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Abstract

Recent advances in large language models
(LLMs) have enabled promising results in gen-
erating executable code from natural language.
However, existing benchmarks typically rely on
synthetic prompts or constrained domains, lim-
iting insight into LLM performance on realistic
machine learning (ML) workflows. We intro-
duce GenMLBench, a domain-diverse bench-
mark for evaluating language-to-code gener-
ation in the context of ML pipeline creation.
GenMLBench extends the Code4ML corpus
with natural language task descriptions and
structured metadata derived from 50 Kaggle
competitions across domains including finance,
healthcare, and computer vision. We evaluate
LLMs using an open-source code-generation
framework, applying standardized execution
constraints and metric validation. Our analysis
reveals key failure modes, such as hallucina-
tions and data leakage, and highlights variation
in success across data modalities and task types.
GenMLBench provides a rigorous testbed for
future research on robust, agent-based ML code
generation.

Resources and Evaluation Interpretability and
Analysis

1 Introduction

Large language models (LLMs) have increasingly
become powerful tools for automating complex
software engineering tasks (Hou et al., 2024).
Enhanced with the ability to model both code
and text (Chen et al., 2021), (Roziere et al.,
2023), (Chowdhery et al., 2023), LLMs have shown
considerable potential in generating code from
natural language descriptions (Li et al., 2023;
Luo et al., 2023; Bubeck et al., 2023; Wang
et al., 2023b). Multi-agents (MA) LLM frame-
works (Trofimova et al., 2024; Hong et al., 2024;
Jiang et al., 2025) tackle the transformation of ML

task descriptions into executable code. This capa-
bility promises to accelerate ML development in
both research and industry by enabling Al agents
and AutoML systems to interpret high-level goals
and automatically produce executable solutions.
However, current evaluations of such language-to-
code models often rely on benchmarks containing
synthetic prompts or limited domain scope, which
inadequately reflect the diversity and complexity
encountered in real-world ML workflows.

Despite these advances, the evaluation of sys-
tems like these is underdeveloped. Existing bench-
marks frequently rely on synthetic prompts, toy
tasks, or narrow domains that do not capture the
complexity and variability of real-world ML sce-
narios. While several recent ML-focused bench-
marks have been proposed, they mostly target tab-
ular data tasks and lack complete metadata frame-
works anduniform error taxonomies, limiting the
scope of their ability to provide systematic insights
into model behavior for a broad array of domains
and data modalities. A critical gap remains in
benchmarking LL.Ms for ML code generation: the
need for comprehensive metadata structures, di-
verse data modalities beyond tabular tasks, and
standardized error taxonomies to systematically an-
alyze performance variations and identify specific
failure modes across domains.

To address these gaps, we introduce GenML-
Bench, a domain-diverse benchmark designed to
rigorously evaluate LLMs on the task of generat-
ing complete ML pipelines from natural language.
Unlike existing benchmarks, GenMLBench is con-
structed to reflect the diversity, ambiguity, and prac-
tical constraints of real-world ML workflows. It
builds on Code4dML (Drozdova et al., 2023) and
extends it significantly by:

* Curating 50 Kaggle competitions and extract-
ing rich natural language task descriptions
from competition metadata, kernels, and user



discussions.

* Annotating each task with comprehensive
structured metadata, including competition
type, data modality, science domain, evalua-
tion metrics, and detailed error categorization,
enabling multi-dimensional analysis.

* Including non-tabular tasks from NLP and
computer vision domains alongside traditional
tabular data tasks, providing a more realistic
assessment of ML code generation capabili-
ties.

* Introducing a comprehensive error taxonomy
for analyzing failure modes, including hal-
lucinations, data leakage, syntax errors, and
value errors that vary substantially across data
modalities.

2 Related Work

2.1 Text-to-Code generation benchmarks

Code generation from natural language has re-
ceived significant attention, with benchmark
datasets such as CodeXGLUE (Lu et al., 2021) and
HumanEval (Chen et al., 2021) enabling the evalu-
ation of LLMs like Codex and InCoder. These cor-
pora are typically comprised of general program-
ming or algorithmic tasks, and while they have in-
spiredprogress in model abilities, they lack the do-
main specificity and multi-step complexity present
in real-world ML pipelines.

