
Learning to Generate Better Than Your LLM

Jonathan D. Chang∗

Department of Computer Science
Cornell University

jdc396@cornell.edu

Kianté Brantley∗
Department of Computer Science

Cornell University
kdb82@cornell.edu

Rajkumar Ramamurthy
Fraunhofer IAIS

rajkumar.ramamurthy@iais.fraunhofer.de

Dipendra Misra
Microsoft Research New York

dipendra.misra@microsoft.com

Wen Sun
Department of Computer Science

Cornell University
ws455@cornell.edu

Abstract

Reinforcement learning (RL) has emerged as a powerful paradigm for fine-tuning
Large Language Models (LLMs) for text generation. In particular, recent LLMs
such as ChatGPT and GPT-4 can engage in fluent conversations with users after
finetuning with RL. Capitalizing on key properties of text generation, we seek
to investigate RL algorithms beyond general purpose algorithms like Proximal
Policy Optimization (PPO). In particular, we extend RL algorithms to allow them
to interact with a dynamic black-box guide LLM and propose RL with guided
feedback (RLGF), a suite of RL algorithms for LLM fine-tuning. We provide two
ways for the guide LLM to interact with the LLM to be optimized for maximizing
rewards. The guide LLM can generate text which serves as additional starting states
for the RL optimization procedure. The guide LLM can also be used to complete the
partial sentences generated by the LLM that is being optimized, treating the guide
LLM as an expert to imitate and surpass eventually. We experiment on the IMDB
positive sentiment, CommonGen, and TL;DR summarization tasks. We show that
our RL algorithms achieve higher performance than supervised learning (SL) and
the RL baseline PPO, demonstrating the benefit of interaction with the guide LLM.
On both CommonGen and TL;DR, we not only outperform our SL baselines but
also improve upon PPO across a variety of metrics beyond the one we optimized for.
Our code can be found at https://github.com/Cornell-RL/tril.

1 Introduction

Large Language Models (LLMs) have become very capable in various real-world applications ranging
from being able to answer open-ended questions on numerous topics [112], write articles from short
descriptions [34], generate code [31], follow robot commands [42], solve puzzles [17], and even
showcased as assistive models for education [46] and healthcare [55].

However, using supervised learning (SL) to train LLMs presents a challenging metric mismatch
[106] between the training and testing regimes. The metric mismatch arises from the training metric

∗Equal contribution

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.

https://github.com/Cornell-RL/tril

being the log-loss while the testing metrics are task-specific such as BLEU or user satisfaction
rating. This discrepancy is magnified when fine-tuning LLMs on downstream tasks where the main
goal is not just producing fluent text but also being proficient at solving the specific task. Another
mismatch is the training and testing distributions mismatch. SL methods train model on the given
static datasets, while in inference time, the LLMs need to make prediction conditioned on the text
it has generated by itself. Such a distribution mismatch during training and testing has been widely
observed in literature such as Imitation Learning and RL [85], robotics [86], and NLP [14, 8].

Reinforcement Learning (RL) addresses these mismatches by directly optimizing the metrics through
reward feedback on the states generated by the RL agent itself. The ability to test in real world and
obtain reward feedback to correct and improve the agents’ behaviors on the fly makes RL a more
powerful learning paradigm than SL. Recently, OpenAI fine-tuned LLMs with RL from human
feedback (RLHF) to better align LLMs to human intentions, leading to the great success of ChatGPT
[70]. Following this, multiple other models trained with RL such as Anthropic’s Claude2 [7] and
Meta’s LLama2 [100] further proved the effectiveness of RL. Recently, GRUE benchmark [80]
systematically studied RL versus SL when finetuning LLMs on downstream tasks with predefined
rewards. GRUE’s preliminary results demonstrate the benefit of RL when fine-tuning LLMs, leading
to the release of popular codebases such as RL4LMs [80], TRLx [19] and AlpacaFarm [26], that
enables RL for language models. However, ChatGPT, RL4LMs, TRLX, and AlpacaFarm all use
vanilla policy gradient methods known to be sample inefficient and sensitive to local minima due
to the combinatorially large search space of natural language generation [80].

In this work, we focus on more efficient RL methods for fine-tuning LLMs on downstream tasks with
predefined rewards (e.g., well-defined metric such as Bleu, or reward learned from human preference
feedback). Our approach is motivated by the classic prior work on RL with rich reset distributions
[44, 9] and Imitation Learning (IL) [85, 97, 20], which often leverages an existing guide policy (not
necessarily an optimal policy) to reduce the search space for more efficient and optimal learning.
Our key observation is that since modern pre-trained LLMs exhibit impressive general language
capabilities, they can serve as guide policies to improve the RL procedure. Our framework, which we
call, RL with guided feedback (RLGF), integrates a guide policy into a policy gradient framework
(Fig. ??). When the guide policy can provide reasonable but potentially sub-optimal predictions for
downstream tasks, our framework can then leverage to learn a near-optimal strategy. We introduce
simple and novel algorithms for fine-tuning LLMs using our RLGF framework while capturing
various existing IL and RL algorithms. Our proposed algorithms are simple and introduce little
overhead on computation and memory compared to PPO (especially when using LoRA adapters),
making it straightforward to replace PPO by our algorithms in any RLHF pipeline.

We evaluate on three tasks. The first is IMDB where the goal is to generate a positive and fluent
review given an initial context. The second is CommonGen where the goal is to write a fluent text
that uses a given set of words. Finally, we test on the TL;DR summarization task where the objective
is to learn to generate summaries using human preference data. For all tasks, we find evidence of
metric mismatch from SL-based fine-tuning approaches and show that RL-based methods which
utilize reward signals outperform on the task metric. We then demonstrate RLGF outperforming PPO
on reward, fluency, as well as automated lexical metrics such as Rouge. In our experiments, our guide
policy is the SFT model equipped with nucleus sampling. Thus comparing to the baseline PPO which
uses the SFT model as a warm start, our algorithms use the same amount of information and thus is a
fair comparison to PPO. Finally, we investigate how various baselines and RLGF algorithms balance
the inherent trade-off between reward optimization and the KL constraint in the RLHF objective. We
provide both theoretical justification and empirical evidence to show the benefit of using RLGF for
fine-tuning LLMs on downstream tasks.

2 Related Work

Here we present the most relevant works at the intersection of IL, RL, and natural language generation.
Please see Appendix A for a more thorough treatment of the literature.

IL for Structured Prediction: Algorithms such as Schedule Sampling (SS) [14], methods using SS
[27, 63, 33], SEARNN [53], Bridging the Gap [111], Mixer [81] been inspired by IL for structured
prediction algorithms DAGGER [85], DAD [102], and SEARN [25]. Our work is inspired by
AggreVaTeD [97] (Differentiable AggreVaTe [84]) where the algorithm makes use of differentiable

2

policies and multi-step feedback rather than immediate one-step predictions to imitate. Similarly,
we present a differentiable version of LOLS [20] as well as an improvement, D2LOLS.

LLM Fine-tuning from Human Preferences: Recent advancements in fine-tuning of Large
Language Models (LLMs) have shown incredible success in tasks through learning from human
preferences. Being simpler to accumulate human preferences, Reinforcement Learning from Human
Feedback (RLHF) [95] introduced a paradigm to utilize RL to improve downstream performance
on translation [51], summarization [95], storytelling [117], and instruction following [70]. Another
family of work use supervised learning style methods for fine-tuning LLMs [114, 110, 77, 61]. DPO,
SLiC, RRHF, and RSO are methods that optimize for compatibility with a preference dataset under
a preference reward model (either explicitly modeling a reward function or implicitly representing a
reward function via an LLM itself) such as the Bradley Terry model [16]. Whether or not one should
use RL or SFT to fine-tune LLM is not the question we aim to address here, instead, our work mainly
focus on improving PPO for fine-tuning LLMs, and our key contribution is novel RL algorithms
that can outperform PPO on various tasks.

LLM Distillation: With an ever growing arsenal of powerful, black-box LLMs, recent work
has aimed to distill specific capabilities into a smaller model. Knowledge distillation [18, 39] in
autoregressive models investigated matching sequence level log probabilities [48], model hidden
states [43], or attention scores [105]. Recently, more sophisticated methods, inspired from the IL
literature, are being proposed to better imitate the expert LLM’s performance [57, 4, 65], with ORCA
[65] reaching parity performance with ChatGPT [70] by distilling the reasoning traces from GPT4
[71]. Distinct from this line of work, RLGF does not aim to replicate the guidance policy. Rather,
our objective is to leverage generation traces derived from a guide policy to condense the search
space for RL algorithms. More importantly, our goal goes beyond imitation of the guidance policy
and focuses on algorithms that better optimize a reward with guidance policy feedback.

