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Abstract. This study addresses the Domain-Class Incremental Learn-
ing problem, a realistic but challenging continual learning scenario where
both the domain distribution and target classes vary across tasks. To
handle these diverse tasks, pre-trained Vision-Language Models (VLMs)
are introduced for their strong generalizability. However, this incurs a
new problem: the knowledge encoded in the pre-trained VLMs may be
disturbed when adapting to new tasks, compromising their inherent zero-
shot ability. Existing methods tackle it by tuning VLMs with knowledge
distillation on extra datasets, which demands heavy computation over-
head. To address this problem efficiently, we propose the Distribution-
aware Interference-free Knowledge Integration (DIKI) framework, retain-
ing pre-trained knowledge of VLMs from a perspective of avoiding infor-
mation interference. Specifically, we design a fully residual mechanism
to infuse newly learned knowledge into a frozen backbone, while intro-
ducing minimal adverse impacts on pre-trained knowledge. Besides, this
residual property enables our distribution-aware integration calibration
scheme, explicitly controlling the information implantation process for
test data from unseen distributions. Experiments demonstrate that our
DIKI surpasses the current state-of-the-art approach using only 0.86%
of the trained parameters and requiring substantially less training time.
Code is available at: https://github.com/1loongx/DIKI.
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1 Introduction

Supervised learning techniques train networks with full access to all data, which
can result in a lack of flexibility when extending them to acquire knowledge from
new tasks. Continual Learning (CL) has emerged as a solution, enabling ongoing
model training on sequentially arriving data while retaining the learned infor-
mation |7]. Conventional CL settings consider either newly introduced classes
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Fig. 1: (a): The domain-class incremental learning setting, where the data distribution
and the classes vary across all tasks. Two kinds of forgetting exist due to the integration
of pre-trained CLIP. (b): The forward accuracy (i.e. zero-shot ability) and the number
of trainable parameters for each method, with the size of the markers representing their
computational complexity. (c): Existing methods either demand heavy computation or
sacrifice pre-trained knowledge. Our approach effectively retain pre-trained knowledge
within a parameter-efficient framework. More details are provided in Sec. 4.1.

or domain distribution shifts, referred to as class incremental and domain incre-
mental learning [70]. However, with only one type of increment considered, these
existing works limit their applicability in complex real-world scenarios.

Consider a more challenging Domain-Class Incremental Learning (DCIL) set-
ting, where both the domain data distribution and classes to be classified can
keep varying among all tasks, as illustrated in Fig. 1(a). Vanilla image encoder-
based techniques are infeasible under such circumstances due to their non-
scalable classification head design. Recently, the advent of contrastively trained
Vision-Language Models (VLMs), such as CLIP [53]|, has made it possible to
address this demanding but practical problem. VLMs are trained on web-scale
image-text pairs and hold a powerful zero-shot generalization ability to iden-
tify nearly infinite classes, making them capable of confronting this severe task
variation scenario [10,21,40,57,89].

However, the use of vision-language models introduces new challenges to
incremental training. Conventional continual learning schemes aim to prevent
models from forgetting previously learned knowledge, which is termed as back-
ward forgetting [15]. Existing works have explored the potential of the regulariza-
tion mechanism, rehearsal buffer, and architecture design to mitigate backward
forgetting, achieving promising results [13,43,55,60]. Nevertheless, when these
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approaches are applied to vision-language models, a different form of catas-
trophic forgetting emerges: models tend to forget the knowledge learned
during the pre-training phase, thus compromising their powerful zero-shot
generalization capacity. This problem is termed as forward forgetting because
it occurs when VLMs perform “forward” prediction on the unknown distributed
data. Fig. 1(a) illustrates the two types of forgetting.

Recent work ZSCL [85] made an attempt to address the forward forgetting
issue on CLIP. They introduced a large-scale reference dataset [8] to perform
knowledge distillation and incorporated a weight ensemble scheme [75]. However,
this approach requires intensive computation and external data, which could be
infeasible in real-world scenarios. Meanwhile, existing VLM-based parameter-
efficient continual learning methods [72-74], mostly utilizing prompt tuning
mechanisms, fail to retain the pre-trained knowledge and cause zero-shot abil-
ity degradation, as shown in Fig. 1(b). We attribute this issue to information
interference: newly introduced task-specific parameters can disturb the pre-
trained knowledge. Illustrations of these methods are shown in Fig. 1(c).

To alleviate the forward forgetting problem of VLMs with a computation-
ally and parameter-efficient approach, we introduce the Distribution-aware
Interference-free Knowledge Integration (DIKI) framework. Specifically,
we inject task-specific information into frozen VLM for each task, storing learned
knowledge efficiently. (1) To maintain the pre-trained knowledge in VLMs, our
knowledge integration mechanism is designed to resolve the information interfer-
ence issue prevalent in existing methods. By employing our fully residual design
and zero-initialization strategy, we can inject new knowledge while keeping the
pre-trained knowledge untouched, introducing minimal noise to the pre-trained
model compared to prompt tuning. (2) With this advantage, we further introduce
a distribution-aware integration calibration mechanism, explicitly identifying the
unseen distributed samples and controlling the implanted information for them,
thereby enhancing the model generalization capabilities.

Our contributions are summarized in threefold:

— We introduce the parameter-efficient DIKI to retain pre-trained knowledge
in VLMs under the DCIL setting. It resolves the information interference
issue, mitigating the need for heavy computation and external data.

— To alleviate the forward forgetting, DIKI implants new knowledge in a fully
residual manner, leaving pre-trained knowledge undisturbed. With this resid-
ual property, a distribution-aware integration calibration is incorporated to
further boost performance on unseen tasks.

— Comprehensive experiments demonstrate that we achieve state-of-the-art
performance with only 0.86% trained parameters and significantly less train-
ing time compared to the previous methods.

2 Related Works

Continual learning. Existing continual learning algorithms can be broadly
classified into three categories [7|. Regularization-based methods [1,2,35,39,43,83]
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introduce an extra regularization term in the loss function, consolidating previ-
ous knowledge when learning on new data. In contrast, architecture-based meth-
ods [13,42,47,54,81] dedicate different model parameters to each task, stor-
ing task knowledge with specific expanded network components. With mem-
ory replay technique, rehearsal-based methods [28,45,55, 56, 60] retrain current
step model with stored exemplars in raw format or generated pseudo-samples
with a generative model, which has been questioned for its rationality by recent
work [51]. While achieving promising results, these solutions only consider one
type of increment, either domain shift or new classes, along the continual train-
ing process, resulting in limited applicability in real-world scenarios. Instead,
we investigate the forgetting problem under a domain-class incremental learning
setting to adapt to a broader variety of situations.

Parameter-efficient fine-tuning. Fully fine-tuning a large pre-trained model
is computationally expensive and requires a large-scale dataset [75]. Alterna-
tively, parameter-efficient fine-tuning approaches only introduce a small set of
parameters to rapidly adapt a pre-trained model to downstream tasks, such as
LoRA [26], prompt tuning [30,44,63,79] and adapters [25,71]. Due to their simple
and portable design, prompt tuning techniques have attracted many applications
in a variety of areas [16,23,32,34,89]. However, existing prompt learning-based
methods typically prepend the learnable parameters to the original input tokens,
where lies the information interference issue and eventually causes pre-trained
knowledge loss during the training process.

Vision-language models. Trivial visual-only models extract features from im-
ages and then utilize a fixed head to derive final predictions, constraining their
flexibility across tasks [14, 17,18, 20, 22, 66]. Vision-Language Models (VLMs)
present a solution by leveraging the interaction between image and text descrip-
tions [29,38,53,77,78,80,82,87]. Trained on web-scale image-text pair datasets,
V-L models can identify nearly infinite classes and can be easily transferred
to unseen domains, holding a strong zero-shot ability. However, most previous
VLMs continual learning methods [33,52,61,72,86] have not considered the zero-
shot performance drop during the training process, which can cause a significant
model degradation towards unseen data distributions.

3 Preliminaries

Continual learning protocol. Continual learning aims to sequentially learn
different tasks without forgetting previously learned knowledge. Considering N
sequentially arrived tasks [7-177-2’ o TN }, each task 7 contains a dataset
Dt = {xz,y; 5_\,:117 where x; is an image and y; is corresponding one-hot label
inside current dataset, and N; is the number of image samples. Additionally, a

class name set C* = {c; };\7:21 is included, linking the label index to a category
name used by the VLMs.

Different from previous class- and domain-incremental learning settings, this
work highlights a more practical continual learning setting: Domain-Class Incre-

mental Learning (DCIL). In this setting, domain distribution and classes to be
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identified keep varying among different tasks, i.e. C* # C7 and P(D?) # P(D’)
for i # j, where P represents data distribution of a task dataset.
Vision-language models. Towards the challenging DCIL setting, training a
vanilla image encoder-based model, such as ResNets [22] and ViTs [12], is not
practical for incrementally learning intensely shifted domains and classes. Hence,
pre-trained vision-language models are introduced for their robust zero-shot
transfer capabilities. CLIP [53] consists of an image encoder f and a text en-
coder g, which are trained to generate closely aligned feature representations for
paired image-text samples. At inference time, f first encodes the input image
x into a feature vector f(x). Concurrently, potential class names are embed-
ded into a template, like “a photo of {c}”, and then encoded by ¢ to form text
embeddings {t; }jvzcl The model predictions are determined by the largest simi-
larity scores between image embedding and all text embeddings, formulated as
sj = (f(z),t;), where (-,-) denotes the cosine similarity.

Task-specific prompt learning. Following the success of [73,74], a series of
works [4,27,62] begin to explore the potential of parameter-efficient fine-tuning in
continual learning. A common practice is learning and storing a set of lightweight
prompts for each task, forming a “prompt pool” during the continual learning
phase, formulated as:

P={P,P,, --,Py}, where P; € R*%, (1)

where N is the task number, [ and d are the prompt length and the feature
embedding dimension.