Benchmarks based on ML more recently have at-
tempted to bridge this gap. RE-Bench (Wijk et al.,
2024) evaluates agents on open-ended ML research
tasks but lacks reproducibility and structured eval-
uation due to its subjective nature. GAIA (Mi-
alon et al., 2023) assesses general Al assistants
on tasks requiring reasoning and multi-modality
handling but emphasizes broader assistant capabili-
ties rather than specific ML engineering challenges.
MLE-Bench (Chan et al., 2024) benchmarks LLM
agents on ML tasks sourced from Kaggle but lim-
its itself to performance metrics without structured
metadata or detailed error analysis. Weco, Kaggle
benchmark (Jiang et al., 2025), tests LLMs on Kag-
gle competitions in terms of leaderboard accuracy
but lacks an error taxonomy or metadata to enable
fine-grained diagnostic evaluation.

2.2 Dataset creation for ML code

Domain-specific datasets have emerged to improve
the generation process for ML-specific implemen-

tations. Code4ML (Drozdova et al., 2023) com-
piles Python notebooks and task annotations from
Kaggle, forming a foundational corpus for ML-
oriented code generation. However, Code4ML is
based on competitions collected only up to 2021,
and its natural language task descriptions are au-
tomatically scraped from Kaggle and lack human-
curated refinement. In addition, it lacks structured
metadata such as data cards and domain labels
that are critical for meaningful benchmarking and
domain-aware evaluation. CodeSearchNet (Hu-
sain et al., 2019) aligns code and text pairs but
is not ML-specific. SciCode (Tian et al., 2024) and
BioCoders (Tang et al., 2024) introduce domain-
focused code datasets for scientific computing and
bioinformatics respectively, but overlook the wider
context of ML engineering.

2.3 LLM agent planning for dataset
enhancement

LLMs have opened new avenues for enhancing
and expanding datasets, particularly in the domain
of machine learning code. LLM agent planning
techniques have emerged as powerful tools for gen-
erating high-quality, contextually relevant content
systematically. Huang et al. (2024) provide a taxon-
omy of LLM-Agent planning, highlighting five key
categories: task decomposition, selection of one
plan over multiple suggestions, external planner-
aided planning, reflection and refinement, and plan-
ning with an extra memory module.

Task decomposition, a fundamental technique
in this field, involves breaking down complex
tasks into manageable sub-tasks. Yao et al. (2023)
demonstrate that LLMs can be prompted to decom-
pose tasks, reason about each step, and then act on
that reasoning. This approach is crucial for dataset
enhancement, allowing the generation of problem
statements or metadata from code to be divided
into smaller, more manageable steps.

The concept of decomposition extends to divid-
ing a one-step planning process into sequential
sub-tasks creation and planning. The Zero-shot
Chain-of-Thought (CoT) method (Kojima et al.,
2022) showcases LLLMs’ reasoning abilities using
the "Let’s think step-by-step" prompt. Building on
this, Wang et al. (2023a) introduce Plan-and-solve
prompting, which provides a two-step prompt in-
struction on plan division and execution, further
advancing the zero-shot CoT approach.

Refinement techniques play a crucial role in en-
hancing the quality of generated content. Drozdov



et al. (2022), Madaan et al. (2024), and Shinn et al.
(2024) have explored various refinement methods
that involve generating initial content and then it-
eratively improving it based on specific criteria or
feedback. In the context of ML code datasets, this
could involve generating an initial task description,
evaluating its quality, and then prompting the LLM
to improve specific aspects of the description.

The choice of improvement criteria is critical in
refinement processes. Zhuo (2024) proposes using
an LLM as a scoring agent, which can provide inter-
pretability to the refinement method as scoring can
be based on predefined conditions. This approach
allows for a more transparent and controllable en-
hancement process. By leveraging the described
methods, researchers can potentially automate the
generation of high-quality task descriptions, meta-
data, and other relevant information, significantly
expanding the utility and scope of existing ML
code datasets.

2.4 Natural Language understanding in ML
contexts

ML code generation entails models understanding
advanced task semantics like evaluation targets,
properties of data, and domain demands. Frame-
works like Linguacodus (Trofimova et al., 2024)
and Datalnterpreter (Hong et al., 2024) showcase
initial steps toward pipeline generation from natu-
ral language, but rely on synthetic benchmarks or
lack systematic evaluation protocols.

2.5 Evaluation of LLMs on downstream
coding tasks

Current evaluation methods are typically founded
on pass@k scores or coarse-grained success/failure
metrics, obscuring insights into specific failure
modes such as data leakage or model misalign-
ment. Recent efforts such as ToolLLM (Qin et al.,
2024) emphasize the need for interpretable diag-
nostics. MLBench (Tang et al., 2023) introduces
a high-level taxonomy of errors, including halluci-
nations, knowledge absence, knowledge manipula-
tion, and syntax errors—highlighting challenges in
LLM-generated code. However, these categories
are domain-independent and not context-specific
to particular ML environments, making it diffi-
cult to gauge their implications in real-world ML
pipelines.
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Figure 1: Code-Based problem statement generation
framework. The scheme incorporates three LLM agents.
The first agent inputs the ML code to infer the task
description from it through sequential subgoals. The
second agent evaluates the quality of the inferred de-
scription based on predefined scoring criteria. The third
agent receives the ML code along with the score and
updates the description if necessary.