3 Preliminaries

The sequential nature in the task of Text generation with LLMs allows one to model it via RL. In
this setting, we are given a set of prompts {xi}Ni=1, and a reward function R that measures some
user-specified quality of the generated text. The reward R can be pre-defined evaluation metrics or a
learned reward model from human preference datasets. The text generation RL problem can then
be defined as a token-level finite-horizon MDP ⟨S,A, P,R,H, µ⟩ using a finite vocabulary V . We
are given a labeled dataset D =

{
(xi, yi)

}N
i=1

of N samples, where xi is a prompt text and yi is the
target text generation. We define µ ∈ ∆(D) as the initial distribution over prompts, and the action
space A as the set of tokens in our vocabulary V . The state space S = ∪h=1,··· ,HVh is the set of
all possible token sequences and a state sh ∈ S is the prompt x and previously generated tokens
(a0, a1, . . . , ah−1), i.e., sh = (x, a0, a1, . . . , ah−1). The transition function P : S ×A → ∆(S) is a
deterministic known transition function that appends the next action ah to the state sh+1. The time
horizon H ∈ Z+ is the maximum generation length. Finally, R : S → R is the reward function such
as the task evaluation metric or a metric learned from a preference dataset. We define our policy π as
an LLM that maps from state (i.e. prompt + partial generation) to action (next token).

Let dπh represent the state distribution of visiting a state at time h. Let dπ = 1
H

∑H
h=0 d

π
h be

the average visitation if we follow π for H steps in a trajectory. With an LLM policy π, we
define the value function and Q-function as V π

h (s) = Eπ[
∑H

h′=h R(sh′)|sh = s] and Qπ
h(s, a) =

R(s) + Es′∼P (·|s,a)[V
π
h+1(s

′)] respectively. Finally, we define the advantage function for an LLM
policy π as Aπ(s, a) = Qπ(s, a)− V π(s).

Guide policy πg In our setting, we additionally assume access to a black-box LLM-based guide
policy πg that can assist our policy π. The guide policy can be used to alter the initial state distribution
µ and to compute the advantage function Aπg

(s, a). In our experiments, we mainly investigate using
a supervised fine-tuned (SFT) model followed by some decoding strategy (e.g., Nucleus sampling
[40]) as πg . Note, RLGF treats πg as a query-able, black-box model that we do not need update. This
allows for πg to be any black-box model such as GPT4 or a human-expert. Our work aims to show
that RLGF is capable of learning policies that are (much) better than πg , and by leveraging πg , it can
outperform standard RL algorithm PPO.

3

<Prompt> Two roads to separate pathsdiverged

from the street

in a wood

rollin rollout reward

1

2 3

Figure 1: RLGF’s main mechanism of incorporating guidance through interactions between two
LLMs: rollin and rollout policies. (1) the rollin policy generates a trajectory. (2) the rollout policy
restarts to a sampled point in the generation (i.e. s2) and completes the generation. (3) the rollout
policy receives a score (i.e. reward) for the generation.

4 Reinforcement Learning from Guided Feedback

Unlike other tasks studied in RL, structured prediction problems such as text generation, have two key
properties: a deterministic transition function and a policy’s ability to restart to any state. Because
our transition function is the set of previously generated tokens, we can easily alter the words in the
generation (add, remove or swap), and restart our policy πθ to any point of the generation.

Restarts allow us to execute rollin and rollout policies as seen in Figure 1. The rollin policy is used to
generate sequences that the rollout policy evaluates. Specifically, we sample a prompt x and target
sentence y from our initial distribution µ. We then generate an entire trajectory using our rollin
policy starting from the sampled prompt. We combine the state-action pairs from the collected rollin
trajectory with the initial state distribution – creating a modified initial state for the rollout policy. The
rollout policy samples a state along the rollin generation, restarts to this state and performs a one-step
deviation action. The rollout policy then completes the generation and collects a reward. The rollin
and rollout policies can be our LLM policy πθ, guide policy πg or a mixture that interpolates between
the two. Depending on the choice of rollin and rollout policies, we invoke different algorithms.

PPO: Rollin πθ and Rollout πθ Under this schematic, notice how when both the rollin and rollout
policies are our current LLM policy πθ that is being fine-tuned, the resulting RL algorithm is PPO.
That is, we would be collecting generations from a single LLM. This configuration does not take
advantage of the ability to modify the initial state distribution nor the availability of a guide policy πg .

Algorithm 1 PPO++

1: Input: πθ, guide πg , iterations T , mixing parameter β ∈ [0, 1], dataset D =
{
(xi, yi)

}N
i=1

2: for t ∈ [T] do
3: Rollin with (s, a) ∼ βdπ

g

+ (1− β)dπ
t
θ starting from x ∼ D

4: Rollout with πt
θ to collect trajectories

5: Update V
πt
θ

ϕ with trajectories and compute advantage estimates Aπt
θ

6: Update πθ using PPO loss with Aπt
θ

7: return πθ

PPO++: Rollin πg and Rollout πθ The second scheme we consider is rollin with our guide policy
πg and rollout with our LLM policy πθ. This strategy is motivated from a popular Approximate
Policy Iteration algorithm [15]: Conservative Policy Iteration (CPI) [44]. CPI proposes to use a
diverse initial state distribution to address the exploration issue in PG methods. Particularly, it
proposes to use an initial state distribution that covers some high-quality policy distribution. The
first key idea of PPO++ is to take advantage of a guide policy πg to provide an enlarged initial
state distribution – so that the rollout policy, πθ, can visit diverse and relevant states it would

4

otherwise not visit. The second key idea of PPO++ is using a mixture policy with state distribution
βdπ

g

+ (1− β)dπθ , for rollin (see Algorithm 1 Line 3). This ensures that with probability (1− β),
PPO++ is executing the default PPO update, making sure PPO++ never underperforms PPO.

Algorithm 2 AggreVaTeD

1: Input: πθ, guide πg , iterations T , mixing parameter β ∈ [0, 1], dataset D =
{
(xi, yi)

}N
i=1

2: for t ∈ [T] do
3: Rollin with (s, a) ∼ (1− β)dπ

t
θ + βdπ

g

starting from x ∼ D
4: Rollout with πg to collect trajectories
5: Update V πg

ϕ with trajectories and compute advantage estimates Aπg

6: Update πθ using PPO loss with Aπg

7: return πθ

AggreVaTeD: Rollin πθ and Rollout πg The next scheme performs rollin with our LLM policy πθ

and rollout with our guide policy πg – the opposite of PPO++. This scheme is an interactive imitation
learning algorithm, AggreVaTeD [97], a differentiable policy gradient version of AggreVaTe (Ag-
gregate Values to Imitate [84]) as seen in Algorithm 2. AggreVaTeD is an API algorithm similar to
CPI and also uses a mixture policy with state distribution βdπ

g

+(1−β)dπθ for rollin. This algorithm
first generates rollins with the mixture policy to collect sequences. Then AggreVaTeD generates
rollouts with the guide policy and evaluates the quality of the generated rollouts. It then uses the
rollouts to train a value network V πg

ϕ that measures the reward-to-go of πg, which in turn is used
to construct the advantage of πg: Aπg

. With this advantage Aπg

, AggreVaTeDupdates the policy
like PPO. Intuitively, the algorithm aims to learn the policy argmaxa A

πg

(s, a). Rolling out with
πg ensures that the LLM policy πθ can be at least as good as or better than the guide policy πg .

Algorithm 3 D2LOLS

1: Input: πθ, guide πg , iterations T , dataset D =
{
(xi, yi)

}N
i=1

2: Run π1
θ = AggreVaTeD(πθ, π

g, αT, β1,D)
3: Run π2

θ = PPO++(π1
θ , π

g, (1− α)T, β2,D)
4: return π2

θ

D2LOLS: combines PPO++ and AggreVaTeD Given the previous approaches of interaction, we
can come up with multiple ways to combine PPO, PPO++, and AggreVaTeD. In Algorithm 3, we
present Direct and Differentiable Locally Optimal Learning to Search (D2LOLS), which is a simple
approach to combine the previous methods. D2LOLS is a differentiable policy gradient version of Lo-
cally Optimal Learning to Search (LOLS)[20] and addresses limitations of how LOLS combines PPO,
PPO++, and AggreVaTeD. The original formulation of LOLS requires computing cost-sensitive
classification similar to AggreVaTe; instead we take inspiration from AggreVaTeD’s differentiable
approach to develop a differentiable version of LOLS. Furthermore, LOLS (Algorithm 4) has a
mixing probability parameter α which directly merges the advantage function between PPO and
AggreVaTeD, leading to theoretical issues. D2LOLS removes this mixing probability and replaces
it with a mixing time variable α that decides how many iterations to perform AggreVaTeD before
switching to PPO++. This simple strategy fixes LOLS’s issue arising from interweaving guidance.

5 Theoretical Justification

In this section, we provide theoretical justification for various rollin and rollout schemes mentioned
in Section 4. Each algorithmic scheme takes advantage of a guide policy πg , the ability to restart the
policy to any state, and access to the reward signal. Our theoretical justification are derived from the
original algorithms that each method has built upon.