At inference time, well-trained prompts are selected and attached to the pre-
trained frozen model, restoring the learned knowledge. Assume x, € R*4 is the
feature embeddings for a transformer layer h, then we can prepend the prompts
to the &, to generate prompted inputs:

x, = [P} P Plix,] € RUTLIXd (2)

where {P! € Rd}ézl are embedding vectors of selected prompt P and ; repre-
sents the concatenation operation along the token length dimension. With this
implanted knowledge, better image and text feature embeddings are generated,
and the final classification accuracy is improved.

The prompt selection process mentioned above is implemented by query-key
matching. During the continual training stage, average feature representations
I = {I'}Y, for each task are learned by maximizing cosine similarity |73, 74] or
by applying clustering algorithm [72]. When a test sample & comes, a key lookup
regime is performed:

I, = argmax g ( f(zx),I"). (3)

With the most relevant key I, corresponding prompts P, are selected and
attached to the frozen model, performing inference process.
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4 Methodology

4.1 Interference-free Knowledge Integration

Is prepending the best choice? Despite methods that prepend prompt to
input tokens are widely used for their simplicity in implementation, we identified
that they are suffering from issues in two folds.

Firstly, concatenating the prompts with input tokens causes them to interact
during the attention process, and influences the pre-trained knowledge extrac-
tion, which will be discussed below. When the test samples are drawn from the
distribution where the model learned the prompts, the adapted model can pre-
serve relatively satisfactory results. However, once encountering samples with a
distribution shift, this interference could result in model degradation and a loss
of its vital zero-shot generalization ability, causing forward forgetting issues.

Besides, simply prepending prompts inevitably increases the token length
across all transformer blocks, which is not desirable in many scenarios with
token length constraints. In addition, its scalability is limited: a long prompt
context can distract the text encoder from informative class names, resulting in
poor text embedding representation.

The existence of the above issues indicates that prompt tuning-based meth-

ods do not satisfy the “residual property”: we expect learned parameters should
be a residual path paralleled to the frozen backbone, supplementing novel knowl-
edge without affecting the crucial pre-trained knowledge. Therefore, we propose
a Interference-free Knowledge Integration (IKI) scheme to inject newly learned
knowledge into a pre-trained VLM with introducing minimal noise to it.
IKI mechanism. Instead of training a series of prepended prompt vectors for
each task, we focus on self-attention mechanism modification following widely
used parameter efficient fine-tuning methods in NLP field [26,41,67,84]. Recall
the multi-head self-attention [69] mechanism conducted on input tokens x, €
RL*d in transformer layer h. For simplification, we omit the multi-head design
and solely consider the one-head situation, which can be naturally extended to
multi-head scenarios. Input tokens are first transformed to query @, key K and
value V' matrices by linear projections:

Qe =W+ K, =xWE + 05V, =2, WY +bY, (4)

where W € R%>? and b € R? are pre-trained parameters. Then self-attention
calculation is performed to produce an output matrix via

QeKeT Lxd
O = Attn(Q., K. )V, = softmax(—==)V, € R**9 (5)

Vd
exp (z;)

S exp (2;) CA1 constrain the elements in attention results
7 J

Attn(Q., K.) € RE*E sum to one.
Vanilla prompt tuning methods prepend trainable prompts to input tokens,
extending x. € RF*? to @, € RUFLXD Then QK1 € RUFLIXUFL) will be

where softmax(z); =
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Fig. 2: Tllustration of the information interference issue in previous prompt tuning
methods and our proposed DIKI. (a) The existing methods mix attention derived from
the frozen backbone and prepended prompts, which can cause information loss and
finally harm the zero-shot ability. (b) We design a zero-initialized residual attention
mechanism, which injects new information with pre-trained knowledge untouched, to
retain the vision-language models’ zero-shot ability. Distribution-aware integration cal-
ibration is also introduced to further boost performance thanks to the residual property.

computed and passed to a softmax function. Inside softmax calculation, attention
scores of input tokens and prompts interact and affect each other, leading to an
inevitable loss of pre-trained knowledge, as illustrated in Fig. 2 (a).

To address this issue, we compute attention outputs for self-attention within
input tokens and cross-attention between prompts and input tokens separately,
as shown in Fig. 2 (b). In other words, we only train a residual attention branch,
leaving the existing attention score untouched. With newly introduced keys K,
and values V,., the output of our residual attention branch can be formulated as:

QK
Vd

Here the residual output O, € RE¥*4 is derived with an orthogonal path to
the original output Oy, producing no influence on the original attention process.
Finally, the learned knowledge stored in O, is implanted into output by addition.
During continual training stage, we update the learnable keys K, and values
V.. instead of commonly used prompts P. Note that to keep sequence length
unchanged, we didn’t introduce any query parameters.

Ideally, a desirable residual block should not affect the original branch before
being trained on downstream datasets, i.e. at initialization time. Widely used
protocols initialize prompts with uniform or normal distribution, which injects
random noise into the pre-trained VLMs even when no knowledge has been
learned. Specifically, we enforce residual attention addition to be an identity
function by zero-initialize the parameters V.

O, = softmax( )V, where K., V, € R\*?, (6)

_ init __ QeKqT Ixd
O =0+ O —OL+softmax(W)[O] = 0. (7)

Note that we only constrain values V™ to be zero at the beginning, while
keeping K, random initialized. That’s because initializing both K, and V,. to zero
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matrix will prevent K, from updating by gradient flow, and make V,. degenerate
to vectors with same values. We prove this in the supplementary materials.

Since zero-initialization is more like a choice rather than a technique, some
studies [5, 31, 84] have adopted it across various tasks. However, these works
leverage it to ensure a stable and progressive training regime, a concern that is
not, present in DCIL scenarios. We argue that zero-initialization is essential for
our residual attention design to inject new knowledge into the pre-trained VLMs
with minimal noise introduced, which is demonstrated in Sec. 5.2.

4.2 Distribution-aware Integration Calibration

Observations. At inference time, the query-key matching mechanism described
in Eq. (3) is performed to retrieve appropriate learned prompts for the current
test sample. This approach is tailored for conventional continual learning set-
tings, which only considers the backward forgetting mentioned in Sec. 1. How-
ever, when confronted with data from unseen domains, this trivial matching
design is enforced to assign a relatively similar task for test samples, despite
there’s a significant distribution gap between them.

Benefiting from the residual design of our proposed IKI, we can introduce less
noise in such mismatch scenarios compared with previous methods. Nonetheless,
when the discrepancy between training and testing distribution increases, it’s
inevitable to cause model degradation to some extent and hurt the zero-shot
ability that VLMs learned during the pre-train phase.

ZSCL [85] tackles this problem via distillation. They build a reference dataset
with 700k images from ImageNet [8]| to distill pre-trained knowledge from the
original CLIP to the current model at every training step, explicitly performing
rehearsal to avoid forgetting. This approach could be effective, but it relies on
large-scale storage and high computation resources as shown in Tab. 5, making
it impractical under real-world circumstances.

One intuitive solution to this issue is controlling to what extent knowledge is

implanted into the model. However, previous prepending-based prompt tuning
techniques have only two choices: either appending learned prompts or leaving
the original CLIP model untouched. Thanks to the graceful residual property
from our IKI, we obtain the ability to control this paralleled branch.
DIKI: calibrate the integration with distribution. To determine the like-
lihood that a test sample belongs to a learned task, we maintain a feature dis-
tribution [19,50,64,65,68] instead of a single key vector for every task. Here we
simply apply multivariate Gaussian distribution and find it works well. Formally,
we build a N(u?, X%) for task ¢ during training stage:

W =B opif@)] 2 = Eeppi(£(@5) = w7 () =0, (®)

where f (:c;) is the image feature extracted by frozen encoder. With these esti-

mated distributions, the possibility of a test sample being drawn from each A/
can be calculated. Here we compute the logarithm of the probability density as
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a scoring function for input & on each learned task:

S =log o(f(z); p', X°)
1

=—5l(f(@) - p) (Z)7Hf (=) — p') + dlog 27 + log | X7))],

(9)

where ¢ is the probability density function.

Intuitively, a sample with a higher score S is more likely to be drawn from
task i, and parameters K', V. should be introduced for model prediction. Be-
sides, we should also take into account that income sample x might come from
some new distributions, which is suggested if all S* are low. Thus we utilize the
maximum score S = max;c[i,N] S* to weight the residual attention output:

O =0+ M(SO,, (10)

where M is a mapping function that scales the score S to the range [0, 1]. Here we
find a simple Sigmoid function o(x) = H% works well here. We also conduct
experiments in Sec. 5.2 to demonstrate the rationality and correctness of the
calibration technique on IKI outputs.

Empowered by this distribution-aware integration calibration mechanism,
the pre-trained zero-shot ability of VLMs can be retained better by assign lower
weight to unfamiliar images, further resolving the forward forgetting issue.

5 Experiments

Benchmarks. To demonstrate the effectiveness of DIKI under the domain-class
incremental learning setting, we conduct experiments on the recently proposed
MTIL [85] benchmark. MTIL consists of 11 diverse datasets: Aircraft [46], Cal-
tech101 [15], CIFAR100 [37], DTD [6], EuroSAT [24], Flowers [48], Food [3],
MNIST [9], OxfordPet [49], StanfordCars [36], and SUN397 [76]. It’s a very
challenging benchmark with total of 1201 classes and severe data distribution
shift across different tasks, which is infeasible for vanilla image encoder-based
methods. Thus, vision-language models are necessarily included. The Order-I in
original paper is applied. We also introduce the modified MTIL-FS benchmark
for few-shot setting evaluation, in which only 16 samples per class of each dataset
are used for training to simulate the data deficient scenario. More details can be
found in the supplementary materials.

Evaluation metrics. To evaluate both backward and forward forgetting is-
sues mentioned in Sec. 1, we adopt Transfer, Avg. and Last metrics from [85].
Last score is the model performance after all continual training, representing the
degree of backward forgetting and being widely used in conventional continual
learning. For forward forgetting issues, i.e. the loss of zero-shot ability, we evalu-
ate model average accuracy on task i + 1,7+ 2, ..., N after its training on task i,
denoted by Transfer. Lastly, Avg. is the average accuracy across all time steps.
Detailed formulations can be found in the supplementary materials.
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Table 1: Transfer, Avg., and Last scores (%) of different continue learning methods
on MTIL benchmark. Metric “transfer” represents the model zero-shot ability retention
after being trained on each task. t means we reproduce the original methods on vision-
language models.

