

e (vk − vj). We seek:

max
δ

δ⊤W⊤
e (vk − vj) subject to ∥δ∥2 = ϵ

Let g = W⊤
e (vk − vj). By the Cauchy-Schwarz inequality:

|δ⊤g| ≤ ∥δ∥2∥g∥2 = ϵ∥g∥2

Equality is achieved when δ and g are parallel. Given the constraint ∥δ∥2 = ϵ:

δ =
ϵ

∥W⊤
e (vk − vj)∥2

W⊤
e (vk − vj)

□

Corollary (Interference drives vulnerability) For a targeted attack from class j to class k, the
adversarial perturbation magnitude for input feature i is:

|δi| ∝ |v⊤
i (vk − vj)|

where vi is the i-th column of We. This quantity represents the differential interference between
feature i and the class representations.

This reveals the mechanism by which superposition creates adversarial vulnerability. Each input
feature i is perturbed proportionally to v⊤

i (vk − vj)—the differential interference between fea-
ture i and the class representations. Under superposition, the non-orthogonality means that even
semantically unrelated features have non-zero inner products with (vk − vj), creating exploitable
interference patterns. The multi-class setting amplifies this vulnerability, as with k classes there
are multiple possible pairwise boundaries, each creating a distinct interference pattern. Adversarial
perturbations leverage these cross-feature dependencies—they manipulate features that affect it
through their interference with the class representations. This explains the vulnerability we observe
empirically: attacks succeed not by directly increasing target class features, but by exploiting the web
of interference created by superposition.

Prop. 1 characterises the optimal perturbation direction for moving from class j to k, providing the
gradient for maximising the margin zk − zj . When intervening classes exist (where zj < zi < zk
for some class i), following this gradient might cause the model to predict i before reaching target
k. Iterative methods like PGD handle this by recomputing gradients at each step—the global attack
path emerges from repeated local decisions rather than a single optimisation. Furthermore, while
our analysis assumes Wd = W⊤

e based on our empirical observations, the framework extends to
arbitrary decoders. In the general case, with decoder Wd ∈ Rk×m having rows w⊤

j , the optimal
perturbation becomes δ ∝ W⊤

e (wk −wj), capturing interference between encoder directions and
decoder weights.
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Proposition 2 (Attack transferability) Consider encoders ϕ and ψ with basis matrices We ∈
Rm×d and W′

e ∈ Rm×d whose columns are related by orthogonal transformation v′
i = Qvi

(where Q⊤Q = I). If both models use their encoder transpose as decoder (i.e., Wd = W⊤
e and

W′
d = (W′

e)
⊤), then both models have identical optimal input perturbation vectors for any targeted

attack from class j to class k.

Proof. For model ϕ, the optimal perturbation from Prop. 1 is:

δϕ ∝ W⊤
e (vk − vj)

For model ψ with transformed columns v′
i = Qvi:

δψ ∝ (W′
e)

⊤(v′
k − v′

j) = (W′
e)

⊤(Qvk −Qvj)

Since W′
e = QWe (all columns are transformed), we have:

δψ ∝ (QWe)
⊤Q(vk − vj) (4)

= W⊤
e Q

⊤Q(vk − vj) (5)

= W⊤
e (vk − vj) (6)

where the last equality uses Q⊤Q = I. Thus δϕ and δψ have identical proportionality. Under the
same norm constraint ∥δ∥2 = ϵ, we have δϕ = δψ . □

Prop. 2 is used to explain why attacks transfer between models with similar training regimes. When
models learn feature representations that differ only by orthogonal transformation—essentially the
same geometric structure in different orientations—they share identical vulnerability patterns in input
space. The orthogonal transformation preserves all inner products between features, maintaining the
interference patterns that attacks exploit. This provides an explanation for our empirical observation
that models trained on data with the same correlations exhibit high attack transferability: they discover
similar feature geometries up to rotation, leading to shared adversarial vulnerabilities.