5

Interactive Imitation Learning: AggreVaTeD In our interactive IL setting, we assume access
to the ground truth reward and to a guide policy πg that may not necessarily be an expert policy π⋆

(i.e. optimal at the task). Our AggreVaTeD (Algorithm 2) implementation is a modification of the
original AggreVaTeD [97] to incorporate a PPO policy gradient loss. The overall idea is to perform
policy gradient updates on the loss function ℓt(π) := Es∼dπtEa∼π(·|s)[A

πg

(s, a)], where πt is our
latest learned policy. We can define the average-regret and best policy performance in our policy
class over T -iterations as:

ϵregret =
1

T

(
−

T∑

t=0

ℓt(π
t) + max

π∈Π

T∑

t=0

ℓt(π)

)
ϵclass = max

π∈Π

1

T

T∑

t=0

Es∼dπt

[
Aπg

(s, π(s))
]
.

If the gradient update procedure achieves no-regret, i.e., ϵregret → 0 as T → ∞, AggreVaTeD
achieves the following guarantee; there exists t ∈ [T], such that:

V πt

≥ V πg

+Hϵclass.

When the guide policy is included in our policy class πg ∈ Π, e.g., when our policy πθ and
our guide πg have the same GPT2 model architecture, then our ϵclass term is guaranteed to be
non-negative. Furthermore, this term is positive when πg is not globally optimal with respect to
its advantage function (i.e., maxa A

πg

(s, a) can be positive). Thus when ϵregret → 0 (i.e., no-regret),
AggreVaTeD guarantees to learn a policy πt that outperforms the guide policy by a margin. This
was originally confirmed empirically in [97] and is also confirmed in our experiments. With our
SFT model with nucleus sampling as πg , AggreVaTeD learns a policy πt outperforming πg .

Reinforcement Learning with better restart distribution: PPO++ Although AggreVaTeD is
capable of outperforming πg , it is an imitation learning algorithm, meaning by design, its performance
is limited by the performance of πg . In contrast, RL has the potential to learn the near optimal policy,
but popular RL approaches suffer from a lack of exploration. We propose to leverage rollin’s with
the guide policy to overcome RL’s exploration issues. PPO++ Algorithm 1 implements this idea
using a PPO loss. We can interpret the rollin policy distribution with the guide policy, as a restart
distribution that alters the initial distribution of our policy, i.e., µmix := (1 − β)µ + βdπ

g

, where
recall µ ∈ ∆(D) is the original initial state distribution over our data.

Policy gradient theory [44, 9, 1, 3] ensures that as long as a near optimal policy is covered by the
restart distribution, we can learn to perform as well as the near optimal policy. More formally,
consider the special case where β = 1/2, and π⋆ is the globally optimal policy; and assume that at
some iteration t one-step local improvement over πt is small, i.e., Es,a∼dπt

µmix

[
maxa A

πt

(s, a)
]
≤ ϵ,

then with some small ϵ we have:

V πt

≥ V π⋆

−O

(
H2 max

s

(
dπ

⋆

(s)

dπg (s)

)
ϵ

)

We refer readers to the proof of theorem 6.2 in [44]. Note that compared to the result from
AggreVaTeD, we are able to compare against the globally optimal policy π⋆ under the condi-
tion that πg’s state distribution covers π⋆’s state distribution (i.e., the guide policy has a good sense
of what states π⋆ will likely visit). In our experiments, we mainly use a SFT model with nucleus
sampling as our guide policy πg . While we do not expect the SFT policy πg is as good as the optimal
π⋆, it is reasonable to expect that dπ

g

provides coverage to dπ
⋆

. Our experiments verify that restarting
based on states from dπ

g

improves the performance of PPO.

Combine Reinforcement Learning and Imitation Learning: D2LOLS D2LOLS is the simplest
approach to combine AggreVaTeD and PPO++. This algorithm runs AggreVaTeD for a fixed
period of time and then PPO++ for the remaining time. If our policy gradient algorithm is Trust-
region policy optimization (TRPO) 2 [90] or CPI [44], then our algorithm has a guaranteed monotonic
policy improvement. This means that upon convergence, we achieve two properties: (1) our learned
policy is at least as good or better than the guide policy πg , (2) our policy is locally optimal, i.e., the

2in our experiments, instead of using TRPO, we use PPO – a scalable version of TRPO that is more suitable
for high-dimensional problems. However we emphasize the TRPO and PPO use the same principle for policy
optimization: make conservative policy update [44] to ensure monotonic improvement.

6

IMDB Sentiment CommonGen
Algorithms Semantic and Fluency Metrics Lexical and Semantic Metrics

Sentiment Score Perplexity Output-Perplexity Bleu-4 CIDEr-D SPICE
(↑) (↓) (↓) (↑) (↑) (↑)

Zero-Shot 0.48 ± 0.00 32.55 ± 0.00 5.64 ± 0.00 0.00 ± 0.00 6.02 ± 0.55 15.02 ± 0.40
SFT 0.55 ± 0.00 35.67 ± 0.00 6.19 ± 0.00 22.31 ± 0.12 14.32 ± 0.15 31.73 ± 0.34

SFT+PPO 0.97 ± 0.01 44.92 ± 1.78 3.17 ± 0.62 27.98 ± 0.32 16.91 ± 0.29 32.61 ± 0.06
SFT+PPO++ 0.97 ± 0.01 44.83 ± 2.10 3.34 ± 0.80 28.48 ± 0.24 16.94 ± 0.53 32.75 ± 0.21
SFT+AggreVaTeD 0.95 ± 0.03 52.56 ± 5.38 5.04 ± 2.30 28.14 ± 0.31 16.90 ± 0.09 32.44 ± 0.02
SFT+LOLS 0.93 ± 0.05 53.30 ± 16.70 3.44 ± 4.96 28.15 ± 0.16 16.91 ± 0.22 32.80 ± 0.20
SFT+D2LOLS 0.97 ± 0.00 43.88 ± 2.37 2.92 ± 0.13 28.54 ± 0.12 16.96 ± 0.18 32.83 ± 0.09

Table 1: IMDB and CommonGen Results: We compute the mean and standard deviation over
3 seeds for both the IMDB and the CommonGen tasks. For our reward function each task we use
the bold metric(s). The zero-shot model is the performance of the pretrained model used for IMDB
and CommonGen, GPT-2 and T5 respectively. SFT+Alg indicates running Alg after supervised
finetuning. SFT+nucleus is used as our guide policy πg for all experiments.

local one-step improvement, Es,a∼dπ
µmix

[maxa A
π(s, a)], has to be small (otherwise TRPO and CPI

can keep improving).

There exist several algorithms in the literature that combine RL and IL [22, 98, 20, 79, 66]. The
key difference between D2LOLS and LOLS is how PPO++ and AggreVaTeD is combined. LOLS
uses a mixing probability α to combine our πθ and the guide policy πg advantage function αAπt

θ +
(1− α)Aπg

(s, a); whereas D2LOLS uses a mixing time parameter α to decide when to switch from
doing AggreVaTeD to PPO++ for the remainder of training. LOLS can achieve the property of
outperforming better than πg and also being locally optimal, but only under the assumption that the
following gap is small:

∀π :
∣∣∣Es∼dπ

[
max

a
Aπg

(s, a) + max
a

Aπ(s, a)
]
− Es∼dπ max

a

[
Aπg

(s, a) +Aπ(s, a)
] ∣∣∣ ≤ ε,

with some small ε. However, such a gap can exist in practice and does not vanish even with enough
training data. Intuitively this gap is non-trivial when the one-step improvement over π contradicts
with the one-step improvement over πg . The simplest approach D2LOLS works the best, and achieves
the guarantee that LOLS aimed for without the additional assumption of the above gap being small.

6 Experiments

We perform all of our experiments using a modified PPO objective Jppo [72, 108]. This objective
combines the original PPO objective with a maximum-likelihood estimation (MLE) objective of the
ground-truth dataset’s D references:

Jppo(πθ) = E(s,a)∼πθ

[
R(s)− λKL(πθ(a|s)||π0(a|s))

]
+ ηE(s,a)∼D

[
log πθ(a|s)

]
,

where λ is the KL coefficient and η is the MLE coefficient. For all of our proposed RLGF algorithms
discussed in section 4 we consider setting πg to the supervised fine-tuned model (SFT) with nucleus
sampling for decoding (i.e., πg =SFT+nucleus). We treat SFT+nucleus as a black-box model
that we can only query for text generation and do not perform updates to it. By using SFT+nucleus
as our guide policy, we run all of our experiments under the exact same conditions as those of RLHF.
Note, RLHF already requires keeping SFT to compute the KL constraint, KL(πθ||π0), in Jppo.

Task Details In our experiments, perplexity measures how likely our learned model, πθ, is to
generate the references in the task dataset, whereas output perplexity computes how likely a general
LLM (e.g. GPTJ) is to generate the generations from our learned policy, πθ. Both perplexity metrics
have been reported as a measure of fluency [29, 80].

