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Abstract

Fundamental questions remain about why adversarial examples arise in neural1

networks. In this paper, we demonstrate that adversarial vulnerability can emerge2

from feature superposition—where networks represent more latent features than3

they have dimensions. Through controlled experiments on toy models and vision4

transformers (ViTs), we show how data properties induce specific superposition5

geometries that adversaries systematically exploit. We demonstrate that adver-6

sarial perturbations leverage interference patterns between superposed features7

to craft attacks, with the geometric arrangement of these features determining8

attack characteristics. Our framework provides a mechanistic explanation for two9

known phenomena: adversarial attack transferability between models with similar10

training regimes and class-specific vulnerability. We demonstrate these findings11

persist beyond toy settings with ViTs trained on CIFAR-10 with an engineered12

bottleneck. These results show that adversarial vulnerability can stem from efficient13

information encoding in neural networks, rather than from flaws in the learning14

process or non-robust input features.15

1 Introduction16

Despite extensive research on adversarial examples (AExs) [Szegedy et al., 2014, Goodfellow17

et al., 2014, Eykholt et al., 2018], no consensus exists on their fundamental causes. This paper18

presents a mechanistic interpretability perspective demonstrating that AExs can exploit interference19

between learned representations in superposition—a mechanism that normally enables additional20

representation capacity—to craft effective perturbations that manipulate model outputs.21

Our account draws on the linear representation hypothesis (LRH) [Park et al., 2024] and the theory22

of superposition [Elhage et al., 2022]. The LRH posits that networks encode semantic features as23

linear directions in representation space. It is hypothesised that neural networks (NNs) can rep-24

resent significantly more input features than they have neurons through superposition, leveraging25

near-orthogonality in high-dimensional space and compressed sensing. This efficient packing in-26

troduces interference between features. We investigate whether this interference creates systematic27

vulnerabilities that adversarial attacks exploit.28

Contributions: Using toy models with controlled superposition, we demonstrate that projected29

gradient descent (PGD) attacks exploit interference patterns between superposed features, with30

perturbations predictable from geometric arrangements. We show that input correlations determine31

these geometric configurations; when correlations constrain how features can be arranged, different32

models converge to similar geometries. These results explain attack transferability: models with33

shared geometric structure exhibit high transfer rates whilst those with different geometries show34

minimal transfer. We replicate these findings in a ViT trained on CIFAR-10 with an engineered35

bottleneck. Our framework reveals adversarial vulnerability can arise from efficient information36

encoding rather than learning flaws or non-robust features.37
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2 Background38

We briefly outline the tools used in our analysis: the LRH, superposition, and PGD, with full39

definitions in App. A.1. Let x ∈ X denote the input, and a(l)(x) ∈ Rdl the l-th layer activation.40

Linear Representation and Superposition. The LRH posits that NNs represent semantic con-41

cepts (input features) as linear directions in activation space, which can be used as abstractions42

for reasoning [Park et al., 2024]. We conceptualise these as a set of M underlying latent features43

directions, {vj}Mj=1 ⊂ Rdl . Then a(l)(x) ≈
∑M
j=1 cj(x)vj , where cj(x) are magnitudes. Superpo-44

sition occurs when M > dl: networks represent more features than dimensions using non-orthogonal45

directions {vj}Mj=1, enabled by sparse feature activation (Ex[∥c(x)∥0] ≪ M ). This creates pol-46

ysemanticity—individual neurons representing multiple features—and interference Elhage et al.47

[2022].48

Adversarial Attacks. Adversarial attacks force misclassification via small perturbations δ: x′ =49

x + δ with ∥δ∥p ≤ ϵ. We use PGD [Madry et al., 2018], which for untargeted attacks iteratively50

maximises loss: x′(k+1) = ΠS(x
′(k) + αgk), where gk is the normalised gradient, α is step size, and51

ΠS projects onto the ϵ-ball. For ℓ∞ constraints, gk = sign(∇xL(·)); for ℓ2, gk = ∇xL/∥∇xL(·)∥2.52

3 Superposition Geometry Determines Adversarial Attacks53

We investigate whether AExs exploit interference between superposed features using a toy model in54

which we can control relationships between inputs, latent representations, and interference.55

Setup. We partition input x ∈ Rd into k groups x = [x(1), . . . ,x(k)], where x(j) ∈ Rp represents56

input features for class j. Each x(j)i ∼ Uniform(0, 1) with sparsity S (probability of being zero).57