C Toy model experiments

This section provides supplementary details, extended results and further discussion for the toy
model experiments discussed in the main paper. We present model accuracies across a wider range
of parameters than shown in the main text, offering insight into how model capacity and data
characteristics like sparsity influence the learning process and the conditions under which feature
superposition appears. Subsequently, we offer additional visual examples that correspond to Fig. 1,
illustrating the mechanics of adversarial attacks under various conditions.

C.1 Hypotheses testing framework

We explicitly state our hypotheses for the three research questions in Sec. 3.

Research Q1: Do adversarial perturbations exploit superposition geometry?

• H0: Adversarial perturbations are random with respect to feature geometry.
• H1: Adversarial perturbations systematically exploit geometric relationships between superposed

representations.

Research Q2: Do data correlations determine superposition geometry?

• H0: Input correlations have no systematic effect on learned geometries.
• H1: Input correlations determine geometric arrangements across model initializations.

Research Q3: Does shared geometry explain attack transferability?

• H0: Attack transferability is independent of geometric similarity.
• H1: Transferability increases with shared latent structure.

We test these hypotheses through controlled experiments:
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• H1(1): We measure the input perturbation profile alignment with a class’s latent representation
and the latent attack vector.

• H1(2): We systematically vary input correlations and measure resulting geometries.
• H1(3): We quantify transferability rates across models with varying geometric similarity.

C.2 Accuracy of toy model for a range of parameters

The toy model experiments presented in the main paper predominantly used low-dimensionality
settings for conceptual clarity. To demonstrate the model’s behaviour more broadly, this subsection
details the classification accuracies achieved by the CE toy model. These results are presented across
varying hidden layer size (h), number of classes (k), number of features, and levels of sparsity (S),
to provide insight into when the models learn to represent features in superposition. The sparsity
level represents the probability that any individual input feature x(j)i is set to zero, with higher values
of S indicating greater input sparsity. We report results as a function of feature density 1− S, the
probability that a feature is non-zero. Tab. 1 and Tab. 2 provide context on the model’s performance
limits and its ability to learn latent representations in superposition.

Table 1: Classification accuracy of the CE toy model with a fixed bottleneck dimension (m = 2)
across various numbers of classes (k), total input features (features = k × 3), and input feature
densities (1− S). These results illustrate how input sparsity controls performance degradation as the
number of classes to be superposed within a constrained latent space increases.

Classes (k) Features Hidden (m) Accuracy at Input Feature Density (1− S)

1.0 0.57 0.33 0.19 0.11 0.06 0.04 0.02

3 9 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 12 2 0.67 0.71 0.82 0.92 0.98 0.99 1.00 1.00
5 15 2 0.53 0.50 0.65 0.77 0.89 0.95 0.98 0.99
6 18 2 0.40 0.43 0.51 0.66 0.82 0.93 0.97 0.99
7 21 2 0.34 0.34 0.40 0.53 0.73 0.87 0.95 0.98
8 24 2 0.30 0.30 0.33 0.40 0.63 0.82 0.93 0.97
9 27 2 0.24 0.26 0.30 0.35 0.57 0.75 0.89 0.96

10 30 2 0.22 0.24 0.26 0.31 0.50 0.72 0.87 0.95
15 45 2 0.14 0.15 0.16 0.17 0.25 0.40 0.65 0.86
20 60 2 0.10 0.10 0.11 0.13 0.15 0.24 0.44 0.76
25 75 2 0.07 0.08 0.09 0.10 0.12 0.16 0.26 0.62
30 90 2 0.06 0.07 0.07 0.07 0.09 0.11 0.21 0.45

C.3 Quantitative results from Section 3

This subsection provides the quantitative details and statistical analyses for the empirical findings
presented in Section 3.