& ~ S N >
S Sy 58 F g & 8 $| &
s S S SR S S & ¢ RS &
> & ? N & 5 9 S S & S £
ISH S v O 9 Q¥ 1S ¢ <~ O g 3 -
Zero-shot 24.8 929 684 43.8 477 71.4 85.8 59.5  89.1 65.8 62.6 64.7
Upper Bound 62.0 96.2 896 795 989 97.5 927 99.6 94.7 89.6 81.8 89.3
Transfer
LwF [43] v 211 M 745 569 39.1 51.1 526 728 60.6 75.1 30.3 55.9 56.9
iCaRL [55] v 211 M 56.6 44.6 32.7 39.3 46.6 68.0 46.0 774 319 60.5 50.4
LwF-VR [11] v 211 M 771 61.0 40.5 453 544 746 479 76.7 36.3 58.6 57.2
WISE-FT [75] v 211 M 73.5 55.6 356 415 470 683 539 69.3 26.8 51.9 52.3
ZSCL* [8')] v 211 M 783 64.0 429 452 63.5 84.2 56.1 78.9 44.1 64.3 62.2
ZSCL [8’)] v 211 M 86.0 674 45.4 504 69.1 87.6 61.8 86.8 60.1 66.8 68.1
L2Pf [74] X 0.5 M 65.6 509 304 414 493 71.8 36.3 77.5 553 534 53.2
Dualet.T[TB] X 1.8 M 56.7 514 28.7 33.7 456 70.9 59.5 77.7 49.5 504 52.4
S-Prompts [72] X 0.5 M 67.3 494 264 39.7 47.1 70.2 343 789 56.7 522 52.2
DIKI X 1.8 M 92.9 69.0 432 482 674 852 63.0 87.9 63.8 66.2 68.7
Avg.
LwF [43] v 211M | 36.3 869 72.0 59.0 73.7 600 73.6 748 80.0 37.3 58.1 64.7
iCaRL [55] v 211M | 35,5 89.2 722 60.6 688 700 782 623 81.8 41.2 62.5 65.7
LwF-VR [11] v 211 M | 296 877 744 595 724 63.6 77.0 66.7 81.2 43.7 60.7 65.1
WIiSE-FT [75] v 211 M | 26.7 86.5 64.3 57.1 65.7 587 71.1 705 758 36.9 54.6 60.7
ZSCL* [85] v 211 M | 50.7 909 79.8 638 766 773 87.0 719 83.0 52.0 659 72.6
ZSCL [85] v 211 M | 45.1 92.0 80.1 64.3 795 816 89.6 752 889 64.7 68.0 75.4
L2pt |74] X 0.5 M 380 852 782 61.3 729 749 79.7 59.1 82.0 59.7 554 67.9
Dualet.T[TS] X 1.8 M 378 84.3 786 60.1 711 732 79.1 739 823 551 528 68.0
S-Prompts [72] X 0.5 M 375 925 775 582 764 741 788 579 83.0 60.8 54.4 68.3
DIKI X 1.8 M 45.1 95.5 83.1 64.8 79.9 83.5 870 76.2 89.6 67.0 67.1 76.3
Last
LwF [43] v 211M | 263 875 719 66.6 799 669 838 99.6 92.1 66.1 80.4 74.6
iCaRL [55] v 211M | 36,8 93.0 77.0 702 833 885 904 86.7 93.2 81.2 81.9 80.1
LwF-VR [11] v 211 M | 205 89.8 723 67.6 8.5 73.8 85.7 99.6 93.1 733 80.9 76.6
WISE-FT [75] v 211 M | 27.2 90.8 68.0 689 869 740 876 99.6 926 77.8 81.3 7.7
ZSCL* [85] v 211 M | 46.0 923 81.2 724 93.0 921 90.8 99.6 93.3 86.6 81.7 84.5
ZSCL [85] v 211 M | 406 922 81.3 705 948 90.5 91.9 987 939 853 80.2 83.6
L2Pf [74] X 0.5 M 38.0 87.1 84.2 729 86.0 96.1 89.2 99.0 94.1 79.6 76.0 82.0
Dualet.Jf[T%] X 1.8 M 37.8 871 846 T71.8 89.2 96.3 &89.1 99.1 94.5 799 76.5 82.3
S-Prompts [72] X 0.5 M 375 951 83.7 70.2 975 96.5 89.0 99.1 94.0 79.5 75.8 83.4
DIKI X 1.8 M 45.2 95.7 86.3 T72.9 98.0 97.0 89.2 994 942 81.6 76.6 85.1

Comparison methods. We compare our DIKI against both full-parameter
fine-tuning and parameter-efficient fine-tuning methods. For full fine-tuning, we
choose ZSCL, ZSCL* [85], LwF [43], iCaRL [55], LwF-VR [11], and WiSE-
FT [75] following [85]. For parameter efficient ones, L2P [74], DualPrompt [73],
and S-Prompts [72] are selected for the similar task-specific parameter training
procedure to our DIKI. Note that original L2P and DualPrompt are designed for
ViT [12], we reproduce them on CLIP for fair comparisons. More reproduction
details can be found in the supplementary materials.

Implementation details. We adopt CLIP ViT-B/16 [53] as our vision-language
model for fair comparisons. In the training process, we optimize the cross en-
tropy loss between model prediction and ground truth. SGD optimizer with
cosine learning rate scheduler is applied for all experiments, and the learning
rate and batch size are set to 5 and 128, separately. Models are trained with



Table 2: Transfer, Avg., and Last scores
(%) of different continual learning meth-
ods on 16-shot MTIL-FS benchmark. Full
results can be found in the supplementary
materials. Our DIKI can achieve more im-
provement when data is insufficient due to
its non-interfered knowledge implantation
scheme. 7 is equivalent to Tab. 1.

DIKI 11

Table 3: Ablation study of DIKI’s compo-
nents on MTIL benchmark. Our proposed
modules form an integrated whole: zero-
initialization only works with our residual
attention design, and the calibration tech-
nique is designed on top of the residual
branch. Note that our zero-initialization
and calibration techniques only affect zero-

shot ability, i.e. Transfer metric.

‘ Trans. Avg. Last ‘Avera.ge
Zero-shot ‘ 70.1 - - ‘ - Prompt ResAttn Z-init Calib. ‘Transfer Last
ZSCL [85] | 68.3 69.3 740 | 705 v 57.7  84.1
L2Pt [74] 53.9 623 733 | 63.2 v v 57.3 840
DualPrompt! [73] | 57.9 643 747 | 65.6 v 59.9  85.2
S-Prompts [72] 555 63.2 738 | 64.2 v v 63.1  85.0
DIKI 70.3 719 77.1 | 73.1 v v v | 687 851

10 epochs on each task. For trainable parameters K, and V)., we set both the
length [ and training layer depth to 8 as discussed in the supplementary materi-
als. To avoid floating point arithmetic precision problems, a small number 10~7
is added to diagonal elements of covariance matrix X* with minor influence on
final accuracy. All experiments are conducted on one NVIDIA 3090 GPU.

5.1 Main Results

Tab. 1 contains the Transfer, Avg. and Last scores among all methods on MTIL
benchmark. “Extra data” includes memory buffers and reference datasets which
used in distillation [85], and “# Param.” is the number of trainable parameters.
“Zero-shot” results are simply derived from leveraging the original CLIP weight
on each task and perform as a comparison reference for Transfer metric. Note
that Transfer scores can be higher than zero-shot results, because knowledge
learned from current task ¢ may contain some task-invariant information which
can boost the performance of future tasks i + 1,7 + 2, ..., N. “Upper Bound” is
calculated by applying full parameter fine-tuning technique on each separate
dataset, as a guide for Last score.

As indicated by the bold values, our DIKI outperforms the previous state-
of-the-art method [85] across all three metrics with only 0.86% trainable pa-
rameters, while alleviating the requirement for any external data. Thanks to
the task-specific parameter training technique, we can memorize previous tasks’
knowledge without rehearsal buffers and parameter ensemble, maintaining a high
Last score with low computational complexity. Moreover, compared with task-
specific prompt tuning methods (L2P, DualPrompt, and S-Prompts), we achieve
significant improvement on Transfer metric, which shows that our DIKI mech-
anism can effectively inject new information to the frozen backbone without
interfering with pre-trained knowledge.

We also conduct experiments on the 16-shot MTIL-FS benchmark. Abbre-
viated results are shown in Tab. 2 and the full table can be found in the sup-
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Fig. 4: Demonstration of the effect of our
distribution-aware integration calibration.
We evaluate the model, which is only
trained on the first task of MTIL, on the
trained task and unseen tasks, with man-
ually assigned calibration weights. Fixed
larger weights maintain high accuracy on
trained task while lose zero-shot ability,
and vice versa. Our DIKI tailors weight for
different samples during inference time.

Fig. 3: Transfer and Last scores (%) with
different uniform initialization bounds for
residual attention parameters on MTIL
benchmark. A larger initialization value
will not affect the final accuracy (Last
score), but could have a severe adverse im-
pact on the model’s zero-shot ability, due
to the random noise introduced into the
pre-trained model.

plementary materials. Since we only update a small amount of parameters, we
gain more improvement over ZSCL compared to full parameter training. In addi-
tion, with minimal noise introduced, our fully residual IKI design demonstrates
enhanced competitiveness when training data is deficient, compared to other
interruptive prompt tuning methods.

