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ABSTRACT

Bilevel optimization is an important formulation for many machine learning prob-
lems, such as meta-learning and hyperparameter optimization. Current bilevel
optimization algorithms assume that the gradient of the upper-level function is
Lipschitz (i.e., the upper-level function has a bounded smoothness parameter).
However, recent studies reveal that certain neural networks such as recurrent neu-
ral networks (RNNs) and long-short-term memory networks (LSTMs) exhibit po-
tential unbounded smoothness, rendering conventional bilevel optimization algo-
rithms unsuitable for these neural networks. In this paper, we design a new bilevel
optimization algorithm, namely BO-REP, to address this challenge. This algo-
rithm updates the upper-level variable using normalized momentum and incor-
porates two novel techniques for updating the lower-level variable: initialization
refinement and periodic updates. Specifically, once the upper-level variable is ini-
tialized, a subroutine is invoked to obtain a refined estimate of the corresponding
optimal lower-level variable, and the lower-level variable is updated only after ev-
ery specific period instead of each iteration. When the upper-level problem is non-
convex and unbounded smooth, and the lower-level problem is strongly convex,
we prove that our algorithm requires Õ(1/ϵ4) 1 iterations to find an ϵ-stationary
point in the stochastic setting, where each iteration involves calling a stochastic
gradient or Hessian/Jacobian-vector product oracle. Notably, this result matches
the state-of-the-art complexity results under the bounded smoothness setting and
without mean-squared smoothness of the stochastic gradient, up to logarithmic
factors. Our proof relies on novel technical lemmas for the periodically updated
lower-level variable, which are of independent interest. Our experiments on hyper-
representation learning, hyperparameter optimization, and data hyper-cleaning for
text classification tasks demonstrate the effectiveness of our proposed algorithm.
The code is available at https://github.com/MingruiLiu-ML-Lab/
Bilevel-Optimization-under-Unbounded-Smoothness.

1 INTRODUCTION

Bilevel optimization refers to an optimization problem where one problem is nested within an-
other (Bracken & McGill, 1973; Dempe, 2002). It receives tremendous attention in various machine
learning applications such as meta-learning (Franceschi et al., 2018; Rajeswaran et al., 2019), hyper-
parameter optimization (Franceschi et al., 2018; Feurer & Hutter, 2019), continual learning (Borsos
et al., 2020), reinforcement learning (Konda & Tsitsiklis, 1999; Hong et al., 2023), and neural net-
work architecture search (Liu et al., 2018). The bilevel problem is formulated as the following:

min
x∈Rdx

Φ(x) := f(x,y∗(x)), s.t., y∗(x) ∈ argmin
y∈Rdy

g(x,y), (1)

where f and g are referred to as upper and lower-level functions, respectively, and are continuously
differentiable. The upper-level variable x directly affects the value of the upper-level function f and
indirectly affects the lower-level function g via y∗(x). In this paper, we assume the lower-level func-
tion g(x,y) is strongly-convex in y such that y∗(x) is uniquely defined for any x ∈ Rdx and f(x,y)
is potentially nonconvex. One important application under this setting is hyper-representation learn-
ing with deep neural networks (Franceschi et al., 2018), where x denotes the shared representation

∗Corresponding Author: Mingrui Liu (mingruil@gmu.edu).
1Here Õ(·) compresses logarithmic factors of 1/ϵ and 1/δ, where δ ∈ (0, 1) denotes the failure probability.
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Table 1: Comparison of stochastic bilevel algorithms for finding an ϵ-stationary point as defined in
Definition 2.1. The oracle stands for calls to stochastic gradients and stochastic Hessian/Jacobian-
vector products. Ca,k

L denotes a-times differentiability with Lipschitz k-th order derivatives. “SC”
means “strongly-convex”. We do not include results with Õ(ϵ−3) complexity and with extra mean-
squared smooth stochastic gradient assumption (Yang et al., 2021; Khanduri et al., 2021).

Method Oracle Complexity Upper-level f Lower-level g Batch Size

BSA (Ghadimi & Wang, 2018) Õ(ϵ−6) C1,1
L SC and C2,2

L Õ(1)

StocBio (Ji et al., 2021) Õ(ϵ−4) C1,1
L SC and C2,2

L Õ(ϵ−2)

AmIGO (Arbel & Mairal, 2021) Õ(ϵ−4) C1,1
L SC and C2,2

L O(ϵ−2)

TTSA (Hong et al., 2023) Õ(ϵ−5) C1,1
L SC and C2,2

L Õ(1)

ALSET (Chen et al., 2021) O(ϵ−4) C1,1
L SC and C2,2

L O(1)

F2SA (Kwon et al., 2023a) O(ϵ−7) C1,1
L SC and C2,2

L O(1)

SOBA (Dagréou et al., 2022) O(ϵ−4) C2,2
L SC and C3,3

L O(1)

MA-SOBA (Chen et al., 2023b) O(ϵ−4) C1,1
L SC and C2,2

L O(1)

BO-REP (this work) Õ(ϵ−4) (Lx,0, Lx,1, Ly,0, Ly,1)-smooth SC and C2,2
L O(1)

layers that are utilized across different tasks, and y denotes the classifier encoded in the last layer. In
this paper, we consider the stochastic setting. We only have access to the noisy estimates of f and g:
f(x,y) = Eζ∼Df

[F (x,y; ζ)] and g(x,y) = Eξ∼Dg [G(x,y; ξ)], where Df and Dg are underlying
data distributions for f and g respectively.

The convergence analysis of existing bilevel algorithms needs to assume the gradient is Lipschitz
(i.e., the function has bounded smoothness parameter) of the upper-level function f (Ghadimi &
Wang, 2018; Grazzi et al., 2020; Ji et al., 2021; Hong et al., 2023; Kwon et al., 2023a). How-
ever, such an assumption excludes an important class of neural networks such as recurrent neu-
ral networks (RNNs) (Elman, 1990), long-short-term memory networks (LSTMs) (Hochreiter &
Schmidhuber, 1997) and Transformers (Vaswani et al., 2017) which are shown to have unbounded
smoothness (Pascanu et al., 2012; 2013; Zhang et al., 2020b; Crawshaw et al., 2022). For exam-
ple, Zhang et al. (2020b) proposed a relaxed smoothness assumption that bounds the Hessian by a
linear function of the gradient norm. There is a line of work designing algorithms for single-level re-
laxed smooth functions and showing convergence rates to first-order stationary points (Zhang et al.,
2020b;a; Jin et al., 2021; Crawshaw et al., 2022; Li et al., 2023b; Faw et al., 2023; Wang et al., 2023).
However, they are only restricted to single-level problems. It remains unclear how to solve bilevel
optimization problems when the upper-level function exhibits potential unbounded smoothness (i.e.,
(Lx,0, Lx,1, Ly,0, Ly,1)-smoothness 2).

Designing efficient bilevel optimization algorithms in the presence of unbounded smooth upper-level
problems poses two primary challenges. First, given the upper-level variable, the gradient estimate
of the bilevel problem (i.e., the hypergradient estimate) is highly sensitive to the quality of the
estimated lower-level optimal solution: an inaccurate lower-level variable will significantly amplify
the estimation error of the hypergradient. Second, the bias in the hypergradient estimator depends
on both the approximation error of the lower-level solution and the hypergradient itself, which are
statistically dependent and difficult to handle. These challenges do not appear in the literature on
bilevel optimization with bounded smooth upper-level problems.

In this work, we introduce a new algorithm, namely Bilevel Optimization with lower-level initial-
ization REfinement and Periodic updates (BO-REP), to address these challenges. Compared with
the existing bilevel optimization algorithm for nonconvex smooth upper-level problems (Ghadimi &
Wang, 2018; Grazzi et al., 2020; Ji et al., 2021; Hong et al., 2023; Kwon et al., 2023a), our algo-
rithm has the following distinct features. Specifically, (1) inspired by the single-level optimization
algorithms for unbounded smooth functions (Jin et al., 2021; Crawshaw et al., 2022), our algorithm
updates the upper-level variable using normalized momentum to control the effects of stochastic
gradient noise and possibly unbounded gradients. (2) The update rule of the lower-level variable
relies on two new techniques: initialization refinement and periodic updates. In particular, when the
upper-level variable is initialized, our algorithm invokes a subroutine to run a first-order algorithm
for the lower-level variable given the fixed initialized upper-level variable. In addition, the lower-

2The formal definition of (Lx,0, Lx,1, Ly,0, Ly,1) is illustrated in Assumption 1.
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level variable is updated only after every specific period instead of every iteration. This particular
treatment for the lower-level variable is due to the difficulty brought by the unbounded smoothness
of the upper-level function. Our major contributions are summarized as follows.

• We design a new algorithm named BO-REP, the first algorithm for solving bilevel opti-
mization problems with unbounded smooth upper-level functions. The algorithm design
introduces two novel techniques for updating the lower-level variable: initialization refine-
ment and periodic updates. To the best of our knowledge, these techniques are new and not
leveraged by the existing literature on bilevel optimization.

• When the upper-level problem is nonconvex and unbounded smooth and the lower-level
problem is strongly convex, we prove that BO-REP finds ϵ-stationary points in Õ(1/ϵ4)
iterations, where each iteration invokes a stochastic gradient or Hessian vector product
oracle. Notably, this result matches the state-of-the-art complexity results under bounded
smoothness setting up to logarithmic factors. The detailed comparison of our algorithm
and existing bilevel optimization algorithms (e.g., setting, complexity results) are listed in
Table 1. Due to the large body of work on bilevel optimization and limit space, we refer the
interested reader to Appendix A, which gives a comprehensive survey of related previous
methods that are not covered in Table 1.

• We conduct experiments on hyper-representation learning, hyperparameter optimization,
and data hyper-cleaning for text classification tasks. We show that the BO-REP algorithm
consistently outperforms other bilevel optimization algorithms.

2 PRELIMINARIES AND PROBLEM SETUP

In this paper, we use ⟨·, ·⟩ and ∥ · ∥ to denote the inner product and Euclidean norm. We denote f :
Rdx × Rdy → R as the upper-level function, and g: Rdx × Rdy → R as the lower-level function.
Denote ∇Φ(x) as the hypergradient, and it is shown in Ghadimi & Wang (2018) that

∇Φ(x) = ∇xf(x,y
∗(x))−∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x))

= ∇xf(x,y
∗(x))−∇x∇yg(x,y

∗(x))z∗(x),
(2)

where z∗(x) = [∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x)) is the solution to the linear system z∗(x) =

argminz
1
2 ⟨∇

2
yg(x,y

∗(x))z, z⟩ − ⟨∇yf(x,y
∗(x)), z⟩. We aim to solve the bilevel optimization

problem (1) by stochastic methods, where the algorithm can access stochastic gradients and Hessian
vector products. We will use the following assumptions.
Assumption 1 ((Lx,0, Lx,1, Ly,0, Ly,1)-smoothness). Define u = (x,y) and u′ = (x′,y′), there
exists Lx,0, Lx,1, Ly,0, Ly,1 such that ∥∇xf(u)−∇xf(u

′)∥ ≤ (Lx,0+Lx,1∥∇xf(u)∥)∥u−u′∥
and ∥∇yf(u)−∇yf(u

′)∥ ≤ (Ly,0+Ly,1∥∇yf(u)∥)∥u−u′∥ if ∥u−u′∥ ≤ 1/
√
2(L2

x,1 + L2
y,1).

Remark: Assumption 1 is a generalization of the relaxed smoothness assumption (Zhang et al.,
2020b;a) for a single-level problem (described in Section B.1 and Section B.2 in Appendix). A
generalized version of the relaxed smoothness assumption is the coordinate-wise relaxed smooth-
ness assumption (Crawshaw et al., 2022), which is more fine-grained and applies to each coordinate
separately. However, these assumptions are designed exclusively for single-level problems. Our
(Lx,0, Lx,1, Ly,0, Ly,1)-smoothness assumption for the upper-level function f can be regarded as
the relaxed smoothness assumption in the bilevel optimization setting, where we need to have differ-
ent constants to characterize the upper-level variable x and the lower-level variable y respectively. It
can recover the standard relaxed smoothness assumption (e.g., Remark 2.3 in Zhang et al. (2020a))
when Lx,0 = Ly,0 = L0/2 and Lx,1 = Ly,1 = L1/2. The details of this derivation are included in
Lemma B.3 in Appendix B. Assumption 1 is empirically verified in Appendix G.
Assumption 2. The function f(x,y) and g(x,y) satisfy the following: (i) There exists M > 0
such that for any x, ∥∇yf(x,y

∗(x))∥ ≤M ; (ii) The derivative ∥∇x∇yg(u)∥ is bounded, i.e., for
any u = (x,y), ∥∇x∇yg(u)∥ ≤ Cgxy

; (iii) The lower function g(x,y) is µ-strongly convex with
respect to y; (iv) g(u) is L-smooth, i.e., for any u = (x,y),u′ = (x′,y′), ∥∇g(u) −∇g(u′)∥ ≤
L∥u− u′∥; (v) The derivatives ∇x∇yg(u) and ∇2

yg(u) are τ - and ρ-Lipschitz, i.e., for any u,u′,
∥∇x∇yg(u)−∇x∇yg(u

′)∥ ≤ τ∥u− u′∥, ∥∇2
yg(u)−∇2

yg(u
′)∥ ≤ ρ∥u− u′∥.

Remark: Assumption 2 is standard in the bilevel optimization literature (Ghadimi & Wang, 2018;
Grazzi et al., 2020; Ji et al., 2021; Hong et al., 2023; Kwon et al., 2023a) and we have followed the
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same assumptions here. Under Assumption 1 and 2, we can show that the function Φ(x) satisfies
standard relaxed smoothness condition: ∥∇Φ(x)−∇Φ(x′)∥ ≤ (K0 +K1∥∇Φ(x′)∥) ∥x−x′∥ with
constant K0 and K1 if x and x′ are not far away from each other (i.e., Lemma C.3 in Appendix C).
Assumption 3. We access gradients and Hessian/Jacobian-vector products of the objective func-
tions by unbiased stochastic estimators. The stochastic estimators have the following properties:

Eζ∼Df [∇xF (x,y; ζ)] = ∇xf(x,y), Eζ∼Df

[
∥∇xF (x,y; ζ)−∇xf(x,y)∥2

]
≤ σ2

f,1,

Eζ∼Df [∇yF (x,y; ζ)] = ∇yf(x,y), Eζ∼Df

[
∥∇yF (x,y; ζ)−∇yf(x,y)∥2

]
≤ σ2

f,2,

Eξ∼Dg [∇yG(x,y; ξ)] = ∇yg(x,y), Eξ∼Dg

[
exp

(
∥∇yG(x,y; ξ)−∇yg(x,y)∥2 /σ2

g,1

)]
≤ exp(1),

Eξ∼Dg

[
∇2

yG(x,y; ξ)
]
= ∇2

yg(x,y), Eξ∼Dg

[∥∥∇2
yG(x,y; ξ)−∇2

yg(x,y)
∥∥2] ≤ σ2

g,2,

Eξ∼Dg [∇x∇yG(x,y; ξ)] = ∇x∇yg(x,y), Eξ∼Dg

[
∥∇x∇yG(x,y; ξ)−∇x∇yg(x,y)∥2

]
≤ σ2

g,2.

Remark: Assumption 3 requires the stochastic estimators to be unbiased and have bounded variance
and are standard in the literature (Ghadimi & Lan, 2013b; Ghadimi & Wang, 2018). In addition, we
need the stochastic gradient noise of function g to be light-tail. It is a technical assumption for high
probability analysis for y, which is typical for algorithm analysis in the single-level convex and
nonconvex optimization problems (Lan, 2012; Hazan & Kale, 2014; Ghadimi & Lan, 2013b).
Definition 2.1. x ∈ Rdx is an ϵ-stationary point of the bilevel problem (1) if ∥∇Φ(x)∥ ≤ ϵ.

Remark: In nonconvex optimization literature (Ghadimi & Lan, 2013b; Ghadimi & Wang, 2018;
Zhang et al., 2020b), the typical goal is to find an ϵ-stationary point since it is NP-hard in general
for finding a global minimum in nonconvex optimization (Hillar & Lim, 2013).

3 ALGORITHM AND THEORETICAL ANALYSIS

3.1 MAIN CHALLENGES AND ALGORITHM DESIGN

Main Challenges. We first illustrate why previous bilevel optimization algorithms and analyses
cannot solve our problem. The main idea of the convergence analyses of the existing bilevel opti-
mization algorithms (Ghadimi & Wang, 2018; Grazzi et al., 2020; Ji et al., 2021; Hong et al., 2023;
Dagréou et al., 2022; Kwon et al., 2023a; Chen et al., 2023b) is approximating hypergradient (2) and
employ the approximate hypergradient descent to update the upper-level variable. The hypergradient
approximation is required because the optimal lower-level solution y∗(x) cannot be easily obtained.
The typical approximation scheme requires to approximate y∗(x) and also the matrix-inverse vec-
tor product z∗(x) by solving a linear system approximately. When the upper-level function has a
bounded smoothness parameter, these approximation errors cannot blow up, and they can be easily
controlled. However, when the upper-level function is (Lx,0, Lx,1, Ly,0, Ly,1)-smooth as illustrated
in Assumption 1, an inaccurate lower-level variable will significantly amplify the estimation error of
upper-level gradient: the estimation error explicitly depends on the magnitude of the gradient of the
upper-level problem and it can be arbitrarily large (e.g., gradient explosion problem in RNN (Pas-
canu et al., 2013)). In addition, in a stochastic optimization setting, the bias in the hypergradient
estimator depends on both the approximation error of the lower-level variable and the hypergradient
in terms of the upper-level variable, which are statistically dependent and difficult to analyze. There-
fore, existing bilevel optimization algorithms cannot be utilized to address our problems where the
upper-level problem exhibits unbounded smoothness.

Algorithm Design. To address these challenges, our key idea is to update the upper-level variable
by the momentum normalization technique and a careful update procedure for the lower-level vari-
able. The normalized momentum update for the upper-level variable has two critical goals. First, it
reduces the effects of stochastic gradient noise and also reduces the effects of unbounded smooth-
ness and gradient norms, which can regarded as a generalization of techniques of (Cutkosky &
Mehta, 2020; Jin et al., 2021; Crawshaw et al., 2022) under the bilevel optimization setting. The
main difference in our case is that we need to explicitly deal with the bias in the hypergradient es-
timator. Second, the normalized momentum update can ensure that the upper-level iterates move
slowly, indicating that the corresponding optimal lower-level solutions move slowly as well due to
the Lipschitzness of the mapping y∗(x). This important fact enables us to design initialization re-
finement to obtain an accurate estimate of the optimal lower-level variable for the initialization, and
the slowly changing optimal lower-level solutions allow us to perform periodic updates for updating
the lower-level variable. As a result, we can obtain accurate estimates for y∗(x) at every iteration.
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Algorithm 1: BO-REP
Input: x0,y

′
0, z0,m0 = 0; β, η, ν, γ, α0

1 y0 = Epoch-SGD(x0,y
′
0, α0) # initialization refinement

2 for k = 0, 1, . . . ,K − 1 do
3 yk+1 = UpdateLower(xk,yk, γ; ξ̃k)

a # periodic updates
4 zk+1 = zk − ν(∇2

yG(xk,yk; ξk)zk −∇yF (xk,yk; ζk))

5 mk+1 = βmk + (1− β) [∇xF (xk,yk; ζk)−∇x∇yG(xk,yk; ξk)zk]

6 xk+1 = xk − η mk+1

∥mk+1∥
7 end

aWe only sample ξ̃k = ∪N−1
t=0 {ξ̃tk} when k = jI , where 1 ≤ j ≤

⌊
K
I

⌋
and I denotes the update frequency

for yk in Algorithm 2; we do not update yk and hence do not sample ξ̃k when k ̸= jI (i.e., ξ̃k = ∅ for k ̸= jI
and j ≥ 1).