We perform experiments on three tasks. IMDB is the first task and the objective is to generate fluent
and positively sentiment-ed text continuations for IMDB [62] movie reviews prompts. We use a

7

TL;DR Summarization
Algorithms Semantic and Fluency Metrics

RM Score Perplexity Output-Perplexity Win Rate Rouge 1 Rouge 2 RougeL
(↑) (↓) (↓) (↑) (↑) (↑) (↑)

Zero-Shot 1.57 14.07 11.51 44.12% 0.27 0.07 0.18
SFT 5.68 14.09 12.81 44.29% 0.34 0.25 0.25
Best-of-N (N = 8) 5.98 14.09 12.86 47.60% 0.36 0.13 0.27

SFT+PPO 6.01 15.05 17.67 54.25% 0.35 0.13 0.27
SFT+PPO++ 6.11 14.53 16.15 55.01% 0.36 0.14 0.27
SFT+AggreVaTeD 5.93 14.69 16.41 48.98% 0.36 0.15 0.29

SFT+PPO (N = 8) 6.20 14.87 16.53 57.53% 0.36 0.15 0.27
SFT+PPO++ (N = 8) 6.52 13.42 15.23 60.30% 0.38 0.15 0.28
SFT+AggreVaTeD (N = 8) 6.11 13.53 15.61 54.12% 0.37 0.16 0.28

Table 2: TL;DR Summarization Results: We report the mean over 1 seed. Our RM Score is under
our trained preference reward model and the Win Rate is evaluated by Llama2-13B-Chat. We use
SFT+nucleus as πg . We also report Best-of-8 results with our trained policies.

sentiment classifier [88] as our reward function that is trained on review texts and sentiment labels
from the dataset, which then provides sentiment scores indicating how positive a given piece of text
is. For training supervised SFT baselines, we consider only the examples with positive labels. We
chose GPT2 [76] as the base language model (LM) for this task. We evaluate all algorithms on three
metrics: sentiment reward score, perplexity, and output-perplexity.

Next, we consider CommonGen [58], a challenging constrained, text generation task that tests the
ability of generative common sense reasoning. We optimize the SPIDER [60] reward function, a
weighted combination of the CIDEr-D and SPICE metric. We chose T5-base [78] as our base
LLM and prefixed each concept set input with: "generate a sentence with:". We report four metrics:
BLEU [74], CIDEr-D [101], and SPICE [6]. For IMDB and CommonGen, we perform one epoch of
supervised finetuning for our SFT models.

The final task we consider is Reddit TL;DR summarization dataset [103] where the objective is to
generated summaries. We use the filtered dataset with additional human preference data used in [95].
The base LLM that we use for this task is GPT-J [104] and we train all models in our algorithms
using LoRA adapters [41]. We evaluate all algorithms on 5 metrics: reward score, perplexity, output-
perplexity, win rate and Rouge [59]. For win rate, we use the open source Llama2-13B-chat [100]
model as our evaluator model. We compare all algorithm generations to the preferred summary
references. For our SFT model, we use an open-source GPT-J model3.Refer to Appendix C.2, for the
exact Win Rate prompt, example evaluations and implementation details.

6.1 Experimental Results

RLGF vs. RLHF Performance Table 1 and Table 2 compares all of the RLGF algorithms
proposed in Section 4 against standard RLHF algorithms and baselines. For all tasks, our πg is
SFT+nucleus which is sub-optimal, performing worse than all RL based algorithms across most
lexical and semantic metrics. Utilizing this πg , for IMDB, D2LOLS outperforms PPO on all metrics
while PPO++ outperforms PPO on both semantic reward and perplexity, and for CommonGen,
D2LOLS outperforms PPO in all metrics including the ones that are not included in the reward
function. Finally, for TL;DR summarization we see that PPO++ performs better than PPO as well as
a competitive baseline, Best-of-N [26]. Furthermore, when applying Best-of-N inference on
our trained policies, we see that PPO++ improves even more beyond PPO. Notably, with or without
best-of-N procedure, PPO++ outperforms PPO on all metrics.

Supporting our justification from Section 5, AggreVaTeD improves beyond our guide policy,
providing an alternative as a warm-starting methodology to warm-starting with SFT. PPO++, on the
other hand, is better than or competitive to our RL baseline demonstrating a simple, yet powerful
alternative to PPO as the RL procedure. Even in practice, we observe the benefit of restarting from an
initial state distribution that better covers an optimal policy’s state distribution. The combination of

3https://huggingface.co/CarperAI/openai_summarize_tldr_sft

8

https://huggingface.co/CarperAI/openai_summarize_tldr_sft

5.6 5.8 6.0 6.2

RM Score (→)

0

2

4

6√
K
L

(π
||π

0
)

(→
)

5.6 5.8 6.0 6.2

RM Score (→)

14.0

14.5

15.0

15.5

p
er

p
le

xi
ty

(→
)

PPO++ AggreVaTeD PPO SFT

Figure 2: We investigate the reward optimization, kl-constriant, and fluency trade-off in our TL;DR
summarization task. The dashed line represents our SFT policy’s performance across each metric.
Both PPO++ and AggreVaTeD learn a policy that has a better trade-off than PPO.

easy hard
prompt difficulty

6

8

10

12

m
ea

n
CI

De
r-D

 sc
or

e

T5 SFT PPO AggreVaTeD LOLS PPO++ D2LOLS

Figure 3: Comparison of CIDer-D scores grouped by prompt difficulty on CommonGen. The
performance gap between easy and hard prompts is evident for SFT, and PPO++, while our proposed
algorithms AggreVaTeD, LOLS and D2LOLS exhibit a significantly smaller gap, showcasing their
effectiveness on challenging prompts.

these two, D2LOLS, achieves the best of both worlds and fully leverages the capabilities of utilizing a
guide policy.

Reward Optimization Tradeoff In Figure 2 we evaluate how well RLGF algorithms trade-off
optimizing the reward while minimizing the perplexity and kl-constraint

√
KL. For fair comparisons,

we kept λ and η the same across all algorithms. For both plots, the top right corner indicates the
policy has both high reward and low perplexity and low divergence from π0. For each algorithm
we plot 5 checkpoints ranging from 20 to 100 iterations.PPO++ mostly matches or has higher reward
than PPO while maintaining a lower perplexity. Separately, AggreVaTeD trade-offs reward for
perplexity, and has comparable reward scores as PPO while drastically reducing its perplexity. For
the kl-constraints plot on the left of Figure 2 we see that although PPO has a set of points with high
reward, most of these points also have high KL divergences. Whereas, a subset of PPO++ matches
or has higher reward than PPO while having a lower kl-constraint.

RLGF Performance on Difficult Prompts Our evaluation was carried out on the CommonGen
task where we categorized the prompts based on their difficulty level. For CommonGen, we classify
the prompts into easy and hard based on the number of unseen concepts in the prompt. Specifically,
we categorized prompts with 3 concepts as easy and more than 3 concepts as hard. Figure 3 presents
a comparison of scores for different algorithms grouped by prompt difficulty. The results reveal
a notable performance gap between easy and hard prompts for algorithms such as SFT and PPO,
whereas our proposed algorithms PPO++, AggreVaTeD, LOLS and D2LOLS exhibit a smaller gap,
with D2LOLS having the least gap . In other words, even on challenging prompts, our interactive
algorithms produce better text continuations. See Appendix E for example generations.

9

10010−110−210−3

kl coefficient (λ)

0.6

0.7

0.8

0.9

1.0

re
w

ar
d

sc
or

e
(→

)

10010−110−210−3

kl coefficient (λ)

40

60

80

p
er

p
le

xi
ty

(←
)

10010−110−210−3

MLE (η)

0.8

0.9

1.0

re
w

ar
d

sc
or

e
(→

)

10010−110−210−3

MLE (η)

102

103

p
er

p
le

xi
ty

(←
)

PPO AggreVaTeD PPO++ LOLS D2LOLS

Figure 4: Jppo KL coefficient (λ) and MLE coefficient (η) ablation. We show the sensitivity of PPO
and RLGF algorithms to each regularization term in the objective. Note that all RL algorithms are
robust to changes in KL coefficient with relatively minor changes in the Perplexity while being more
sensitive to changes in MLE objective (Right) with blowups in the perplexity.

MLE and KL coefficient Sensitivity We test the sensitivity of PPO and RLGF algorithms to two
regularization hyperparameters in the Jppo objective, namely the KL coefficient, λ, and the MLE
coefficient, η. The left 2 plots in Figure 4 show the reward and perplexity when we keep η fixed and
vary λ while the right 2 show the performance when we keep λ fixed and vary η. As shown in the left
two figures, all RL algorithms are robust to varying KL coefficients. We see that when we varying
λ, while our algorithms PPO++, D2LOLS and the baseline PPO has similar rewards, our algorithms
consistently maintain a lower (or equal) perplexity than PPO. From the right two figures, we observe
much more instability on perplexity when relaxing our MLE regularization with both PPO and RLGF
algorithms’ perplexities blowing up. Note that when increasing η, our algorithm PPO++ consistently
has higher rewards and lower (or equal) perplexity than PPO.