5.2 Analysis

Ablation study. We ablate our proposed modules of DIKI on MTIL bench-
mark in Tab. 3. Firstly we consider Transfer score (i.e. zero-shot ability): from
the first two rows, it can be seen that the zero-initialization mechanism is inef-
fective to prompt tuning methods, because they can still disturb the pre-trained
knowledge by softmax function inside the attention calculation. However, with
our residual attention design, the effect of zero-initialization is activated. They
can work together to avoid introducing irrelevant information to the frozen back-
bone. Thanks to the fully residual property, distribution-aware calibration can
be exploited to further boost performance by identifying unseen distributions.
Considering the Last metric, our interference-free mechanism stores more
task knowledge because of its clear information injection process, thus enhancing
the last state accuracy. However since our zero-initialization and distribution-
aware calibration are designed to improve the retention of pre-trained knowledge,
the addition of them does not result in an increase on Last score.
Effect of zero-initialized residual attention. To demonstrate the effect of
our zero-initialization paradigm, we conduct experiments for different distributed
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initialization strategies on the MTIL benchmark, as shown in Fig. 3. Following
previous common practice [88,89], we choose uniform distribution with different
bounds to initialize our trainable K, and V, in Eq. (6). Results show that with
different initialization values, the model can achieve constant final performance
after being trained on all tasks (Last score keeps invariant). However, as the
initialization bound increases, model’s zero-shot ability degenerates due to the
noise introduced by random initialization (Transfer score is decreasing).

Effect of distribution aware calibration. To demonstrate our calibration
technique, we conduct experiments with manually set calibration weights. Specif-
ically, we train the model exclusively on the first task of MTIL (Aircraft [46]
dataset) and test it on all tasks, including trained and unseen datasets. Here
we replace M(S) in Eq. (10) with fixed values, as shown in Fig. 4. When the
weight is set to 1.0, which means full use of newly learned knowledge, the trained
task accuracy is maximized while the vital zero-shot ability is interfered with.
Conversely, as weight decreases, the zero-shot capability returns, while trained
task accuracy decreases due to the reduced incorporation of new knowledge.

Our distribution-aware attention calibration tailors appropriate weights for
different inference samples by the distribution modeling, allocating higher /lower
weights to samples from learned /unseen domains. It alleviates the need to select
a “balance point” which compromises overall performance.

Effect of IKI on CIL. To val-
idate the universality of the pro-

Table 4: Results of CIL task on the 10-
split CIFAR-100 dataset. We replace the

posed IKI, we evaluate it on the con-
ventional Class Incremental Learning
(CIL) task. Specifically, IKI is in-
tegrated into existing prompt-based
CIL methods, serving as a replace-
ment for their original prepending
mechanisms. Experiments are con-
ducted on the 10-split CIFAR-100
dataset following the common pro-
tocol [73,74], as shown in Tab. 4.
IKI explicitly formulates a knowledge
injection process, thus boosting the
average accuracy by achieving supe-
rior performance on each task. For
the forgetting metric, result of L2P
[73] remains comparable due to the
absence of shared information across
tasks. Conversely, for methods with
shared prompts (DualPrompt [74] and
CODA-P [62]), our non-interference
attention mechanism facilitates the
knowledge shareability and alleviates
the forgetting problem.

prepending mechanism used in previous
prompt-based CIL methods with our IKI
strategy. Its residual property facilitates
knowledge acquisition and reduces noise,
enhancing existing works plug-and-play.

Method ‘ Avg. Acc (1)  Forgetting ()
L2P [74] 83.86+0.28 7.35£0.38

+ IKI 84.61+0.20 7.28+0.31
DualPrompt [73] 86.51+0.33 5.16£0.09

+ IKI 88.77+0.25 4.38+0.13
CODA-P [62] 86.25-0.74 5.024+0.41

+ IKI 87.17+0.35 3.95+0.11

Table 5: Training costs comparisons.

“GPU Mem.” denotes the training require-
ment, and “# Ref img” is the number of
extra images used in the training stage ex-
cept the continual training set. - means no
extra data needed. We achieve higher per-
formance with lower training costs.

Method ‘# Param. Time GPU Mem. +# Ref img

ZSCL [74] 11.3h 96 GB 100k
DIKI 23h  24GB -

211 M
1.8 M
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Fig. 5: Heatmap visualization comparisons. We employ Grad-CAM [58] to evaluate the
model, which only has been trained on Aircraft [46], across unseen datasets OxfordPet
[49], Flowers [48] and Food-101 [3]. It demonstrates that the commonly used prompt-
based methods introduce noise into the model, thus resulting in forward forgetting
issue and model degradation. Our DIKI implants new knowledge in a fully residual
manner, optimizing the retention of pre-trained knowledge.

Training cost analysis. We compare the computational requirement of our
DIKI and previous state-of-the-art method ZSCL [74] in Tab. 5. Benefiting from
our parameter efficient framework, the training process of DIKI only lasts 2.3
hours on a single GPU, while ZSCL requires 4 GPUs, nearly half a day for
training, and extra 100k images to perform distillation. With a much faster
model adaptation speed, our method can be more effective and adoptable in
tackling real-world continual learning problems.

Qualitative visualization results. We implement Grad-CAM [58] on the at-
tention maps of the CLIP visual encoder, following the practice used in [59], as
depicted in Fig. 5. Specifically, we load the model which is only trained on the
first dataset Aircraft [46] of MTIL benchmark, and test it on several subsequent
unseen datasets. We observe that the vanilla prompting way (employed by L2P,
Dualprompt, and S-Prompts) interferes with pre-trained knowledge and under-
mines the zero-shot ability. However, with utilizing our DIKI, the generalization
ability acquired during pre-training is preserved.

6 Conclusions

This study introduced Distribution-aware Interference-free Knowledge Integra-
tion (DIKI) mechanism for domain-class incremental learning. DIKI preserves
the pre-trained knowledge of VLMs while effectively implanting new task infor-
mation, without heavy computation and external data. DIKI infuses new knowl-
edge into a frozen backbone in a fully residual manner, effectively mitigating
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the forward forgetting issue. A distribution-aware integration calibration tech-
nique is also integrated, which controls the information injection for data from
unseen distributions. Experiments show that DIKI surpasses the previous SOTA
method with only 0.86% trainable parameters.

Limitations and future work. Our DIKI follows a task-specific tuning paradigm,
where the training on different tasks is independent. Although some recent CIL
research works have verified the effect of sharing knowledge across tasks [62,73],
we find these solutions are impractical within the DCIL context. Experiments
are conducted in the supplementary materials. We attribute this to the signifi-
cant domain gap among DCIL datasets, which hinders the shareability of knowl-
edge from different tasks. Future works could explore suitable knowledge-sharing
strategies tailored to the DCIL problems.
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A Proof of the Initialization Strategy in Eq. (7)

In Eq. (7), we stated that only values V™i* should be initialized to zero, while
_ keys K, need to be random at the beginning. We argue that initializing both K.
and V,. to zero will result in K, remaining zero throughout the whole training
Qprocess, and cause V,. to degenerate into a matrix where all vectors are identical.
(/) Here, we provide a brief proof.
Recall the self-attention process for a single query vector ¢ € R?, where d

is the model embedding dimension. Note that in this proof, subscripts m and ¢
= denote the corresponding vectors of a matrix, while n and 5 denote subscripts
for the individual elements within a vector.

We first derive the attention vector z with

d
> i1 G K
vd o
(O where K € R*? is the trainable key matrix, and the subscript represents tak-

#ing the corresponding element. Then a softmax function will be applied to get
 Nnormalized attention score a:

\Y

[C

z€R! (A.1)

Zm =

7.05342v
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Finally, the layer output vector o of the input query q can be derived with
l
0, = Zaﬂ/;,n, ocR? (A.3)
i=1

where V' € R*? is the trainable value matrix.

Now we prove our statement with these preliminaries.
(1) First we discuss the situation that both key K and value V matrices are
initialized to zero. Here we omit the multi-layer design of transformers and focus
on one single attention layer. Assume that we have ground truth for output
vector o, and then we can get the training loss £. Then we can calculate the
derivative of £ with respect to K and V.

(i) The first training step.

Here we use the parenthesized superscript the denote the parameter after the
corresponding training step. Before the first training step, we have

K© = v = [g]'*d (A.4)
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For the derivative of £ with respect to K,(r(L)?n, we have

d (0)

oL o oL an

LooL (00 9al

=2 | 2 5 (A-5)
j=1 80] i=1 aaz 8Km7n

B zd: oL Zl: 90\” 9a{? 920
2 560 \ 2+ 5a 0,0 55,

Based on Egs. (A.1) and (A.3), we know

80(0) (0)

i_yo 9 (A.6)

a9 T O

and % is an arbitrary value.
J

Then we discuss the value of 6‘“ . For softmax function, it’s easy to prove
that:
%: as(1—as) ,s=t (A7)
Ozt —asa; 8 F£ L
With Egs. (A.5) to (A.7), we can get the final derivative value:
oL Zd: o [ 00 9ald 929 ) z’: 90" 9a{? 92
OK, = 00 \ dafy) 025 0K\, (i, 00 025 0K,
~ oL (0) 0)(_ g0
— 0) (0 0) 0) (0
_Za o | Vin.j ay) (1 - ajy Z Vi a;’)qn
j=1 Oj i=1,i#m
(A.8)

With Eq. (A.4), it’s easy to get:

oL

thus after the first parameter update, we get
KW = [0)'*d (A.10)
For the derivative of £ w.r.t. V,,, ,,, we have

oL oL 9o A
© ~ 500 71,0 (A-11)
an7n aon an,TL
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With Egs. (A.1), (A.2) and (A.4), we can get

0
n 1
OVin > izl 0
nd aaTi is an arbitrary value.
So we have o7 | or
© = 170 (A-13)
OV Loy
We can find that The value of (0) is independent of m, which means the
gradients of all vectors in V' are the same, formulated as
e
v — : c Rixd (A.14)
e

where e(!) is arbitrary vector.

(i) The subsequent training steps.