Algorithm 2: UpdateLower
Input: x,yk, γ, ξ̃k

1 if k > 0 and k is a multiple of I then
2 y0

k = yk

3 for t = 0, ..., N − 1 do
4 yt+1

k =

ΠB(y0
k,R)

(
yt
k − γ∇yG(x,y

t
k; ξ̃

t
k)
)

5 ȳt+1
k = t

t+1 ȳ
t
k + 1

t+1y
t+1
k

6 yk+1 = ȳN
k

7 else
8 yk+1 = yk

9 return yk+1

Algorithm 3: Epoch-SGD
Input: x0,y

0,0
0 , α0

1 Initialize: B0, T0, k
†; s = 0

2 for s = 0, 1, . . . , k† − 1 do
3 for t = 0, ..., Ts − 1 do
4 ys,t+1

0 =

ΠBs

(
ys,t
0 − αs∇yG(x0,y

s,t
0 ; ξ̃s,t0 )

)
5 end
6 ys+1,0

0 = 1
Ts

∑Ts

t=1 y
s,t
0

7 Update Bs, Ts, αs via (28), (29), (30)
8 end
9 return yk†,0

0

The detailed framework is described in Algorithm 1. Specifically, we first run a variant of epoch
SGD for the smooth and strongly convex lower-level problem (Ghadimi & Lan, 2013a; Hazan &
Kale, 2014) (line 1) to get an initialization refinement. Once the upper-level variable x0 is initialized,
we need to get an y0 close enough to y∗(x0). Then, the algorithm updates the upper-level variable
x, lower-level variable y, and the approximate linear system solution z within a loop (line 2∼7).
In particular, we keep a momentum buffer to store the moving average of the history hypergradient
estimators (line 5), and use normalized momentum updates for x (line 6), stochastic gradient descent
update for z (line 4) and periodic stochastic gradient descent with projection updates for y (line 3).
Note that B(ŷ, R) :=

{
y ∈ Rdy : ∥y − ŷ∥ ≤ R

}
denotes a ball centered at ŷ with radius R, Π is

denoted as the projection operator.

3.2 MAIN RESULTS

We will first define a few concepts. Let Fk denote the filtration of the random variables for updating
zk, mk and xk before iteration k, i.e., Fk := σ {ξ0, . . . , ξk−1, ζ0, . . . , ζk−1} for any k ≥ 1, where
σ{·} denotes the σ-algebra generated by the random variables. Let F̃s,t

0 denote the filtration of the
random variables for updating lower-level variable y0 starting at the s-th epoch before iteration t in
Algorithm 3, i.e., F̃s,t

0 := σ{ξ̃s,00 , . . . , ξ̃s,t−1
0 } for 1 ≤ t ≤ Ts and 0 ≤ s ≤ k† − 1, which contains

all randomness in Algorithm 3. Let F̃ t
k denote the filtration of the random variables for updating

lower-level variable yk (k ≥ 1) before iteration t in Algorithm 2, i.e., F̃ t
k := σ{ξ̃0k, . . . , ξ̃

t−1
k } for

1 ≤ t ≤ N and k = jI , where 1 ≤ j ≤
⌊
K
I

⌋
and I denotes the update frequency for yk in

Algorithm 2. Let F̃K denote the filtration of all random variables for updating lower-level variable
yk (k ≥ 0), i.e., F̃K := σ

{(
∪k†−1
s=0 F̃s,Ts

0

)
∪
(
∪K−1
k=1 F̃N

k

)}
. For the overview of notations used in

this paper, please check our Table 2 in Appendix.
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Theorem 3.1. Suppose Assumptions 1, 2 and 3 hold. Run Algorithm 1 for K iterations and

let {xk}k≥0 be the sequence produced by Algorithm 1. For ϵ ≤ min

K0

K1
,

√√√√ σ2
f,1+

2M2

µ2 σ2
g,2

min

(
1, µ2

32C2
gxy

)


and given δ ∈ (0, 1), if we choose αs as (30), γ as (44), N as (45) and I =
σ2
g,1K

2
0

µ2ϵ2 , 1 − β = min

(
ϵ2

σ2
f,1+

2M2

µ2 σ2
g,2

min
(
1, µ2

32C2
gxy

)
,
C2

gxy

8σ2
g,2
, µ2

16σ2
g,2
, 14

)
, ν = 1

µ (1 − β),

η = min

 1
8 min

(
1
K1
, ϵ
K0
, ∆
∥∇Φ(x0)∥ ,

ϵ∆
C2

gxy
∆z,0

)
(1− β), 1√

2

(
1+

C2
gxy

µ2

)
(L2

x,1+L2
y,1)

, µϵ
8K0ICgxy

,

where ∆ := Φ(x0) − infx∈Rdx Φ(x) and ∆z,0 := ∥z0 − z∗(x0)∥2, then with probability at least
1 − δ over the randomness in F̃K , Algorithm 1 guarantees 1

K

∑K−1
k=0 E∥∇Φ(xk)∥ ≤ 30ϵ as long

as K = 4∆
ηϵ , where the expectation is taken over the randomness in FK . In addition, the number of

oracle calls for updating lower-level variable y (in Algorithm 2 and Algorithm 3 is at most Õ
(

∆
ηϵ

)
.

Remark: Theorem 3.1 indicates that Algorithm 1 requires a total Õ(ϵ−4) oracle complexity for find-
ing an ϵ-stationary point in expectation, which matches the state-of-the-art complexity results in non-
convex bilevel optimization with bounded smooth upper-level problem (Dagréou et al., 2022; Chen
et al., 2023b) and without mean-squared smoothness assumption on the stochastic oracle 3. Please
note that our complexity is optimal up to logarithmic factors due to the Ω(ϵ−4) complexity lower
bounds in the nonconvex stochastic single-level optimization for finding ϵ-stationary points (Arje-
vani et al., 2023). More detailed statement of the optimality is described in Appendix L.

3.3 SKETCH OF THE PROOF

In this section, we present the sketch of the proof of Theorem 3.1. The detailed proof can be found in
Appendix E. Define y∗

k = y∗(xk), z∗
k = z∗(xk) and ∇̂Φ(xk,yk, zk; ζk, ξk) = ∇xF (xk,yk; ζk)−

∇x∇yG(xk,yk; ξk)zk. We use Ek, EFk
and E to denote the conditional expectation E [· | Fk], the

expectation on Fk and the total expectation over all randomness in FK , respectively. The main
difficulty comes from the bias term ∥Ek[∇̂Φ(xk,yk, zk; ζk, ξk)] − ∇Φ(xk)∥ of the hypergradient
estimator, whose upper bound depends onLx,1∥yk−y∗

k∥∥∇Φ(xk)∥ by Assumption 1. This quantity
is difficult to handle because (i) ∥∇Φ(xk)∥ can be large; (ii) both ∥yk − y∗

k∥ and ∥∇Φ(xk)∥ are
measurable with respect to Fk−1 and it is difficult to decouple them when taking total expectation.

To address these issues, we introduce Lemma 3.2, 3.3 and 3.4 to control the lower-level error, and
hence control the bias in the hypergradient estimator with high probability over the randomness in
F̃K as illustrated in Lemma 3.5. Then we analyze the expected hypergradient error between the
moving-average estimator (i.e., momentum) and the hypergradient, as illustrated in Lemma 3.6,
where the expectation is taken over the randomness in FK . Lastly we plug in these lemmas to the
descent lemma for (Lx,0, Lx,1, Ly,0, Ly,1)-smooth functions and obtain the main theorem.

Lemma 3.2 (Initialization Refinement). Given δ ∈ (0, 1) and ϵ > 0, set the parameter k† =⌈
log2(128K

2
0V0/µϵ

2)
⌉
, where V0 is defined in (27). If we run Algorithm 3 for k† epochs with

output y0, with projection ball Bs, the number of iterations Ts and the fixed step-size αs at
each epoch defined as (28), (29) and (30). Then with probability at least 1 − δ/2 over ran-

domness in σ
{
∪k†−1
s=0 F̃s,Ts

0

}
(this event is denoted as E0), we have ∥y0 − y∗(x0)∥ ≤ ϵ/8K0 in

Õ
(
σ2
g,1K

2
0/µ

2ϵ2
)

iterations.

Remark. More detailed statement of Lemma 3.2 can be found in Appendix D.2. Lemma 3.2
provides a complexity result for getting a good estimate of y∗(x0) with high probablity. The next
lemma (i.e., Lemma 3.3) is built upon this lemma.

3Note that there are a few works which achieve Õ(ϵ−3) oracle complexity when the stochastic function is
mean-squared smooth (Yang et al., 2021; Guo et al., 2021; Khanduri et al., 2021), but our paper does not make
such an assumption.
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Lemma 3.3 (Periodic Updates). Given δ ∈ (0, 1) and ϵ > 0, choose R = ϵ
4K0

. Under E0, for any
fixed sequences {x̃k}Kk=1 such that x̃0 = x0 and ∥x̃k+1− x̃k∥ = η, where η ≤ µϵ

8K0ICgxy
, if we run

Algorithm 2 with input {x̃k}Kk=1 and generate outputs {ỹk}Kk=1, and step-size γ = O(µϵ2/K2
0σ

2
g,1)

for N = Õ(σ2
g,1K

2
0/µ

2ϵ2) iterations in each update period (the exact formula of γ and N are (44)

and (45)), then with probability at least 1 − δ/2 over randomness in σ
{
∪K−1
k=1 F̃N

k

}
(this event is

denoted as E1), we have ∥y∗(x̃k)− ỹk∥ ≤ ϵ/4K0 for any k ≥ 1 in Õ(Kσ2
g,1K

2
0/Iµ

2ϵ2) iterations.

Remark. More detailed statement of Lemma 3.3 can be found in Appendix D.3. Lemma 3.3 unveils
the following important fact: as long as the learning rate η is small, the upper-level solution moves
slowly, then the corresponding lower-level optimal solution also moves slowly. Therefore, as long
as we have a good lower-level variable estimate at the very beginning (e.g., under the event E0), we
do not need to update it every iteration: periodic updates schedule is sufficient to obtain an accurate
lower-level solution with high probability at every iteration. In addition, this fact does not depend
on any randomness from the upper-level problem, it holds over any fixed sequence {x̃k}Kk=1 as long
as ∥x̃k+1 − x̃k∥ = η.
Lemma 3.4 (Error Control for the Lower-level Problem). Under event E = E0 ∩ E1, we have
∥y∗(x̃k) − ỹk∥ ≤ ϵ/4K0 for any k ≥ 0 and Pr(E) ≥ 1 − δ and the probability is taken over
randomness in F̃K .

Remark. Lemma 3.4 is a direct corollary of Lemma 3.2 and 3.3. It provides a high probability
guarantee for the output sequence {ỹk}Kk=1 in terms of any given input sequence {x̃t}Kt=1 as long
as ∥x̃k+1 − x̃k∥ = η. Note that the event E ∈ F̃K and is independent of the rest randomness in
the Algorithm 1 (i.e., FK). This important aspect of this lemma enables us to plug in the actual
sequence {xk}Kk=1 in Algorithm 1 without affecting the high probability result. In particular, we
will show that under the event E (which holds with high probability in terms of F̃K), Algorithm 1
will converge to ϵ-stationary point in expectation, where the expectation is taken over randomness
in FK as illustrated in Theorem 3.1.
Lemma 3.5 (Bias of the Hypergradient Estimator). Suppose Assumptions 1, 2 and 3 hold. Then
under event E , we have∥∥∥Ek[∇̂Φ(xk,yk,zk; ζk, ξk)]−∇Φ(xk)

∥∥∥ ≤ Lx,1ϵ

4K0
∥∇Φ(xk)∥+

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
ϵ

4K0
+ Cgxy∥zk − z∗

k∥.

Remark. Lemma 3.5 controls the bias in the hypergradient estimator under the event E . Note that
the good event E make sure that the bias is almost negligible since it depends on small quantities ϵ
and ∥zk − z∗

k∥ (Lemma D.5 in Appendix D.5 shows that E∥zk − z∗
k∥ is small on average).

Lemma 3.6 (Expected Error of the Moving-Average Hypergradient Estimator). Suppose Assump-
tions 1, 2 and 3 hold. Define δk := mk+1 − ∇Φ(xk) to be the moving-average estimation error.

Then under event E , we have E
[
K−1∑
k=0

∥δk∥
]
≤ Err1+Err2, where Err1 and Err2 are defined as

Err1 :=
Lx,1ϵ

4K0

K−1∑
k=0

∥∇Φ(xk)∥+K

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
ϵ

4K0
+ Cgxy

√
K

√√√√K−1∑
k=0

E
[
∥zk − z∗

k∥
2],

Err2 := K
√

1− β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

√
2σg,2

√
1− β

√
K

√√√√K−1∑
k=0

E
[
∥zk − z∗

k∥
2]

+
K1ηβ

1− β

K−1∑
k=0

∥∇Φ(xk)∥+
K0Kηβ

1− β
+

β

1− β
∥m0 −∇Φ(x0)∥ .

Remark. Lemma 3.6 shows that, under the event E , the error can be decomposed as two parts. The
Err1 and Err2 represent the error from bias and variance respectively. As long as 1−β is small (as
chosen in Theorem 3.1), then the accumulated expected error of the moving-average hypergradient
estimator grows only with a sublinear rate inK, whereK is the number of iterations. This fact helps
us establish the convergence rate of Algorithm 1. Lemma 3.6 can be seen as a generalization of the
normalized momentum update lemma from single-level optimization (e.g., Theorem C.7 in Jin et al.
(2021)) to bilevel optimization.
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4 EXPERIMENTS

4.1 HYPER-REPRESENTATION LEARNING FOR TEXT CLASSIFICATION

We conduct experiments on the hyper-representation learning task (i.e., meta-learning) for text clas-
sification. The goal is to learn a hyper-representation that can be used for various tasks by simply
adjusting task-specific parameters. There are two main components during the learning process: a
base learner and a meta learner. The meta learner learns from several tasks in sequence to improve
the base learner’s performance across tasks (Bertinetto et al., 2018).

The meta-learning contains m tasks {Ti, i = 1, ...,m} sampled from certain distribution PT . The
loss function of each task is L(w,θi, ξ), where w is the hyper-representation (meta learner) which
extracts the data features across all the tasks and ξ is the data. θi is the task-specific parameter
of a base learner for i-th task. The objective is to find the best w to represent the shared feature
representation, such that each base learner can quickly adapt its parameter θi to unseen tasks.

This task can be formulated as a bilevel problem (Ji et al., 2021; Hong et al., 2023). In the lower level,
the goal of the base learner is to find the minimizer θ∗

i of its regularized loss on the support set Si
upon the hyper-representation w. In the upper level, the meta learner evaluates all the θ∗

i , i = 1, ..,m
on the corresponding query set Qi, and optimizes the hyperpresentation w. Let θ = (θ1, ...,θm) be
all the task-specific parameters, the objective function is the following:

min
w

1

m

m∑
i=1

1

|Qi|
∑
ξ∈Qi

L(w,θ∗
i (w); ξ) s.t. θ∗(w) = argmin

θ

1

m

m∑
i=1

1

|Si|
∑
ζ∈Si

L(w,θi; ζ) +
µ

2
∥θi∥2, (3)

where Si and Qi come from the task Ti. In our experiment, θi is the parameter of the last linear layer
of a neural network for classification, and w represents the parameter of a 2-layer recurrent neural
network except for the last layer. Therefore, the lower-level function is µ-strongly convex for any
given w, and the upper-level function is nonconvex in w and has potential unbounded smoothness.

Hyper-representation experiment is conducted over Amazon Review Dataset, consisting of two
types of reviews across 25 different products. We compare our algorithm with classical meta-
learning algorithms and bilevel optimization algorithms, including MAML (Rajeswaran et al.,
2019), ANIL (Raghu et al., 2019), StocBio (Ji et al., 2021), TTSA (Hong et al., 2023), F2SA (Kwon
et al., 2023a), SOBA (Dagréou et al., 2022), and MA-SOBA (Chen et al., 2023b). We report both
training and test losses. The results are presented in Figure 1(a) and Figure 2(a) (in Appendix F.1),
which show the learning process over 20 epochs on the training data and evaluating process on test-
ing data. Our method (i.e., the green curve) significantly outperforms baselines. More experimental
details are described in Appendix F.1.

4.2 HYPERPARAMETER OPTIMIZATION FOR TEXT CLASSIFICATION

We conduct hyperparameter optimization (Franceschi et al., 2018; Ji et al., 2021) experiments for
text classification to demonstrate the effectiveness of our algorithm. Hyperparameter optimization
aims to find a suitable regularization parameter λ to minimize the loss evaluated over the best model
parameter w∗ from the lower-level function. The hyperparameter optimization problem can be
formulated as:

min
λ

1

|Dval|
∑

ξ∈Dval

L(w∗(λ); ξ), s.t. w∗(λ) = argmin
w

1

|Dtr|
∑
ζ∈Dtr

(
L(w; ζ) +

λ

2
∥w∥2

)
, (4)

where L(w; ξ) is the loss function, w is the model parameter, and λ denotes the regularization
parameter. Dval and Dtr denote validation and training sets respectively. The text classification
experiment is performed over the Amazon Review dataset. In our experiment, we compare our al-
gorithm with stochastic bilevel algorithms, including StocBio (Ji et al., 2021), TTSA (Hong et al.,
2023), F2SA (Kwon et al., 2023a), SOBA (Dagréou et al., 2022), MA-SOBA (Chen et al., 2023b).
As shown in Figure 1(b) and Figure 2(b) (in Appendix F.2), BO-REP achieves the fastest conver-
gence rate and the best performance compared with other bilevel algorithms. More details about
hyperparameter settings are described in Appendix F.2.