7 Conclusion and Future Work

We presented a unifying framework of incorporating a guide policy to enhance reinforcement
learning for natural language generation. Through theoretical justification and experimental
validation, we demonstrate that our RLGF framework can outperform PPO for fine-tuning LLMs.
Our proposed algorithms PPO++ and D2LOLS only require black-box access to the guide policy
and are conceptually simple and easy to implement based on PPO. While in our experiment, we
demonstrate that supervised fine-tuned models with standard decoding strategies is a good candidate
of the guide policy, our framework is general enough to leverage any large LLMs as the guide
policy, including those that are not open-sourced. Finally, RLGF’s contributions to the broader large
language model literature is complementary to model enhancements, dataset improvements, and
prompting discoveries such as in-context prompting. We leave it to exciting future work to test the
full capabilities of bootstrapping the state-of-the-art advancements in each research direction with
RLGF to improve reinforcement learning for natural language generation.

8 Acknowledgements

We would like to acknowledge the support of NSF under grant IIS-2154711. Jonathan Chang is
supported by LinkedIn under the LinkedIn-Cornell Grant. Kiante Brantley is supported by NSF under
grant No. 2127309 to the Computing Research Association for the CIFellows Project. Rajkumar
Ramamurthy is funded by the Federal Ministry of Education and Research of Germany and the
state of North-Rhine Westphalia as part of the Lamarr-Institute for Machine Learning and Artificial
Intelligence.

10

References
[1] Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and

algorithms. 2019.

[2] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and
approximation with policy gradient methods in markov decision processes. In Conference on
Learning Theory, pp. 64–66. PMLR, 2020.

[3] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the Theory of Policy
Gradient Methods: Optimality, Approximation, and Distribution Shift. Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

[4] Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

[5] Prithviraj Ammanabrolu and Mark O Riedl. Playing text-adventure games with graph-based
deep reinforcement learning. arXiv preprint arXiv:1812.01628, 2018.

[6] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic
Propositional Image Caption Evaluation. In Proceedings of European Conference on Computer
Vision, 2016.

[7] Anthropic. https://www.anthropic.com/index/claude-2, 2023.

[8] Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure
bias matters: An imitation learning perspective of error accumulation in language generation.
arXiv preprint arXiv:2204.01171, 2022.

[9] James Bagnell, Sham M Kakade, Jeff Schneider, and Andrew Ng. Policy Search by Dynamic
Programming. In Proceedings of Neural Information Processing Systems, 2003.

[10] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[11] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[12] Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-
Gillingham, Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick,
et al. Fine-tuning language models to find agreement among humans with diverse preferences.
Advances in Neural Information Processing Systems, 35:38176–38189, 2022.

[13] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan,
Dhruva Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional
deterministic policy gradients. arXiv preprint arXiv:1804.08617, 2018.

[14] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks. In Proceedings of Neural Information
Processing Systems, 2015.

[15] Dimitri P Bertsekas. Approximate Policy Iteration: A Survey and Some New Methods. Journal
of Control Theory and Applications, 9(3):310–335, 2011.

[16] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[17] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of Artificial General
Intelligence: Early Experiments with Gpt-4. arXiv preprint arXiv:2303.12712, 2023.

11

[18] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 535–541, 2006.

[19] CarperAI. https://github.com/carperai/trlx, 2023.

[20] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John Langford.
Learning to Search Better than your Teacher. In Proceedings of International Conference on
Machine Learning, 2015.

[21] Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan,
Samuel R Bowman, Kyunghyun Cho, and Ethan Perez. Improving code generation by training
with natural language feedback. arXiv preprint arXiv:2303.16749, 2023.

[22] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast Policy Learning
through Imitation and Reinforcement. arXiv preprint arXiv:1805.10413, 2018.

[23] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022.

[24] Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,
James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A
learning environment for text-based games. In Computer Games: 7th Workshop, CGW 2018,
Held in Conjunction with the 27th International Conference on Artificial Intelligence, IJCAI
2018, Stockholm, Sweden, July 13, 2018, Revised Selected Papers 7, pp. 41–75. Springer,
2019.

[25] Hal Daumé, John Langford, and Daniel Marcu. Search-based Structured Prediction. Machine
learning, 75:297–325, 2009.

[26] Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback, 2023.

[27] Daniel Duckworth, Arvind Neelakantan, Ben Goodrich, Lukasz Kaiser, and Samy Bengio.
Parallel Scheduled Sampling. arXiv preprint arXiv:1906.04331, 2019.

[28] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[29] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text generation via
filling in the_. arXiv preprint arXiv:1801.07736, 2018.

[30] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on robot learning, pp.
482–495. PMLR, 2017.

[31] Github. https://github.com/features/copilot, 2023. Accessed: 2023-May-13.

[32] Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc
Dymetman. Aligning language models with preferences through f-divergence minimization.
arXiv preprint arXiv:2302.08215, 2023.

[33] Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Differentiable Scheduled Sampling
for Credit Assignment. arXiv preprint arXiv:1704.06970, 2017.

[34] Tanya Goyal, Junyi Jessy Li, and Greg Durrett. News Summarization and Evaluation in the
Era of Gpt-3. arXiv preprint arXiv:2209.12356, 2022.

[35] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International conference on machine learning, pp. 1352–
1361. PMLR, 2017.

12

[36] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR, 2018.

[37] Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang, and
Christopher Ré. Training classifiers with natural language explanations. In Proceedings of the
conference. Association for Computational Linguistics. Meeting, volume 2018, pp. 1884. NIH
Public Access, 2018.

[38] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer,
David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, et al.
Grounded Language Learning in a Simulated 3D World. arXiv preprint arXiv:1706.06551,
2017.

[39] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge ina neural network.
arXiv preprint arXiv:1503.02531, 2015.

[40] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[41] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[42] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner Monologue: Embodied
Reasoning through Planning with Language Models. In Proceedings of Annual Conference on
Robot Learning, 2022.

[43] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[44] Sham Kakade and John Langford. Approximately Optimal Approximate Reinforcement
Learning. In Proceedings of International Conference on Machine Learning, 2002.

[45] Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to
controlled text generation. arXiv preprint arXiv:2012.11635, 2020.

[46] Khan Academy. https://blog.khanacademy.org/harnessing-ai-so-that-all-students-benefit-a-
nonprofit-approach-for-equal-access/, 2023. Accessed: 2023-May-14.

[47] Samuel Kiegeland and Julia Kreutzer. Revisiting the weaknesses of reinforcement learning for
neural machine translation. arXiv preprint arXiv:2106.08942, 2021.

[48] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

[49] Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement
learning and distribution matching for fine-tuning language models with no catastrophic
forgetting. Advances in Neural Information Processing Systems, 35:16203–16220, 2022.

[50] Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. Can neural machine
translation be improved with user feedback? arXiv preprint arXiv:1804.05958, 2018.

[51] Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. Reliability and learnability of human bandit
feedback for sequence-to-sequence reinforcement learning. arXiv preprint arXiv:1805.10627,
2018.

[52] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with
language models. arXiv preprint arXiv:2303.00001, 2023.

[53] Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin, and Simon Lacoste-Julien. SEARNN:
Training RNNs with Global-local losses. arXiv preprint arXiv:1706.04499, 2017.

13

[54] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop,
Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human
feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

[55] Peter Lee, Sebastien Bubeck, and Joseph Petro. Benefits, Limits, and Risks of GPT-4 as an AI
Chatbot for Medicine. New England Journal of Medicine, 388(13):1233–1239, 2023.

[56] Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep
Reinforcement Learning for Dialogue Generation. In Proceedings of Conference on Empirical
Methods in Natural Language Processing, 2016.

[57] Alexander Lin, Jeremy Wohlwend, Howard Chen, and Tao Lei. Autoregressive knowledge
distillation through imitation learning. arXiv preprint arXiv:2009.07253, 2020.

[58] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin
Choi, and Xiang Ren. CommonGen: A Constrained Text Generation Challenge for Generative
Commonsense Reasoning. In Findings of Association for Computational Linguistics: EMNLP,
2020.

[59] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summariza-
tion branches out, pp. 74–81, 2004.

[60] Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy. Improved Image
Captioning via Policy Gradient Optimization of Spider. In Proceedings of International
Conference on Computer Vision, 2017.

[61] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

[62] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning Word Vectors for Sentiment Analysis. In Proceedings of Annual Meeting of
the Association for Computational Linguistics: Human language technologies, 2011.

[63] Tsvetomila Mihaylova and André FT Martins. Scheduled Sampling for Transformers. arXiv
preprint arXiv:1906.07651, 2019.

[64] Dipendra Misra, John Langford, and Yoav Artzi. Mapping Instructions and Visual Observations
to Actions with Reinforcement Learning. In Proceedings of Conference on Empirical Methods
in Natural Language Processing, 2017.

[65] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4.
arXiv preprint arXiv:2306.02707, 2023.

[66] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Overcoming exploration in reinforcement learning with demonstrations. In 2018 IEEE inter-
national conference on robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018.