A two-layer network with encoder h = σ(Whx + bh) ∈ Rm (where m < k < d) compresses58

k class representations into m dimensions, followed by a linear decoder for classification. Our59

primary setup uses cross entropy (CE) loss without ReLUs/biases (mean squared error (MSE)60

variant with ReLUs/biases in Appendix). Since input feature x(j)i affects only class j, the columns61

{Wh[:, i] : i ∈ class j} align, and we interpret them as class representations vi. AEx are generated62

with PGD and must (1) change the model’s prediction whilst (2) preserving the true class (i.e. the63

class with the largest sum).64

3.1 Theoretical Framework65

In the linear setting, we derive exact relationships between superposition geometry and adversarial66

vulnerability. Complete propositions in App. A.2.67

Proposition 1. The optimal input perturbations δ that maximise movement toward the decision68

boundary under ∥δ∥2 = ϵ satisfy δ ∝ V⊤n, where n is the boundary normal.69

To see how interference drives vulnerability: in binary classification between classes j and k,70

the boundary normal n = vj − vk. Thus any input feature i gets perturbed proportionally to71

v⊤
i n = v⊤

i vj − v⊤
i vk, meaning the most effective perturbation strength depends directly on72

interference (inner products) between feature i and the class features vj ,vk.73
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Figure 1: An adversarial attack exploiting superposition geometry. Middle: The original sample.
Right: The adversarially perturbed sample, whose ground truth remains the same but is misclassified.
Left: The original and adversarial sample in activation space.
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Proposition 2. Models with feature representations related by orthogonal transformation Q (where74

QTQ = I) share identical optimal attack directions, predicting perfect adversarial transfer.75

These propositions establish part of the suggested mechanism: Data Correlations constrain−−−−→ Feature76

Geometry determines−−−−−→ Attack Perturbations. Propositions 1 and 2 establish how geometry determines77

attacks and transferability; whilst we empirically demonstrate that correlations shape geometry.78

3.2 Empirical Results79

We present our empirical findings qualitatively here, but provide quantitative details in App. A.3.80

Results remain consistent across a range of hidden dimensions, classes, and features per class.81
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Attacks exploit geometric interference.82

Figure 1 illustrates our key observation:83

each input feature is perturbed (both84

magnitude and sign) in proportion to85

how its latent representation aligns with86

the vector travelled to cross the deci-87

sion boundary. We quantify this obser-88

vation by comparing PGD-discovered at-89

tacks with theoretically optimal pertur-90

bations, finding near-perfect alignment.91

This demonstrates that perturbations are92

not arbitrary but predictable—the spe-93

cific superposition geometry determines94

exactly which attacks will succeed.95

Correlations determine geometry.96

Data correlations constrain how features arrange in latent space. Figure 2 shows three correlation97

patterns: (a) with i.i.d. data, representations order randomly between different model seeds; (b) with98

pairwise correlations (input feature pairs that co-activate [Elhage et al., 2022]), models develop99

partially constrained structures with correlated features orthogonal; (c) with global correlations100

(cyclic correlations where adjacent classes are more likely to co-occur), models converge to a fixed101

ordering (up to rotation).102

Shared superposition geometry explains transferability. If data correlations create consistent103

latent geometries between models, models share similar interference patterns between superposed104

features. As shown in Figure 2, this shared interference determines adversarial transfer rates:105

the fully correlated models yield 98% transfer versus 6% for i.i.d.. Attacks optimised for one106

model’s interference patterns fail when applied to models with different geometric arrangements—the107

perturbations no longer constructively combine.108

Removing superposition eliminates attacks. With m = k, networks learn orthogonal class109

representations and no successful attacks exist: moving a sample across the decision boundary110

requires genuinely changing the class (i.e. changing the class with the highest sum). Furthermore,111

forcing one class feature orthogonal to others leaves its inputs completely unperturbed during attacks112

between other classes, confirming interference is necessary for these attacks (Appendix Fig. 5).113

In our controlled experiments, adversarial vulnerability arises through a precise mechanism: input114

correlations constrain feature geometry, which determines attack patterns and hence transferability.115

These results demonstrate that superposition can stem from efficient information encoding rather than116

learning flaws. Whilst exact relationships hold only in our simplified setting, they suggest principles117

that may manifest in realistic models.118

4 Attacks in Vision Models119

We extend our analysis to a ViT [Dosovitskiy et al., 2020] trained on CIFAR-10 [Krizhevsky, 2009]120

with an engineered bottleneck to induce controlled superposition between class representations.121