4.3 DATA HYPER-CLEANING FOR TEXT CLASSIFICATION

Consider a noisy training set Dtr := {(xi, ỹi)}ni=1 with label ỹi being randomly corrupted with
probability p < 1 (i.e., corruption rate). The goal of the data hyper-cleaning (Franceschi et al.,

8
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(c) Data Hyper-Cleaning

Figure 1: Comparison of various bilevel optimization algorithms on three applications: (a) results
of Hyper-representation on Amazon Review Dataset. (b) results of hyperparameter optimization on
Amazon Review Dataset. (c) results of data hyper-cleaning on Sentiment140 Dataset with noise rate
p = 0.3.

2018; Shaban et al., 2019) task is to assign suitable weights λi to each training sample such that
the model trained on such weighted training set can achieve a good performance on the uncorrupted
validation set Dval. The hyper-cleaning problem can be formulated as follows:

min
λ

1

|Dval|
∑

ξ∈Dval

L(w∗(λ); ξ), s.t. w∗(λ) ∈ argmin
w

1

|Dtr|
∑

ζi∈Dtr

σ(λi)L(w; ζi) + c∥w∥2, (5)

where σ(·) is the sigmoid function, and L(w; ζ) is the lower level loss function induced by the
model parameter w and corrupted sample ζ, and c > 0 is a regularization parameter.

The hyper-cleaning experiments are conducted over the Sentiment140 dataset (Go et al., 2009) for
text classification, where data samples consist of two types of emotions for Twitter messages. For
each data sample in the training set, we replace its label with a random class number with probability
p, meanwhile keeping the validation set intact. We compare our proposed BO-REP algorithm with
other baselines StocBio (Ji et al., 2021), TTSA (Hong et al., 2023), F2SA (Kwon et al., 2023a),
SOBA (Dagréou et al., 2022), and MA-SOBA (Chen et al., 2023b). Figure 1(c) and Figure 2(c) (in
Appendix) show the training and evaluation results with corruption rate p = 0.3, and Figure 3 (in
the Appendix F.3) show the results with p = 0.1. BO-REP demonstrates a faster convergence rate
and higher performance than other baselines on both noise settings, which is consistent with our
theoretical results. We provide more experimental details and discussion in Appendix F.3.

5 CONCLUSION

In this paper, we design a new algorithm named BO-REP, to solve bilevel optimization problems
where the upper-level problem has potential unbounded smoothness. The algorithm requires access
to stochastic gradient or stochastic Hessian/Jacobian-vector product oracles in each iteration, and
we have showed that BO-REP algorithm achieves Õ(1/ϵ4) oracle complexity to find an ϵ-stationary
point. It matches the state-of-the-art complexity results under the bounded smoothness setting and
without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. We have
conducted experiments for various machine learning problems with bilevel formulations for text
classification tasks, and our proposed algorithm shows superior performance over strong baselines.
In the future, we plan to design more practical variants of this algorithm (e.g., single-loop and
Hessian-free algorithms).
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Symbol Description

Lx,0, Lx,1 Relaxed smoothness constants for f with respect to x

Ly,0, Ly,1 Relaxed smoothness constants for f with respect to y

K0,K1 Relaxed smoothness constants for function Φ

M Bound for ∥∇yf(x,y
∗(x))∥

Cgxy
Bound for ∥∇x∇yg(u)∥

L Lipschitz constant for ∇g(u)
µ Strong-convexity constant for g with respect to y

τ Lipschitz constant for ∇x∇yg(u)

ρ Lipschitz constant for ∇2
yg(u)

η, ν Step-sizes for updating x, z in BO-REP (i.e., Algorithm 1)

γ Step-size for updating y in UpdateLower (i.e., Algorithm 2)

β Momentum parameter for m in BO-REP (i.e., Algorithm 1)

V0 Upper bound for g(x0,y
0,0
0 )− g(x0,y

∗
0) in Epoch-SGD (i.e., Algorithm 3)

Bs Projection ball for s-th epoch in Epoch-SGD (i.e., Algorithm 3)

Ts Number of iterations for s-th epoch in Epoch-SGD (i.e., Algorithm 3)

αs Step-size for s-th epoch in Epoch-SGD (i.e., Algorithm 3)

k† Number of epochs for Epoch-SGD (i.e., Algorithm 3)

K Number of iterations for updating x in BO-REP (i.e., Algorithm 1)

N Number of iterations for updating y in UpdateLower (i.e., Algorithm 2)

I Update period for y in UpdateLower (i.e., Algorithm 2)

R Radius of projection for UpdateLower (i.e., Algorithm 2)

Table 2: Description of Notations

A RELATED WORK

Bilevel Optimization Bilevel optimization is used to model nested structure in the decision-making
process (Bracken & McGill, 1973). Due to its broad applications in machine learning, there is
a wave of studies on designing stochastic bilevel optimization algorithms for nonconvex smooth
upper-level functions and strongly convex lower level functions. Ghadimi & Wang (2018) initiated
the study of Bilevel Stochastic Approximation (BSA) method based on implicit gradient descent,
and proved an O(ϵ−6) complexity to ϵ-stationary point. The complexity result was later improved
by a series of studies under the framework of automatic implicit differentiation (AID) (Hong et al.,
2023; Chen et al., 2022; Ji et al., 2021; Khanduri et al., 2021; Chen et al., 2021; Dagréou et al.,
2022; Guo et al., 2021; Yang et al., 2021; Chen et al., 2023b), which requires estimating Hessian
inverse directly or approximating it by Hessian vector products. Another class of algorithms fall into
the category of iterative differentiation (ITD) (Maclaurin et al., 2015; Franceschi et al., 2017; Finn
et al., 2017; Franceschi et al., 2018; Shaban et al., 2019; Pedregosa, 2016; Li et al., 2022; Yang et al.,
2021; Ji et al., 2021; Grazzi et al., 2023), which construct a computational graph of updating lower-
level variables through gradient descent and compute the hypergradient via backpropagation. There
are a few works which use fully first-order methods to solve bilevel optimization problems (Liu
et al., 2022a; Kwon et al., 2023a). There is a line of work designing algorithms in the case where
the lower-level problem is not strongly convex and have multiple minima (Sabach & Shtern, 2017;
Sow et al., 2022; Liu et al., 2020; 2021a;b; 2022a; Shen & Chen, 2023; Kwon et al., 2023b; Chen
et al., 2023a). However, all of these works need to assume the upper-level function is convex or
has Lipschitz gradient and hence are not applicable to our bilevel optimization problem with an
unbounded smooth upper-level function.
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Unbounded Smoothness Zhang et al. (2020b) proposed the relaxed smooth condition and analyzed
gradient clipping/normalization under this condition. This analysis was further improved by the
works of (Zhang et al., 2020a; Jin et al., 2021). Crawshaw et al. (2022) considered a coordinate-wise
relaxed smooth condition and proved the convergence for the generalized signSGD method. Faw
et al. (2023); Wang et al. (2023) studied Adagrad-type algorithms for relaxed smooth functions. Li
et al. (2023a); Wang et al. (2022) analyzed the convergence of Adam under relaxed smooth assump-
tions. Li et al. (2023b) analyzed gradient-based methods under a generalized smoothness condi-
tion. Chen et al. (2023c) proposed a new notion of α-symmetric generalized smoothness and ana-
lyzed normalized gradient descent algorithms. Reisizadeh et al. (2023) considered variance-reduced
gradient clipping when the function satisfies an averaged relaxed smooth condition. There is also a
line of work focusing on federated optimization for unbounded smooth functions (Liu et al., 2022b;
Crawshaw et al., 2023a;b). However all of these works only focus on single-level problems and
cannot be applied to the bilevel optimization problem as considered in our paper.

B PROPERTIES OF ASSUMPTION 1

B.1 DEFINITIONS OF RELAXED SMOOTHNESS

The standard relaxed smoothness assumption in Zhang et al. (2020b) is defined in Definition B.1.

Definition B.1 ((Zhang et al., 2020b, Definition 1)). A twice differentiable function f is (L0, L1)-
smooth if ∥∇2f(u)∥ ≤ L0 + L1∥∇f(u)∥.

Definition B.2 is an alternative definition for the (L0, L1)-smoothness. It is strictly weaker than
Definition B.1 because it does not require the function f to be twice differentiable.

Definition B.2 ((Zhang et al., 2020a, Remark 2.3)). A differentiable function f is (L0, L1)-smooth
if ∥∇f(u)−∇f(u′)∥ ≤ (L0 + L1∥∇f(u)∥)∥u− u′∥ for any ∥u− u′∥ ≤ 1/L1.

B.2 RELATIONSHIP BETWEEN ASSUMPTION 1 AND STANDARD RELAXED SMOOTHNESS

The following lemma shows that our proposed (Lx,0, Lx,1, Ly,0, Ly,1) can recover the standard re-
laxed smoothness (e.g., Definition B.2) when the upper-level variable x and the lower-level variable
y have the same smoothness constants.

Lemma B.3. When Lx,0 = Ly,0 = L0/2 and Lx,1 = Ly,1 = L1/2, Assumption 1 implies that for
any u,u′ such that ∥u− u′∥ ≤ 1/L1, we have

∥∇uf(u)−∇uf(u
′)∥ ≤ (L0 + L1∥∇uf(u)∥)∥u− u′∥. (6)

In other words, (Lx,0, Lx,1, Ly,0, Ly,1)-smoothness assumption can recover the standard relaxed
smoothness assumption.

Proof of Lemma B.3. When Lx,0 = Ly,0 = L0/2 and Lx,1 = Ly,1 = L1/2, by Assumption 1 we
have for any u,u′,

∥u− u′∥ ≤ 1√
2
(
L2
x,1 + L2

y,1

) =
1

L1
.

Moreover, we have

∥∇uf(u)−∇uf(u
′)∥ =

√
∥∇xf(u)−∇xf(u′)∥2 + ∥∇yf(u)−∇yf(u′)∥2

≤
√

1

4
(L0 + L1∥∇xf(u)∥)2∥u− u′∥2 + 1

4
(L0 + L1∥∇yf(u)∥)2∥u− u′∥2

≤
√
(L2

0 + L2
1∥∇uf(u)∥2)∥u− u′∥2

≤ (L0 + L1∥∇uf(u)∥)∥u− u′∥,

which means that the function f is (L0, L1)-smooth in terms of u = (x,y) when Lx,0 = Ly,0 =
L0/2 and Lx,1 = Ly,1 = L1/2.

15



Published as a conference paper at ICLR 2024

C TECHNICAL LEMMAS

In this section we provide some technical lemmas which are useful for our following proof. This
section mainly provides useful properties of the considered bilevel problem under our assumptions.

Lemma C.1. The hypergradient ∇Φ(x) takes the forms of

∇Φ(x) = ∇xf(x,y
∗(x)) +

∂y∗(x)

∂x
∇yf(x,y

∗(x))

= ∇xf(x,y
∗(x))−∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x))

= ∇xf(x,y
∗(x))−∇x∇yg(x,y

∗(x))z∗(x).

(7)

where z∗(x) is the solution of the linear system:

z∗(x) = [∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x)). (8)

Proof of Lemma C.1. Using the chain rule over the hypergradient ∇Φ(x) = ∂f(x,y∗(x))
∂x , we have

∇Φ(x) = ∇xf(x,y
∗(x)) +

∂y∗(x)

∂x
∇yf(x,y

∗(x)). (9)

By optimality condition of y∗(x), we have ∇yg(x,y
∗(x)) = 0. Then taking implicit differentiation

with respect to x yields

∇x∇yg(x,y
∗(x)) +

∂y∗(x)

∂x
∇2

yg(x,y
∗(x)) = 0. (10)

By Assumption 2, function g(x,y) is µ-strongly convex with respect to y, thus [∇2
yg(x,y

∗(x))]−1

is non-singular. Plugging (10) into (9) yields

∇Φ(x) = ∇xf(x,y
∗(x))−∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x)). (11)

Also note that z∗(x) takes the form

z∗(x) = [∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x)),

hence hypergradient ∇Φ(x) can also be represented as

∇Φ(x) = ∇xf(x,y
∗(x))−∇x∇yg(x,y

∗(x))z∗(x).

Lemma C.2. Suppose Assumption 1 and 2 hold. Then, we have

(a) y∗(x) is
Cgxy

µ -Lipschitz continous.

(b) z∗(x) is Lz∗ -Lipschitz continous, i.e.,

∥z∗(x)− z∗(x′)∥ ≤ Lz∗∥x− x′∥

if ∥x− x′∥ ≤ 1√
2

(
1+

C2
gxy

µ2

)
(L2

x,1+L2
y,1)

, where Lz∗ is defined as

Lz∗ :=

√
1 +

(
Cgxy

µ

)2(
ρM

µ2
+

1

µ
(Ly,0 + Ly,1M)

)
. (12)

(c) ∇xf(x,y
∗(x)) and ∇Φ(x) satisfy the following:

∥∇xf(x,y
∗(x))∥ ≤ ∥∇Φ(x)∥+

Cgxy
M

µ
. (13)
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Proof of Lemma C.2. By (10) in Lemma C.1, we have

∂y∗(x)

∂x
= −∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1.

Now we proceed to prove the lemma.

(a). Note that by Assumption 2, for any x we have∥∥∥∥∂y∗(x)

∂x

∥∥∥∥ =
∥∥∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1
∥∥ ≤

Cgxy

µ
.

Therefore, y∗(x) is
Cgxy

µ -Lipschitz continuous.

(b). Let u = (x,y∗(x)) and u′ = (x′,y∗(x′)), by condition (14) we have

∥u− u′∥ =
√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

(i)

≤

√
1 +

(
Cgxy

µ

)2

∥x− x′∥ ≤ 1√
2(L2

x,1 + L2
y,1)

,

where (i) follows from (a) in Lemma C.2 that y∗(x) is Lipschitz. Hence the condition for applying
Assumption 1 is satisfied. By definition (8) of z∗(x), for any x,x′ we have

∥z∗(x)− z∗(x′)∥
=
∥∥[∇2

yg(x,y
∗(x))]−1∇yf(x,y

∗(x))− [∇2
yg(x

′,y∗(x′))]−1∇yf(x
′,y∗(x′))

∥∥
≤
∥∥[∇2

yg(x,y
∗(x))]−1∇yf(x,y

∗(x))− [∇2
yg(x

′,y∗(x′))]−1∇yf(x,y
∗(x))

∥∥
+
∥∥[∇2

yg(x
′,y∗(x′))]−1∇yf(x,y

∗(x))− [∇2
yg(x

′,y∗(x′))]−1∇yf(x
′,y∗(x′))

∥∥
≤M

∥∥[∇2
yg(x,y

∗(x))]−1 − [∇2
yg(x

′,y∗(x′))]−1
∥∥+ 1

µ
∥∇yf(x,y

∗(x))−∇yf(x
′,y∗(x′))∥

(i)

≤ M
∥∥[∇2

yg(x,y
∗(x))]−1

∥∥∥∥[∇2
yg(x

′,y∗(x′))]−1
∥∥∥∥∇2

yg(x,y
∗(x))−∇2

yg(x
′,y∗(x′))

∥∥
+

1

µ
(Ly,0 + Ly,1 ∥∇yf(x,y

∗(x))∥)
√

∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

(ii)

≤ ρM

µ2

√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2 + 1

µ
(Ly,0 + Ly,1M)

√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

=

(
ρM

µ2
+

1

µ
(Ly,0 + Ly,1M)

)√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

(iii)

≤
(
ρM

µ2
+

1

µ
(Ly,0 + Ly,1M)

)√
∥x− x′∥2 +

(
Cgxy

µ

)2

∥x− x′∥2

=

√
1 +

(
Cgxy

µ

)2(
ρM

µ2
+

1

µ
(Ly,0 + Ly,1M)

)
∥x− x′∥

where (i) follows from Assumption 1 and the fact that

∥H−1
1 −H−1

2 ∥ = ∥H−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H−1

1 ∥∥H−1
2 ∥∥H1 −H2∥,

(ii) follows from Assumption 2 and (iii) uses the fact that y∗(x) is
Cgxy

µ -Lipschitz continuous. For
notation convenience, we define

Lz∗ :=

√
1 +

(
Cgxy

µ

)2(
ρM

µ2
+

1

µ
(Ly,0 + Ly,1M)

)
to be the Lipschitz constant. Therefore, z∗(x) is Lz∗ -Lipschitz continuous.
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(c). By Lemma C.1, we have

∥∇xf(x,y
∗(x))−∇Φ(x)∥ =

∥∥∥∥∂y∗(x)

∂x
∇yf(x,y

∗(x))

∥∥∥∥
=
∥∥∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1∇yf(x,y
∗(x))

∥∥
(i)

≤
Cgxy

M

µ
,

where (i) follows from Assumption 2. Therefore, we have

∥∇xf(xk,y
∗
k)∥ ≤ ∥∇Φ(xk)∥+

Cgxy
M

µ
.

Under the Assumption 1 and 2, we can show in the following lemma that the function Φ(x) satisfies
standard relaxed smoothness condition: ∥∇Φ(x) − ∇Φ(x′)∥ ≤ (K0 +K1∥∇Φ(x′)∥) ∥x − x′∥
with some K0 and K1 if x and x′ are not far away from each other. This is very important because
it allows us to apply the descent lemma in the standard relaxed smoothness setting for analyzing the
dynamics of our algorithm.

Lemma C.3. Suppose Assumption 1 and 2 hold. Then for any x,x′ such that

∥x− x′∥ ≤ 1√
2
(
1 +

C2
gxy

µ2

)
(L2

x,1 + L2
y,1)

, (14)

we have

∥∇Φ(x)−∇Φ(x′)∥ ≤ (K0 +K1∥∇Φ(x′)∥) ∥x− x′∥, (15)

where K0,K1 are defined as

K0 =

√
1 +

(
Cgxy

µ

)2(
Lx,0 + Lx,1

Cgxy
M

µ
+
Cgxy

µ
(Ly,0 + Ly,1M) +M

Cgxy
ρ+ τµ

µ2

)
,

K1 =

√
1 +

(
Cgxy

µ

)2

Lx,1.