After the first training step, we get new parameter values according to
Eqgs. (A.10) and (A.14). Consider the second training step. Substituting Eqs. (A.10)
and (A.14) into Eq. (A.8), we get:

d

oL oL (1) 4(1) (1) W, (1) (1)
W—Zm Va1 —al)g,+ > Vi)(-a;’a")qn
myn  j=1 00; i=1,i#m
(A.15)
Since for all 4, V;(]) are the same and az(.l) = %, we can simplify Eq. (A.15)
to
d !
oL oL ) (1) 1) (1
Syt (o S
8K7(n,)n j=1 aog ) i=1,i#m
_zd: oL V(l) (l—l l—l) (A.16)
- 1) "' m,jdn 2 72
j=1 80§ ) J l l
=0
So the K@ is still zero matrix:
K® = [0]*4 (A.17)
Since a!) = q©) = %, the derivative of £ w.r.t. VW(LI,)1 becomes
oL 1 oL
= (A.18)

oV T 1 oo



4 L. Tang et al.

Table 1: Results of our DIKI with cross-task knowledge-sharing strategies on MTIL
benchmark. The G-Prompt [6] and the Attention-based Prompting (AbP) mechanism
[4] are reproduced and integrated into our DIKI. Both two strategies don’t work under
the DCIL setting due to the severe domain gap between tasks.

| Transfer  Avg. Last | Average
DIKI 68.7 76.3 85.1 76.7
+ G-Prompt 67.7 74.0 81.9 74.5
+ AbP 66.5 72.6 74.3 71.1

which is still independent of m, thus we have

o2

V() — c Rixd (A.19)
(2)
e

where e(?) is arbitrary vector.

It’s easy to find that K V() share the same properties as K1 V1),

thus K remains zero throughout the subsequent training process, and V is
degenerated into a matrix where all vectors are identical.
(2) We then discuss the scenario that key K is randomly initialized and value
V is zero-initialized. It’s obvious that Eqgs. (A.12) to (A.14) no longer valid,
resulting in V() becoming an arbitrary matrix. After that, all subsequent K (*)
and V) can be correctly trained.

B Effect of Cross-task Knowledge-sharing Strategies

As we discussed in the “Limitations and future work” section, recent literature
has demonstrated the effectiveness of sharing knowledge across tasks in the class
incremental learning setting, where the domain gap between tasks is relatively
small. Here we implement two notable methods, G-Prompt from DualPrompt [6]
and Attention-based Prompting from CODA-Prompt [4], into our DIKI frame-
work, and test them under the challenging DCIL protocol, as shown in Tab. 1.
G-Prompt is a set of shared prompts that are trained and utilized by all tasks,
and the Attention-based Prompting mechanism weights prompts from different
tasks based on key-similarity matching results, which can be naturally replaced
by our distribution scores {S*} in Eq. (9). Results show that the integration of
cross-task knowledge-sharing strategies leads to a decrease on Last metric, while
Transfer scores remain comparable. It indicates that this degradation is caused
by backward forgetting due to the sharing of task-specific knowledge. This obser-
vation underscores the need for further research into effective knowledge-sharing
mechanisms specifically tailored for the DCIL setting.
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C Algorithm Procedure

We elaborate on the training and test process of our proposed DIKI in Algo-
rithms 1 and 2. We train separate K’ and V! and maintain corresponding p
and X" for each task during the training phase. At test time, the u’ and X° are
used to identify the task information for the test sample, and K! and V! are
injected into the frozen backbone to reach better performance.

Algorithm 1 Training process of DIKI.

Input: Training datasets D' = {x;,y;}é\zl with class names C* = {cg}ﬁl for each

task, pre-trained image encoder f and text encoder g, learning rate 7, batch size Nps,
max iterations Imax.

1: fore=1,---,N do
2 Bfeat - {} )
3 for j=1,---,N*do
4: Calculate image feature f(z})
5: Append f(z}) to Breat
6: end for
7 Calculate p* and X* with Bieat > Eq. (8)
8 Initialize K* with uniform distribution and V;* with zero > Eq. (7)
9: for iter =1,--- , Imax do
10: Fetch mini-batch samples {z%, }jvzbi from D’
11: Insert K and V;’ to f and g, get f' and ¢’ > Eq. (6)
12: Calculate image features {f’(azz)};\f:bi
13: Calculate class name text embeddings {g'(cé)};\gl
14: Compute cosine similarities between them s;x = (f'(z%), ¢'(ck.))
15: Get final predictions with softmax p; i, = %
16: Calculate Cross-Entropy loss £ = CELoss(p, y*)
17: Update K; = K; —nV i L
18: Update Vi = Vi —nV . L
19: end for i
20: end for

D Details about Reproduction

L2P [7] We reproduce L2P on CLIP by simply prompting both the visual and
text encoders. In the original L2P paper, the updated prompts are selected by a
key-matching mechanism during the training stage, and the diversity of prompt-
selection is guaranteed by a frequency-based weight technique. However, in their
official code repository', they mask specific prompts for different tasks. We follow
the implementation of their official code.

! https://github.com/google-research/12p
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Algorithm 2 Test process of DIKI.

Input: Test dataset D; = {,’Ifj}j-\]:tl with class names C* = {c} };V:CD
encoder f and text encoder g, currently trained parameters {K;f, Vf}f&fr, distribution
parameters {p’, 3} Nevr,

1: for z in D; do

pre-trained image

2: Calculate image feature f(x)

3: Compute the logarithm of the probability density {S*}Neur > Eq. (9)
4: Get max value S and corresponding index s

5: Calculate the integration calibration weight M(S) > Eq. (10)
6: Insert K7 and V,° to f and g, get f' and ¢’ > Eq. (6)
T Calculate image feature f'(x) with calibration weight > Eq. (10)
8: Calculate text embeddings {g/(cj)};-\fl with calibration weight > Eq. (10)
9: Compute cosine similarities between them s; = {f'(z), ¢'(c))

10: Compute predictions with softmax p; = ZeXp(sj )

S exp(on) and get classification results
11: end for

At test time, we only select the top-1 prompt because, under the domain-
class incremental learning setting, it is challenging to extract domain-invariant
knowledge, and most of the learned knowledge is non-shareable. Adopting the
original setting (i.e., top-5) would significantly degrade performance.

Regarding other hyper-parameters, the prompt length is set at 32, the learn-

ing rate is set to 0.05, and the weight of the key match loss is set at 5. The
remaining training settings are the same as those in our DIKI.
DualPrompt [6] Similar to L2P, we simply prompt both the visual and text
encoders to adapt DualPrompt to CLIP. Following the original paper, the prefix
tuning is applied. DualPrompt separate prompts into G(eneral)-Prompt and
E(xpert)-Prompt. However, similar to our discussion in Sec. B, we find that
the G-Prompt will cause a significant performance drop. This is because the
knowledge learned in different tasks is mostly non-shareable, different from class-
incremental settings. So we remove the G-Prompt to prevent degradation.

Regarding other hyper-parameters, the prompt length and depth are both
set at 8, the learning rate is set to 5, and the weight of the key match loss is set
at 0.1. The remaining training settings are the same as those in our DIKI.
S-Prompts [5| S-Prompts is originally proposed on CLIP model, we simply
adopt it on MTIL benchmark. Toward hyper-parameters, the prompt length is
set at 32, the learning rate is set to 0.05. The remaining training settings are the
same as those in our DIKI.

E Details about MTIL Benchmark

E.1 Datasets

Authors introduced two different dataset orders in the original paper [7]. The
first, Order-I, follows an alphabetical sequence: Aircraft, Caltech101, CIFAR100,
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DTD, EuroSAT, Flowers, Food, MNIST, OxfordPet, StanfordCars, SUN397. The
second, Order-I1, is arranged randomly: StanfordCars, Food, MNIST, OxfordPet,
Flowers, SUN397, Aircraft, Caltech101, DTD, EuroSAT, CIFAR100. Order-I is
adopted for results presented in Tab. 1 of the manuscript, and experiments were
also conducted on Order-II, as indicated in Tabs. 9 to 12.

For our modified MTIL-FS benchmark in a few-shot setting, we only use
16 samples per class for model training. We exclude EuroSAT, MNIST, and
OxfordPet due to their severely insufficient training samples caused by their
small number of classes. More discussion on this can be found in Sec. G. To
maintain reproducibility, we adopt the data splits from the official repository of
CoOp [10], which is widely used by many CLIP-based few-shot learning works.
Since CIFAR100 is not included by CoOp, we generate its training set by random
selection with a random seed 42.

E.2 Metrics

Here we formulate the Transfer, Avg. and Last metrics.

Assume that p§.i) is the model’s accuracy on task j after being trained on

task i, then the Transfer, Avg and Last metrics for task j can be calculated as:
L 0
Transferj:j_—lzz_;pj , j:2,3,"',N

N
1 i .
AVgJ:NZPE)v ]:1727”'7N
1=1

Lastj :pgj\[)7 j:1,2’~..’N

where N is the number of tasks. It’s clear that Transfer metric can indicate the
zero-shot capability while Last metric shows the extent of backward forgetting.

F Additional Results

Tab. 2 shows the results of Transfer, Avg., and Last metrics on MTIL bench-
mark with Order-1I, and Tab. 3 provides full results of different continue learning
methods on our modified 16-shot MTIL-F'S benchmark. Our DIKI shows consis-
tent improvements compared to previous methods.

For the selection of hyper-parameters, we perform a search on the structure
parameters of our introduced K, and V. in our IKI. Length denotes the vector
number [ in Eq. (6), and depth indicates the number of layers implemented,
starting from the input layer. Given that our distribution-aware attention scal-
ing scheme ensures minimal variation in the Transfer metric across different
hyper-parameters, we focus on demonstrating the Last scores with varying pa-
rameters, as depicted in Fig. 1. Generally, an increase in the number of trainable



8 L. Tang et al.

Depth

12| 77.0 | 83.0

10| 76.7 | 83.0

8 | 76,5 | 829

4 | 76.0 | 82.7

2 | 757 | 821

1] 752 | 806 | 825 | 82.6 | 82.6

1 2 4 8 12 16 Length

Fig. 1: Last score (%) with different IKI structure hyper-parameters. Setting high-
lighted in bold was chosen in our all experiments.

parameters correlates with improved model accuracy. But we observe diminish-
ing returns when depth and length exceed 8, thus we select a configuration of
(8, 8) for all our experiments.