[67] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[68] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language Understanding for
Text-based Games using Deep Reinforcement Learning. In Proceedings of Conference on
Empirical Methods in Natural Language Processing, 2015.

[69] Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. Reinforcement learning for bandit
neural machine translation with simulated human feedback. arXiv preprint arXiv:1707.07402,
2017.

[70] OpenAI. https://openai.com/blog/chatgpt, 2023.

[71] OpenAI. Gpt-4 technical report, 2023.

14

[72] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training Language
Models to Follow Instructions with Human Feedback. In Proceedings of Neural Information
Processing Systems, 2022.

[73] Richard Yuanzhe Pang and He He. Text Generation by Learning from Demonstrations. In
Proceedings of International Conference on Learning Representations, 2021.

[74] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Auto-
matic Evaluation of Machine Translation. In Proceedings of Association for Computational
Linguistics, 2002.

[75] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej
Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep
reinforcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

[76] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

[77] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290, 2023.

[78] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[79] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[80] Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa,
Christian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is Reinforcement Learning (Not)
for Natural Language Processing?: Benchmarks, Baselines, and Building Blocks for Natural
Language Policy Optimization. arXiv preprint arXiv:2210.01241, 2022.

[81] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

[82] Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and Li-Jia Li. Deep Reinforcement Learning-
Based Image Captioning With Embedding Reward. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[83] Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi,
Matthieu Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, et al. Factually consistent
summarization via reinforcement learning with textual entailment feedback. arXiv preprint
arXiv:2306.00186, 2023.

[84] Stephane Ross and J Andrew Bagnell. Reinforcement and Imitation Learning via Interactive
No-regret Learning. arXiv preprint arXiv:1406.5979, 2014.

[85] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A Reduction of Imitation Learning
and Structured Prediction to No-regret Online Learning. In Proceedings of International
Conference on Artificial Intelligence and Statistics, 2011.

[86] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, De-
badeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive uav control
in cluttered natural environments. In 2013 IEEE international conference on robotics and
automation, pp. 1765–1772. IEEE, 2013.

[87] Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single demonstration.
arXiv preprint arXiv:1812.03381, 2018.

15

http://jmlr.org/papers/v21/20-074.html

[88] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a Distilled
Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint arXiv:1910.01108,
2019.

[89] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen,
Kyunghyun Cho, and Ethan Perez. Training language models with language feedback at scale.
arXiv preprint arXiv:2303.16755, 2023.

[90] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Re-
gion Policy Optimization). In Proceedings of International Conference on Machine Learning,
2015.

[91] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

[92] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.
Minimum risk training for neural machine translation. arXiv preprint arXiv:1512.02433, 2015.

[93] Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871,
2022.

[94] Artem Sokolov, Stefan Riezler, and Tanguy Urvoy. Bandit structured prediction for learning
from partial feedback in statistical machine translation. arXiv preprint arXiv:1601.04468,
2016.

[95] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to Summarize with Human Feedback.
In Proceedings of Neural Information Processing Systems, 2020.

[96] Theodore R Sumers, Mark K Ho, Robert D Hawkins, Karthik Narasimhan, and Thomas L
Griffiths. Learning rewards from linguistic feedback. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 6002–6010, 2021.

[97] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
Aggrevated: Differentiable Imitation Learning for Sequential Prediction. In Proceedings of
International Conference on Machine Learning, 2017.

[98] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated Horizon Policy Search: Combining
Reinforcement Learning & Imitation Learning. arXiv preprint arXiv:1805.11240, 2018.

[99] Arash Tavakoli, Vitaly Levdik, Riashat Islam, Christopher M Smith, and Petar Kormushev.
Exploring restart distributions. arXiv preprint arXiv:1811.11298, 2018.

[100] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[101] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based Image
Description Evaluation. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4566–4575, 2015.

[102] Arun Venkatraman, Martial Hebert, and J Bagnell. Improving multi-step prediction of learned
time series models. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 29, 2015.

[103] Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit
to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in
Summarization, pp. 59–63, Copenhagen, Denmark, September 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/W17-4508. URL https://aclanthology.org/
W17-4508.

[104] Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language
model, 2021.

16

https://aclanthology.org/W17-4508
https://aclanthology.org/W17-4508

[105] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. Advances
in Neural Information Processing Systems, 33:5776–5788, 2020.

[106] Sam Wiseman and Alexander M Rush. Sequence-to-Sequence Learning as Beam-Search
Optimization. In Proceedings of Conference on Empirical Methods in Natural Language
Processing, 2016.

[107] Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and
Paul Christiano. Recursively summarizing books with human feedback. arXiv preprint
arXiv:2109.10862, 2021.

[108] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[109] Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng, and Yuandong Tian. Rlcd: Rein-
forcement learning from contrast distillation for language model alignment. arXiv preprint
arXiv:2307.12950, 2023.

[110] Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

[111] Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between
training and inference for neural machine translation. arXiv preprint arXiv:1906.02448, 2019.

[112] Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christo-
pher D Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models.
In Proceedings of International Conference on Learning Representations, 2022.

[113] Xingxing Zhang and Mirella Lapata. Sentence Simplification with Deep Reinforcement Learn-
ing. In Proceedings of Conference on Empirical Methods in Natural Language Processing,
2017.

[114] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-
hf: Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425,
2023.

[115] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

[116] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma,
Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint
arXiv:2305.11206, 2023.

[117] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning Language Models from Human Preferences.
arXiv preprint arXiv:1909.08593, 2019.

17

A Additional Related Work

LLM Alignment Using RLHF is one idea of aligning LLM with human preferences. The RLHF
objective incorporates a KL constraint and is equivalent to minimizing the reverse KL between
KL-control distribution and the learner. Minimizing some divergence between policy used for the
KL-control and learner policy has been proposed for LLM alignment. [49, 45, 32] propose alignment
ideas the attempt to minimize various divergence inspired from maximize entropy RL [35, 36] and
Distributional Policy Gradient (DPG) [13]. Depending on the chosen divergence, the desired policy
behavior may be easy or hard to obtain. Another collection ideas for alignment focus on aspects of
the supervised learning data, for example currating the collected data [116, 23].

Restart Distribution On-policy RL algorithms are not able to take advantage of past visited states.
But incorporating the ability to reset to any arbitrary state allows on-policy methods to create new
states from past visited states [99]. The core of the idea is to use past visited states to modify the
initial state distribution. Our work introduces PPO++ which is an algorithm that has no prior over
past visited states but [99] considers incorporating priories to help decide how to prioritize past
visited states to incorporate into the initial state distribution. [2] showed theoretically that the initial
state distribution helps with exploration. Modifying the initial state distribution using restart has seen
success in Montezuma Revenge Atari 2600 (a hard exploration problem) and Atari 2600 games more
broadly[75, 87, 28, 30].

NLP with Human Feedback Learning from human feedback has been studied in the past in
the context of bandit feedback [69, 94], pairwise feedback [89, 21] and other feedback forms
[50, 96, 37, 107]. RLHF from has been an active area of research employing RL as the main strategy
to align LMs with human preferences [72, 10, 12, 70, 67, 107, 95, 117]. A remarkable result in this
line of work is ChatGPT [70]. The general process involves learning a preference reward model
induced by human preferences and then finetuning with RL using this learned preference model.

LLM Finetuning from AI Feedback: Despite being easier to collect than expert data, high-
quality human preference data collection is a key bottleneck of scaling RL finetuning for LLMs. A
growing body of work enlists the help of LLMs to augment various parts of the RLHF procedure.
ConstitutionalAI and RLAIF [11, 54] explores using LLMs to generate preference datasets to do
reward model training on while [83, 109, 52] finds directly generating reward signals from another
LLM to be effective. Separate from this literature, we investigate utilizing direct LLM feedback
during the generation process, reminiscent of RL algorithms utilizing expert interactive feedback.

RL for Text Understanding and Generation: RL has been used to train text generation models
for dialogue [56], text simplification [113], machine translation [47, 108, 92], image captioning [82],
question generation [73]. RL has also been used to create models that take actions given a text such as
for instruction following [38, 64], text games [68, 24, 5], and code generation [115]. These methods
typically use policy gradient based RL. Recently, [80] studied online RL for text generation across a
wide range of tasks, specifically studying Proximal Policy Optimization (PPO) [91]. Although the
results comparing RL and SL are mixed, we build upon their work and show the benefit of RL and
ultimately RLGF outperforming SL and RL. Separately, [93] studies offline RL in the context of text
generation whereas our work studies the online case.

18

B Additional Algorithms

A detailed algorithm for LOLS showing how to combine reinforcement learning and imitation learning
differently than D2LOLS. Rather than setting α to be the stopping time to switch from AggreVaTeD
to PPO++, we have a mixing probability of combining AggreVaTeD and PPO++ at every iteration,
αAπt

θ + (1− α)Aπg

(s, a). As discussed in Section 5, we find that LOLS underperforms D2LOLS,
even in practice.