Alignment between PGD and optimal attacks. To evaluate whether PGD attacks specifically
exploit superposition geometry, we compare PGD-generated attacks against theoretically optimal
perturbations derived in Sec. 3.2. For each configuration (k,m), we train 5 models with different
random seeds and generate 1000 PGD attacks per model, calculating the cosine similarity between
each successful perturbation and the corresponding optimum. We establish a random baseline by
generating perturbations with matching ℓ2-norm and computing their similarity to the theoretical
optimum.

Tab. 3 shows near-perfect alignment between PGD and optimal attacks across various dimensionalities.
We filter out samples that have an ℓ2-norm less than ϵ to ensure meaningful perturbations. One-
sample t-tests comparing observed similarities against the random baseline yield p < 10−10 for all
configurations, demonstrating that PGD attacks systematically match theoretical predictions rather
than occurring by chance. Given that optimal attacks leverage interference and PGD attacks achieve
near-perfect alignment with these optima, we conclude that PGD exploits superposition interference.
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Table 2: Classification accuracy of the CE toy model for varying numbers of classes (k), total input
features, bottleneck dimensions (m), and input feature sparsity levels (S). This table reports different
numbers of features per class (p).

Classes (k) Features Hidden (m) Accuracy at Input Feature Density (1− S)

1.0 0.57 0.33 0.19 0.11 0.06 0.04 0.02

30 30 30 0.23 0.24 0.38 0.62 0.83 0.94 0.99 1.00
30 90 90 0.27 0.27 0.33 0.41 0.51 0.67 0.85 0.94
40 40 30 0.67 0.54 0.73 0.77 0.88 0.96 0.99 0.99
40 120 30 0.71 0.64 0.65 0.72 0.73 0.79 0.89 0.96
60 60 10 0.05 0.07 0.12 0.25 0.47 0.73 0.90 0.97
60 180 10 0.08 0.10 0.13 0.17 0.22 0.32 0.52 0.75
80 80 30 0.15 0.17 0.23 0.41 0.63 0.79 0.91 0.98
80 240 30 0.23 0.22 0.31 0.41 0.48 0.53 0.66 0.80

100 100 10 0.03 0.04 0.05 0.10 0.21 0.43 0.69 0.87
100 300 10 0.04 0.05 0.06 0.09 0.12 0.15 0.25 0.45

Table 3: Alignment between PGD-discovered attacks and theoretically optimal perturbations across
configurations. Results show mean ± std over 1000 attacks per condition. All p-values are below
10−10.

k m
Cosine Sim.

(PGD vs Theory)
Cosine Sim.

(Random Baseline)

6 2 0.97± 0.02 0.00± 0.02
30 10 0.96± 0.00 0.00± 0.01
90 30 0.92± 0.00 0.00± 0.00

Geometric similarity across configurations. We quantify geometric similarity by comparing
the pairwise cosine similarity matrices between all feature pairs in each model, then measuring the
correlation between these matrices across different random seeds. Higher correlation indicates more
similar geometric arrangements. For each correlation condition, we tested 25 seed pairs.

Tab. 4 displays geometric similarity results across correlation types and superposition configurations.
The results show a consistent monotonic relationship across all configurations: uncorrelated data
yields highly variable geometries across seeds, paired correlations partially constrain the arrangements,
whilst global correlations force near-identical geometries. Statistical significance was assessed using
pairwise two-sample t-tests between all three correlation modes with Bonferroni correction (p < 10−3

for all comparisons, α = 0.05 corrected for 3 comparisons).

Table 4: Geometric similarity results across correlation types and superposition configurations.

Correlation
Type k m

Geometric
Similarity

Uncorrelated
6 2 0.18± 0.15

30 10 0.17± 0.02
90 30 0.17± 0.01

Paired
6 2 0.47± 0.07

30 10 0.26± 0.07
90 30 0.25± 0.01

Global
6 2 0.92± 0.04

30 10 0.88± 0.01
90 30 0.80± 0.01
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Attack transferability. Using the same seed pairs as above, we generate adversarial attacks on
source models and evaluate their success when applied to target models within each correlation
condition (25 transfer measurements per condition). All models achieve > 95% clean accuracy.
Transfer rates correlate strongly with geometric similarity. For the k = 7,m = 2 configuration:
globally correlated data yields 94% ± 12% attack transfer (mean ± std), uncorrelated data shows
only 18%± 9% transfer, and paired correlations produce intermediate results of 32%± 20% transfer.
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Figure 4: An adversarial attack (from class 5 to class 3) does not perturb the input features for a class
represented orthogonally (class 1).