We also record the task assignment results during the test phase, as shown
in Tab. 4. When the model is only trained on task i and earlier tasks, the
task assignment results for samples from unseen tasks ¢ + 1,--- , N are always
incorrect. Thus we omit the meaningless upper triangular area and only consider
the rest part. Results demonstrate that our task assignment on learned tasks
holds high accuracy. Note that the misassignment of samples from unseen tasks
is also resolved by our distribution-aware integration calibration.

Additionally, Tabs. 5 to 8 shows per training step accuracies of different
methods on MTIL benchmark with Order-I, Tabs. 9 to 12 shows that results
with Order-II, and Tabs. 13 to 17 shows per training step accuracies of different
methods on MTIL-FS benchmark.

G More Limitations and Future Directions

Because of the use of parameter-efficient fine-tuning techniques, we could achieve
high performance with significantly fewer trainable parameters. However, the
knowledge learned by such a small number of parameters is definitely less than
that obtained through full-parameter fine-tuning, as evident from the per-step
accuracies table. For example, if we compare Tab. 5 and the Tab. 11 from the
ZSCL paper [9], it’s easy to find that our DIKI achieves lower accuracy when
the model is tested immediately after training on the some datasets compared
to ZSCL. The reason for our higher final performance is that DIKI can precisely
memorize previously trained knowledge, while ZSCL suffers from backward for-
getting issues. One future direction is to find a parameter-efficient fine-tuning
method that can store more information to mitigate the gap.
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Table 2: Transfer, Avg., and Last scores (%) of different continue learning methods
on MTIL benchmark with Order-II. Metric “transfer” represents the model zero-shot
ability retention after being trained on each task. { means we reproduce the original
methods on vision-language models.

N & S S
fvb(v f °§/ &§ 0@ é\ g’\\) b:/ OJY(S Q’} tvég)
3 » > N NS & =~ & & Q S N <
P & RS & 9 S & N &8 & L
IS S g & 5 o & § v O Q& O N4
Zero-shot 65.8 85.8 59.5 &9.1 71.4  62.6 24.8 929 43.8 47.7 684 64.7
Upper Bound 89.6 927 99.6 94.7 975 81.8 620 96.2 795 989 89.6 89.3
Transfer
LwF [2] v 211 M 87.8 585 71.9 46.6 57.3 128 81.4 345 345 46.8 53.2
iCaRL [3] v 211 M 86.1 51.8 67.6 504 579 11.0 723 31.2 327 48.1 50.9
LwF-VR [1] v 211 M 88.2 570 714 50.0 580 13.0 82.0 344 293 476 53.1
WISE-FT [8] v 211 M 87.2 576 67.0 450 54.0 129 786 355 284 443 51.0
ZSCL* [9] v 211 M 88.8 56.7 755 588 625 161 87.0 420 44.0 66.5 59.8
ZSCL [9] v 211 M 88.3 57.5 84.7 68.1 64.8 21.1 88.2 45.3 55.2 68.2 64.2
L2Pt [7] x 05M 70.6 30.7 783 428 383 174 753 27.4 23.1 20.7 | 425
DualPmt.  [6] x 1.8M 799 469 85.2 51.3 451 9.3 827 299 429 47.2 52.1
S-Prompts [5] x 05M 59.8 46.2 67.7 47.5 43.8 13.5 76.8 314 226 435 45.3
DIKI x 1.8M 85.8 59.8 89.1 71.8 62.6 24.3 93.3 42.7 468 67.8 | 64.4
Avg.
LwF [2] v’ 211M | 490 770 92.1 859 66.5 672 209 84.7 446 455 50.5 62.2
iCaRL |[3] v 211M | 520 759 774 746 584 59.3 11.7 79.6 42.1 43.2 51.7 56.9
LwF-VR [1] v 211M | 449 758 91.8 853 635 67.6 169 849 44.0 40.6 51.3 60.6
WiSE-FT [§] v 211M | 526 793 919 839 634 652 233 837 454 40.0 482 61.5
ZSCL* 9] v 211M | 720 89.8 91.7 879 788 715 385.1 89.0 514 539 685 71.8
ZSCL [9] v 211M | 8.7 91.3 91.1 910 829 725 336 89.7 53.3 62.8 69.9| 74.5
L2PT [7] x 05M | 8.1 874 867 89.6 76.8 59.1 27.7 795 399 346 26.5 62.5
DualPmt.  [6] x 1.8M | 786 834 89.7 91.7 80.0 624 232 850 41.3 51.6 50.7 67.5
S-Prompts [5] x 05M | 79.2 86.5 895 87.0 782 615 255 836 419 36.3 47.2 65.1
DIKI x 1.8M | 81.9 889 92.1 92.8 87.7 703 343 94.2 515 56.1 695 | 74.5
Last
LwF [2] v 211 M | 346 69.6 993 887 61.1 725 325 881 656 90.9 879 71.9
iCaRL [3] v 211 M | 460 815 913 828 665 722 163 91.6 681 832 87.8 71.6
LwF-VR [1] v 211M | 2714 612 994 863 606 70.7 234 830 61.3 84.3 88.1 68.3
WISE-FT [8] v 211M | 356 T76.9 99.5 89.1 621 71.8 27.8 90.8 67.0 856 87.6 72.2
ZSCL* [7] v 211M | 635 89.6 99.2 924 845 783 55.2 924 746 974 88.6| 83.3
ZSCL [7] v 211M | 782 91.1 976 925 874 782 450 923 727 96.2 86.3 83.4
L2PT [7] x 05M | 8.1 891 991 938 962 76.5 40.1 86.9 735 86.3 84.2 82.3
DualPmt.f [6] X 1.8 M 78.6 89.3 99.2 94.1 96.5 76.8 39.8 89.0 71.6 90.7 84.9 82.8
S-Prompts [5] x 05M | 79.2 89.1 99.1 94.3 958 76.3 399 955 70.1 976 844 83.8
DIKI x 1.8M | 81.9 892 994 94.3 96.8 76.7 463 959 7T4.8 98.3 86.6 | 85.5

In our modified MTIL-FS benchmark, we exclude three datasets for their
lack of classes. This is because task-specific prompt learning methods (L2P [7],
DualPrompt [6], S-Prompts [5], DIKI) can’t obtain robust task identities with
such limited training samples, leading to test performance degradation due to the
inaccurate task assignments. This indicates a prevalent challenge associated with
task-specific prompt learning methods: their heavy dependence on accurate task
assignments. ZSCL [9] leverages knowledge distillation from large-scale reference
datasets to alleviate the need for the task assignment process, which requires
extensive computation and storage resources. Future works can tackle this issue
by developing more robust task identification techniques or introducing task
assignment-free prompt learning methods.
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Table 3: Full results of different continue learning methods on 16-shot MTIL-F'S bench-
mark. f means we reproduce the original methods on vision-language models.

& : S S
L N
g & ¥ 5 < & & &
S & 8 i 9 & > SR &
&2 § oy & IS S & S £
QK N O O Q S S g5 N
Zero-shot 24.8 929 684 438 714 858 658 62.6 | 64.4
Upper Bound 62.0 962 896 795 97.5 927 89.6 81.8 | 86.1
Transfer
ZSCL [9] v 211M | 87.3 677 45.4 678 86.6 59.7 634 | 68.3
L2PT [7] x 05M 66.7 543 306 473 715 54.6 524 | 53.9
DualPmt.  [6] x 18M 788 644 320 51.7 775 494 51.3 | 57.9
S-Prompts [5] x  05M 70.3 527 31,5 548 740 554  50.0 | 55.5
DIKI x 1.8M 92.7 68.8 441 70.0 862 65.1 65.5 | 70.3
Avg.
ZSCL [9] v 211M | 335 905 747 585 797 87.7 648 648 | 69.3
L2Pt [7] x 05M | 302 845 701 519 69.6 77.1 600 552 | 623
DualPmt.T [6] x 1.8M | 365 895 725 527 723 80.8 56.1 54.2 | 64.3
S-Prompts [5] x 05M | 306 8.8 700 517 743 785 60.7 53.0 | 63.2
DIKI x 1.8M | 41.3 95.3 76.5 585 82.2 864 68.2 66.6 | 71.9
Last
ZSCL [7] v 211M | 277 909 744 647 902 89.2 80.6 74.6 | 74.0
L2Pt [7] x 05M | 302 87.1 754 647 91.9 864 761 74.7 | 73.3
DualPmt.t [6] x 18M | 365 91.0 751 651 929 862 762 742 | 747
S-Prompts [5] x 05M | 306 892 758 638 939 862 767 739 | 73.8
DIKI x 18M | 41.3 95.6 79.0 67.3 944 868 77.6 744 | 77.1

Table 4: Task assignment accuracy (%) for test data. Each row represents the assign-
ment accuracy on every dataset of the model trained after the corresponding task.

S S & &
& f $ g & 4 @& s <&

SN g &5 & & & F & 5

v O O IS 1S < S 9 G
Aircraft 100.0 - - - - - - - - - -
Caltech101 99.0 99.8 - - - - - - - - -
CIFAR100 99.0 99.8 99.6 - - - - - - - -
DTD 99.0 99.6 99.6 97.5 - - - - - - -
EuroSAT 99.0 99.6 99.6 97.5 994 - - - - - -
Flowers 99.0 99.1 99.6 97.0 994 97.7 - - - - -
Food 99.0 98.9 99.6 95.9 994 97.7 99.6 - - - -
MNIST 99.0 98.9 99.6 95.9 994 97.7 99.6 99.6 - - -
OxfordPet 99.0 98.4 99.6 95.9 994 97.7 99.6 99.6 96.8 - -
Cars 99.0 98.3 99.6 959 994 97.7 99.6 99.6 96.8 99.7 -

SUN397 98.3 95.5 995 943 993 977 99.0 99.6 96.0 99.1 99.3
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Table 5: Accuracy (%) of our DIKI on the MTIL benchmark with order-I. Each row
represents the performance on every dataset of the model trained after the correspond-
ing task. , , and metrics are shown in color.