3 Corpus creation

3.1 Data source expansion

MLBench builds on the Code4ML dataset (Droz-
dova et al., 2023), which comprises over 20,000
annotated Jupyter notebooks tied to ML competi-
tions. However, Code4ML contains mostly pre-
2021 data and lacks consistent domain coverage.
To address this, we integrate it with Meta Kaggle
Code (Plotts and Risdal, 2023), a large corpus of
publicly licensed competition notebooks published
since 2022. We select and process 200 ML com-
petitions from this dataset using an LLM-based
inference pipeline (Fig. 1) for task description cre-
ation, avoiding tasks for students and non-English
descriptions. The data cards, describing the data,
corresponding to the ML tasks, are manually added
to the new version of the corpus. We name it
Code4ML 2.0 (Anonymous, 2025a).

We use GPT-40 and Claude 3.5 Sonnet with
one-shot Chain-of-Thought prompting for gener-
ation and refinement, correspondingly. Empirical
evaluation on 100 sampled tasks from the orig-
inal Code4ML corpus showed that the scoring-
refinement loop improves high-quality description
rates from 80% to 96% (Fig. 2, Alg. 1).

As a result, the Code4ML 2.0 dataset represents
an enhancement of the original Code4ML, offering
a more comprehensive and diverse representation
of machine learning tasks and their solutions. The
reverse task inference algorithm can be effortlessly
used to automatically update the corpus. The en-
hanced set incorporates data from an additional



Benchmark Real ML Tasks Domain diversity Metadata Error taxonomy Code executability

CodeXGLUE - - - - v
HumanEval - - - - v
RE-Bench v v (research-focused) - - -
GAIA v v/ (multi-modal) - - -
MLE-Bench v - (mostly tabular) v v v
Weco Kaggle Benchmark v - - - v
Code4dML v v Partial - v
GenMLBench (ours) v v v v v

Table 1: Comparison of language-to-code benchmarks relevant to ML pipeline generation. GenMLBench provides
the most comprehensive coverage across task realism, domain diversity, metadata support, and error analysis.

- A score of A: Description is Inappropriate: description focuses on implementation details (contains
model name, information about data preprocessing) rather than the problem.

For example: Develop a combined prediction model using multiple approaches for a financial market
scenario. The task is to generate predictions based on features from a financial dataset linking with
embeddings and neural network techniques. The goal is to make accurate trading decisions based on
the predictions generated by combining different models.

Explanation: This example provides hints for writing code, such as the use of combined model and
neural network techniques. If descriptions suggests using multiple models always choose A score.

- A score of B: Description is Not Appropriate enough: the task is not described carefully, it would be
hard to be solved.

- A score of C: Description is Partially Appropriate: description lacks the information about task or data
used in the task.

Score the task description on a scale of A-D based on - A score of D: Description is Highly Appropriate: clearly articulates the problem the code is solving,
how well it captures the essence of the problem the includes essential information about inputs and expected outputs.
code is solving, without revealing implementation For example: Develop a prediction model for estimating the duration of New York taxi trips. Given
details. You need to evaluate the task carefully and various datasets containing weather conditions, route information, and geographic details, the objective
give a good grade only if the task really meets the is to predict the trip duration based on features such as city, county, distance, time, and weather
requirements. The task should not give any hints for conditions. The success of the model will be assessed based on its accuracy in predicting the trip
solutions, not even information about the types and durations for a given test dataset.
number of models to be used. YOU MUST RETURN ONLY Explanation: This example describes the problem and data well, but does not provide any hints about
NUMBER FROM A-D, AND NOTHING ELSE. which models to use or how many models to use.

A B

Figure 2: Task description evaluation prompt: (A) Scoring strategy component; (B) Assessment criteria component.
C/D means “high quality”, A/B needs refinement.