(16)

Proof of Lemma C.3. Let u = (x,y∗(x)) and u′ = (x′,y∗(x′)), by condition (14) we have

∥u− u′∥ =
√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

(i)

≤

√
1 +

(
Cgxy

µ

)2

∥x− x′∥ ≤ 1√
2(L2

x,1 + L2
y,1)

,
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where (i) follows from (a) in Lemma C.2 that y∗(x) is Lipschitz. Hence the condition for applying
Assumption 1 is satisfied. Then we have

∥∇Φ(x)−∇Φ(x′)∥

=

∥∥∥∥∇xf(x,y
∗(x)) +

∂y∗(x)

∂x
∇yf(x,y

∗(x))−∇xf(x
′,y∗(x′))− ∂y∗(x′)

∂x′ ∇yf(x
′,y∗(x′))

∥∥∥∥
≤ ∥∇xf(x,y

∗(x))−∇xf(x
′,y∗(x′))∥+

∥∥∥∥∂y∗(x)

∂x
∇yf(x,y

∗(x))− ∂y∗(x′)

∂x′ ∇yf(x
′,y∗(x′))

∥∥∥∥
≤ ∥∇xf(x,y

∗(x))−∇xf(x
′,y∗(x′))∥+

∥∥∥∥∂y∗(x)

∂x
(∇yf(x,y

∗(x))−∇yf(x
′,y∗(x′))

∥∥∥∥
+

∥∥∥∥(∂y∗(x)

∂x
− ∂y∗(x′)

∂x′

)
∇yf(x

′,y∗(x′))

∥∥∥∥
(i)

≤ ∥∇xf(x,y
∗(x))−∇xf(x

′,y∗(x′))∥+
Cgxy

µ
∥∇yf(x,y

∗(x))−∇yf(x
′,y∗(x′))∥

+M
∥∥∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1 −∇x∇yg(x
′,y∗(x′))[∇2

yg(x
′,y∗(x′))]−1

∥∥
≤ ∥∇xf(x,y

∗(x))−∇xf(x
′,y∗(x′))∥+

Cgxy

µ
∥∇yf(x,y

∗(x))−∇yf(x
′,y∗(x′))∥

+M
∥∥∇x∇yg(x,y

∗(x))[∇2
yg(x,y

∗(x))]−1 −∇x∇yg(x
′,y∗(x′))[∇2

yg(x,y
∗(x))]−1

∥∥
+M

∥∥∇x∇yg(x
′,y∗(x′))[∇2

yg(x,y
∗(x))]−1 −∇x∇yg(x

′,y∗(x′))[∇2
yg(x

′,y∗(x′))]−1
∥∥

(ii)

≤ (Lx,0 + Lx,1∥∇xf(x
′,y∗(x′))∥)

√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

+
Cgxy

µ
(Ly,0 + Ly,1 ∥∇yf(x,y

∗(x))∥)
√

∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

+
τM

µ

√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

+MCgxy

∥∥[∇2
yg(x,y

∗(x))]−1
∥∥ ∥∥[∇2

yg(x
′,y∗(x′))]−1

∥∥∥∥∇2
yg(x,y

∗(x))−∇2
yg(x

′,y∗(x′))
∥∥

≤ (Lx,0 + Lx,1∥∇xf(x
′,y∗(x′))∥)

√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

+

(
Cgxy

µ
(Ly,0 + Ly,1M) +M

Cgxyρ+ τµ

µ2

)√
∥x− x′∥2 + ∥y∗(x)− y∗(x′)∥2

(iii)

≤
(
Cgxy

µ
(Ly,0 + Ly,1M) +M

Cgxy
ρ+ τµ

µ2
+ Lx,0 + Lx,1

(
Cgxy

M

µ
+ ∥∇Φ(x′)∥

))√
1 +

(
Cgxy

µ

)2

∥x− x′∥

=

√
1 +

(
Cgxy

µ

)2(
Lx,0 + Lx,1

CgxyM

µ
+
Cgxy

µ
(Ly,0 + Ly,1M) +M

Cgxyρ+ τµ

µ2
+ Lx,1∥∇Φ(x′)∥

)
∥x− x′∥.

where (i) follows from (10), (ii) follows from Assumption 1, 2 and the fact that

∥H−1
1 −H−1

2 ∥ = ∥H−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H−1

1 ∥∥H−1
2 ∥∥H1 −H2∥,

and (iii) follows from (a) in Lemma C.2 that y∗(x) is Lipschitz. Recall the definition of K0,K1 in
(16), therefore, the objective function Φ(x) is (K0,K1)-smooth, i.e.,

∥∇Φ(x)−∇Φ(x′)∥ ≤ (K0 +K1∥∇Φ(x′)∥) ∥x− x′∥.

We now present a descent inequality for (K0,K1)-smooth functions which will be used in our
subsequent analysis.
Lemma C.4 (Descent Inequality). Let Φ be (K0,K1)-smooth. Then for any x,x′ ∈ Rd such that

∥x− x′∥ ≤ 1√
2
(
1 +

C2
gxy

µ2

)
(L2

x,1 + L2
y,1)

,
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we have

Φ(x) ≤ Φ(x′) + ⟨∇Φ(x′),x− x′⟩+ K0 +K1∥∇Φ(x′)∥
2

∥x− x′∥2,

where constants K0 and K1 are defined in (16).

Proof of Lemma C.4. By Lemma C.3, for x,x′ such that

∥x− x′∥ ≤ 1√
2
(
1 +

C2
gxy

µ2

)
(L2

x,1 + L2
y,1)

,

we have
∥∇Φ(x)−∇Φ(x′)∥ ≤ (K0 +K1∥∇Φ(x′)∥) ∥x− x′∥.

By definition above we have

Φ(x)− Φ(x′)− ⟨∇Φ(x′),x− x′⟩ ≤
∫ 1

0

⟨∇Φ(θx+ (1− θ)x′)−∇Φ(x′),x− x′⟩dθ

≤
∫ 1

0

∥∇Φ(θx+ (1− θ)x′)−∇Φ(x′)∥ ∥x− x′∥dθ

≤
∫ 1

0

(K0 +K1∥∇Φ(x′)∥) ∥θ(x− x′)∥∥x− x′∥dθ

≤ K0 +K1∥∇Φ(x′)∥
2

∥x− x′∥2.

Thus we conclude our proof by rearranging.

Next, we introduce a simple algebraic lemma.

Lemma C.5 ((Zhang et al., 2020a, Lemma B.1)). Let ω > 0, and u,v ∈ Rd, then

−⟨u,v⟩
∥v∥

≤ −ω∥u∥ − (1− ω)∥v∥+ (1 + ω)∥v − u∥. (17)

D PROOF OF LEMMAS IN SECTION 3.3

D.1 FILTRATIONS AND NOTATIONS

For convenience, we will restate a few concepts here. Let Fk denote the filtration of the random
variables for updating zk, mk and xk before iteration k, i.e.,

Fk := σ {ξ0, . . . , ξk−1, ζ0, . . . , ζk−1}

for k ≥ 1, where σ{·} denotes the σ-algebra generated by the random variables. Let F̃s,t
0 denote

the filtration of the random variables for updating lower-level variable y0 starting at the s-th epoch
before iteration t, i.e.,

F̃s,t
0 := σ

{
ξ̃s,00 , . . . , ξ̃s,t−1

0

}
for 1 ≤ t ≤ Ts and 0 ≤ s ≤ k†−1. Let F̃ t

k denote the filtration of the random variables for updating
lower-level variable yk (k ≥ 1) before iteration t, i.e.,

F̃ t
k := σ

{
ξ̃0k, . . . , ξ̃

t−1
k

}
for 1 ≤ t ≤ N and k = jI , where 1 ≤ j ≤

⌊
K
I

⌋
and I denotes the update period for yk. Let F̃K

denote the filtration of all random variables for updating lower-level variable yk (k ≥ 0), i.e.,

F̃K := σ


k†−1⋃

s=0

F̃s,Ts

0

⋃(
K−1⋃
k=1

F̃N
k

) .
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D.2 PROOF OF LEMMA 3.2

In this section we first present one technical lemma which provides high probability bound for SGD.
We follow the same technique and procedure as Theorem 1 in Lan (2012), just simplify the modified
mirror descent SA algorithm to SGD. For completeness of proof and consistency of notations in our
paper, we paraphrase Theorem 1 in Lan (2012) as the following lemma.

Lemma D.1. Consider the s-th epoch in Algorithm 3, letD2 be an upper bound for 1
2

∥∥∥ys,0
0 − y∗

0

∥∥∥2,

and assume that the fixed step-size αs satisfies 0 < αs ≤ 1
2L . Apply Ts iterations of the update

starting from ys,0
0 ,

ys,t+1
0 = argmin

v∈B(ys,0
0 ,

√
2D)

1

2

∥∥∥v −
(
ys,t
0 − αs∇yG(x0,y

s,t
0 ; ξ̃s,t0 )

)∥∥∥2 , (18)

where the stochastic gradient estimators ∇yG(x0,y
s,t
0 ; ξ̃s,t0 ) satisfy Assumption 3. Then for any

λ > 0 and Ts > 0, we have

Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > P0(Ts) + λP1(Ts)

]
≤ exp(−λ2/3) + exp(−λ), (19)

where

P0(Ts) :=
1

αsTs

[
D2 + 2σ2

g,1α
2
sTs
]
,

P1(Ts) :=
1

αsTs

[
2
√
2Dσg,1αs

√
Ts + 2σ2

g,1α
2
sTs

]
.

(20)

Proof of Lemma D.1. First, we have

αsg(x0,y
s,t+1
0 )

≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yg(x0,y

s,t
0 ),ys,t+1

0 − ys,t
0

〉
+
L

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2]
≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yg(x0,y

s,t
0 ),ys,t+1

0 − ys,t
0

〉]
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2 − 1− Lαs

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),ys,t+1

0 − ys,t
0

〉]
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2 − 1− Lαs

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
− αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 ),ys,t+1

0 − ys,t
0

〉
≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),ys,t+1

0 − ys,t
0

〉]
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
+ αs

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥∥∥∥ys,t+1

0 − ys,t
0

∥∥∥− 1− Lαs

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
(i)

≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),ys,t+1

0 − ys,t
0

〉]
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
+
α2
s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

2(1− Lαs)

(ii)

≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),ys,t+1

0 − ys,t
0

〉]
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
+ α2

s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

(21)
where (i) follows from the inequality bu− au2

2 ≤ b2

2a for any a > 0, where we set

u =
∥∥∥ys,t+1

0 − ys,t
0

∥∥∥ , b = αs

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥ , a = 1− Lαs,

and (ii) follows from αs ≤ 1
2L .
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Also, we have

αs

[
g(x0,y

s,t
0 ) +

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),ys,t+1

0 − ys,t
0

〉]
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2
(i)

≤ αsg(x0,y
s,t
0 ) +

[
αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),ys,t+1

0 − ys,t
0

〉
+

1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2]
+

[
αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
− 1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2 + 1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2]
≤ αs

[
g(x0,y

s,t
0 ) +

〈
∇yg(x0,y

s,t
0 ),y∗

0 − ys,t
0

〉]
+ αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 ),y∗

0 − ys,t
0

〉
+

1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2
(ii)

≤ αsg(x0,y
∗
0) + αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 ),y∗

0 − ys,t
0

〉
+

1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2
(22)

where (i) follows from

αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
− 1

2

∥∥∥ys,t+1
0 − ys,t

0

∥∥∥2 + 1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2
= αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
− 1

2

∥∥∥ys,t+1
0 − y∗

0 + y∗
0 − ys,t

0

∥∥∥2 + 1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2
= αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
− 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2 − 1

2

∥∥y∗
0 − ys,t

0

∥∥2 − 〈ys,t+1
0 − y∗

0 ,y
∗
0 − ys,t

0

〉
+

1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2
= αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
−
∥∥∥ys,t+1

0 − y∗
0

∥∥∥2 − 〈ys,t+1
0 − y∗

0 ,y
∗
0 − ys,t

0

〉
= αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
−
〈
ys,t+1
0 − y∗

0 ,y
s,t+1
0 − y∗

0

〉
−
〈
ys,t+1
0 − y∗

0 ,y
∗
0 − ys,t

0

〉
= αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 ),y∗

0 − ys,t+1
0

〉
−
〈
ys,t+1
0 − y∗

0 ,y
s,t+1
0 − ys,t

0

〉
=
〈
ys,t+1
0 − y∗

0 ,y
s,t
0 − αs∇yG(x0,y

s,t
0 ; ξ̃s,t0 )− ys,t+1

0

〉
≥ 0,

and (ii) follows from (strong) convexity of g(x,y) with respect to y.

Combing (21) and (22) yields

αsg(x0,y
s,t+1
0 )− αsg(x0,y

∗
0) ≤

1

2

∥∥ys,t
0 − y∗

0

∥∥2 − 1

2

∥∥∥ys,t+1
0 − y∗

0

∥∥∥2 + πt(y
∗
0), (23)

where we define

πt(y
∗
0) := 2α2

s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2+αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 ),y∗

0 − ys,t
0

〉
.

Summing up (23) from t = 0 to Ts − 1, we have

Ts−1∑
t=0

αs

[
g(x0,y

s,t+1
0 )− g(x0,y

∗
0)
]
≤ 1

2

∥∥∥ys,0
0 − y∗

0

∥∥∥2 − 1

2

∥∥∥ys,Ts

0 − y∗
0

∥∥∥2 + Ts−1∑
t=0

πt(y
∗
0)

≤ 1

2

∥∥∥ys,0
0 − y∗

0

∥∥∥2 + Ts−1∑
t=0

πt(y
∗
0) ≤ D2 +

Ts−1∑
t=0

πt(y
∗
0)

By (strong) convexity of g(x,y) with respect to y, we have

g(x0,y
s+1,0
0 ) = g

(
x0,

1

Ts

Ts∑
t=1

ys,t
0

)
≤ 1

Ts

Ts∑
t=1

g(x0,y
s,t
0 ),
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which implies that

Ts−1∑
t=0

αs

[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0)
]
≤ D2 +

Ts−1∑
t=0

πt(y
∗
0).

Denote ψt := αs

〈
∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 ),y∗

0 − ys,t
0

〉
and observing that

πt(y
∗
0) = ψt + 2α2

s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2 ,

we then conclude that(
Ts−1∑
t=0

αs

)[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0)
]
≤ D2+

Ts−1∑
t=0

[
ψt + 2α2

s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2] .

(24)
Note that by Assumption 3 we have E[ψt | F̃s,t

0 ] = 0, thus {ψt}t≥0 is a martingale-difference

sequence. Moreover,
∥∥y∗

0 − ys,t
0

∥∥ ≤
∥∥∥y∗

0 − ys,0
0

∥∥∥+ ∥∥∥ys,0
0 − ys,t

0

∥∥∥ ≤ 2
√
2D, then we obtain

E

[
exp

(
ψ2

t(
2
√
2Dαsσg,1

)2
)

| F̃s,t
0

]
≤ E

exp
α2

s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2 ∥∥y∗

0 − ys,t
0

∥∥2
α2
sσ

2
g,1

(
2
√
2D
)2

 | F̃s,t
0


≤ E

exp

∥∥∥∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

σ2
g,1

 | F̃s,t
0


(i)

≤ exp(1)

where (i) follows from Assumption 3. By Lemma 2 in Lan et al. (2012), for any λ ≥ 0 we have

Pr

[
Ts−1∑
t=0

ψt > λ
(
2
√
2Dσg,1αs

√
Ts

)]
= Pr

Ts−1∑
t=0

ψt > λ

2
√
2Dσg,1

√√√√Ts−1∑
t=0

α2
s


≤ exp(−λ2/3),

(25)

where the probability is taken over randomness in F̃s,Ts

0 . Also, we have

exp

 1

Tsα2
s

Ts−1∑
t=0

α2
s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

σ2
g,1


≤ 1

Tsα2
s

Ts−1∑
t=0

α2
s exp


∥∥∥∇yG(x0,y

s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

σ2
g,1

 .

Then take expectations (with respect to F̃s,Ts

0 ) on both sides and we get

E

exp


Ts−1∑
t=0

α2
s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

Tsα2
sσ

2
g,1


 (i)

≤ 1

Tsα2
s

Ts−1∑
t=0

α2
s exp(1) ≤ exp(1),

where (i) follows from Assumption 3.

Using Markov’s inequality, for any λ ≥ 0 we have

Pr

[
Ts−1∑
t=0

α2
s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2 > (1 + λ)σ2

g,1α
2
sTs

]
≤ exp(−λ). (26)
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Combining (24), (25) and (26), and rearranging the terms, we obtain

Pr

[(
Ts−1∑
t=0

αs

)[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0)
]
> D2 + λ

(
2
√
2Dσg,1αs

√
Ts

)
+ 2(1 + λ)σ2

g,1α
2
sTs

]

≤ Pr

[
D2 +

Ts−1∑
t=0

ψt +

Ts−1∑
t=0

2α2
s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2

> D2 + λ
(
2
√
2Dσg,1αs

√
Ts

)
+ 2(1 + λ)σ2

g,1α
2
sTs

]
≤ Pr

[
Ts−1∑
t=0

ψt > λ
(
2
√
2Dσg,1αs

√
Ts

)]
+ Pr

[
Ts−1∑
t=0

α2
s

∥∥∥∇yG(x0,y
s,t
0 ; ξ̃s,t0 )−∇yg(x0,y

s,t
0 )
∥∥∥2 > (1 + λ)σ2

g,1α
2
sTs

]
≤ exp(−λ2/3) + exp(−λ).

Note that
∑Ts−1

t=0 αs = αsTs, and recall the definition (20) of P0(Ts) and P1(Ts), by rearranging
we finally conclude that for any λ ≥ 0, we have

Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > P0(Ts) + λP1(Ts)

]
≤ exp(−λ2/3) + exp(−λ).

In Lemma D.1, we got the high probability convergence results for SGD for one epoch. We now
adopt a shrinking ball technique with multiple epochs to improve the high probability bound com-
pared with the one epoch result (Hazan & Kale, 2014; Ghadimi & Lan, 2013a). The main difference
in our setting is that we directly utilize SGD in each epoch and consider smooth and strongly convex
functions (i.e., our lower-level problem). In contrast, Hazan & Kale (2014) considered a nonsmooth
strongly convex function while Ghadimi & Lan (2013a) considered an accelerated algorithm AC-SA
for each epoch. This result is stated in Lemma 3.2.

For notation convenience, we define V0 as the upper bound for g(x0,y
0,0
0 )− g(x0,y

∗
0), i.e.,

g(x0,y
0,0
0 )− g(x0,y

∗
0) ≤ V0. (27)

We also define the projection ball Bs and set the number of iterations Ts and the fixed step-size αs

at s-th epoch in Alogorithm 3 as following:

Bs :=

{
y ∈ Rdy :

1

2

∥∥∥y − ys,0
0

∥∥∥2 ≤ V0

µ2s

}
, (28)

Ts =

⌈
max

{
16L

µ
,
32max{σ2

g,1, 4λ
2σ2

g,1}
µV02−(s+2)

}⌉
, (29)

αs = min

{
1

2L
,

1

σg,1

√
V02−s

2µTs

}
. (30)

Lemma D.2 (Initialization Refinement, Lemma 3.2 restated). Given δ ∈ (0, 1) and ϵ′ > 0, set
parameter k† = ⌈log2(V0/ϵ

′)⌉, where V0 is defined in (27). If we run Algorithm 3 for k† epochs,
with projection ball Bs, the number of iterations Ts and the fixed step-size αs at each epoch defined
as (28), (29) and (30), where we set λ to be

λ = max

(√
3 ln

(
2k†

δ

)
, ln

(
2k†

δ

))
,

then with probability at least 1− δ/2 over randomness in σ
{
∪k†−1
s=0 F̃s,Ts

0

}
, we have

Pr [g(x0,y0)− g(x0,y
∗(x0)) > ϵ′] ≤ δ

2
. (31)

Moreover, the total number of iterations performed by Algorithm 3 to find such a solution is bounded
by O(T (ϵ′, δ)), where

T (ϵ′, δ) :=
L

µ
max

(
1, log2

(
V0

ϵ′

))
+
σ2
g,1

µϵ′
+

[
ln

(
2 log2(V0/ϵ

′)

δ

)]2 σ2
g,1

µϵ′
. (32)
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In particular, if we set ϵ′ = µ
2

(
ϵ

8K0

)2
, then with probability at least 1 − δ/2 over random-

ness in σ
{
∪k†−1
s=0 F̃s,Ts

0

}
(this event is denoted as E0), we have ∥y0 − y∗(x0)∥ ≤ ϵ/8K0 in

Õ
(
σ2
g,1K

2
0/µ

2ϵ2
)

iterations.