Setup. We train ViTs (6 layers, 512-dim embeddings, 81% accuracy) on CIFAR-10. We then replace122

the classification head on these base models with a bottleneck: a linear encoder that projects down123

to m dims followed by a decoder back to the 10 classes. We train this bottleneck with frozen ViT124
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Figure 3: Left: CIFAR-10 class representation geometries remain consistent across seeds. Right:
Increased superpositional pressure (smaller m) reduces robustness whilst increasing transferability.

weights, and the class representations are placed in superposition. We vary m ∈ {2, 3, 5, 10} to125

control compression degree. AExs are generated using ℓ∞- and ℓ2-norm PGD and transferability126

measured across five seeds. See Appendix A.4 for complete results.127

Results. Three key findings emerge that mirror our toy model observations:128

(1) Despite random initialisation, models converge to similar class arrangements, as measured by129

cosine similarity, suggesting data correlations guide the formation of a superposed geometry (Figure 3,130

left). Semantically related classes (‘cat’/‘dog’, ‘car’/‘truck’) consistently cluster together.131

(2) When AExs from bottlenecked models are run through the base ViTs they produce similar relative132

logit changes—both models respond consistently to the same perturbations. The perturbations are133

not solely an artefact of the bottleneck. However, without the increased compression these do not134

lead to misclassifications.135

(3) As bottleneck dimension decreases normalised robust accuracy decreases (81%→60%) and attack136

transferability increases (25%→45%)(Figure 3, right). We conjecture that higher superposition re-137

duces the degrees of freedom in potential feature geometry. With a more constrained representational138

space available, the network has fewer viable geometric arrangements for its class features. This139

leads to different model initialisations converging to more similar superposition geometries and,140

consequently, more shared interference patterns, which results in greater attack transferability.141

5 Related Work142

Superposition and representations. Recent work explores how networks pack features into limited143

dimensions. Elhage et al. [2022] demonstrate correlated features become orthogonal; Gurnee144

et al. [2023] discuss interference patterns and mitigation via non-linearities; Chan [2024] identify145

correlations as driving superposition. Representation geometry is further shaped by multiple factors,146

including spectral biases Rahaman et al. [2019], and can lead to neural collapse Kothapalli [2023].147

Adversarial vulnerability. Competing explanations include non-robust features Ilyas et al. [2019],148

learning shortcuts Li et al. [2023], and geometric boundaries. Elhage et al. [2022] suggest super-149

position’s link to adversarial examples (debated by Casper [2023]). Other works examine attack150

mechanisms: Zhang et al. [2021] describe perturbations pushing representations across boundaries;151

[Ganeshan et al., 2019] show PGD targets final layers; Maiya et al. [2021] find dataset-specific152

patterns. Transferability is attributed to representation similarities Li et al. [2023], Wang et al. [2024],153

with Wiedeman and Wang [2022] reducing transfer by decorrelating features between models.154

6 Discussion & Concluding Remarks155

We demonstrate that adversarial attacks can exploit interference patterns arising from superposed156

feature geometry in NNs. Data properties—correlations and sparsity—induce specific superposition157

geometries creating predictable vulnerabilities. These geometric arrangements determine attack158

characteristics and explain phenomena including transferability and class-specific susceptibility. This159

mechanistic account reveals superposition as a sufficient condition for adversarial vulnerability.160

Limitations & future work. Our insights derive from simplified settings where we use class features161

in engineered superposition. Vulnerability mechanisms in large-scale models involve interference162

between unknown, unlabelled features across multiple layers. Future work should examine how163

robust training reshapes geometry and extend analysis to different attack types.164
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A Appendix220

A.1 Definitions221

Formally, let x ∈ X denote the input, and a(l)(x) ∈ Rdl the activation vector of the l-th layer with222

dimensionality dl.223

Linear Representation Hypothesis (LRH). The LRH posits that NNs represent many variables of224

their computation, such as semantic properties of their inputs (input features), as linear directions in225

their activation space, which can be used as abstractions for reasoning [Park et al., 2024, Guerner et al.,226

2023]. We conceptualise these as a set ofM underlying latent features, F = {f1, f2, . . . , fM}. Each227

feature fj corresponds to a direction vj ∈ Rdl . The activation vector a(l)(x) is then approximated as:228

a(l)(x) ≈
M∑
j=1

cj(x)vj (1)

where cj(x) is the scalar magnitude of feature vj . If inputs x0 and x1 differ mainly in concept C229