Orthogonal feature experiments. We test whether attacks focus on superposed features by con-
straining one class’s latent vector v(⊥) to remain orthogonal to all others during training. When
generating attacks between classes that remain in superposition (e.g. from class a to bwhere va ̸⊥ vb),
the inputs corresponding to the orthogonal class remain unperturbed (Fig. 4). This confirms that
attacks use their budget to exploit those features in superposition.

Additionally, when m = k, the network learns to represent each class direction v(j) orthogonally. In
this configuration, any perturbation that changes the model’s prediction also changes the ground truth
class. To move a sample from class A to class B requires making the sum of class B features exceed
class A’s—genuinely transforming it into a class B sample. We find zero successful adversarial
examples across 1000 attempts at all ϵ values tested. Furthermore, fixing m and varying k shows that
robust accuracy decreases monotonically with superposition pressure k/m (Tab. 5), demonstrating
that vulnerability scales with interference degree.

C.4 How the toy model maps to real-world models

How does scaling networks affect adversarial vulnerability? While empirical evidence suggests that
larger models tend to be more robust to adversarial attacks, this effect is weak. When adversarial
training is employed, clearer scaling trends emerge, but improvements remain largely specific to the
attack type used during training rather than conferring general robustness [Howe et al., 2025].

There are two key phenomena at play when scaling up models. On one hand, larger models have more
capacity to represent concepts, but on the other hand, there seems to be a long tail of useful concepts
for a larger model to capture in general tasks like next token prediction over internet text. This
means that despite increased model capacity, superposition appears to be prevalent even in frontier
models [Lindsey et al., 2025]. Supporting evidence comes from dictionary learning methods: SAEs
require increasingly large dictionaries for larger models [Gao et al., 2025], suggesting that the number
of features scales with model size. This suggests that the fundamental tension driving superposition –
that models must compress many features into limited dimensions – does not disappear with scale.

Since both superposition and adversarial vulnerability persist in large-scale models, we believe our
insights remain relevant across model scales. It is an interesting future avenue to understand how the
geometry of superposition changes with scale, potentially helping to mitigate vulnerability.

C.4.1 Separating superposition effects from capacity reduction

Controlling for capacity by keeping the bottleneck dimension fixed to isolate superposition effects
controls for the confounding effect of superposition pressure and capacity reduction. We fix bottleneck
dimensionm = 2, and vary number of classes k to isolate superposition pressure. We report the model
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accuracy, robust accuracy, and transferability in Tab. 5. These controls demonstrate that increased
superposition pressure (k/m), independent of model capacity, drives the adversarial vulnerabilities
we observe.

Table 5: Performance metrics across correlation types, perturbation budgets (ε), and number of
classes (k)

Correlation Type Parameters Performance (%)
ε k Accuracy Robust Acc. Attack Trans.

Uncorrelated

0.05

2 100.0 100.0 0.0
4 100.0 94.9 21.2
6 99.9 87.0 9.8
8 99.8 77.7 17.5

0.1

2 100.0 100.0 0.0
4 100.0 88.1 9.8
6 99.7 75.4 9.9
8 99.6 56.3 23.5

0.5

2 100.0 100.0 0.0
4 100.0 99.4 0.0
6 99.9 62.9 30.5
8 99.5 24.9 39.0

Fully Correlated

0.05

2 100.0 100.0 0.0
4 100.0 95.8 98.4
6 97.3 70.6 98.4
8 93.0 57.4 97.2

0.1

2 100.0 100.0 0.0
4 100.0 88.7 98.5
6 97.7 45.6 99.7
8 94.2 34.8 98.6

0.5

2 100.0 100.0 0.0
4 100.0 90.0 100.0
6 97.2 34.6 100.0
8 93.0 32.0 100.0

C.4.2 Additional examples of AExs in toy model

Fig. 1 demonstrates how adversarial attacks exploit the interference between latent features in
superposition. Here we provide further visual examples (Fig. 5) to reinforce intuition. Specifically,
we supplement the main text by showcasing:

• Fig. 5a shows an additional instance of the setup in ?? (m = 2, k = 7) with an ℓ2-norm PGD
attack, demonstrating the IPP and latent space manipulations that lead to misclassification.

• Fig. 5b shows a similar setup (m = 2, k = 7) using an ℓ∞-norm PGD attack on a less sparse input.
• Fig. 5c shows an example with increased bottleneck dimensionality (m = 3, k = 7) and accom-

panying ℓ2-norm PGD attack. The feature vector similarity matrix used to calculate geometric
similarity is also shown.

D CIFAR-10 experiments

To investigate whether the principles observed in the toy models extend to more complex settings,
Sec. 4 introduces experiments trained on CIFAR-10 [Krizhevsky, 2009] with an engineered bottleneck.
This appendix section provides further details on this setup and presents extended results.
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(a) An ℓ2-norm attack changing the classification of an input of class 4 to class 3. The left plot shows original
and adversarial activations in latent space, along with representation directions. The right plots show original
and perturbed input feature values.

(b) An ℓ∞-norm attack changing the classification of an input of class 6 to class 4. The left plot shows original
and adversarial activations in latent space relative to class latent directions. The right plots show original and
perturbed input feature values.

(c) An ℓ2-norm adversarial attack in a 7-class setup with an increased bottleneck dimension m = 3. The leftmost
plot now shows the cosine similarity matrix between pairs of latent representations for each of the classes.

Figure 5: Visualisations of AExs in the toy model, supplementing Figure 1 from the main paper by
illustrating attack mechanisms in activation space and input space under varied conditions.
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D.1 Architecture & training information

The base ViT [Dosovitskiy et al., 2020] architecture comprised 6 transformer layers, an embedding
dimension (d) of 512, and 8 attention heads in each transformer layer. Input images from the CIFAR-
10 dataset, sized at 32 × 32 pixels, were processed into patches of 4 × 4 pixels. The Multilayer
Perceptron (MLP) within each transformer block had a hidden dimension of 512. Learned positional
embeddings were used.

The bottleneck architecture consisted of a linear encoder followed by a linear decoder. The linear
encoder projected the pre-classification activations obtained from the ViT backbone into an m-
dimensional latent space (m = {2, 3, 5, 10}). The subsequent linear decoder then mapped these
m-dimensional representations back to the k = 10 dimensions corresponding to the CIFAR-10
classes.

The base ViT model was trained on the CIFAR-10 dataset for 250 epochs. A learning rate of 0.001
was used with the Adam optimiser using default PyTorch parameters. The batch size was set to 512
and a cosine annealing learning rate scheduler was used. The loss function was CE. Dropout was
used. Training was performed across five different random seeds to account for variability. After the
base ViT model was trained, its weights were frozen. The bottleneck layer was then trained for 30
epochs, utilising a learning rate of 0.001. As for preprocessing, the images undergo RandomCrop
with 4-pixel padding, resize to the target size (32x32 by default), and RandomHorizontalFlip for data
augmentation.

D.2 Normalised robust accuracy across perturbation magnitudes

Fig. 3 (right) shows how normalised robust accuracy varies with bottleneck dimension for one value
of ϵ. This subsection expands on those findings by detailing the normalised robust accuracy when
subjected to PGD attacks of different strengths. Results are presented for both ℓ2-norm (Tab. 7)
and ℓ∞-norm (Tab. 6) PGD attacks, providing a more comprehensive view of how the degree of
superposition interacts with attack strength to affect model robustness.