Proof of Lemma D.2. For any s ≥ 0, let Vs = V02
−s and denote the event As :={

g(x0,y
s,0
0 )− g(x0,y

∗
0) ≤ Vs

}
. We first show that

Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) ≥ Vs+1 | As

]
≤ δ

2k†
. (33)

By strong convexity of g(x,y) with respect to y, we have

1

2

∥∥∥ys,0
0 − y∗

0

∥∥∥2 ≤ g(x0,y
s,0
0 )− g(x0,y

∗
0)

µ
≤ Vs

µ
.

With this upper bound for 1
2

∥∥∥ys,0
0 − y∗

0

∥∥∥2 under the event As, we can substitute Vs/µ for D2 in
(20) of Lemma D.1. Then we redefine P0(Ts) and P1(Ts) as

P0(Ts) :=
1

αsTs

[
Vs

µ
+ 2σ2

g,1α
2
sTs

]
,

P1(Ts) :=
1

αsTs

[
2
√
2

√
Vs

µ
σg,1αs

√
Ts + 2σ2

g,1α
2
sTs

]
.

(34)

By Lemma D.1 and definition (34) we have

Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > P0(Ts) + λP1(Ts) | As

]
≤ exp(−λ2/3) + exp(−λ). (35)

Define

R1(Ts) :=
2LVs

µ

1

Ts

(i)

≤ 2LVs

µ

µ

16L
=

Vs

8
=

Vs+1

4
,

R2(Ts) :=
2σ2

g,1Vs

µ

1

Ts

(ii)

≤
2σ2

g,1Vs

µ

µV02
−(s+2)

32σ2
g,1

=
Vs+2Vs

16
=

V2
s+1

16
,

(36)

where both (i) and (ii) follow from (29).

Then we conclude that

P0(Ts) =
Vs

µTs

1

αs
+ 2σ2

g,1αs

(i)

≤ Vs

µTs
max

{
2L, σg,1

√
2µTs
V02−s

}
+ 2σg,1

√
V02−s

2µTs

≤ max

{
2LVs

µTs
, σg,1

√
2Vs

µTs

}
+ σg,1

√
2Vs

µTs

(ii)

≤ max
{
R1(Ts),

√
R2(Ts)

}
+
√
R2(Ts)

≤ Vs+1

4
+

Vs+1

4
≤ Vs+1

2
.

where (i) follows from (30) and (ii) follows from (36).
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Also, we have

P1(Ts) = 2
√
2σg,1

√
Vs

µTs
+ 2σ2

g,1αs

(i)

≤ 2
√
2σg,1

√
Vs

µTs
+ 2σg,1

√
V02−s

2µTs
≤ 2

√
2σg,1

√
Vs

µTs
+

√
2σg,1

√
Vs

µTs

= 3
√
2σg,1

√
Vs

µTs

(ii)

≤ 3
√
2σg,1

√
Vs

µ

√
µV02−(s+2)

128λ2σ2
g,1

≤ 3
√
2σg,1

√
VsVs+2

128λ2σ2
g,1

=
3Vs+1

8λ
≤ Vs+1

2λ
.

where (i) follows from (30) and (ii) follows from (29). Therefore, we have

P0(Ts) + λP1(Ts) ≤ Vs+1,

which implies that

Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > Vs+1 | As

]
≤ Pr

[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > P0(Ts) + λP1(Ts) | As

]
(i)

≤ exp(−λ2/3) + exp(−λ)
(ii)

≤ δ

2k†
,

(37)
where (i) follows from (35) and in (ii) we set

λ = max

(√
3 ln

(
2k†

δ

)
, ln

(
2k†

δ

))
(38)

so that exp(−λ2/3) + exp(−λ) ≤ δ/2k†.

Next, we proceed to show that for any given δ ∈ (0, 1) and ϵ′ > 0, we have

Pr
[
g(x0,y

k†,0
0 )− g(x0,y

∗
0) > ϵ′

]
≤ δ

2
. (39)

Let event Ās be the complement of event As. Obviously we have Pr [A0] = 1, and thus Pr
[
Ā0

]
= 0.

It can also be easily seen that

Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > Vs+1

]
= Pr

[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > Vs+1 | As

]
Pr[As] + Pr

[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > Vs+1 | Ās

]
Pr
[
Ās

]
≤ Pr

[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > Vs+1 | As

]
+ Pr

[
Ās

]
(i)

≤ δ

2k†
+ Pr

[
g(x0,y

s,0
0 )− g(x0,y

∗
0) > Vs

]
,

where (i) follows from (37).

Summing up both sides of the above inequality from s = 0 to k† − 1, we obtain

Pr
[
g(x0,y

k†,0
0 )− g(x0,y

∗
0) > ϵ′

]
= Pr

[
g(x0,y

k†,0
0 )− g(x0,y

∗
0) > ϵ′

]
− Pr

[
Ā0

]
=

k†−1∑
s=0

{
Pr
[
g(x0,y

s+1,0
0 )− g(x0,y

∗
0) > Vs+1

]
− Pr

[
g(x0,y

s,0
0 )− g(x0,y

∗
0) > Vs

]}
≤ δ

2k†
k† =

δ

2
.
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Therefore, we conclude

Pr [g(x0,y0)− g(x0,y
∗
0) > ϵ′]

(i)
= Pr

[
g(x0,y

k†,0
0 )− g(x0,y

∗
0) > ϵ′

]
≤ δ

2
.

where (i) follows by recalling line 1 in Algorithm 1 and line 11 in Algorithm 3, i.e., y0 = yk†,0
0 is

the output of Algorithm 3.

Moreover, the total number of iterations can be bounded by

k†−1∑
s=0

Ts ≤
k†−1∑
s=0

(
16L

µ
+

32max
{
σ2
g,1, 4λ

2σ2
g,1

}
µV02−(s+2)

+ 1

)

≤ k†
(
16L

µ
+ 1

)
+

32max
{
σ2
g,1, 4λ

2σ2
g,1

}
µV0

k†−1∑
s=0

2k+2

= k†
(
16L

µ
+ 1

)
+

32max
{
σ2
g,1, 4λ

2σ2
g,1

}
µV0

2k
†+2

≤
(
log2

(
V0

ϵ′

)
+ 1

)(
16L

µ
+ 1

)
+

256(4λ2 + 1)σ2
g,1

µϵ′

(40)

Using the above conclusion, the fact that k† = ⌈log2(V0/ϵ
′)⌉, the observation that λ = O(ln(k†/δ)),

we conclude that the total number of iterations for Algorithm 3 is bounded by O(T (ϵ′, δ)), where

T (ϵ′, δ) :=
L

µ
max

(
1, log2

(
V0

ϵ′

))
+
σ2
g,1

µϵ′
+

[
ln

(
2 log2(V0/ϵ

′)

δ

)]2 σ2
g,1

µϵ′
. (41)

Specifically, for any given ϵ > 0, if we need ∥y0 − y∗(x0)∥ ≤ ϵ
8K0

holds with probability at least

1 − δ/2, then by strong convexity of g(x,y) with respect to y, we have to set ϵ′ = µ
2

(
ϵ

8K0

)2
and

thus by (40) we need to run Algorithm 3 for at most(
log2

(
128K2

0V0

µϵ2

)
+ 1

)(
16L

µ
+ 1

)
+

256× 128K2
0 (4λ

2 + 1)σ2
g,1

µ2ϵ2
(42)

iterations in total, where

λ = max

(√
3 ln

(
2k†

δ

)
, ln

(
2k†

δ

))

= max


√√√√√3 ln

2
⌈
log2

(
128V0K2

0

µϵ2

)⌉
δ

, ln
2
⌈
log2

(
128V0K

2
0

µϵ2

)⌉
δ


 .

(43)

Therefore, the total number of iterations performed by Algorithm 3 is at most Õ
(
σ2
g,1K

2
0/µ

2ϵ2
)

iterations in total.

D.3 PROOF OF LEMMA 3.3

The following lemma follows the same technique as in Lemma D.1, which can be regarded as high
probability guarantee for one epoch SGD.

Lemma D.3 (Periodic Updates, Lemma 3.3 restated). Given δ ∈ (0, 1) and ϵ > 0, chooseR = ϵ
4K0

.
Under E0, for any x̃k such that x̃0 = x0 and ∥x̃k+1 − x̃k∥ = η, where η ≤ µϵ

8K0ICgxy
, if we run

Algorithm 2 with input {x̃k}Kk=1 and generate outputs {ỹk}Kk=1, and the fixed step-size γ satisfies

γ =
µϵ2

512K2
0σ

2
g,1

√
λ+ 1

(
λ+

√
λ+ 1

) , (44)
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and the number of iterations N for update in each period satisfies

N =
642σ2

g,1K
2
0

(
λ+

√
λ+ 1

)2
µ2ϵ2

, (45)

where we set λ to be

λ = max

(√
3 ln

(
2K

δI

)
, ln

(
2K

δI

))
, (46)

then with probability at least 1− δ/2 over randomness in σ
{⋃K−1

k=1 F̃N
k

}
(this event is denoted as

E1), we have ∥y∗(x̃k) − ỹk∥ ≤ ϵ/4K0 for any k ≥ 1 in O
(
Kσ2

g,1K
2
0

(
λ+

√
λ+ 1

)2
/Iµ2ϵ2

)
iterations.

Proof of Lemma D.3. We denote ỹ∗
k = y∗(x̃k) for simplicity. By Lemma 3.2, under event E0, we

have ∥ỹ0 − ỹ∗
0∥ ≤ ϵ

8K0
. Suppose 1 ≤ k ≤ I , then we have

∥ỹk − ỹ∗
k∥ = ∥ỹ0 − ỹ∗

k∥ ≤ ∥ỹ0 − ỹ∗
0∥+ ∥ỹ∗

0 − ỹ∗
k∥

≤ ϵ

8K0
+

k−1∑
i=0

∥ỹ∗
i − ỹ∗

i+1∥
(i)

≤ ϵ

8K0
+

k−1∑
i=0

Cgxy

µ
∥x̃i − x̃i+1∥

=
ϵ

8K0
+
ICgxy

µ
η

(ii)

≤ ϵ

4K0
,

(47)

where (i) follows from (a) in Lemma C.2 and (ii) follows from η ≤ µϵ
8K0ICgxy

.

Now we proceed to update ỹk (with ỹ0
k = ỹk) at k-th iteration, where k = I . Following the same

technique and proof as Lemma D.1, and note that 1
2

(
ϵ

4K0

)2
is an upper bound for 1

2∥ỹI − ỹ∗
I∥2,

then for k = I and any λ > 0 we have

Pr [g(x̃k, ỹk+1)− g(x̃k, ỹ
∗
k) > P0(N) + λP1(N)] ≤ exp(−λ2/3) + exp(−λ),

where ỹk+1 = 1
N

∑N
t=1 ỹ

t
k (see line 8 in Algorithm 2). Also, by substituting 1

2

(
ϵ

4K0

)2
for D2 in

definition (20) of Lemma D.1, we redefine P0(N) and P1(N) as

P0(N) :=
1

γN

[
1

2

(
ϵ

4K0

)2

+ 2σ2
g,1γ

2N

]
,

P1(N) :=
1

γN

2√2

√
1

2

(
ϵ

4K0

)2

σg,1γ
√
N + 2σ2

g,1γ
2N

 . (48)

Set λ such that exp(−λ2/3) + exp(−λ) ≤ δI
2K , then

λ = max

(√
3 ln

(
2K

δI

)
, ln

(
2K

δI

))
.

Thus under event E0, with probability at least 1− δI
2K over randomness in F̃N

I , we have

g(x̃k, ỹk+1)− g(x̃k, ỹ
∗
k) ≤ P0(N) + λP1(N)

=
1

γN

[
1

2

(
ϵ

4K0

)2

+ 2σ2
g,1γ

2N

]
+ λ

1

γN

2√2

√
1

2

(
ϵ

4K0

)2

σg,1γ
√
N + 2σ2

g,1γ
2N


≤ ϵ2

32γK2
0N

+ 2σ2
g,1γ + λ

(
ϵσg,1

2K0

√
N

+ 2σ2
g,1γ

)
≤ ϵ2

32γK2
0N

+ 2σ2
g,1(λ+ 1)γ +

λϵσg,1

2K0

√
N

(49)
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If we choose

γ =
ϵ

8σg,1K0

√
λ+ 1

√
N
, N =

642σ2
g,1K

2
0

(
λ+

√
λ+ 1

)2
µ2ϵ2

, (50)

Then N = Õ(σ2
g,1K

2
0/µ

2ϵ2) and we have

g(x̃k, ỹk+1)− g(x̃k, ỹ
∗
k) ≤

ϵσg,1
√
λ+ 1

2K0

√
N

+
ϵσg,1λ

2K0

√
N

≤
ϵσg,1

(
λ+

√
λ+ 1

)
2K0

√
N

≤ µ

2

(
ϵ

8K0

)2

By strong convexity of g(x,y) with respect to y, we obtain

µ

2
∥ỹk+1 − ỹ∗

k∥
2 ≤ g(x̃k, ỹk+1)− g(x̃k, ỹ

∗
k) ≤

µ

2

(
ϵ

8K0

)2

, (51)

which implies ∥ỹk+1 − ỹ∗
k∥ ≤ ϵ

8K0
for k = I . Thus for any k such that I + 1 ≤ k ≤ 2I , we have

∥ỹk − ỹ∗
k∥ = ∥ỹI+1 − ỹ∗

k∥ ≤ ∥ỹI+1 − ỹ∗
I∥+ ∥ỹ∗

I − ỹ∗
k∥

≤ ϵ

8K0
+

k−1∑
i=I

∥∥ỹ∗
i − ỹ∗

i+1

∥∥ (i)

≤ ϵ

8K0
+

k−1∑
i=I

Cgxy

µ
∥x̃i − x̃i+1∥

≤ ϵ

8K0
+
ICgxy

µ
η

(ii)

≤ ϵ

4K0
.

(52)

where (i) follows from (a) in Lemma C.2 and (ii) follows from η ≤ µϵ
8K0ICgxy

.

In general, for k = jI where 1 ≤ j ≤
⌊
K
I

⌋
, we update ỹk by Algorithm 2. Under event E0, with

probability at least 1− jδI
2K we have ∥ỹk+1 − ỹ∗

k∥ ≤ ϵ
8K0

in at most

N =
642σ2

g,1K
2
0

(
λ+

√
λ+ 1

)2
µ2ϵ2

iterations, i.e., O
(
σ2
g,1K

2
0

(
λ+

√
λ+ 1

)2
/µ2ϵ2

)
iterations. Also, by repeatedly applying (49) +

(50) + (51) or (52) for all k ≥ 1 and using union bound, under event E0 we have ∥ỹk − ỹ∗
k∥ ≤ ϵ

4K0

with probability at least 1− δ/2 for any k ≥ 1. Moreover, we need to run Algorithm 2 for at most⌊
K

I

⌋
N ≤ KN

I
=

642Kσ2
g,1K

2
0

(
λ+

√
λ+ 1

)2
Iµ2ϵ2

(53)

iterations in total, where

λ = max

(√
3 ln

(
2K

δI

)
, ln

(
2K

δI

))
. (54)

Therefore, the total number of iterations performed by Algorithm 2 is at most
O
(
Kσ2

g,1K
2
0

(
λ+

√
λ+ 1

)2
/Iµ2ϵ2

)
.

D.4 PROOF OF LEMMA 3.4

Lemma D.4 (Error Control for the Lower-level Problem, Lemma 3.4 restated). Under event E =
E0 ∩ E1, we have ∥y∗(x̃k)− ỹk∥ ≤ ϵ/4K0 for any k ≥ 0 and Pr(E) ≥ 1− δ and the probability is
taken over randomness in F̃K .
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Proof of Lemma D.4. By Lemma 3.2 and 3.3, under event E = E0∩E1, we have ∥y∗(x̃k)− ỹk∥ ≤
ϵ/8K0 for k = 0 and ∥y∗(x̃k) − ỹk∥ ≤ ϵ/4K0 for any k ≥ 1. Therefore, under event E we have
∥y∗(x̃k)− ỹk∥ ≤ ϵ/4K0 for any k ≥ 0. Moreover, we have

Pr(E) = Pr(E0 ∩ E1) = 1− Pr(E0 ∪ E1) ≥ 1− [Pr(E0) + Pr(E1)] ≥ 1− δ

2
− δ

2
= 1− δ,

where the probability is taken over randomness in F̃K . Thus we conclude our proof.

D.5 AUXILIARY LEMMAS

In the next lemma, the goal is to bound accumulated expected error of ∥zk − z∗
k∥, which is similar

to Lemma B.6 in Chen et al. (2023b).

Lemma D.5. Suppose Assumptions 1, 2 and 3 hold. If we choose ν ≤ min
(

1
4µ ,

µ
16σ2

g,2

)
, then under

event E , we have

K−1∑
k=0

E[∥zk − z∗
k∥2] ≤

∆z,0

νµ
+

5K

µ2

(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2

)(
ϵ

4K0

)2

+K

[
2

µ

(
2M2

µ2
σ2
g,2 + σ2

f,1

)
ν +

4L2
z∗

µ2

η2

ν2

]
,

(55)

where we define ∆z,0 := ∥z0 − z∗
0∥

2, and the expectation is taken over all randomness in FK .