(direction vC), their activation difference a(l)(x1) − a(l)(x0) ≈ k · vC aligns with vC , where k230

reflects the change in C. This bias towards representing linear features is hypothesised because linear231

separability: 1) allows networks to easily recognise and manipulate features; 2) dot products with232

subsequent layer weights efficiently process such directional features. Growing research supports233

this [Gurnee et al., 2023, Park et al., 2024].234

Superposition and sparsity. Superposition occurs when the number of latent features M exceeds dl235

(M > dl). For example, LLMs can reference many more place names than they have dimensions236

in the residual stream. The network is thus forced to represent a(l)(x) =
∑M
j=1 cj(x)vj using237

an overcomplete (Ml > dl) and non-orthogonal set of feature directions {vj}Mj=1. This leads to238

polysemanticity (individual neurons representing multiple features), so the activity of a single neuron239

no longer clearly indicates the presence or intensity of a unique underlying concept. Such non-240

orthogonal representations of features {vj} lead to interference. Networks can employ nonlinear241

operations, such as ReLU and softmax, to filter these mixed signals and disambiguate superposed242

features [Gurnee et al., 2023].243

Networks may achieve superposition while retaining linear feature vectors by leveraging the near-244

orthogonality of many vectors in high-dimensional space and the ability to recover sparse vectors245

from lower-dimensional projections [Elhage et al., 2022]. Effective superposition thus relies on246

features being sparsely activated: for any input x, most cj(x) are near zero.247

A.2 Propositions248

To understand how adversarial attacks exploit feature representations, we first prove that optimal249

perturbations weight each input dimension by how much its corresponding feature aligns with the250

path to the decision boundary. We analyse linear models without activations. Consider input x ∈ RM251

encoded via ϕ(x) = Vx to latent representation h ∈ RN , where the columns of V ∈ RN×M252

are overcomplete basis vectors {vj}Mj=1 (N < M ). The binary decision boundary is B = {h :253

n⊤h+ b = 0}, where (n, b) define the separating hyperplane. Input perturbations ∆x ∈ RM map to254

latent perturbations ∆h = Vδ, where δ = (δ1, . . . , δM )⊤ are the perturbation coefficients.255

Proposition 1:. The optimal input perturbations δ that maximise movement toward the decision256

boundary under constraint ∥δ∥2 = ϵ satisfy δ ∝ V⊤n, where n is the normal to the decision257

boundary.258

Proof. To move a sample across the binary boundary most efficiently, we maximise alignment with
the normal n:

max
δ

∆h⊤n = max
δ

δ⊤V⊤n s.t. ∥δ∥2 = ϵ

Let g = V⊤n. By Cauchy-Schwarz:
|δ⊤g| ≤ ∥δ∥2∥g∥2 = ϵ∥g∥2

Equality holds when δ ∝ g = V⊤n. Specifically, δ = ϵ
∥V⊤n∥2

V⊤n, giving δi ∝ v⊤
i n where vi is259

the i-th column of V.260
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We next prove that attacks transfer perfectly between models with the same feature geometry up to261

orthogonal transformation. For our argmax task, an optimal encoder-decoder pair has the decoder as262

the transpose of the encoder (which we observe empirically). This yields a decision boundary that is263

the mid-separating hyperplane between vj and vk with normal n ∝ (vk − vj), where j and k are264

the indices of the two features being classified in the binary task.265

Proposition 2.. Consider encoders ϕ and ψ with basis matrices V ∈ RN×M and V′ ∈ RN×M266

whose columns are related by orthogonal transformation v′
i = Qvi (where Q⊤Q = I). If both267

models’ decision boundaries separate the same pair of features (with indices j, k), then both models268

have identical optimal input perturbation vectors.269

Proof. The boundary normals are nϕ ∝ (vk − vj) and nψ ∝ (v′
k − v′

j). By Proposition 1:270

δϕi ∝ v⊤
i (vk − vj) (2)

δψi ∝ (v′
i)

⊤(v′
k − v′

j) (3)

Substituting v′
i = Qvi and using Q⊤Q = I:271

δψi ∝ (Qvi)
⊤(Qvk −Qvj) (4)

= v⊤
i Q

⊤Q(vk − vj) (5)

= v⊤
i (vk − vj) (6)

Thus δϕi and δψi have identical proportionality. Under the same norm constraint, δϕ = δψ .272

A.3 Toy Model Experiments273

This section provides supplementary details and extended results for the toy model experiments274

discussed in the main paper. We present model accuracies across a wider range of parameters275

than shown in the main text, offering insight into how model capacity and data characteristics like276

sparsity influence the learning process and the conditions under which feature superposition appears.277