Algorithm 1 Scoring-Refinement algorithm Table 2: Comparison of Code4ML and Code4ML 2.0
Require: generated description zo, input code ¢, model M, datasets.
prornpts {pSCOT67 prefi'ne} I .. . Name Year Notebooks | ML Tasks | Rank Info | Data Info | Task Info
Tt < To > Initialize the description with z¢o CodedML [ upw02021 | 23,103 | 443 - - Human-curated
for iteration t c 0 1 dO Code4ML 2.0 | 2022-2024 | +18,110 +200 v v LLM-generated
’ Total Up t0 2024 | 41,213 643 Partial Partial | Mixed

score; = M(pscore||ze) > Model M evaluates the
current description at step t using the scoring prompt.
if score; = C or score; = D then .
break > Terminate if the score is satisfactory (Cor 3.2 Benchmark task selection
D). . . . .
else if score; = A or score; = B then High-quality task descriptions are essential for
Tt <= M(preginel|c||zi]|score:) >Refine  evaluating the ability of LLMs to generate ML

the description based on the input code, current description, . . .
P p P solutions. To ensure clarity, neutrality, and

and score. ) . . ;
end if implementation-agnostic phrasing, we apply a 3-
end for point rating scheme to assess task descriptions gen-

erated by our LLM pipeline. Two independent
annotators evaluate each task using the following

bric described in Table 3.
200 competitions, substantially expanding the cor- fubric described 1 Table

pus of machine learning tasks and solutions. Ta- Table 3: Task description quality rubric

ble 2 provides a comparison between the original

Code4ML and the new Code4ML 2.0. Each com- Score | Criteria

petition is associated with multiple Jupyter note- 0 - Unus- | Vague or incorrect; contains implementation

books, showcasing various approaches to solv1'ng i‘bl—e Needs llifllrcl)tsstixgi;e?:irgxzﬁsﬁaes minor flaws. Re-
the same problem. The Kaggle leaderboard ranking Revision quires edits for clarity or neutrality.

for notebooks allows for a comparative analysis of 2-Good Clear, accurate, and free of implementation

solution effectiveness. Each notebook is annotated hints.

with the competition name, data type used in the

competition, and other relevant metadata. If annotators disagree by one point, we conser-



vatively adopt the lower score. Disagreements be-
tween two annotators are resolved by involving a
third, independent annotator to ensure impartiality
and reinforce the reliability of the annotation pro-
cess. All descriptions rated 0 are flagged for full
rewriting. Annotators also provide comments to
guide revisions. This protocol ensures that the final
benchmark includes high-quality, implementation-
agnostic problem formulations.

From the enhanced Code4ML 2.0 dataset, we
select a benchmark subset of 50 ML tasks accord-
ing to the criteria summarized in Table 4. These
tasks cover a diverse set of domains while ensur-
ing practical feasibility and consistency across the
evaluation pipeline.

Table 4: Task selection criteria for GenMLBench

Criterion | Description

Dataset <15 GB to ensure feasibility under mem-
size ory/runtime limits.

Task types 37 tabular, 6 vision, 6 text, 1 time series.
Evaluation | Clear, interpretable standard or custom met-
metrics ric required.

Data  re- | No external data, anonymous features, or
strictions leakage.

Resource Excludes GPU-optimized or kernel-
constraints | restricted tasks.

Competition| Selected from Featured, Research, and Play-
source ground; vague or oversized tasks excluded.

3.3 Metadata and annotation

To enable systematic analysis across diverse ML
tasks, GenMLBench (Anonymous, 2025b) em-
ploys a comprehensive metadata structure for
each benchmark task. Every task includes essen-
tial fields: comp_name provides the originating
Kaggle competition name as a unique identifier;
competition_link offers direct access to source
materials; data_card presents dataset information
including formats and feature descriptions; metric
(formerly EvaluationAlgorithmAbbreviation)
specifies the standard evaluation metric abbrevia-
tion (e.g., RMSE, AUC); comp_type categorizes
competitions as Featured, Research, Community,
or Playground; data_type classifies the primary
data modality as tabular, image, text, or time series;
description offers a curated, implementation-
agnostic explanation of the task requirements.
The metadata described above is inherited from
Code4ML 2.0. Additionally, domain identifies
the application area (Figure 3), extracted via GPT-
3.5-turbo analysis of data_card and the competi-
tion subtitle (see Appendix A), also curated from

Education & Human Behavior Environment & Infrastructure

o, 12.0%
12.0% y Commerce & Marketing

16.0%

Finance & Economics 22.0%

18.0%

20.0% Healthcare & Life Sciences

Technology & Data

Figure 3: GenMLBench domain distribution

Code4ML 2.0. This structure facilitates multidi-
mensional performance analysis across domains,
modalities, and task types.

4 Evaluation Protocol

To evaluate the ability of LLMs to generate ex-
ecutable ML solutions, we adopt a standardized
protocol. Each benchmark task is attempted three
times to account for stochasticity in model out-
puts. The evaluation is conducted in an offline
LLM agent framework without Docker isolation,
using fixed hardware resources to ensure compara-
bility across runs.