Algorithm 4 LOLS: combine PPO and AggreVaTeD

1: Input: πθ, reference πg , iterations T, dataset D =
{
(xi, yi)

}N
i=1

2: Input: mixing parameter β1 ∈ [0, 1], mixing parameter β2 ∈ [0, 1], mixing prob α
3: for t = 0,1,. . . ,T-1 do
4:

▷ PPO++

5: Rollin with β1π
g + (1− β1)π

t
θ starting from x ∼ D

6: Rollout with πt
θ to collect trajectories

7: Update V
πt
θ

ϕ with trajectories and compute advantage estimates Aπt
θ

8:
▷ AggreVaTeD

9: Rollin with β2π
t
θ + (1− β2)π

g starting from x ∼ D
10: Rollout with πg to collect trajectories
11: Update V πg

ϕ with trajectories and compute advantage estimates Aπg

(s, a)
12:

▷ Mix Update
13: Update πθ using PPO loss with αAπt

θ + (1− α)Aπg

(s, a)

19

C Additional Experimental Details

C.1 KL Reward Constraint

In addition to sequence-level task rewards, per-token KL rewards are applied to prevent the policy
π from deviating too far from the pre-trained LM π0, following the works [117, 72]. Formally,
regularized reward function is defined as: R̂(st, at, y) = R(st, at, y) − λKL (π(at|st)||π0(at|st))
where KL (π(at|st)||π0(at|st)) = (log π(at|st) − log π0(at|st)) and λ is the KL coefficient [72].
Note we used use a fixed KL coefficient rather than an adaptive controller.

C.2 Task Details

Task Train/Val/Test Prompt Gen. Length

IMDB 25K/5K/5K Partial movie review up to 64 tokens 48
CommonGen 32651/993/1497 "Generate a sentence with: " set of 3-5 concepts 20
TL;DR 117000/6450/6550 "TL;DR: " 50

TL;DR Preference 92500/3300/8300 "TL;DR: " N/A

Table 3: Train, val, test splits, prompts, and max generation length used for each task.

IMDB: We experiment on the IMDB dataset for positive movie review generation. As shown
in Table 3, the dataset consists of 25k training, 5k validation and 5k test prompts of movie review
text with either positive or negative sentiment labels. As in put to our models, we use partial movie
reviews that are at most 64 tokens long and ask the model to complete the review with a positive
sentiment with at most 48 generated tokens.

CommonGen: CommonGen [58] is a common sense text generation task where the model is given
a set of concepts (i.e. hockey, rink, game) and is asked to generate a semantically correct sentence
using those concepts (i.e. the hockey team played a game at the rink). We follow the same splits as
the dataset creators and refer the readers to Table 1 of [58] for more in-depth statistics of the dataset.
In our experiments, we prompted out models with "generate a sentence with: " and generated at most
20 tokens. We chose this generation length based on the maximum token length of the references in
the training dataset.

TL;DR Summarization: Following [95], we evaluate on the summarization task. We use
CarperAI/openai_summarize_comparisons for the preference reward training dataset
and CarperAI/openai_summarize_tldr for the RL training dataset. For the SFT model
that we use for our starting policy and our guide policy, we use the publicly available checkpoint
CarperAI/openai_summarize_tldr_sft. We truncated/padded each prompt to 500 tokens
on the GPT-J 6B tokenizer.

We first train our reward model using LoRA adapters. Our reward training is 1 epoch and where we
got 70% accuracy on the test set. With this reward model we run all of our experiments where our
policy and critic are both LoRA adapters trained on top of SFT checkpoint.

Win Rate: We calculated the win rate against the dataset references using Llama2-13B-chat [100]
publically available on HuggingFace. Following DPO [77], we prompt the model with instructions, 2
summaries (A) and (B), and instructions on how to answer. We randomize which summary is (A) or
(B) when calculating the win rate over the test set. Below is our prompt skeleton:

20

CarperAI/openai_summarize_comparisons
CarperAI/openai_summarize_tldr
CarperAI/openai_summarize_tldr_sft

<<SYS>>
You are an expert summary evaluator and can consistently
distinguish between good and bad summaries. You provide
informative, correct evaluations.
<<\SYS>>

Task: Judge the quality of two TLDRs, choose the options
among (A) or (B)
context: [context]
tldr (A): [summary 1]
tldr (B): [summary 2]
FIRST provide a one-sentence comparison of the two summaries,
explaining which you prefer and why. SECOND, on a new line,
state only (A) or (B) to indicate your choice. Your
response should use hte format:
Comparison: <one-sentence comparison and explanation>
Preferred: <(A) or (B)>

C.3 IMDB - Algorithm Details

Table 4 lists the hyperparameters used in our IMDB experiments. Note that we used the same
parameters here for all guide policies. Across all algorithms, we shared the same parameters as the
ones we used for our PPO baseline. Finally, we use top-k sampling with K = 50 as the decoding
method and for fair comparison, we keep this setting for all methods.

Setting Values

model GPT2

PPO steps per update: 1280
total number of steps: 128000
batch size: 64
epochs per update: 5
learning rate: 1e-6
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.5
λ: 0.001
η: 0.1

PPO++ Mixing Parameter (β): 0.2

AggreVaTeD Mixing Parameter (β): 0.8

LOLS Mixing Probability (α): 0.8

D2LOLS Stopping Time Iteration (α): 20

decoding sampling: true
top k: 50
min length: 48
max new tokens: 48

tokenizer padding side: left
truncation side: left
max length: 64

Table 4: Hyperparameters used for IMDB. Note that PPO++, AggreVaTeD, LOLS, and D2LOLS
all share the same PPO parameters. All processes use the same decoding and tokenizer parameters.

21

C.4 CommonGen - Algorithm Hyperparameters

Setting Values

model T5

PPO steps per update: 2560
total number of steps: 1,280,000
batch size: 640
epochs per update: 4
learning rate: Linear decay 1e-5
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 30.0
λ: 0.001
η: 0.1

PPO++ Mixing Parameter (β): 0.2

AggreVaTeD Mixing Parameter (β): 0.8

LOLS Mixing Probability (α): 0.8

D2LOLS Stopping Time Iteration (α): 200

decoding num beams: 5
min length: 5
max new tokens: 20

tokenizer padding side: left
max length: 20

Table 5: Hyperparameters used for CommonGen. Note that PPO++, AggreVaTeD, LOLS, and
D2LOLS all share the same PPO parameters. All processes use the same decoding and tokenizer
parameters.

Table 5 lists the hyperparameters used in our CommonGen experiments. Note that we used the same
parameters here for all guide policies. Across all algorithms, we shared the same parameters as the
ones we used for our PPO baseline. Finally, we use beam search with the number of beams = 5
as the decoding method for inference. Note that for training, we still used softmax sampling with
default temperature. For fair comparison, we keep this setting for all methods. Finally, note that for
CommonGen, we set the KL coefficient to 0.

C.5 TL;DR Summarization - Algorithm Hyperparameters

Table 6 lists the hyperparameters used in our TL;DR summarization experiments. Note that we used
the same parameters here for all guide policies. Across all algorithms, we shared the same parameters
as the ones we used for our PPO baseline. The reward LoRA adapter was used to pretrain our model.
During RL training, we kept the reward adapter frozen.

22

Setting Values

model GPT-J

PPO steps per update: 70,400
total number of steps: 7,040,000
batch size: 128
epochs per update: 4
learning rate: 1e-5
discount factor: 1.0
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.2
λ: 0.002
η: 0.1

PPO++ Mixing Parameter (β): 0.6

AggreVaTeD Mixing Parameter (β): 1.0

decoding max new tokens: 50

tokenizer padding side: left
truncation side: right
max length: 50

RM LoRA r: 32
α: 32
dropout: 0.0

Policy LoRA r: 8
α: 64
dropout: 0.1

Critic LoRA r: 8
α: 64
dropout: 0.1

Table 6: Hyperparameters used for TL;DR summarization. Note that PPO++, AggreVaTeD all
share the same PPO parameters.