N Q &
N S & ()
& 0§ & Yo & F $
v Q)CJ % Q O‘) 5 Q)
5 > N &8 -9 S & <& S
v O O QX 1S € < O (G
Transfer 92.9 69.0 43.2 482 674 852 63.0 879 63.8 66.2 68.7

Aircraft 45.2 929 68.4 439 477 T71.3 858 59.8 89.2 658 624
Caltech101 45.1  95.7 69.5 429 49.0 66.4 858 50.3 87.7 635 66.7
CIFAR100 45.1 95.7 86.3 429 474 664 858 66.1 87.7 635 66.7

DTD 45.1  95.7 86.3 729 487 66.3 84.5 66.1 87.7 635 66.6
EuroSAT 45.1  95.7 86.3 729 98.0 66.3 845 66.1 87.7 63.5 66.6
Flowers 45.1  95.7 86.3 729 98.0 97.0 84.5 66.1 87.7 635 66.6
Food 45.1  95.7 86.3 729 98.0 970 89.2 66.1 87.7 63.5 66.6
MNIST 45.1  95.7 8.3 729 98.0 97.0 89.2 994 87.7 635 66.6
OxfordPet 45.1 95.8 86.3 729 980 97.0 89.2 994 942 63.5 66.6
Cars 45.1  95.8 86.3 729 980 97.0 89.2 994 942 815 66.6

SUN397 45.2  95.7 86.3 729 980 97.0 89.2 994 942 816 76.6 85.1

Avg. 45.1  95.5 83.1 64.8 799 835 87.0 762 896 670 67.1 76.3

Table 6: Accuracy (%) of L2P on the MTIL benchmark with order-I. Each row rep-
resents the performance on every dataset of the model trained after the corresponding

task. , , and metrics are shown in color.
X Q 5
QS S ()
© > T o & R &
v Q)CJ Q) Q) Q C’) L Q)
& & T Q S A S NS o
N IS SN S & & S
v O S ¥ & & <~ 0O g 3
Transfer 65.6 50.9 304 414 493 71.8 363 775 553 534 53.2
Aircraft 38.0 65.6 40.7 16.6 26.4 22.1 439 399 54.8 57.8 41.8

Caltech101 38.0 87.1 61.1 373 43.7 564 T7.1 474 80.7 55.0 54.2
CIFAR100 38.0 87.1 84.2 373 476 564 T7.1 334 80.7 550 54.2

DTD 38.0 87.1 84.2 729 476 558 776 334 80.7 55.0 549
EuroSAT 38.0 87.1 84.2 729 974 558 776 334 80.7 550 547
Flowers 38.0 87.1 84.2 729 974 96.1 776 334 80.7 55.0 54.6
Food 38.0 87.1 84.2 729 974 96.1 89.2 334 80.7 550 54.6
MNIST 38.0 87.1 84.2 729 860 96.1 89.2 99.0 80.7 55.0 54.6
OxfordPet 38.0 87.1 84.2 729 860 96.1 89.2 99.0 94.1 55.0 549
Cars 38.0 87.1 84.2 729 86.0 96.1 89.2 99.0 941 79.6 54.9

SUN397 38.0 87.1 84.2 729 86.0 96.1 89.2 99.0 941 79.6 76.0 82.0

Avg. 38.0 85.2 782 613 729 749 79.7 59.1 820 59.7 554 67.9
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Table 7: Accuracy (%) of DualPrompt on the MTIL benchmark with order-I. Each
row represents the performance on every dataset of the model trained after the corre-
sponding task. , , and metrics are shown in color.

N Q &
S S
& 0§ O T 5 £ $
v Q)CJ %) % Q O‘) 5 Q)
& S Q{V Q O A > & 9 < ~
& & N & F RS S & & S
v O 9 ISENS) S € < O F S
Transfer 56.7 51.4 28.7 33.7 456 709 59.5 77.7 495 504 524
Aircraft 37.8 56.7 35.8 185 30.6 31.6 525 450 61.6 46.7 20.1

Caltech101 37.8 87.1 67.0 339 537 529 73.7 480 80.0 499 544
CIFAR100 37.8 87.1 84.6 339 252 529 737 647 80.0 499 544

DTD 37.8 87.1 84.6 71.8 252 453 751 647 80.0 499 53.3
EuroSAT 37.8 87.1 84.6 71.8 970 453 751 647 80.0 49.9 533
Flowers 37.8 87.1 84.6 71.8 970 96.3 751 647 80.0 49.9 538
Food 37.8 87.1 84.6 71.8 970 96.3 89.1 64.7 80.0 49.9 53.7
MNIST 37.8 87.1 84.6 71.8 892 963 89.1 99.1 80.0 499 53.7
OxfordPet 37.8 87.1 84.6 71.8 89.2 963 89.1 99.1 945 499 53.8
Cars 37.8 87.1 84.6 71.8 89.2 96.3 89.1 99.1 945 799 534

SUN397 37.8 87.1 84.6 71.8 89.2 96.3 89.1 99.1 945 799 76.5 823

Avg. 37.8 84.3 786 601 711 732 79.1 739 823 551 528 68.0

Table 8: Accuracy (%) of S-Prompts on the MTIL benchmark with order-I. Each row
represents the performance on every dataset of the model trained after the correspond-

ing task. , , and metrics are shown in color.
>~ QS %
QS S ()
& > T e & F $
<4 Q)CJ Q) Q) Q C’) 5 3
&S & Q O £ SO RS S
N IS SN S & & S
v O O S S S e .
Transfer 67.3 494 264 39.7 471 70.2 343 789 56.7 522 52.2
Aircraft 37.5 67.3 40.1  12.8 23,5 153 41.1 37.5 477 579 379

Caltech101 37.5 95.0 58.8 332 365 56.5 773 391 834 56.5 54.5
CIFAR100 37.5 95.0 83.7 332 493 56.5 773 327 834 56.5 545

DTD 37.5 95.0 83.7 70.2 493 53.5 752 327 834 56.5 53.7
EuroSAT 375 95.0 83.7 70.2 975 bH3.5 752 327 834 56.5 537
Flowers 37.5 95.0 83.7 702 975 96.5 752 327 834 56.5 53.7
Food 375 95.0 83.7 70.2 975 96.5 89.0 327 834 56.5 53.7
MNIST 375 95.0 83.7 702 975 96.5 89.0 99.1 834 56.5 53.7
OxfordPet 37.5 95.0 83.7 70.2 975 965 89.0 99.1 94.0 56.5 53.7
Cars 375 95.0 83.7 702 975 96.5 89.0 99.1 94.0 79.5 53.7

SUN397 375 95.0 83.7 70.2 975 96.5 89.0 99.1 940 79.5 758 834

Avg. 375  92.5 775 582 764 741 788 579 83.0 608 544 68.3
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Table 9: Accuracy (%) of our DIKI on the MTIL benchmark with order-II. Each row
represents the performance on every dataset of the model trained after the correspond-

ing task. , , and metrics are shown in color.
%o N Q
& & e & s 5 o Q?Q
. v L8 g £ § & Q9 & X
§ & E F S5 £ 5 L8
g & S 0 & & v O Q& O
Transfer 85.8 59.8 &9.1 71.8 62.6 24.3 93.3 42.7  46.8 67.8 64.4
Cars 81.9 85.8 59.7 89.2 71.5 62.6 24.9 92.9 44.0 47.6 68.4
Food 81.9 89.2 599 &89.1 71.9 62.7 24.9 93.1 43.8 47.7 68.5
MNIST 81.9 89.2 99.3 &89.1 71.9 62.7 24.9 93.1 43.8 47.7 68.5
OxfordPet 81.9 89.2 99.3 942 719 62.6 24.9 93.0 43.8 47.7 68.4
Flowers 81.9 89.2 99.3 94.2 96.7 62.6 24.9 93.0 44.0 47.7 68.4
SUN397 81.9 89.2 993 942 96.8 76.7 21.2 94.0 40.8 44.6 67.4
Aircraft 81.9 89.2 99.3 94.2 96.8 76.7 46.3 94.0 40.8 44.6 67.4
Caltech101 81.9 &89.2 99.3 94.3 96.8 76.7 46.3 95.9 40.7 44.7 67.2
DTD 81.9 89.2 993 94.3 96.8 76.7 46.3 95.9 74.8 48.4 66.8

EuroSAT 81.9 89.2 99.3 943 96.8 76.7 46.3 959 748 98.2 66.8
CIFARIO0 81.9 &89.2 994 943 96.8 76.7 46.3 959 748 983 86.6 85.5

Avg. 81.9 889 921 928 87.7 703 343 942 515 56.1 69.5 74.5

Table 10: Accuracy (%) of L2P on the MTIL benchmark with order-II. Each row rep-
resents the performance on every dataset of the model trained after the corresponding

task. , , and metrics are shown in color.
%o Sf Q
s £ s & & F &S
x> £ 4 g L §F 9 Q9 F =
ARG <A AN S S & 8
g & S 0 g & v O ISENS) S
Transfer 70.6 30.7 783 428 383 174 75.3 274 23.1 20.7 42.5
Cars 80.1 70.6 41.1 67.6 421 44.6 17.5 79.0 27.8 24.3 51.8
Food 80.1 89.1 20.3 &83.7 56.9 50.1 17.5 84.7 28.9 25.1 52.0
MNIST 80.1 89.1 99.1 83.7 56.9 29.8 17.5 44 .2 14.4 12.7 12.9
OxfordPet 80.1 89.1 99.1 93.8 15.2 30.0 17.5 69.4 14.4 12.7 12.9
Flowers 80.1 89.1 99.1 93.8 96.2 37.1 17.5 77.8 27.8 127 12.9
SUN397 80.1 89.1 99.1 93.8 96.2 76.5 16.8 89.7 35.9 29.8 12.9
Aircraft 80.1 89.1 99.1 93.8 96.2 76.5 40.1 82.3 35.9 29.8 12.9
Caltech101 80.1 &89.1 99.1 93.8 96.2 76.5 40.1 86.9 33.8 29.8 12.9
DTD 80.1 89.1 99.1 93.8 96.2 76.5 40.1 86.9 73.5 30.8 12.9