Proof of Lemma D.5. First, we have

∥∥zk+1 − z∗
k+1

∥∥2 (i)

≤
(
1 +

νµ

3

)
∥zk+1 − z∗

k∥
2
+

(
1 +

3

νµ

)∥∥z∗
k+1 − z∗

k

∥∥2
(ii)

≤
(
1 +

νµ

3

)
∥zk+1 − z∗

k∥
2
+

(
1 +

3

νµ

)
L2
z∗η2,

(56)

where (i) follows from Young’s inequality and (ii) follows from (b) in Lemma C.2 that z∗(x) is
Lz∗ -Lipschitz. Then we decompose zk+1 − z∗

k as follows,

zk+1 − z∗
k = zk − ν

(
∇2

yG(xk,yk; ξk)zk −∇yF (xk,yk; ζk)
)
− z∗

k

= zk − ν
(
∇2

yg(xk,yk)zk −∇yf(xk,yk)
)
− z∗

k − ν
(
∇2

yG(xk,yk; ξk)−∇2
yg(xk,yk)

)
zk

+ ν (∇yF (xk,yk; ζk)−∇yf(xk,yk)) .
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Take conditional expectation on Fk and we have

Ek[∥zk+1 − z∗
k∥2]

(i)
= ∥zk − ν(∇2

yg(xk,yk)zk −∇yf(xk,yk))− z∗
k∥2 + ν2σ2

g,2∥zk∥2 + ν2σ2
f,1

≤ ∥(I − ν∇2
yg(xk,yk))(zk − z∗

k)− ν(∇2
yg(xk,yk)z

∗
k −∇yf(xk,yk))∥2

+ 2ν2σ2
g,2(∥zk − z∗

k∥2 + ∥z∗
k∥2) + ν2σ2

f,1

(ii)

≤ (1 +
νµ

2
)∥(I − ν∇2

yg(xk,yk))(zk − z∗
k)∥2 + 2ν2σ2

g,2(∥zk − z∗
k∥2 + ∥z∗

k∥2) + ν2σ2
f,1

+ (1 +
2

νµ
)∥ν(∇2

yg(xk,yk)z
∗
k −∇2

yg(xk,y
∗
k)z

∗
k +∇yf(xk,y

∗
k)−∇yf(xk,yk))∥2

≤ ((1 +
νµ

2
)(1− νµ)2 + 2ν2σ2

g,2)∥zk − z∗
k∥2 + 2ν2σ2

g,2∥z∗
k∥2 + ν2σ2

f,1

+ 2ν2(1 +
2

νµ
)(∥∇2

yg(xk,yk)−∇2
yg(xk,y

∗
k)∥2∥z∗

k∥2 + ∥∇yf(xk,y
∗
k)−∇yf(xk,yk)∥2)

≤ ((1 +
νµ

2
)(1− νµ)2 + 2ν2σ2

g,2)∥zk − z∗
k∥2 + 2ν2σ2

g,2∥z∗
k∥2 + ν2σ2

f,1

+ (2ν2 +
4ν

µ
)(ρ2∥z∗

k∥2 + (Ly,0 + Ly,1M)2)∥yk − y∗
k∥2

≤ ((1 +
νµ

2
)(1− νµ)2 + 2ν2σ2

g,2)∥zk − z∗
k∥2 + (

2M2

µ2
σ2
g,2 + σ2

f,1)ν
2

+ (2ν2 +
4ν

µ
)(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2)∥yk − y∗

k∥2

(iii)

≤ (1− 4νµ

3
)∥zk − z∗

k∥2 + (
2M2

µ2
σ2
g,2 + σ2

f,1)ν
2 + (2ν2 +

4ν

µ
)(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2)∥yk − y∗

k∥,
(57)

where (i) follows from Assumption 3 and the fact that stochastic estimators are unbiased, (ii) fol-
lows from Young’s inequality and the definition of linear system solution z∗

k , i.e., ∇2
yg(xk,y

∗
k)z

∗
k =

∇yf(xk,y
∗
k). Inequality (iii) holds since we choose ν ≤ min( 1

4µ ,
µ

16σ2
g,2

) and thus we have

(
1 +

νµ

2

)
(1− νµ)2 + 2ν2σ2

g,2 = 1− 3

2
νµ+

1

2
ν3µ3 + 2ν2σ2

g,2

(i)

≤ 1− 3

2
νµ+

1

32
νµ+

1

8
νµ

= 1− 43

32
νµ ≤ 1− 4

3
νµ,

where (i) follows from ν2µ2 ≤ 1/16 and νσ2
g,2 ≤ µ/16. Plug the inequality (57) into (56), then

take conditional expectation on Fk for both sides of (56) and we obtain

Ek[∥zk+1 − z∗
k+1∥2]

≤ (1 +
νµ

3
)Ek[∥zk+1 − z∗

k∥2] + (1 +
3

νµ
)L2

z∗η2

≤ (1 +
νµ

3
)[(1− 4νµ

3
)∥zk − z∗

k∥2 + (2ν2 +
4ν

µ
)(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2)∥yk − y∗

k∥2]

+ (1 +
νµ

3
)(
2M2

µ2
σ2
g,2 + σ2

f,1)ν
2 + (1 +

3

νµ
)L2

z∗η2

≤ (1− νµ)∥zk − z∗
k∥2 + (

2ν3µ

3
+

4ν

µ
+

10ν2

3
)(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2)∥yk − y∗

k∥2

+ (1 +
νµ

3
)(
2M2

µ2
σ2
g,2 + σ2

f,1)ν
2 + (1 +

3

νµ
)L2

z∗η2

(i)

≤ (1− νµ)∥zk − z∗
k∥2 +

5ν

µ
(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2)∥yk − y∗

k∥2 + 2(
2M2

µ2
σ2
g,2 + σ2

f,1)ν
2 +

4

νµ
L2
z∗η2

(ii)

≤ (1− νµ)∥zk − z∗
k∥2 +

5ν

µ
(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2)(

ϵ

4K0
)2 + 2(

2M2

µ2
σ2
g,2 + σ2

f,1)ν
2 +

4

νµ
L2
z∗η2
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where (i) follows by ν ≤ 1
4µ and (ii) follows from Lemma 3.4. Take expectation with respect to

Fk and we have
E[∥zk − z∗

k∥2] = EFk
[Ek[∥zk − z∗

k∥2]]

≤ (1− νµ)k∥z0 − z∗
0∥2 +

k−1∑
i=0

(1− νµ)k−i−1

[
5ν

µ

(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2

)(
ϵ

4K0

)2

+ 2

(
2M2

µ2
σ2
g,2 + σ2

f,1

)
ν2 +

4

νµ
L2
z∗η2

]
.

Take summation on both sides and we finally conclude
K−1∑
k=0

E[∥zk − z∗
k∥

2
]

≤
K−1∑
k=0

(1− νµ)k∥z0 − z∗
0∥2 +

K−1∑
k=0

k−1∑
i=0

(1− νµ)k−i−1

[
5ν

µ

(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2

)(
ϵ

4K0

)2

+ 2

(
2M2

µ2
σ2
g,2 + σ2

f,1

)
ν2 +

4

νµ
L2
z∗η2

]
≤ 1

νµ
∥z0 − z∗

0∥2 +
1

νµ

K−1∑
k=0

[
5ν

µ

(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2

)(
ϵ

4K0

)2

+ 2

(
2M2

µ2
σ2
g,2 + σ2

f,1

)
ν2 +

4

νµ
L2
z∗η2

]
(i)

≤ ∆z,0

νµ
+K

[
5

µ2

(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2

)(
ϵ

4K0

)2

+
2

µ

(
2M2

µ2
σ2
g,2 + σ2

f,1

)
ν +

4L2
z∗

µ2

η2

ν2

]
,

where (i) follows from the definition of ∥z0 − z∗
0∥

2.

For simplicity, we denote hypergradient estimator as the following:

∇̂Φ(xk,yk, zk; ζk, ξk) := ∇xF (xk,yk; ζk)−∇x∇yG(xk,yk; ξk)zk. (58)
In the following lemma, we bound the variance of the hypergradient estimator.
Lemma D.6. Suppose Assumptions 1, 2 and 3 hold. Then under event E , we have

E[∥∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]∥2] ≤ σ2
f,1 +

2M2

µ2
σ2
g,2 + 2σ2

g,2E[∥zk − z∗
k∥

2
],

(59)
where the expectation is taken over all randomness in FK .

Proof of Lemma D.6. We first decompose ∇̂Φ(xk,yk, zk; ζk, ξk)−Ek[∇̂Φ(xk,yk, zk; ζk, ξk)] as
follows,

∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]

= [∇xF (xk,yk; ζk)−∇x∇yG(xk,yk; ξk)zk]− [∇xf(xk,yk)−∇x∇yg(xk,yk)zk]

= [∇xF (xk,yk; ζk)−∇xf(xk,yk)]− [∇x∇yG(xk,yk; ξk)−∇x∇yg(xk,yk)]zk.

Take conditional expectation on Fk and we have

Ek[∥∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]∥2]
(i)
= Ek[∥∇xF (xk,yk; ζk)−∇xf(xk,yk)∥2] + Ek[∥∇x∇yG(xk,yk; ξk)−∇x∇yg(xk,yk)∥2]∥zk∥2

≤ σ2
f,1 + σ2

g,2∥zk∥2

≤ σ2
f,1 + 2σ2

g,2∥zk − z∗
k∥2 + 2σ2

g,2∥z∗
k∥2

≤ σ2
f,1 +

2M2

µ2
σ2
g,2 + 2σ2

g,2∥zk − z∗
k∥2,

(60)
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where (i) follows from Assumption 3 that stochastic estimators are unbiased and ξk, ζk are mutually
independent. Take expectation with respect to Fk on both sides of (60), and then we have

E[∥∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]∥2]
= EFk

[Ek[∥∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]∥2]]

≤ σ2
f,1 +

2M2

µ2
σ2
g,2 + 2σ2

g,2E[∥zk − z∗
k∥2].

(61)

D.6 PROOF OF LEMMA 3.5

Lemma D.7 (Bias of the Hypergradient Estimator, Lemma 3.5 restated). Suppose Assumptions 1, 2
and 3 hold. Then under event E , we have∥∥∥Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]−∇Φ(xk)

∥∥∥
≤ Lx,1ϵ

4K0
∥∇Φ(xk)∥+

(
Lx,0 + Lx,1

Cgxy
M

µ
+
τM

µ

)
ϵ

4K0
+ Cgxy

∥zk − z∗
k∥.

(62)

Proof of Lemma D.7. We first decompose Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]−∇Φ(xk) as follows,

Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]−∇Φ(xk)

= Ek [∇xF (xk,yk; ζk)−∇x∇yG(xk,yk; ξk)zk]−∇Φ(xk)

= (∇xf(xk,yk)−∇xf(xk,y
∗
k))−∇x∇yg(xk,yk)(zk − z∗

k)− (∇x∇yg(xk,yk)−∇x∇yg(xk,y
∗
k)) z

∗
k.

Then we obtain∥∥∥Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]−∇Φ(xk)
∥∥∥

= ∥(∇xf(xk,yk)−∇xf(xk,y
∗
k))−∇x∇yg(xk,yk)(zk − z∗

k)− (∇x∇yg(xk,yk)−∇x∇yg(xk,y
∗
k)) z

∗
k∥

(i)

≤ (Lx,0 + Lx,1∥∇xf(xk,y
∗
k)∥) ∥yk − y∗

k∥+ Cgxy∥zk − z∗
k∥+ τ∥yk − y∗

k∥∥z∗
k∥

(ii)

≤
(
Lx,0 + Lx,1

(
Cgxy

M

µ
+ ∥∇Φ(xk)∥

))
∥yk − y∗

k∥+ Cgxy
∥zk − z∗

k∥+
τM

µ
∥yk − y∗

k∥

≤ Lx,1∥yk − y∗
k∥∥∇Φ(xk)∥+

(
Lx,0 + Lx,1

Cgxy
M

µ
+
τM

µ

)
∥yk − y∗

k∥+ Cgxy
∥zk − z∗

k∥

(iii)

≤ Lx,1ϵ

4K0
∥∇Φ(xk)∥+

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
ϵ

4K0
+ Cgxy

∥zk − z∗
k∥,

where (i) follows from Assumption 1, (ii) follows from (c) in Lemma C.2 and (iii) follows from
Lemma 3.4.

D.7 PROOF OF LEMMA 3.6

Lemma D.8 (Expected Error of the Moving-Average Hypergradient Estimator, Lemma 3.6 restated).
Suppose Assumptions 1, 2 and 3 hold. Define δk := mk+1 − ∇Φ(xk) to be the moving-average
estimation error. Then under event E , we have

E

[
K−1∑
k=0

∥δk∥

]
≤ Err1 + Err2, (63)
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where the expectation is taken over randomness in FK , and Err1, Err2 are defined as

Err1 :=
Lx,1ϵ

4K0

K−1∑
k=0

∥∇Φ(xk)∥+K

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
ϵ

4K0
+ Cgxy

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2],

Err2 := K
√

1− β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

√
2σg,2

√
1− β

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2]

+
K1ηβ

1− β

K−1∑
k=0

∥∇Φ(xk)∥+
K0Kηβ

1− β
+

β

1− β
∥m0 −∇Φ(x0)∥ .

(64)

Proof of Lemma D.8. First we denote

δk := mk+1−∇Φ(xk), δ̂k := ∇̂Φ(xk,yk, zk; ζk, ξk)−∇Φ(xk), S(a, b) := ∇Φ(a)−∇Φ(b).

We can upper bound S(a, b) using the definition of (K0,K1)-smoothness,

S(a, b) ≤ (K0 +K1∥∇Φ(a)∥) ∥a− b∥. (65)

By definition of mk and S(a, b), we can get a recursive formula on δk,

δk+1 = mk+2 −∇Φ(xk+1)

= βmk+1 + (1− β)∇̂Φ(xk+1,yk+1, zk+1; ζk+1, ξk+1)−∇Φ(xk+1)

= β (mk+1 −∇Φ(xk)) + β (∇Φ(xk)−∇Φ(xk+1)) + (1− β)(∇̂Φ(xk+1,yk+1, zk+1; ζk+1, ξk+1)−∇Φ(xk+1))

= βδk + βS(xk,xk+1) + (1− β)δ̂k+1.
(66)

Apply (66) recursively and we obtain

δk = βkδ0 + β

k−1∑
i=0

βk−1−iS(xi,xi+1) + (1− β)

k−1∑
i=0

βk−1−iδ̂i+1

= βk (m1 −∇Φ(x0)) + β

k−1∑
i=0

βk−1−iS(xi,xi+1) + (1− β)

k−1∑
i=0

βk−1−iδ̂i+1

= βk
(
βm0 + (1− β)∇̂Φ(x0,y0, z0; ζ0, ξ0)−∇Φ(x0)

)
+ β

k−1∑
i=0

βk−1−iS(xi,xi+1) + (1− β)

k−1∑
i=0

βk−1−iδ̂i+1

= βk+1 (m0 −∇Φ(x0)) + (1− β)βkδ̂0 + β

k−1∑
i=0

βk−1−iS(xi,xi+1) + (1− β)

k−1∑
i=0

βk−1−iδ̂i+1

= βk+1 (m0 −∇Φ(x0)) + β

k−1∑
i=0

βk−1−iS(xi,xi+1) + (1− β)

k∑
i=0

βk−iδ̂i.

Using triangle inequality and plugging (65) into the above inequality, we have

∥δk∥ ≤ (1− β)

∥∥∥∥∥
k∑

i=0

βk−iδ̂i

∥∥∥∥∥+ βη

k−1∑
i=0

βk−1−i (K0 +K1∥∇Φ(xi)∥) + βk+1 ∥m0 −∇Φ(x0)∥ .
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Take summation and we obtain

K−1∑
k=0

∥δk∥ ≤ (1− β)

K−1∑
k=0

∥∥∥∥∥
k∑

i=0

βk−iδ̂i

∥∥∥∥∥+ K0Kηβ

1− β
+
K1ηβ

1− β

K−1∑
k=0

∥∇Φ(xk)∥+
β

1− β
∥m0 −∇Φ(x0)∥

≤ (1− β)

K−1∑
k=0

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥︸ ︷︷ ︸
(a)

+
K0Kηβ

1− β
+
K1ηβ

1− β

K−1∑
k=0

∥∇Φ(xk)∥

+ (1− β)

K−1∑
k=0

∥∥∥∥∥
k∑

i=0

βk−i
(
Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]−∇Φ(xi)

)∥∥∥∥∥︸ ︷︷ ︸
(b)

+
β

1− β
∥m0 −∇Φ(x0)∥ .

(67)
Taking expectation (with respect to FK) on both sides of part (a), we have

(1− β)

K−1∑
k=0

E

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
(i)

≤ (1− β)

K−1∑
k=0

√√√√E

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2

(ii)
= (1− β)

K−1∑
k=0

√√√√ k∑
i=0

β2(k−i)E
∥∥∥∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

∥∥∥2
(iii)

≤ (1− β)

K−1∑
k=0

√√√√ k∑
i=0

β2(k−i)

(
σ2
f,1 +

2M2

µ2
σ2
g,2 + 2σ2

g,2E[∥zi − z∗
i ∥2]

)
(iv)

≤ (1− β)

K−1∑
k=0

√√√√ k∑
i=0

β2(k−i)

(
σ2
f,1 +

2M2

µ2
σ2
g,2

)
+ (1− β)

K−1∑
k=0

√√√√2σ2
g,2

k∑
i=0

β2(k−i)E[∥zi − z∗
i ∥2]

(v)

≤ K

√
1− β√
1 + β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

√
2σg,2(1− β)

√
K

√√√√K−1∑
k=0

k∑
i=0

β2(k−i)E[∥zi − z∗
i ∥2]

≤ K

√
1− β√
1 + β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

√
2σg,2

√
1− β√
1 + β

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2]

≤ K
√

1− β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

√
2σg,2

√
1− β

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2],

(68)
where (i) follows from Jensen’s inequality; (ii) follows from Lemma D.9; (iii) follows from
Lemma D.6; (iv) follows from the fact that

√
a+ b ≤

√
a +

√
b for all a ≥ 0, b ≥ 0; (v) fol-

lows from the fact that
∑n

i=1

√
ai ≤

√
n
√∑n

i=1 ai for all ai ≥ 0.
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Taking expectation (with respect to FK) on both sides of part (b), we have

(1− β)

K−1∑
k=0

E

∥∥∥∥∥
k∑

i=0

βk−i
(
Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]−∇Φ(xi)

)∥∥∥∥∥
(i)

≤ (1− β)

K−1∑
k=0

k∑
i=0

βk−iLx,1ϵ

4K0
E∥∇Φ(xk)∥+ (1− β)

K−1∑
k=0

k∑
i=0

βk−i

(
Lx,0 + Lx,1

Cgxy
M

µ
+
τM

µ

)
ϵ

4K0

+ (1− β)

K−1∑
k=0

k∑
i=0

βk−iCgxyE [∥zk − z∗
k∥]

≤ Lx,1ϵ

4K0

K−1∑
k=0

E∥∇Φ(xk)∥+K

(
Lx,0 + Lx,1

Cgxy
M

µ
+
τM

µ

)
ϵ

4K0

+ (1− β)Cgxy

K−1∑
k=0

k∑
i=0

βk−iE [∥zk − z∗
k∥]︸ ︷︷ ︸

(c)

.

(69)
where (i) follows from Lemma 3.5.

For part (c), we have

(1− β)Cgxy

K−1∑
k=0

k∑
i=0

βk−iE [∥zk − z∗
k∥]

(i)

≤ (1− β)Cgxy

K−1∑
k=0

k∑
i=0

βk−i
√
E[∥zk − z∗

k∥2]

≤ Cgxy

K−1∑
k=0

√
E[∥zk − z∗

k∥2]
(ii)

≤ Cgxy

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2].