23

D IMDB Qualitative Examples

Sample 1
Prompt: not a complex character, but totally rotten. The relation between him and Gisburne is

just hilarious. Actually, just looking at de Rainault sitting in his throne, bored,
glaring, makes me laugh even before he has said anything. Another actor that deserves
extra praise is Ray Winstone as Will Scarlet. You

GPT2: know, when you think he’s a bad actor, and when you think the script is all about the
bad actors. Scarlet is the typical actor with a weak, pathetic voice, who fails to show
emotion or self-respect, and who

BC: will not be disappointed. The opening scenes are amazing and the final scene of the film
is amazing. Every single minute of this film is a treat with every emotion the characters
are experiencing. From the first frame of the

PPO: know he likes old movies. I gave this film a 3 and a half out of 10. And, of course, I
don’t blame you for falling asleep! I gave it a 10 because of my favorite

PPO++: see he seems only interested in money, which really makes the two seem like friends.
One particularly funny scene involves Winstone and the rest of the cast in their studio
for the first time since "Rampage". I absolutely LOVE the way

AggreVaTeD: will laugh heartily; he is brilliant and always entertaining. I also think the
film is just wonderful. I love what Van Dyke is able to bring to the film. If you want to
go great, I’m sure Van Dyke

LOLS: great film. I absolutely loved his style and direction. One of my favorite movies of all
time. The first 25 minutes are really good and really enjoyable. It’s actually very

touching and engaging. The cast, including James Gandolfini
D2LOLS: could never have come across this again. It was one of the funniest films I’ve ever

seen, and it remains my favorite movie ever. I am absolutely honored and very excited to
see it again!!! I really love it and look forward

Sample 2
Prompt: comes from Zekeria Ebrahimi, who plays the young Amir. It’s not that it’s bad, it’s

just that it’s not as effective as it could be. He just can’t translate the guilt that
consumes Amir to the audience. In fact, I think I might have been a little lost at

GPT2: first. The movie has too much going for it, too many unanswered questions and some of
the characters not getting the emotional payoff in a reasonable enough manner. It’s nice
to see a filmmaker who isn’t a hater, but I feel

BC: the second half as it wasn’t shown at all until the very end, at best. I liked the plot (
which I think was very well done, considering it’s a "bad cop story"). It’s not

PPO: first. After listening to the great Ghazala, who’s brilliant in her acting, I am very
impressed with her acting performance. I loved how you have a young and very attractive
girl named Zekeria who is portrayed quite well and

PPO++: last week’s deadline. It’s quite a clever and good film, as well as an entertaining one.
4/10. Recommended. 8/10

AggreVaTeD: first. The movie really deserves the credit - it really is a very moving story and
a really moving movie that is an amazing film. I personally love Amir and think it’s an

extremely powerful film. It’s one of the things that makes
LOLS: some points. As a whole it’s pretty enjoyable and is very well-acted and well edited,

and is quite a compelling, quirky and fun film. And just as important, I found some very
well-acted, and well-acted

D2LOLS: first, when Amir realizes what’s really going on. There are many terrific performances
in this beautifully directed film. I can’t say which is one of the best, which is

certainly a shame because it’s an enjoyable

Sample 3
Prompt: Well, now I finally HAVE seen the true garbage version - and it’s Paul Schrader’s

DOMINION: PREQUEL TO THE EXORCIST. It was relentlessly talky, uninteresting, and insipid.
Stellan Skarsgard’s troubled priest was nowhere near as

GPT2: interesting as the other characters in his book - and most of the scenes in the book
were just so poorly edited and over-the-top; the acting was too, horribly bad, and most
of the dialogue was thrown out in a couple

BC: well developed as the novel and story had - but did bring some of the best bits to the
screen. I watched the movie expecting a story - "The God" - but found it just an excuse
for schlock

PPO: good (I guess), if anything, the sort of low-brow, uninteresting sort of horror that made
an original film "The Cat With the Feeling" look like some sort of cheesy 80’s horror

flick from 1999.
PPO++: exciting. And in addition, the only really really interesting character in this movie

was Paul Schrader, who is at his worst as a creepy, self-absorbed man in a bar. I can’t
say I’ve ever liked a

AggreVaTeD: original or entertaining as I’d anticipated, and in the end, I got to see some
interesting and engaging dialog. I loved that scene with Schrader explaining how it would
be fun for him to make a movie that would make people think twice

LOLS: good as his master. Still, the film’s message is very much worth exploring. It was the
perfect love story for me, as you would expect. I’m an evangelical and am an excellent
fan of all things Christian. I love reading

D2LOLS: brilliant as the others, as well as beautifully acted. Of course, some points in the
film are so well acted and acted that, despite all its flaws, this is a very touching
film. The cinematography is

Figure 5: Qualitiative Analysis of IMDB

24

E CommonGen Qualitative Examples

Sample 1
Prompt: generate a sentence with: dress perform stage.
T5: dress up and perform on stage
BC: A young girl in a black dress is performing on a stage.
PPO: performers dress up on the stage.
PPO++: a woman performing on the stage dressed up.
AggreVaTeD: young woman performing on stage in a black dress.
LOLS: people performing on the stage in a dressed up.
D2LOLS: A woman is performing on the stage in a dress.

Sample 2
Prompt: generate a sentence with: ball fall throw.
T5: ball falls off the ground
BC: A man throws a ball that has fallen to the ground.
PPO: the ball falling from the throw.
PPO++: the ball is thrown and the ball falls.
AggreVaTeD: A man is throwing the ball into the ground.
LOLS: throwing the ball after it fell from the sky.
D2LOLS: A man is throwing the ball after it fell.

Sample 3
Prompt: generate a sentence with: arm chest fold.
T5: arm folds in the chest
BC: He folds his arms over his chest, then he folds his arms over.
PPO: folded the arms in the chest.
PPO++: a man with his arms folded in the chest.
AggreVaTeD: folding his arm over his chest.
LOLS: A man folds his arms in the chest.
D2LOLS: A man with his arms folded in the chest.

Figure 6: Qualitiative Analysis of CommonGen

25

F TL;DR Qualitative Examples

Content Warning: This section contains examples of harmful language.

Sample 1
Prompt: SUBREDDIT: r/AskReddit
TITLE: Wife’s "friend" is stealing money. Any ideas on how to approach this?
POST: So my wife has a friend that I will call Julie. My wife and Julie have been friends for

about 6 years if I remember correctly. Julie is a shit friend in my opinion and I have
told the wife my feelings. When they lived together Julie would start physical fights
with my wife and spat on my wife’s face once. Now when Julie comes over to our house
there is a 98% chance that something will be broken and really really dirty when she
leaves.

Julie does not have any other good close friends in our town and her closest family is 5 hours
away. I am thinking that is why my wife doesn’t get rid of Julie. About 7 months ago we

were all outside and Julie said that she needed to go inside to use the restroom. As we
soon outside I noticed that our bedroom light turned on, stayed on for less than a minute,
and then went off.

Later that night after Julie left when the wife and I went inside and the wife discovered that
her purse had been moved and that she was missing $20. I looked at my stuff and my

checkbook had been moved. The only other person in our house that night was Julie and she
was left alone.

On Saturday my wife went shopping with Julie. Again for some reason my wife left her purse
with Julie alone. Today my wife was trying to buy gas and is now missing $30.

Before Julie started to steal from us her car battery died and she called us. Stupidly I paid
for and installed a new one for her. I still haven’t been paid back for that $87.

I am trying to figure out if it is time for me to say something to Julie or do I let the wife
handle it?

BC: Wife’s "friend" is stealing money. Any ideas on how to approach this?
PPO: Wife’s "friend" is stealing money. Any ideas on how to approach this? Wife’s "friend" is

a shit friend in my opinion and I have told the wife my feelings.
PPO++: Wife’s "friend" is stealing money. Any ideas on how to approach this? Wife doesn’t have

any other good close friends in our town and her closest family is 5 hours away.
AggreVaTeD: Wife’s "friend" is stealing money. Any ideas on how to approach this? Wife and I

have lost $120 in the past 2 weeks.

Sample 2
Prompt: SUBREDDIT: r/Pets
TITLE: My sister’s dog was picked up by animal control, $150 to get him out and she can’t

afford it. He’ll be euthanized in 2 days if she doesn’t pay up.
POST: My sister has had this dog for the longest time, he’s been shuffled around our family

from time to time when she couldn’t keep him due to being a renter. I had him for a year
and had to give him back to her because I moved into a smaller place. I told her to keep
him until the end of this year and I would take him back but he managed to get out of his
yard today and got locked up by animal control it’s going to cost her $150 to get him

out or he’ll be put to sleep! He’s about 11 years old, the sweetest beagle in the world!
He doesn’t bark he’s great with kids and he’s just a bug ol teddy bear! I don’t know what
to do!! I can’t let him be put to sleep but I can’t afford to help her! :-(

BC: My sister’s dog was picked up by animal control, $150 to get him out and she can’t afford
it. He’ll be put to sleep if she doesn’t pay up.

PPO: Sister’s dog was picked up by animal control, $150 to get him out or he’ll be put to
sleep. He’s about 11 years old, the sweetest beagle in the world! He doesn’t bark he’s
great with

PPO++: Sister’s dog was picked up by animal control, $150 to get him out and she can’t afford
it. He’ll be euthanized in 2 days if she doesn’t pay up.

AggreVaTeD: sister’s dog got locked up by animal control, $150 to get him out or he’ll be put
to sleep. He’s about 11 years old, the sweetest beagle in the world! He doesn’t bark he’s
great with kids

Figure 7: Qualitiative Analysis of TL;DR.

26

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning from Guided Feedback
	Theoretical Justification
	Experiments
	Experimental Results

	Conclusion and Future Work
	Acknowledgements
	Additional Related Work
	Additional Algorithms
	Additional Experimental Details
	KL Reward Constraint
	Task Details
	IMDB - Algorithm Details
	CommonGen - Algorithm Hyperparameters
	TL;DR Summarization - Algorithm Hyperparameters

	IMDB Qualitative Examples
	CommonGen Qualitative Examples
	TL;DR Qualitative Examples