EuroSAT 80.1 89.1 99.1 93.8 96.2 76.5 40.1 869 735 &86.3 129
CIFAR1IO0 80.1 &89.1 99.1 93.8 96.2 765 40.1 86.9 735 86.3 84.2 82.3

Avg. 80.1 874 86.7 89.6 76.8 59.1 277 795 399 346 265 62.5
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Table 11: Accuracy (%) of DualPrompt on the MTIL benchmark with order-I1. Each
row represents the performance on every dataset of the model trained after the corre-

sponding task. , , and metrics are shown in color.
%o N Q
L S < Q?Q
v L& g L F & Q9 F =
S 9 ~ ;} S § & ~ K & $
F & <~ 9O & 5 v J Q& O
Transfer 79.9 469 85.2 51.3 45.1 9.3 82.7 29.9 429 47.2 52.1
Cars 78.6 799 47.7 82.8 50.1 487 9.3 84.2 29.4  49.7 61.7
Food 78.6 89.3 46.2 86.5 53.4 545 9.3 87.6 28.7 51.5 64.2
MNIST 78.6 89.3 99.2 86.5 53.4 42.4 9.3 80.4 23.9 28.6 43.3
OxfordPet 78.6 89.3 99.2 94.1 484 384 9.3 76.5 23.9 28.6 43.3
Flowers 786 89.3 99.2 94.1 96.5 414 9.3 76.3 26.8 28.6 43.3
SUN397 78.6 89.3 99.2 94.1 96.5 76.8 9.3 90.2 35.9 50.0 43.3
Aircraft 786 89.3 99.2 94.1 96.5 76.8 39.8 83.8 35.9 50.0 43.3
Caltech101 78.6 &89.3 99.2 94.1 96.5 76.8 39.8 89.0 34.5 50.0 43.3
DTD 78.6 89.3 99.2 94.1 96.5 76.8 39.8 89.0 71.6 494 43.3

EuroSAT 786 89.3 99.2 941 965 76.8 39.8 89.0 T71.6 90.7 433
CIFAR100 786 89.3 99.2 941 965 768 398 890 716 907 849 82.8

Avg. 786 884 89.7 91.7 80.0 624 232 850 41.3 51.6 50.7 67.5

Table 12: Accuracy (%) of S-Prompts on the MTIL benchmark with order-II. Each
row represents the performance on every dataset of the model trained after the corre-

sponding task. , , and metrics are shown in color.
b N N
s & 2 & s §Q D
. > & 8 S A SAA
§ §&§ & Ff£ & 5 &£ 5 & § 8
g & 5 9 & g v C Q& O
Transfer 59.8 46.2 67.7 475 43.8 13.5 76.8 314 22.6 43.5 45.3
Cars 79.2 59.8 60.1 550 269 380 134 703 27.5 14.3 39.7
Food 79.2 89.1 323 74.0 56.1 472 134 76.6 27.7 18.1 53.5
MNIST 79.2 89.1 99.1 74.0 56.1 46.8 134 72.6 30.5 187 42.7
OxfordPet 79.2 89.1 99.1 94.3 509 44.3 134 66.2 31.4 18.7 42.7
Flowers 79.2 89.1 99.1 943 95.8 425 134 77.8 27.7 18.7 42.7
SUN397 79.2 89.1 99.1 943 958 76.3 139 91.3 355 294 @ 42.7
Aircraft 79.2 89.1 99.1 94.3 958 76.3 399 83.0 355 294 427
Caltech101 79.2 89.1 99.1 94.3 958 76.3 399 955 352 294 427
DTD 79.2 89.1 99.1 943 958 76.3 399 955 70.1 27.1 42.7

EuroSAT 79.2 89.1 99.1 943 958 763 399 955 70.1 97.6 42.7
CIFAR1I00 79.2 89.1 99.1 943 958 763 399 955 70.1 976 844 83.8

Avg. 79.2 86.5 89.5 87.0 782 61.5 255 83.6 419 36.3 47.2 65.1
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Table 13: Accuracy (%) of our DIKI on the MTIL-FS benchmark with order-I. Each
row represents the performance on every dataset of the model trained after the corre-
sponding task.

, , and metrics are shown in color.
N Q
S S
N N
&%@ ‘7:5 Yﬂg Q &Q’@ > % %@
() S
S ~; & & S o S
¥ 5 &5 g & & F &
Transfer 92.7 68.8 44.1 70.0 86.2 65.1 65.5 70.3
Aircraft 41.4 92.7 68.4 439 71.3 858 658 625
Caltech101  41.3 95.7 69.2 442 695 86.3 64.9 66.0
CIFAR100 41.3 95.7 79.0 442 695 86.3 64.9 66.0
DTD 41.3 95.7 79.0 67.1 69.5 86.3 649 66.0
Flowers 41.3 95.7 79.0 67.1 945 86.3 649 66.0
Food 41.3 95.7 79.0 67.1 945 86.8 649 66.0
Cars 41.3 95.7 79.0 67.1 945 86.8 77.5 66.0
SUN397 41.3 95.6 79.0 67.3 944 86.8 T77.6 744 77.1
Avg. 41.3 95.3 76.5 585 82.2 86.4 68.2 66.6 71.9

Table 14: Accuracy (%) of L2P on the MTIL-FS benchmark with order-I. Each row
represents the performance on every dataset of the model trained after the correspond-

ing task.

, , and metrics are shown in color.
M Q
S S
N N
5? ‘g? g Q &‘D@ > % %o?
O §
S N K & S ) <
v g &5 9§ & & F
Transfer 66.7 54.3 30.6 47.3 71.5 54.6 524 53.9
Aircraft 30.1 66.7 44.3 23.0 324 47.8 499 329
Caltech101  30.1 87.1 64.2 345 535 776 556 56.5
CIFAR100 30.1 87.1 75.3 345 535 776 55.6 56.5
DTD 30.1 87.1 75.3 64.7 49.7 773 55.6 55.6
Flowers 30.1 87.1 75.3 64.7 919 773 55.6 55.0
Food 30.1 87.1 75.3 64.7 919 864 55.6 55.0
Cars 30.1 87.1 75.3 64.7 919 864 76.2 55.5
SUN397 30.1 87.1 75.3 64.7 919 864 76.2 74.7 73.3
Avg. 30.2 84.5 70.1 51.9 69.6 77.1 60.0 55.2 62.3
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Table 15: Accuracy (%) of DualPrompt on the MTIL-FS benchmark with order-I.
Each row represents the performance on every dataset of the model trained after the

corresponding task. , , and metrics are shown in color.
N Q
S S
~ A
&%@ g Yﬂg Q &Q’@ > % %@
() S
S ~ K, & S o <
¥ o & 98 @& F &
Transfer 78.8 64.4 32.0 51.7 775 494 51.3 57.9
Aircraft 36.5 78.8 61.5 284 51.6 79.4 57.5 52.2
Caltech101  36.5 91.0 67.4 33.8 515 75.0 47.8 51.5
CIFAR100 36.5 91.0 75.1 33.8 51.5 75.0 47.8 51.5
DTD 36.5 91.0 75.1 65.1 52.2 79.2 47.8 51.1
Flowers 36.5 91.0 75.1 65.1 929 79.2 478 51.1
Food 36.5 91.0 75.1 65.1 929 86.2 47.8 51.1
Cars 36.5 91.0 75.1 65.1 929 86.2 76.2 50.7
SUN397 36.5 91.0 75.1 65.1 929 86.2 76.2 74.2 4.7
Avg. 36.5 89.5 72.5 52.7 72.3 80.8 56.1 54.2 64.3

Table 16: Accuracy (%) of S-Prompts on the MTIL-FS benchmark with order-I.
Each row represents the performance on every dataset of the model trained after the

corresponding task. , , and metrics are shown in color.
> Q
S S
N S
5? ‘g? g Q &‘D@ > % %o?
) x5
A N ‘Q, & 3 o) A
v g &5 9§ & & F
Transfer 70.3 52.7 31.5 54.8 74.0 554 50.0 55.5
Aircraft 30.6 70.3 44.5 24.5 46.2 72.6 53.7 32.3
Caltech101  30.6 89.2 60.8 35.0 60.2 75.7 55.7 53.8
CIFAR100 30.6 89.2 75.8 35.0 60.2 75.7 55.7 53.8
DTD 30.6 89.2 75.8 63.8 52.7 72.8 557 524
Flowers 30.6 89.2 75.8 63.8 939 72.8 55.7 524
Food 30.6 89.2 75.8 63.8 939 86.2 55.7 524
Cars 30.6 89.2 75.8 63.8 939 86.2 76.7 524
SUN397 30.6 89.2 75.8 63.8 939 86.2 76.7 739 73.8
Avg. 30.6 86.8 70.0 51.7 74.3 78.5 60.7 53.0 63.2
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Table 17: Accuracy (%) of ZSCL on the MTIL-FS benchmark with order-I. Each row
represents the performance on every dataset of the model trained after the correspond-

ing task.

, , and metrics are shown in color.
> Q
S S
N S
o~ N > % S
S S < & o>
& L N4 Q A > % =
S ~ L, & S o kS
g 5 5 9§ g & F &
Transfer 87.3 67.7 454 67.8 86.6 59.7 634 68.3
Aircraft 41.0 87.3 67.8 45.4 68.6 88.5 63.2 64.1
Caltech101  38.5 91.5 67.7 45.0 654 859 59.6 629
CIFAR100 37.1 91.4 79.5 45.7 68.6 87.3 60.0 64.7
DTD 36.0 91.2 78.6 68.6 685 86.4 59.3 629
Flowers 32.1 91.1 77.3 67.5 93.8 &85.1 583 63.1
Food 30.0 90.9 76.8 66.5 91.7 90.0 57.7 62.8
Cars 25.7 90.2 75.4 64.6 90.8 89.2 80.1 63.3
SUN397 27.7 90.9 74.4 64.7 90.2 89.2 80.6 74.6 74.0
Avg. 33.5 90.5 4.7 585 79.7 87.7 64.8 64.8 69.3
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