AExs for these evaluations were generated using PGD with 100 iterations with a step size (α) of 0.01.
Robust accuracy was evaluated on 500 samples for each configuration. The mean normalised robust
accuracy and standard deviation across five random seeds are reported.

Table 6: Mean normalised robust accuracy (± standard deviation across 5 seeds) for ViT models
with different bottleneck dimensions (m) on CIFAR-10, subjected to ℓ∞-norm PGD attacks of
varying perturbation magnitudes (ϵ). Robust accuracy is normalised by the clean accuracy of each
bottlenecked model. These results support the findings of Sec. 4, demonstrating a similar trend across
ϵ.

ϵ
Bottleneck Dimension (m)

2 3 5 10

0.001 96.0% ± 0.4% 97.4% ± 0.7% 97.9% ± 0.4% 98.1% ± 0.3%

0.01 61.7% ± 3.6% 69.6% ± 3.5% 77.0% ± 0.9% 81.8% ± 3.2%

0.05 4.9% ± 1.5% 6.7% ± 1.6% 9.3% ± 0.6% 10.5% ± 0.8%

0.1 0.1% ± 0.2% 0.2% ± 0.3% 0.2% ± 0.4% 0.2% ± 0.4%

0.5 0.0% ± 0.0% 0.0% ± 0.0% 0.0% ± 0.0% 0.0% ± 0.0%

D.3 Attack transferability across perturbation magnitudes

We here include results on attack transferability across various perturbation magnitudes (ϵ) and
bottleneck dimensions (m). Tab. 9 presents the ℓ2-norm attack transferability and Tab. 8 ℓ∞-norm
attack transferability.
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Table 7: Mean normalised robust accuracy (± standard deviation across 5 seeds) for ViT models
with different bottleneck dimensions (m) on CIFAR-10, subjected to ℓ2-norm PGD attacks of
varying perturbation magnitudes (ϵ). Robust accuracy is normalised by the clean accuracy of each
bottlenecked model. These results support the findings in Section 4 of the main paper, showing
decreasing robustness with smaller m (increased superposition) and larger ϵ.

ϵ
Bottleneck Dimension (m)

2 3 5 10

0.1 90.4% ± 1.7% 91.8% ± 0.7% 94.6% ± 1.2% 95.0% ± 0.7%

0.5 58.5% ± 5.0% 60.8% ± 5.0% 69.2% ± 1.8% 72.6% ± 2.8%

1.0 41.7% ± 4.8% 44.0% ± 3.0% 50.4% ± 0.6% 54.9% ± 1.7%

2.0 34.0% ± 4.6% 36.2% ± 3.3% 41.5% ± 1.3% 47.4% ± 2.4%

5.0 30.2% ± 4.1% 32.9% ± 3.5% 37.3% ± 1.9% 42.7% ± 1.0%

D.4 Correlations in class features

In Sec. 3 it was correlations between inputs that drove superposition arrangements. We note that here
it is not the correlations between input classes but rather the correlations in the representations at this
point in the network that drive these arrangements. At the classification layer this is likely similar to
the confusion matrix – i.e. how each class is misclassified in relation to the other classes. Classes
that cluster together are those the network finds inherently similar and misclassifies together. To test
this we repeat the experiment, finetuning the base ViT using timm/vit_base_patch16_384 which has
been trained on ImageNet-21k (14 million images, 21,843 classes) and ImageNet (1 million images,
1,000 classes). After fine-tuning on CIFAR-10 and applying the same bottleneck training procedure
as Sec. 4, the resulting geometry shows random ordering between initialisations with approximately
equal spacing between features (i.e. neuron collapse [Kothapalli, 2023]). In this case performance is
near 100%, meaning the confusion matrix is the identity, and the superposed loses its structure. In
contrast, models trained solely on CIFAR-10 converge to similar geometries because they share the
same learned difficulty structure - the same pairs of classes prove challenging to distinguish, leading
to consistent superposition patterns.