Subsequently, we offer additional visual examples that correspond to Figure 1 in the main paper,278

illustrating the mechanics of adversarial attacks under various conditions.279

A.3.1 Accuracy of Toy Model for a Range of Parameters280

The toy model experiments presented in the main paper predominantly used low-dimensionality281

settings for conceptual clarity. To demonstrate the model’s behaviour more broadly, this subsection282

details the classification accuracies achieved by the CE toy model. These results are presented across283

varying hidden layer size (h), number of classes (k), number of features, and levels of sparsity (S), to284

provide insight into when the models learn to represent features in superposition. The sparsity level285

represents the probability that any individual input feature x(j)i is set to zero, with higher values of286

S indicating greater input sparsity. These tables Tab. 1 and Tab. 2 provide provide context on the287

model’s performance limits and its ability to learn latent representations in superposition.288

A.3.2 Additional Examples289

Section 3 of the main paper (illustrated by Figure 1) demonstrates how adversarial attacks exploit290

the interference between latent features in superposition. This subsection provides further visual291

examples (Fig. 4) to reinforce intuition from the findings from the toy model. Specifically, we292

supplement the main text by showcasing:293

• An additional instance of the basic experimental setup (m = 2, 7 classes) with an ℓ2-norm PGD294

attack, demonstrating the characteristic input perturbation profiles and latent space manipulations295

that lead to misclassification.296

• An example (m = 2, 7 classes) of perturbations generated using an ℓ∞-norm PGD attack.297

• An example with increased bottleneck dimensionality (m = 3, 7 classes) using an ℓ2-norm PGD298

attack. The feature vector similarity matrix is also shown to provide context on the learned latent299

representations for the classes.300
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Table 1: Classification accuracy of the CE toy model with a fixed bottleneck dimension (m = 2)
across various numbers of classes (k), total input features (features = k×3), and input feature sparsity
levels (1 − S). These results illustrate how performance degrades as the number of classes to be
superposed within a highly constrained latent space increases, and how input sparsity can mitigate
this.

Classes (k) Features Hidden (m) Accuracy at Sparsity Level (1− S)

1.0 0.57 0.33 0.19 0.11 0.06 0.04 0.02

3 9 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 12 2 0.67 0.71 0.82 0.92 0.98 0.99 1.00 1.00
5 15 2 0.53 0.50 0.65 0.77 0.89 0.95 0.98 0.99
6 18 2 0.40 0.43 0.51 0.66 0.82 0.93 0.97 0.99
7 21 2 0.34 0.34 0.40 0.53 0.73 0.87 0.95 0.98
8 24 2 0.30 0.30 0.33 0.40 0.63 0.82 0.93 0.97
9 27 2 0.24 0.26 0.30 0.35 0.57 0.75 0.89 0.96

10 30 2 0.22 0.24 0.26 0.31 0.50 0.72 0.87 0.95
15 45 2 0.14 0.15 0.16 0.17 0.25 0.40 0.65 0.86
20 60 2 0.10 0.10 0.11 0.13 0.15 0.24 0.44 0.76
25 75 2 0.07 0.08 0.09 0.10 0.12 0.16 0.26 0.62
30 90 2 0.06 0.07 0.07 0.07 0.09 0.11 0.21 0.45

Table 2: Classification accuracy of the CE toy model for varying numbers of classes (k), total input
features, bottleneck dimensions (m), and input feature sparsity levels (1− S). This table explores
scenarios.

Classes (k) Features Hidden (m) Accuracy at Sparsity Level (1− S)

1.0 0.57 0.33 0.19 0.11 0.06 0.04 0.02

30 90 90 0.27 0.27 0.33 0.41 0.51 0.67 0.85 0.94
30 30 30 0.23 0.24 0.38 0.62 0.83 0.94 0.99 1.00
40 40 30 0.67 0.54 0.73 0.77 0.88 0.96 0.99 0.99
40 120 30 0.71 0.64 0.65 0.72 0.73 0.79 0.89 0.96
60 60 10 0.05 0.07 0.12 0.25 0.47 0.73 0.90 0.97
60 180 10 0.08 0.10 0.13 0.17 0.22 0.32 0.52 0.75
80 80 30 0.15 0.17 0.23 0.41 0.63 0.79 0.91 0.98
80 240 30 0.23 0.22 0.31 0.41 0.48 0.53 0.66 0.80

100 100 10 0.03 0.04 0.05 0.10 0.21 0.43 0.69 0.87
100 300 10 0.04 0.05 0.06 0.09 0.12 0.15 0.25 0.45
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(a) An ℓ2-norm attack changing the classification of an input (original class 4) to class 3. The left plot shows
original and adversarial activations in latent space relative to class latent directions. The right plots show original
and perturbed input feature values, respectively.