(70)
where (i) follows from Jensen’s inequality and (ii) follows from the fact that

∑n
i=1

√
ai ≤√

n
√∑n

i=1 ai for all ai ≥ 0.

Therefore, combining (67), (68), (69) and (70) yields

E

[
K−1∑
k=0

∥δk∥

]
≤ (1− β)

K−1∑
k=0

E

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
+
K0Kηβ

1− β
+
K1ηβ

1− β

K−1∑
k=0

∥∇Φ(xk)∥+
β

1− β
∥m0 −∇Φ(x0)∥

+ (1− β)

K−1∑
k=0

E

∥∥∥∥∥
k∑

i=0

βk−i
(
Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]−∇Φ(xi)

)∥∥∥∥∥
≤ K

√
1− β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

√
2σg,2

√
1− β

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2]

+
Lx,1ϵ

4K0

K−1∑
k=0

∥∇Φ(xk)∥+K

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
ϵ

4K0
+
K0Kηβ

1− β

+ Cgxy

√
K

√√√√K−1∑
k=0

E[∥zk − z∗
k∥2] +

K1ηβ

1− β

K−1∑
k=0

∥∇Φ(xk)∥+
β

1− β
∥m0 −∇Φ(x0)∥ .

(71)
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Lemma D.9. We have the following fact

E

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2

=

k∑
i=0

β2(k−i)E
∥∥∥∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

∥∥∥2 ,
(72)

where the expectation is taken over the randomness in FK .

Proof of Lemma D.9. We will show (72) by using conditional expectation, the law of total expec-
tation and recursion.

E

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2

(i)
= EFk

Ek

∥∥∥∥∥
k∑

i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2


(ii)
= EFk

Ek


∥∥∥∥∥∥∥∥β

0
(
∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]

)
︸ ︷︷ ︸

(a)

∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥∥
k−1∑
i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)
︸ ︷︷ ︸

(b)

∥∥∥∥∥∥∥∥∥∥

2
(iii)
= β2×0E

∥∥∥∇̂Φ(xk,yk, zk; ζk, ξk)− Ek[∇̂Φ(xk,yk, zk; ζk, ξk)]
∥∥∥2

+ E

∥∥∥∥∥
k−1∑
i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2


=

k∑
i=k

β2(k−i)E
∥∥∥∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

∥∥∥2
+ EFk−1

Ek−1

∥∥∥∥∥
k−1∑
i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2


(iv)
=

k∑
i=k−1

β2(k−i)E
∥∥∥∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

∥∥∥2

+ E

∥∥∥∥∥
k−2∑
i=0

βk−i
(
∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

)∥∥∥∥∥
2


(v)
=

k∑
i=0

β2(k−i)E
∥∥∥∇̂Φ(xi,yi, zi; ζi, ξi)− Ei[∇̂Φ(xi,yi, zi; ζi, ξi)]

∥∥∥2 ,
where (i) follows from the law of total expectation; (ii) follows from the fact that part (b) is Fk-
measurable and uncorrelated with part (a); (iii) follows from the law of total expectation; (iv)
follows from the same procedures as (ii) and (iii); (v) follows from recursion and then proof is
completed.
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E PROOF OF THEOREM 3.1

Before proving Theorem 3.1, we require the following lemma to characterize the function value
decrease from iteration k to iteration k + 1, which is similar to Lemma C.6 in Jin et al. (2021).

Lemma E.1. For Algorithm 1, define δk := mk+1 − ∇Φ(xk) to be the the moving-average esti-
mation error. Then we have

Φ(xk+1)− Φ(xk) ≤ −
(
η − 1

2
K1η

2

)
∥∇Φ(xk)∥+

1

2
K0η

2 + 2η∥δk∥. (73)

Further, by a telescope sum we have(
1− 1

2
K1η

)K−1∑
k=0

∥∇Φ(xk)∥ ≤ ∆

η
+

1

2
K0Kη + 2

K−1∑
k=0

∥δk∥, (74)

where ∆ := Φ(x0)− Φ∗ and Φ∗ = infx∈Rd Φ(x).

Proof of Lemma E.1. For Algorithm 1 we have ∥xk+1 − xk∥ = η, and by Lemma C.4 we obtain

Φ(xk+1)− Φ(xk) ≤ − η

∥mk+1∥
⟨∇Φ(xk),mk+1⟩+

1

2
η2 (K0 +K1∥∇Φ(xk)∥)

(i)

≤ η (−∥∇Φ(xk)∥+ 2∥δk∥) +
1

2
η2 (K0 +K1∥∇Φ(xk)∥)

= −
(
η − 1

2
K1η

2

)
∥∇Φ(xk)∥+

1

2
K0η

2 + 2η∥δk∥,

where (i) follows from Lemma C.5 with ω = 1.

With Lemma 3.6 and Lemma E.1, now we proceed to prove Theorem 3.1.
Theorem E.2 (Theorem 3.1 restated). Suppose Assumptions 1, 2 and 3 hold. Run Algo-
rithm 1 for K iterations and let {xk}k≥0 be the sequence produced by Algorithm 1. For ϵ ≤

min

K0

K1
,

√√√√ σ2
f,1+

2M2

µ2 σ2
g,2

min

(
1, µ2

32C2
gxy

)
 and given δ ∈ (0, 1), if we choose αs as (30), γ as (44), N as (45),

I =
σ2
g,1K

2
0

µ2ϵ2 , and

1− β = min

(
ϵ2

σ2
f,1 +

2M2

µ2 σ2
g,2

min

(
1,

µ2

32C2
gxy

)
,
C2

gxy

8σ2
g,2

,
µ2

16σ2
g,2

,
1

4

)
, ν =

1

µ
(1− β), I =

σ2
g,1K

2
0

µ2ϵ2
,

η = min

1

8
min

(
1

K1
,
ϵ

K0
,

∆

∥∇Φ(x0)∥
,

ϵ∆

C2
gxy

∆z,0

)
(1− β),

1√
2

(
1 +

C2
gxy

µ2

)
(L2

x,1 + L2
y,1)

,
µϵ

8K0ICgxy

 ,

(75)
where ∆ := Φ(x0) − infx∈Rdx Φ(x) and ∆z,0 := ∥z0 − z∗

0∥2, then with probability at least
1 − δ over the randomness in F̃K , Algorithm 1 guarantees 1

K

∑K−1
k=0 E∥∇Φ(xk)∥ ≤ 30ϵ as long

as K = 4∆
ηϵ , where the expectation is taken over the randomness in FK . In addition, the number of

oracle calls for updating lower-level variable y (in Algorithm 2 and Algorithm 3) is at most Õ
(

∆
ηϵ

)
.

Proof of Theorem E.2. Taking total expectations (with respect to FK) on both sides of (74) in
Lemma E.1, we obtain(

1− 1

2
K1η

)K−1∑
k=0

E∥∇Φ(xk)∥ ≤ ∆

η
+

1

2
K0Kη + 2E

[
K−1∑
k=0

∥δk∥

]
,
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Now we plug (63) and (64) of Lemma 3.6 into the above inequality, rearrange and we have

(
1−

(
1

2
+

2β

1− β

)
K1η −

Lx,1ϵ

2K0

)
1

K

K−1∑
k=0

E∥∇Φ(xk)∥

≤ 2

[√
1− β

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

K0ηβ

1− β
+

1

4
K0η +

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
ϵ

4K0

]
︸ ︷︷ ︸

(I)

+ 2
(
2
√
2σg,2

√
1− β + 2Cgxy

)√√√√ 1

K

K−1∑
k=0

E[∥zk − z∗
k∥2] +

2β

K(1− β)
∥m0 −∇Φ(x0)∥+

∆

Kη︸ ︷︷ ︸
(II)

.

(76)
If we choose

ϵ ≤ min

K0

K1
,

√√√√√√ σ2
f,1 +

2M2

µ2 σ2
g,2

min

(
1, µ2

32C2
gxy

)
 , 1−β = min

(
ϵ2

σ2
f,1 +

2M2

µ2 σ2
g,2

min

(
1,

µ2

32C2
gxy

)
,
C2

gxy

8σ2
g,2

,
µ2

16σ2
g,2

,
1

4

)
,

η = min

1

8
min

(
1

K1
,
ϵ

K0
,

∆

∥∇Φ(x0)∥
,

ϵ∆

C2
gxy

∆z,0

)
(1− β),

1√
2

(
1 +

C2
gxy

µ2

)
(L2

x,1 + L2
y,1)

,
µϵ

8K0ICgxy

 ,

ν =
1

µ
(1− β), K =

4∆

ηϵ
, m0 = 0,

where ∆ = Φ(x0)− Φ∗ and ∆z,0 = ∥z0 − z∗
0∥

2, then for left-hand side of (76) we have

(
1−

(
1

2
+

2β

1− β

)
K1η −

Lx,1ϵ

2K0

)
(i)

≥ 1− 1 + 3β

2(1− β)
K1η −

K1ϵ

2K0
≥ 1− 2K1η

1− β
− 1

2
≥ 1

4
, (77)

where (i) follows from Lx,1 ≤ K1 by definition (16) of K1.

For the first part (I) of right-hand side of (76) we have

(I)
(i)

≤ 2

 ϵ√
σ2
f,1 +

2M2

µ2 σ2
g,2

√
σ2
f,1 +

2M2

µ2
σ2
g,2 +

ϵβ(1− β)

8(1− β)
+
ϵ(1− β)

32
+
ϵK0

4K0


≤ 2

(
ϵ+

1

8
ϵ+

1

32
ϵ+

1

4
ϵ

)
=

45

16
ϵ,

(78)

where (i) follows from the fact that (recall definition (16) of K0)

1− β ≤ ϵ2

σ2
f,1 +

2M2

µ2 σ2
g,2

, η ≤ ϵ

8K0
(1− β),

(
Lx,0 + Lx,1

CgxyM

µ
+
τM

µ

)
≤ K0.
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Also, for the second part (II) of right-hand side of (76) we have

(II)
(i)

≤ 2

(
2
√
2σg,2

√
C2

gxy

8σ2
g,2

+ 2Cgxy

)√√√√ 1

K
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∥∇Φ(x0)∥+

∆

Kη

(ii)

≤ 6Cgxy

√√√√ 1

K

K−1∑
k=0
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64K2
0
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2

+
5

16
ϵ
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√
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0

+
1

16
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+

7

16
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16
ϵ

(v)

≤ 6

√
1

32
ϵ2 +

7

16
ϵ2 +

5

16
ϵ
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(
3
√
2 +

5

16

)
ϵ,

(79)

where (i) follows from 1−β ≤
C2

gxy

8σ2
g,2

and m0 = 0; (ii) follows from K = 4∆
ηϵ and η ≤ ∆(1−β)

8∥∇Φ(x0)∥ ;

(iii) follows from η ≤ ϵ(1−β)
8K0

and ν = 1−β
µ ; (iv) follows from K = 4∆

ηϵ and the fact that (recall
definition (16) of K0 and definition (12) of Lz∗ )
5C2

gxy

µ2

(
ρ2M2

µ2
+ (Ly,0 + Ly,1M)2

)
≤ 5K2

0 , C2
gxy
L2
z∗ ≤ K2

0 , 1−β ≤ ϵ2

σ2
f,1 +

2M2

µ2 σ2
g,2

µ2

32C2
gxy

;

and (v) follows from η ≤ ϵ∆
8C2

gxy
∆z,0

(1− β). Therefore, combining (76), (77), (78) and (79) yields

1

K

K−1∑
k=0

E∥∇Φ(xk)∥ ≤ 4

(
45

16
ϵ+

(
3
√
2 +

5

16

)
ϵ

)
≤ 30ϵ.

Next, we give more details about update period I , step-size γ, step-size αs for 0 ≤ s ≤ k† − 1
based on the chosen parameters above, and then we compute the total number of oracle calls for
Algorithm 2 and Algorithm 3.

Step-size γ and number of oracle calls for Algorithm 2. If we choose update period I =
σ2
g,1K

2
0

µ2ϵ2

in Algorithm 2, then by (44), we need to set step-size γ to be

γ =
µϵ2

512K2
0σ

2
g,1

√
λ1 + 1

(
λ1 +

√
λ1 + 1

) , (80)

and by (53), (54) and Lemma 3.3, together with K = 4∆
ηϵ , we need at most

K642σ2
g,1K

2
0

(
λ1 +

√
λ1 + 1

)2
Iµ2ϵ2

=
1282∆

(
λ1 +

√
λ1 + 1

)2
ηϵ

(81)
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iterations in total performed by Algorithm 2 to update yk for k ≥ 1, where in (80) and (81)

λ1 = max

(√
3 ln

(
2K

δI

)
, ln

(
2K

δI

))
= max


√√√√3 ln

(
8∆µ2ϵ

δησ2
g,1K

2
0

)
, ln

(
8∆µ2ϵ

δησ2
g,1K

2
0

) .

(82)
Therefore, the order of step-size γ in Algorithm 2 is γ = O(µϵ2/K2

0σ
2
g,1).

Step-size αs and number of oracle calls for Algorithm 3. The step-size αs for Algorithm 3 is
given in (30). By (42), (43) and Lemma 3.2, we need at most(

log2

(
128K2

0V0

µϵ2

)
+ 1

)(
16L

µ
+ 1

)
+

256× 128K2
0 (4λ

2
2 + 1)σ2

g,1

µ2ϵ2
(83)

iterations in total performed by Algorithm 3 to update y0, where

λ2 = max

(√
3 ln

(
2k†

δ

)
, ln

(
2k†

δ

))

= max


√√√√√3 ln
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⌈
log2

(
128V0K2

0

µϵ2

)⌉
δ

, ln
2
⌈
log2

(
128V0K

2
0

µϵ2

)⌉
δ


 .

(84)

Total number of oracle calls in Algorithm 2 and Algorithm 3. Combining (81), (82), (83) and
(84), the number of oracle calls needed in Algorithm 2 and 3 are at most

1282∆
(
λ1 +

√
λ1 + 1

)2
ηϵ︸ ︷︷ ︸

Algorithm 2

+

(
log2

(
128K2

0V0

µϵ2

)
+ 1

)(
16L

µ
+ 1

)
+

256× 128K2
0 (4λ

2
2 + 1)σ2

g,1

µ2ϵ2︸ ︷︷ ︸
Algorithm 3

,

which is at most Õ (∆/ηϵ) number of oracle calls in total (recall how we choose η and the order of
η). Also, recall that we need at most K = 4∆/ηϵ number of iterations for Algorithm 1. Therefore,
the total complexity is at most Õ(∆/ηϵ).

F IMPLEMENTATION DETAILS OF EXPERIMENTS

F.1 EXPERIMENTAL DETAILS OF HYPER-REPRESENTATION

The meta-learning experiments are performed on Amazon Reviews Dataset (Blitzer et al., 2006)
for text classification. The data contains positive and negative reviews, coming from 25 different
types (domains) of products, where three domains (i.e. ”office products”, ”automotive” and ”com-
puter video games”) are selected as a testing set, which contains fewer samples. For each task Ti,
we randomly draw samples from random 3 domains, where 20 samples form support set Si and 20
samples form query set Qi. Every 20 tasks form a task batch, and a meta update (3) for upper-level
w is performed over a task batch (the size of task batch m = 20). The lower-level update for vari-
able θi(i = 1, ..,m) of base learner i is updated by SGD. The total number of iterations (i.e., the
number of outer loops) in one epoch for updating w is set as K = 400. The total number of epochs
(i.e., the number of passes over the data) for this experiment is set as 20.

For all the baseline methods, the meta model is a 2-layer RNN with input dimension=300, hidden-
layer dimension=4096, and output dimension=512. The base model is a linear layer with input di-
mension=512 and output dimension=2. All the parameters are initialized to the range of (−1.0, 1.0)
uniformly.

Parameter selection for the experiments in Figure 1(a) and Figure 2(a): We use grid search
to tune the lower-level and upper-level step sizes from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} for all
methods. The best combinations of lower-level and upper-level learning rates are (0.05, 0.1) for
MAML and ANIL, (0.05, 0.05) for StocBio, (0.1, 0.01) for TTSA, (0.05, 0.05) for SOBA and
SABA, (0.05, 0.1) for MA-SOBA, and (0.001, 0.01) for BO-REP. For double-loop methods (i.e.,
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(a) Hyper-Representation
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Figure 2: Training and testing accuracy results for different algorithms. (a) Results of hyper-
representation on Amazon Review Dataset. (b) Results of hyperparameter optimization on Amazon
Review Dataset. (c) Results of data hyper-cleaning on Sentiment140 dataset with corruption rate
p = 0.3.

MAML, ANIL, StocBio), we tune the number of iterations in the inner-loop from {5, 10, 20} and
the best value is 10. For SOBA, SABA, MA-SOBA, and BO-REP, the step sizes for solving linear
system variable z are all chosen as 0.01, which is the best tuned value from {0.001, 0.01, 0.1}. For
F2SA, since it is an fully first-order method and have different three variables, we tune the learning
rate for these three decision variables from the range {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and the best
tuned combination of value is (0.05, 0.05, 0.01). The momentum parameter β for MA-SOBA and
BO-REP is fixed as 0.9. We increase the lagrangian multipler of F2SA (denoted as λ in F2SA) by
0.01 for every meta update.

In particular, BO-REP updates lower-level variable θi periodically with interval I = 2, which means
there is one update for y every two outer loops. The number of iterations (N ) for each periodic
update in Algorithm 2 is set as 3, the ball radius R for projection is 0.5 (ablation study for R
can be found in Section J.2). In addition, for simplicity, BO-REP just adopts SGD in the stage of
initialization refinement, which can be regarded as an special case of epoch SGD with only one
stage.

F.2 EXPERIMENTAL DETAILS OF HYPERPARAMETER OPTIMIZATION

We conduct hyperparameter optimization on the Amazon Review dataset. We randomly sample
20000 training samples and 2000 testing samples from the training and testing set, respectively.
A regularization parameter λ in (4) is the upper-level variable, which is initialized as 0.0. w is the
lower-level variable, the model parameter of a 2-layer RNN with input dimension=300, hidden-layer
dimension=4096, and output dimension=2. The lower-level variable w is initialized uniformly from
the (−1.0, 1.0) range.

Parameter selection for the experiments in Figure 1(b) and Figure 2(b): We compare our pro-
posed algorithm BO-REP, with other baseline algorithms. We conduct a grid search for lower-level
and upper-level learning rates in the range of {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and find
the best parameter setting for all the baseline algorithms. Specifically, we choose the best lower-level
learning rates as 0.001 for StocBio, 0.01 for TTSA, 0.05 for SOBA and SABA, 0.05 for MA-SOBA,
and 0.001 for BO-REP. The upper-level step size 0.0001 is applied to all the algorithms. For SOBA,
SABA, MA-SOBA, and BO-REP, the best learning rates for solving the linear system are 0.05, 0.05,
and 0.01 respectively, which are searched in the range of {0.001, 0.005, 0.01, 0.05, 0.1}. For F2SA,
the best combination for step sizes of its three variables is (0.01, 0.01, 0.0001), which is tuned in
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Figure 3: (a) Accuracy of data hyper-cleaning on Sentiment140 with corruption rate p = 0.1. (b)
Loss of data hyper-cleaning on Sentiment140 with corruption rate p = 0.1.

the range of {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. In addition, the double-loop algorithm
StocBio fixes inner loops as 5 for lower-level updates.