D.5 ResNet-18

To address concerns on architectural generalisation, we conduct the same experiments using a ResNet-
18 [He et al., 2016] architecture as the base model as opposed to a ViT. We achieve a slightly higher
92% clean accuracy (compared to 89% for ViT). We observe the robust accuracy falls slightly faster
for ResNet-18 than the ViT at the same ϵ values. Nevertheless, we observe similar declining trends in
normalised robust accuracy and increasing transferability as bottleneck pressure increases.
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Table 8: Attack transferability (%) for ℓ∞-norm PGD attacks on CIFAR-10 ViT models. Transferabil-
ity is shown from a model trained with a specific ’Source Seed’ (e.g., Seed 10) to three different target
models, each trained with one of the seeds listed in the sub-header (e.g., ’vs. Seeds 20/30/40’). The
three slash-separated values in each cell correspond to the transferability to these three target seeds,
respectively. All models within a row share the same bottleneck dimension, m. The ‘Mean ± Std’
column averages transferability across all 12 source-target seed pairings for each (ϵ,m) configuration.
This supports the claim in Section 4 that higher superposition can lead to more consistent latent
geometries and thus higher transferability.

ϵ m
Seed 10 vs. Seed 20 vs. Seed 30 vs. Seed 40 vs. Mean ± StdSeeds 20/30/40 Seeds 10/30/40 Seeds 10/20/40 Seeds 10/20/30

0.001

2 77.8/66.7/44.4 25.0/62.5/25.0 72.7/72.7/72.7 58.3/75.0/58.3 59.3 ± 17.7

3 57.1/28.6/28.6 14.3/28.6/28.6 63.6/72.7/72.7 42.9/42.9/42.9 43.6 ± 18.4

5 70.0/50.0/50.0 57.1/71.4/57.1 50.0/25.0/25.0 16.7/50.0/33.3 46.3 ± 16.9

10 55.6/55.6/66.7 12.5/37.5/25.0 16.7/33.3/16.7 28.6/71.4/28.6 37.3 ± 19.3

0.01

2 60.3/52.6/48.7 63.8/42.0/60.9 53.8/40.9/52.7 51.2/55.8/46.5 52.4 ± 6.9

3 42.9/46.4/50.0 46.4/42.9/49.1 44.2/38.9/44.2 42.9/45.1/41.8 44.6 ± 3.0

5 43.3/41.1/43.3 39.2/30.4/41.8 46.0/40.2/47.1 41.2/35.3/32.9 40.2 ± 4.8

10 42.5/46.0/44.8 38.0/39.4/46.5 43.5/47.8/47.8 32.6/40.0/35.8 42.1 ± 4.7

0.05

2 35.0/36.4/37.8 38.8/36.0/46.3 37.4/31.3/41.7 42.0/42.0/40.7 38.8 ± 3.8

3 29.9/29.9/37.1 30.4/30.1/35.6 30.2/30.2/35.1 30.1/31.9/34.4 32.1 ± 2.6

5 26.8/25.3/29.2 25.2/21.5/26.4 28.0/28.0/26.5 26.0/26.6/21.9 25.9 ± 2.2

10 27.1/24.9/30.4 21.6/23.0/28.4 25.3/28.1/30.6 21.0/24.9/20.1 25.4 ± 3.4

0.1

2 34.2/35.6/38.2 36.7/34.9/44.5 37.9/30.0/40.8 41.2/42.0/40.3 38.0 ± 3.8

3 29.6/28.9/35.2 28.6/29.2/34.8 29.1/28.2/34.0 28.8/31.1/32.8 30.9 ± 2.5

5 25.4/23.3/27.0 23.8/19.6/24.6 25.9/26.7/25.4 24.6/24.3/20.7 24.3 ± 2.1

10 24.8/22.6/29.7 20.1/21.6/26.1 22.5/25.5/28.0 19.5/23.3/18.7 23.5 ± 3.3

E Acronyms

AEx adversarial example
CE cross entropy
LRH linear representation hypothesis
MLP Multilayer Perceptron
MSE mean squared error
NN neural network
PGD projected gradient descent
SAE sparse autoencoder
ViT vision transformer
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Table 9: Attack transferability (%) for ℓ2-norm PGD attacks on CIFAR-10 ViT models. The table
format, detailing source model to target model transferability, mirrors that of Tab. 8; please see
its caption for a full explanation. These ℓ2 results further support the claim in Sec. 4 that higher
superposition leads to increased attack transferability.