(b) An ℓ∞-norm attack changing the classification of an input (original class 6) to class 4. The left plot shows
original and adversarial activations in latent space relative to class latent directions. The right plots show original
and perturbed input feature values, respectively.

(c) An ℓ2-norm adversarial attack in a 7-class setup but with an increased bottleneck dimension m = 3. The
leftmost plot now shows the cosine similarity matrix between the learned latent directions for each of the classes.

Figure 4: Visualisations of AExs in the toy model, supplementing Figure 1 from the main paper by
illustrating attack mechanisms in activation space and input space under varied conditions.
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Figure 5: An adversarial attack (from class 5 to class 3) does not perturb the input features for a class
represented orthogonally.

A.4 CIFAR-10 Experiments301

To investigate whether the principles observed in the toy models extend to more complex settings,302

Section 4 of the main paper introduces experiments using a ViT [Dosovitskiy et al., 2020] trained on303

CIFAR-10 [Krizhevsky, 2009] with an engineered bottleneck. This appendix section provides further304

details on this setup and presents extended results.305

A.4.1 Architecture & Training Information306

The base ViT architecture comprised 6 transformer layers with an embedding dimension (d) of 512.307

Input images from the CIFAR-10 dataset, sized at 32 × 32 pixels, were processed into patches of308

4× 4 pixels. Each transformer layer utilised 8 attention heads. The Multilayer Perceptron (MLP)309

within each transformer block had a hidden dimension of 512. Learned positional embeddings were310

used.311

The bottleneck architecture consisted of a linear encoder followed by a linear decoder. The linear312

encoder projected the pre-classification activations obtained from the ViT backbone, which had a313

dimensionality of 512, into an m-dimensional latent space. The subsequent linear decoder then314

mapped these m-dimensional representations back to the k = 10 dimensions corresponding to the315

CIFAR-10 classes. No ReLU activation functions were applied within either the encoder or the316

decoder layers of this bottleneck. The dimensionality m of this bottleneck was systematically varied317

across different experimental runs, taking values from the set {2, 3, 5, 10}, as described in the main318

paper.319

The base ViT model was trained on the CIFAR-10 dataset for 250 epochs. A learning rate of 0.001320

was used with the Adam optimiser using default PyTorch parameters. The batch size was set to321

512 and a cosine annealing learning rate scheduler. The loss function was CE. Dropout was used.322

Training was performed across five different random seeds to account for variability. After the base323

ViT model was trained, its weights were frozen. The bottleneck layer was then trained for 30 epochs,324

utilising a learning rate of 0.001.325

A.4.2 Normalised Robust Accuracy across Perturbation Magnitudes326

Figure 5 (right) in the main paper shows how normalised robust accuracy varies with bottleneck327

dimension for a fixed perturbation. This subsection expands on those findings by detailing the328

normalised robust accuracy of the ViT models (with varying bottleneck dimensions m ∈ 2, 3, 5, 10)329

when subjected to PGD attacks of different strengths (ϵ). Results are presented for both ℓ2-norm330
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(Tab. 4 and ℓ∞-norm (Tab. 3) PGD attacks, providing a more comprehensive view of how the degree331

of superposition interacts with attack strength to affect model robustness.332

AExs for these evaluations were generated using PGD with 100 iterations. A step size (α) of 0.01333

was employed. Robust accuracy was evaluated on 500 samples for each configuration. The mean334

normalised robust accuracy and standard deviation across five random seeds are reported.335

Tab. 4 presents the normalised robust accuracy for ℓ2 attacks across a range of perturbation magnitudes336

(ϵ). Similarly, Table 3 shows the normalised robust accuracy for ℓ∞ attacks for various ϵ values.337

Table 3: Mean normalised robust accuracy (± standard deviation across 4 seeds) for ViT models
with different bottleneck dimensions (m) on CIFAR-10, subjected to ℓ∞-norm PGD attacks of
varying perturbation magnitudes (ϵ). Robust accuracy is normalised by the clean accuracy of each
bottlenecked model. Similar to Tab. 4, these results complement Section 4 of the main paper,
demonstrating the impact of superposition pressure and attack strength on robustness.