For BO-REP, the updating interval I for the lower-level variable θi is set as 2, and the number of
iterations (N ) for each periodical update is 3, the ball radius R for projection is 0.5. All algo-
rithms fix batch size as 64. Other hyperparameter settings, including momentum parameter (for
MA-SOBA and BO-REP), step size for solving linear system (for SOBA, MA-SOBA, BO-REP),
and the lagrangian multiplier setting (for F2SA) keep the same as Section F.1.

F.3 EXPERIMENTAL DETAILS OF DATA HYPER-CLEANING

We conduct the experiments of the data hyper-cleaning task on Sentiment140 (Go et al., 2009) for
binary text classification. Since data labels consist of two classes of emotions, positive and negative,
we flip each label in the training set to its opposite class with probability p (set as 0.1 and 0.3,
respectively).

A two-layer RNN with the same architecture as that in Section F.2 is adopted as the classifier,
whose parameters w are lower-level variables. The upper-level variable λ is the weight vector
corresponding to each training sample. In practice, we initialize each sample weight λi = 1.0.

Parameter selection for the experiments in Figure 1(c) and Figure 2(c): We use a grid search for
all algorithms to choose the lower-level and upper-level step size in the {0.01, 0.05, 0.1}. The best
combinations of lower-level and upper-level step size are (0.05, 0.05) for StocBio, (0.05, 0.01) for
TTSA, (0.1, 0.05) for SOBA and SABA, (0.1, 0.05) for MA-SOBA, and (0.05, 0.05) for BO-REP.
F2SA chooses (0.05, 0.05, 0.01) for updating its three decision variables. In addition, the learning
rates for solving linear system z in SOBA, SABA, MA-SOBA, and BO-REP are all fixed as 0.05
chosen from the range of {0.01, 0.05, 0.1}. The number of inner loops for StocBio is set as 5, which
is chosen from {3, 5, 10}. For BO-REP, The updating interval I and the iterations N for lower-level
variable w are fixed as 2 and 3, respectively, the ball radius R for projection is 0.5. Batch size
is fixed to 512 for all the algorithms. Other experimental hyperparameters, including momentum
parameters (for MA-SOBA, BO-REP) and the lagrangian multiplier setting (F2SA) remain the same
as Section F.1.
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Figure 4: (a) Local gradient Lipschitz constant of the upper-level variable vs. its gradient norm along
the training iterations for an RNN in the experiment of hyper-representation. (b) Local gradient
Lipschitz constant of the lower-level variable vs. its gradient norm along the training iterations for
an RNN in the experiment of hyper-representation.
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Figure 5: The model structure for Hyper-representation. The upper-level variable is the parameter
of the recurrent neural layer, and the lower-level variable is the parameter of the classification layer.

G VERIFICATION OF RELAXED SMOOTHNESS (ASSUMPTION 1) FOR
RECURRENT NEURAL NETWORKS

In this section, we empirically verified that the Recurrent Neural Network model satisfies Assump-
tion 1. In Figure 4, we plot the estimated smoothness at different iterations during training neural
networks. In particular, we conduct the hyper-representation experiments to verify Assumption 1.
We adopt the same recurrent neural network as that in Section 4.1. The lower-level variable is the
parameter of the last linear layer, and the upper-level variable is the parameter of the previous layers
(2 hidden layers). In each training iteration, we calculate the gradient norm w.r.t. the upper-level
variable ∥∇xf(u)∥ and the lower-level variable ∥∇yf(u)∥, and use the same method as described
in Appendix H.3 in Zhang et al. (2020b) to estimate the smoothness constants of x and y. From
Figure 4, we can find that the smoothness parameter scales linearly in terms of gradient norm for
both layers. This verifies the Assumption 1 empirically. Note that these results are consistent with
the results in the literature, e.g., Figure 1 in Zhang et al. (2020b) and Figure 1 in Crawshaw et al.
(2022).

H VERIFICATION OF ASSUMPTION 2(i)

In this section, we theoretically prove that Assumption 2(i), i.e. ∥∇yf(x, y
∗(x))∥ ≤ M , holds in

the practical case of hyper-representation. In this case, we define the cross entropy loss as

L(a, s) = −
C∑
i=1

ai log(si),
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where C denotes the number of class, a = (a1, a2, . . . , aC) is the one-hot encoded label and s =
(s1, s2, . . . , sC) is the probability distribution generated by the softmax layer. We also define Y (we
can view notation y as y = vec(Y ) in the main text) and b as the weight and bias, z′ and z as the
input and output of the last layer (classification layer). So we have z = Y ⊤z′+b. Figure 5 illustrates
the model structure and the meanning of symbols.

First we calculate ∂si
∂zj

. By chain rule, we have

∂si
∂zj

= si
∂

∂zj
log(si) = si

∂

∂zj
log

(
ezi∑n
l=1 e

zl

)
= si

∂

∂zj

(
zi − log
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n∑
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(
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)
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Next we calculate ∂L
∂zj

. By chain rule, we have

∂L
∂zj

= − ∂

∂zj

C∑
i=1

ai log(si) = −
C∑
i=1

ai
∂

∂zj
log(si) = −

C∑
i=1

ai
si

∂si
∂zj

= −
C∑
i=1

ai
si
si
(
1{i=j} − sj

)
= −

C∑
i=1

ai
(
1{i=j} − sj

)
=

C∑
i=1

aisj −
C∑
i=1

ai1{i=j}

= sj

C∑
i=1

ai − aj = sj − aj ,

where we use
∑C

i=1 ai = 1 in the last line. Hence we have
∂L
∂z

= s− a.

Again, by chain rule we have
∂L
∂Y

=
∂L
∂z

∂z

∂Y
= (s− a)z′⊤

Therefore, we conclude that∥∥∥∥ ∂L∂Y
∥∥∥∥ ≤ ∥s− a∥∥z′∥ ≤ (∥s∥+ ∥a∥)∥z′∥ ≤ 2∥z′∥,

where we use ∥s∥ ≤ 1 and ∥a∥ = 1 for any s and a.

I PERFORMANCE COMPARISON IN TERMS OF RUNNING TIME

For a fair comparison of performance, we compare our proposed algorithm with other single-loop
and double-loop algorithms in terms of running time, the result is shown in Figure 6. To accurately
evaluate each algorithm, we use the machine learning framework PyTorch 1.13 to run each algorithm
individually on an NVIDIA RTX A6000 graphics card, and record its training and test loss. As we
can observe from the figure, our algorithm (BO-REP) is much faster than all other baselines in the
experiment of Hyper-representation (Figure 6(a)) and Data Hyper-Cleaning (Figure 6(c)). For the
hyperparameter optimization experiment (Figure 6(b)), our algorithm is slightly slower at the very
beginning, but quickly outperforms all other baselines. This means that our algorithm indeed has
better runtime performance than the existing baselines in bilevel optimization.

J ABLATION STUDY FOR HYPERPARAMETERS

J.1 ABLATION STUDY FOR LOWER-LEVEL UPDATE PERIOD I AND ITERATIONS N

We conduct careful ablation studies to explore the impact of hyperparameter I (the update period
of the lower-level variable) and N (the number of iterations for updating the lower-level variable

45



Published as a conference paper at ICLR 2024

0 2000 4000
running time /s

0.4

0.5

0.6

0.7

Tr
ai

n_
Lo

ss MAML
ANIL
StocBio
F2SA
TTSA
SOBA
SABA
MA-SOBA
BO-REP

0 500 1000
running time /s

0.4

0.5

0.6

0.7

Tr
ai
n_

Lo
ss

StocBio
F2SA
TTSA
SOBA
SABA
MA-SOBA
BO-REP

0 1000 2000 3000
running time /s

0.64

0.65

0.66

0.67

0.68

Tr
ai
n_
Lo
ss

StocBio
F2SA
TTSA
SOBA
SABA
MA-SOBA
BO-REP

0 2000 4000
running time /s

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
_L
os
s

MAML
ANIL
StocBio
F2SA
TTSA
SOBA
SABA
MA-SOBA
BO-REP

(a) Hyper-Representation

0 500 1000
running time /s

0.3

0.4

0.5

0.6

0.7

Te
st
_L
os

s
StocBio
F2SA
TTSA
SOBA
SABA
MA-SOBA
BO-REP

(b) Hyperparameter Optimization

0 1000 2000 3000
running time /s

0.550

0.575

0.600

0.625

0.650

Te
st

_L
os

s

StocBio
F2SA
TTSA
SOBA
SABA
MA-SOBA
BO-REP

(c) Data Hyper-Cleaning

Figure 6: Comparison of various bilevel optimization algorithms w.r.t running time (s): (a) results
of Hyper-representation on Amazon Review Dataset. (b) results of hyperparameter optimization on
Amazon Review Dataset. (c) results of data hyper-cleaning on Sentiment140 Dataset with noise rate
p = 0.3.

Table 3: Test accuracy vs. Projection radius R

Radius R=0.001 R=0.005 R=0.01 R=0.05 R=0.10 R=0.50 R=1.00 R=5.00

Test Accuracy 65.06% 67.64% 70.76% 81.22% 86.84% 88.84% 88.84% 88.84%

during each period). The experimental results in Figure 7(a) show that the performance of BO-REP
algorithm decreases slightly when increasing the update period I from 2 to 8 while fixing inner
iterations N . That demonstrates empirically our algorithm is not sensitive to the update period
hyperparameter I . When the value of I is too large (I ≥ 16), we observe a significant performance
degradation. In our experiments in the main text, we choose I = 2 for all experiments and get good
performance universally. The ablation result for inner iterations N is shown in Figure 7(b), where
the update period I is fixed. The figure shows that the performance of BO-REP algorithm would
increase as the number of inner iterations increases. The algorithm can achieve the best performance
when N ≥ 5. In our experiments, it is good enough to choose N = 3 to achieve good performance
universally for all tasks.

Due to these ablation studies, it means that the algorithm does not need lots of tuning efforts despite
these hyperparameters (e.g., I and N ): some default values of I and N (e.g., I = 2, N = 3) work
very well for a wide range of tasks in practice.

J.2 ABLATION STUDY FOR THE RADIUS R OF PROJECTION BALL

We experimentally explore how the ball radiusR affects the algorithm’s performance. We set the ball
radius as {0.001, 0.005, 0.01, 0.05, 0.10, 0.50, 1.00, 5.00} respectively, and then conduct the bilevel
optimization on Hyper-representation tasks. We keep all the other hyperparameters the same as in
Section 4.1. The result is shown in Table 3. When the ball radius R is too small (i.e., R < 0.10),
the performance significantly drops, possibly due to the overly restricted search space for the lower-
level variable. When the ball radius R ≥ 0.50, the performance becomes good and stable. In our
experiments in the main text, we choose R = 0.5.

46



Published as a conference paper at ICLR 2024

0 5 10 15
epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st
_A

CC

N=1, I=1
N=3, I=2
N=3, I=4
N=3, I=8
N=3, I=16

(a)

0 5 10 15
epochs

0.5

0.6

0.7

0.8

0.9

Te
st
_A

CC

N=1, I=1
N=3, I=2
N=5, I=2
N=10, I=2
N=15, I=2

(b)

Figure 7: Ablation study of the update period I and the number of iterations for updating lower-level
variable during each period N (a) The performance of hyper-representation with different update
period I . (b) The performance of hyper-representation with different numbers of update iterations
N .
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Figure 8: Comparison results with the larger value of update iterations N and update period I on
Hyper-Representation. (b) Comparison results with the larger value of update iterations N and
update period I on Hyperparameter Optimization. (c) Comparison results with the larger value of
update iterations N and update period I on Data Hyper-Cleaning.

K EXPERIMENTAL RESULTS WITH LARGE I AND LARGE N

In this section, we further explore the setting of hyperparametersN and I . In particular, we evaluate
the algorithm performance on the larger value of N and I (i.e., N = 16, I = 12) compared with the
value we used in the experiments described in main text (i.e.,N = 3, I = 2), which may better fit our
theory. The results are presented in Figure 8, where Figure 8(a), (b), (c) show that the compared test
accuracy on three different tasks, respectively. We can observe that the algorithm performance with
the large value of N and I (green dash line) is almost the same as (or even better than) the original
setting (green solid line). The larger number of N can compensate for performance degradation
induced by a long update period I . In particular, the new results in Figure 8(b), (c) (green dash
lines) are obtained with a slightly smaller lower-level learning rate (8× 10−4 in (b) and 5× 10−3 in
(c)) than the original setting (green solid lines with 1× 10−3 in (b) and 5× 10−2 in (c)). However,
the setting of N = 3, I = 2 is good enough in our experiments to achieve good performance for all
the tasks.

L OPTIMALITY OF OUR COMPLEXITY RESULTS

In this section, we demonstrate why our proposed algorithm is optimal up to logarithmic factors if
no additional assumptions are imposed. We first introduce the definition of mean-squared smooth-
ness (Arjevani et al., 2023) and individual smoothness (Cutkosky & Orabona, 2019) for single-level
optimization problems, and then we discuss how these assumptions are being used in bilevel opti-
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mization literature to achieve Õ(1/ϵ3) oracle complexity, and at last we demonstrate our proposed
algorithm with Õ(1/ϵ4) is indeed optimal up to logarithmic factors under current assumptions in
this paper.

For single-level problems, given differentiable objective function Ψ : Rd → R, we say the function
Ψ satisfies mean-squared smoothness property (formula (4) in Arjevani et al. (2023)) if for any
x, y ∈ Rd and any ξ ∼ Pξ,

Eξ[∥∇Ψ(x; ξ)−∇Ψ(y; ξ)∥2] ≤ L2∥x− y∥2, (85)

where we use ξ, ∇Ψ(x; ξ) and L (the corresponding notations in Arjevani et al. (2023) are z, g(x, z)
and L̄, please check formula (4) in Arjevani et al. (2023) for details) to denote the random data
sample, the stochastic gradient estimator and the mean-squared smoothness constant.

A slightly stronger condition than mean-squared smoothness is the individual smoothness property
(please check the statement “We assume that f(x, ξt) is differentiable, and L-smooth as a function
of x with probability 1.” in Section 3 of Cutkosky & Orabona (2019) for details). We say function
Ψ has individual smoothness property if for any x, y ∈ Rd and any ξ ∼ Pξ,

∥∇Ψ(x; ξ)−∇Ψ(y; ξ)∥ ≤ L∥x− y∥. (86)

For bilevel problems, in order to obtain Õ(1/ϵ3) oracle complexity bound, Yang et al. (2021), Guo
et al. (2021) and Khanduri et al. (2021) actually require individual smoothness assumption (As-
sumption (86)) jointly in (x, y) ∈ Rdx × Rdy for both upper-level (i.e., outer function f(x, y)) and
lower-level problems (i.e., inner function g(x, y)). To be more specific, for upper-level problem they
require for any u = (x, y), u′ = (x′, y′) ∈ Rdx × Rdy and any ξ,

∥∇xf(u; ξ)−∇xf(u; ξ)∥ ≤ Lfx∥u− u′∥,
∥∇yf(u; ξ)−∇yf(u; ξ)∥ ≤ Lfy∥u− u′∥,

and for lower-level problem they require for any u = (x, y), u′ = (x′, y′) ∈ Rdx × Rdy and any ζ,

∥∇yg(u; ζ)−∇yg(u; ζ)∥ ≤ Lgy∥u− u′∥.
These three inequalities above can be viewed as definition of individual smoothness property under
bilevel optimization setting. For more details, please check Assumption 2 in Section 3.1 of Yang
et al. (2021), Assumption 2 in Section 2 and Assumption 4 in Section 4 of Guo et al. (2021), As-
sumption 2 in Section 2 of Khanduri et al. (2021). Please note that our paper does not assume any
of these assumptions.

Notably, all the bilevel optimization literature (Yang et al., 2021; Guo et al., 2021; Khanduri
et al., 2021) with Õ(1/ϵ3) complexity use individual smoothness assumption, which is stronger
than the mean-squared smoothness. Also, their algorithm design depends on the STORM tech-
nique (Cutkosky & Orabona, 2019). In addition, it is shown in Arjevani et al. (2023) that without
this assumption, Ω(1/ϵ4) complexity is necessary for stochastic first-order optimization algorithms
for single problems. This indicates that our complexity is optimal up to logarithmic factors for the
bilevel problems we considered in this paper.

Let us give more details to explain this. We consider potentially non-convex single-level opti-
mization problems as considered in (Arjevani et al., 2023). Given differentiable objective function
Ψ : Rd → R, our goal is to find an ϵ-stationary point using stochastic first-order algorithms. As-
sume the algorithms access the function Ψ through a stochastic first-order oracle consisting of a
noisy gradient estimator ∇Ψ : Rd × Ξ → Rd and distribution Pξ on Ξ satisfying

Eξ∼Pξ
[∇Ψ(x; ξ)] = ∇Ψ(x) and Eξ∼Pξ

[∥∇Ψ(x; ξ)−∇Ψ(x)∥2] ≤ σ2 (87)

Also we make the standard assumption that the objective Ψ has bounded initial subobtimality and
L-smoothness property,

Ψ(x0)− inf
x∈Rd

Ψ(x) ≤ ∆ and ∥∇Ψ(x)−∇Ψ(y)∥ ≤ L∥x− y∥, (88)

where x0 is the initialization point for the algorithm.

For potentially non-convex single-level optimization problems, Theorem 3 in Arjevani et al. (2023)
states that
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• Under Assumptions (87) and (88), any stochastic first-order methods requires Ω(1/ϵ4)
queries to find an ϵ-stationary point in the worst case (please check Contribution 1 in Sec-
tion 1.1, and formula (23) in Theorem 3 of Arjevani et al. (2023) for details);

• Under Assumptions (87) and (88), plus mean-squared smoothness assumption, any stochas-
tic first-order methods require Ω(1/ϵ3) queries to find an ϵ-stationary point in the worst case
(please check Contribution 2 in Section 1.1, and formula (24) in Theorem 3 of Arjevani
et al. (2023) for details).

Note that our problem class is more expressive than the function class considered in Arjevani et al.
(2023) and hence our problem is harder. This is because standard smoothness is a special case of
relaxed smoothness and single-level optimization is a special case of bilevel optimization. For exam-
ple, if we consider an easy case where the upper-level function does not depend on the lower-level
problem (e.g., Φ(x) = f(x) such that Φ is independent of y∗(x)) and does not have mean-squared
smoothness, then the Ω(1/ϵ4) lower bound in Arjevani et al. (2023) can be applied in our setting.
Therefore the Õ(1/ϵ4) complexity achieved in this paper is already optimal up to logarithmic fac-
tors.
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