ϵ m
Seed 10 vs. Seed 20 vs. Seed 30 vs. Seed 40 vs. Mean ± StdSeeds 20/30/40 Seeds 10/30/40 Seeds 10/20/40 Seeds 10/20/30

0.1

2 70.6/64.7/41.2 60.0/50.0/60.0 64.3/60.7/57.1 48.1/63.0/51.9 57.6 ± 8.0

3 39.1/39.1/47.8 50.0/60.7/50.0 48.1/55.6/51.9 48.0/28.0/40.0 46.5 ± 8.4

5 43.5/34.8/43.5 31.6/31.6/42.1 42.9/35.7/21.4 30.4/39.1/34.8 35.9 ± 6.4

10 45.5/59.1/45.5 19.0/28.6/28.6 37.5/43.8/43.8 23.8/52.4/38.1 38.8 ± 11.4

0.5

2 59.6/52.1/48.9 60.8/35.4/60.8 54.1/39.4/51.4 43.8/49.5/46.7 50.2 ± 7.7

3 38.7/40.6/48.1 36.1/36.8/41.7 37.4/36.5/43.5 34.4/34.4/36.7 38.7 ± 3.9

5 38.4/32.0/37.6 29.4/25.7/32.1 39.1/33.9/38.3 31.8/29.9/32.7 33.4 ± 4.0

10 38.3/37.4/37.4 26.5/28.4/31.4 32.4/35.3/35.3 23.4/28.2/25.0 31.6 ± 5.0

1.0

2 50.8/43.7/44.4 51.7/36.4/50.0 46.1/32.9/44.7 42.7/46.7/45.3 44.6 ± 5.3

3 35.7/36.9/41.7 31.8/36.4/42.6 33.7/32.0/37.3 34.9/32.0/35.5 35.9 ± 3.3

5 32.1/28.9/33.2 30.9/23.0/30.9 35.9/31.5/33.7 27.7/28.2/27.1 30.3 ± 3.3

10 32.3/32.3/38.5 23.7/27.7/29.9 29.1/32.0/34.3 22.2/25.6/21.1 29.1 ± 5.0

2.0

2 47.0/41.6/44.3 48.2/36.2/48.2 43.9/33.5/42.1 43.4/43.4/42.8 42.9 ± 4.2

3 31.9/37.7/40.3 31.1/35.6/40.6 32.6/31.1/36.8 35.4/33.3/34.3 35.1 ± 3.2

5 29.9/25.4/32.1 26.3/22.1/26.7 32.3/31.8/29.5 27.9/27.9/23.6 28.0 ± 3.2

10 30.8/30.4/35.7 22.5/24.9/28.6 24.8/29.7/32.7 20.4/26.1/19.0 27.1 ± 4.9

5.0

2 44.7/46.7/40.8 45.3/37.3/48.7 42.7/33.9/41.5 42.3/42.3/40.6 42.2 ± 3.8

3 32.3/35.8/40.8 31.3/32.6/39.9 31.0/30.0/33.8 35.0/33.0/33.0 34.1 ± 3.2

5 30.6/24.1/28.6 28.3/20.9/24.8 31.7/31.3/27.4 28.1/29.0/23.2 27.3 ± 3.3

10 29.8/27.4/32.7 19.7/24.1/28.9 24.9/29.9/31.2 18.8/25.8/19.2 26.0 ± 4.6
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