ϵ
Bottleneck Dimension (m)

2 3 5 10

0.001 96.0% ± 0.4% 97.4% ± 0.7% 97.9% ± 0.4% 98.1% ± 0.3%

0.01 61.7% ± 3.6% 69.6% ± 3.5% 77.0% ± 0.9% 81.8% ± 3.2%

0.05 4.9% ± 1.5% 6.7% ± 1.6% 9.3% ± 0.6% 10.5% ± 0.8%

0.1 0.1% ± 0.2% 0.2% ± 0.3% 0.2% ± 0.4% 0.2% ± 0.4%

0.5 0.0% ± 0.0% 0.0% ± 0.0% 0.0% ± 0.0% 0.0% ± 0.0%

Table 4: Mean normalised robust accuracy (± standard deviation across 4 seeds) for ViT models
with different bottleneck dimensions (m) on CIFAR-10, subjected to ℓ2-norm PGD attacks of
varying perturbation magnitudes (ϵ). Robust accuracy is normalised by the clean accuracy of each
bottlenecked model. These results support the findings in Section 4 of the main paper, showing
decreasing robustness with smaller m (increased superposition) and larger ϵ.

ϵ
Bottleneck Dimension (m)

2 3 5 10

0.1 90.4% ± 1.7% 91.8% ± 0.7% 94.6% ± 1.2% 95.0% ± 0.7%

0.5 58.5% ± 5.0% 60.8% ± 5.0% 69.2% ± 1.8% 72.6% ± 2.8%

1.0 41.7% ± 4.8% 44.0% ± 3.0% 50.4% ± 0.6% 54.9% ± 1.7%

2.0 34.0% ± 4.6% 36.2% ± 3.3% 41.5% ± 1.3% 47.4% ± 2.4%

5.0 30.2% ± 4.1% 32.9% ± 3.5% 37.3% ± 1.9% 42.7% ± 1.0%

A.4.3 Attack Transferability across Perturbation Magnitudes338

We include attack transferability across various perturbation magnitudes (ϵ). Table 6 presents the339

ℓ2-norm attack transferability, and Table 5 shows the ℓ∞-norm attack transferability, both across340

different ϵ values and bottleneck dimensions (m).341
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Table 5: Attack transferability (%) for ℓ∞-norm PGD attacks on CIFAR-10 ViT models. Transfer-
ability is shown from a model trained with a specific ’Source Seed’ (e.g., Seed 10) to three different
target models, each trained with one of the seeds listed in the sub-header (e.g., ’vs. Seeds 20/30/40’).
The three slash-separated values in each data cell correspond to the transferability to these three
target seeds, respectively. All models within a row share the same bottleneck dimension, m. The
’Mean ± Std’ column averages transferability across all 12 source-target seed pairings for each (ϵ,m)
configuration. This supports the claim in Section 4 that higher superposition (smaller m) can lead to
more consistent latent geometries and thus higher transferability.

ϵ m
Seed 10 vs. Seed 20 vs. Seed 30 vs. Seed 40 vs. Mean ± StdSeeds 20/30/40 Seeds 10/30/40 Seeds 10/20/40 Seeds 10/20/30

0.001

2 77.8/66.7/44.4 25.0/62.5/25.0 72.7/72.7/72.7 58.3/75.0/58.3 59.3 ± 17.7

3 57.1/28.6/28.6 14.3/28.6/28.6 63.6/72.7/72.7 42.9/42.9/42.9 43.6 ± 18.4

5 70.0/50.0/50.0 57.1/71.4/57.1 50.0/25.0/25.0 16.7/50.0/33.3 46.3 ± 16.9

10 55.6/55.6/66.7 12.5/37.5/25.0 16.7/33.3/16.7 28.6/71.4/28.6 37.3 ± 19.3

0.01

2 60.3/52.6/48.7 63.8/42.0/60.9 53.8/40.9/52.7 51.2/55.8/46.5 52.4 ± 6.9

3 42.9/46.4/50.0 46.4/42.9/49.1 44.2/38.9/44.2 42.9/45.1/41.8 44.6 ± 3.0

5 43.3/41.1/43.3 39.2/30.4/41.8 46.0/40.2/47.1 41.2/35.3/32.9 40.2 ± 4.8

10 42.5/46.0/44.8 38.0/39.4/46.5 43.5/47.8/47.8 32.6/40.0/35.8 42.1 ± 4.7

0.05

2 35.0/36.4/37.8 38.8/36.0/46.3 37.4/31.3/41.7 42.0/42.0/40.7 38.8 ± 3.8

3 29.9/29.9/37.1 30.4/30.1/35.6 30.2/30.2/35.1 30.1/31.9/34.4 32.1 ± 2.6

5 26.8/25.3/29.2 25.2/21.5/26.4 28.0/28.0/26.5 26.0/26.6/21.9 25.9 ± 2.2

10 27.1/24.9/30.4 21.6/23.0/28.4 25.3/28.1/30.6 21.0/24.9/20.1 25.4 ± 3.4

0.1

2 34.2/35.6/38.2 36.7/34.9/44.5 37.9/30.0/40.8 41.2/42.0/40.3 38.0 ± 3.8

3 29.6/28.9/35.2 28.6/29.2/34.8 29.1/28.2/34.0 28.8/31.1/32.8 30.9 ± 2.5

5 25.4/23.3/27.0 23.8/19.6/24.6 25.9/26.7/25.4 24.6/24.3/20.7 24.3 ± 2.1

10 24.8/22.6/29.7 20.1/21.6/26.1 22.5/25.5/28.0 19.5/23.3/18.7 23.5 ± 3.3
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Table 6: Attack transferability (%) for ell2-norm PGD attacks on CIFAR-10 ViT models. The table
format, detailing source-to-target seed transferability (including slash-separated values and the ’Mean
± Std’ calculation), mirrors that of Table 5; please see its caption for a full explanation. These ℓ2
results further support the claim in Section 4 of the main paper that higher superposition (smaller m)
leads to increased attack transferability.

ϵ m
Seed 10 vs. Seed 20 vs. Seed 30 vs. Seed 40 vs. Mean ± StdSeeds 20/30/40 Seeds 10/30/40 Seeds 10/20/40 Seeds 10/20/30

0.1

2 70.6/64.7/41.2 60.0/50.0/60.0 64.3/60.7/57.1 48.1/63.0/51.9 57.6 ± 8.0

3 39.1/39.1/47.8 50.0/60.7/50.0 48.1/55.6/51.9 48.0/28.0/40.0 46.5 ± 8.4

5 43.5/34.8/43.5 31.6/31.6/42.1 42.9/35.7/21.4 30.4/39.1/34.8 35.9 ± 6.4

10 45.5/59.1/45.5 19.0/28.6/28.6 37.5/43.8/43.8 23.8/52.4/38.1 38.8 ± 11.4

0.5

2 59.6/52.1/48.9 60.8/35.4/60.8 54.1/39.4/51.4 43.8/49.5/46.7 50.2 ± 7.7

3 38.7/40.6/48.1 36.1/36.8/41.7 37.4/36.5/43.5 34.4/34.4/36.7 38.7 ± 3.9

5 38.4/32.0/37.6 29.4/25.7/32.1 39.1/33.9/38.3 31.8/29.9/32.7 33.4 ± 4.0

10 38.3/37.4/37.4 26.5/28.4/31.4 32.4/35.3/35.3 23.4/28.2/25.0 31.6 ± 5.0

1.0

2 50.8/43.7/44.4 51.7/36.4/50.0 46.1/32.9/44.7 42.7/46.7/45.3 44.6 ± 5.3

3 35.7/36.9/41.7 31.8/36.4/42.6 33.7/32.0/37.3 34.9/32.0/35.5 35.9 ± 3.3

5 32.1/28.9/33.2 30.9/23.0/30.9 35.9/31.5/33.7 27.7/28.2/27.1 30.3 ± 3.3

10 32.3/32.3/38.5 23.7/27.7/29.9 29.1/32.0/34.3 22.2/25.6/21.1 29.1 ± 5.0

2.0

2 47.0/41.6/44.3 48.2/36.2/48.2 43.9/33.5/42.1 43.4/43.4/42.8 42.9 ± 4.2

3 31.9/37.7/40.3 31.1/35.6/40.6 32.6/31.1/36.8 35.4/33.3/34.3 35.1 ± 3.2

5 29.9/25.4/32.1 26.3/22.1/26.7 32.3/31.8/29.5 27.9/27.9/23.6 28.0 ± 3.2

10 30.8/30.4/35.7 22.5/24.9/28.6 24.8/29.7/32.7 20.4/26.1/19.0 27.1 ± 4.9

5.0

2 44.7/46.7/40.8 45.3/37.3/48.7 42.7/33.9/41.5 42.3/42.3/40.6 42.2 ± 3.8

3 32.3/35.8/40.8 31.3/32.6/39.9 31.0/30.0/33.8 35.0/33.0/33.0 34.1 ± 3.2

5 30.6/24.1/28.6 28.3/20.9/24.8 31.7/31.3/27.4 28.1/29.0/23.2 27.3 ± 3.3

10 29.8/27.4/32.7 19.7/24.1/28.9 24.9/29.9/31.2 18.8/25.8/19.2 26.0 ± 4.6
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