A strict 10-minute timeout is imposed per task;
tasks exceeding this limit are classified as solution
stuck. Evaluation dimensions include submission
success rate, execution time, and a taxonomy of
output errors. Error types are categorized into five
classes ( Figure 4). To classify an output as a hal-
lucination, we rely on multiple diagnostic signals.
These include the generation of implausible or un-
reachable metric values (e.g., an Fl-score of 1.0
on complex test sets), the presence of runtime er-
rors during training despite a reported evaluation
metric, and the absence of a valid submission file
corresponding to the reported output. These heuris-
tics help isolate cases where the model fabricates
success without proper execution or evaluation.

Error classification criteria

! ! } ! }

Hallucinations: Data leakage: Solution stuck: SyntaxError/
Fabricated solutions  Training on test data  No output ValueError:

or metrics not or improper validation within 10 minutes Python interpreter
supported by code. split. (timeout). syntax violations.

Correct:
Submission file
generated, metric
matches manual
validation.

Figure 4: Taxonomy of model output error types.

S Experiments and Results

We benchmark two LLMs, GPT-4.1-nano and GPT-
3.5-turbo, across the 50-task GenMLBench bench-
mark. Each task is evaluated in three independent



runs per model. We analyze the resulting code
for correctness, measure success rates, and verify
submission validity.

Submissions are cross-validated against manu-
ally computed metrics to detect hallucinations or
incorrect metric implementations. CSV outputs are
inspected for formatting compliance. Discrepan-
cies are flagged for further analysis.

Two radar charts (Figures 5 and 6) illustrate
model performance when provided with enriched
task prompts. Specifically, we supply the subtitle
of each Kaggle competition rather than the default
title, as subtitles typically contain more informa-
tive problem context. Additionally, Datalnterpreter
receives the task description and paths to data files
(see Appendix B).

ValueError ___SyntaxError . .
B g Time Series
Correct™” solution is stuck & NLP

gotd.1-nano
ot turbo

Solution is stuct

Hallucinations — Leak of data

Tabular
Figure 5: Error types passing rate grouped by data type

Figure 5 shows model error rates across different
tasks. Errors are lowest on Tabular data, suggesting
strong model alignment with structured inputs. CV
tasks exhibit moderate errors, reflecting challenges
in interpreting high-dimensional visual inputs. The
highest errors occur in Time Series & NLP tasks, in-
dicating persistent difficulty in capturing temporal
and semantic patterns, even with enriched prompts.

Figure 6 reports overall performance across dif-
ferent competition types. Featured competitions
benefit most from subtitle-based prompt enrich-
ment, while Playground tasks also show marked
gains, likely due to their simplicity. Research com-
petitions remain the most challenging, with the
lowest metrics, whereas Community tasks fall in
between, showing moderate improvement. Figure 7
assess the inference time per domain for different
LLMs underneath the framework. Longer infer-
ence times in certain domains reflect the added

Research

gpt-4.1-nano
BN gpt-3.5_turbo

Playground

custom————

Featured

Figure 6: Metric types passing rate grouped by competi-
tion type

complexity in data understanding and pipeline gen-
eration. These results highlight how data modality
impacts the computational efficiency of multi-agent
LLM systems.

Datalnterpreter is a multi-agent framework that
performs exploratory data analysis (EDA) before
code generation. This architecture may reduce re-
liance on explicit data descriptions. However, Gen-
MLBench includes structured data cards for each
task, and we hypothesize that these cards can still
improve generation quality, even for autonomous
systems like Datalnterpreter.

To test this, we rerun the experiments using aug-
mented prompts that include the data card contents
(with three attempts). Results, presented by Fig-
ure 8 shows that adding data descriptions leads to
clear improvements in model performance across
all domains. While hallucinations persist, critical
errors such as SyntaxError and ValueError are
reduced. These results support the hypothesis that
structured metadata can meaningfully enhance au-
tonomous code generation, even in failure-prone
settings.

6 Conclusion

This paper introduced GenMLBench, a bench-
mark designed to evaluate large language models
(LLMs) on the practical task of generating com-
plete machine learning (ML) pipelines from natu-
ral language descriptions. By focusing on realistic
task formulations drawn from Kaggle competitions,
GenMLBench enables rigorous testing across di-
verse domains and data modalities.

Our benchmark is unique in simulating full-stack
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preter framework across different domains using (A)
gpt-3.5-turbo and (B) gpt-4.1-nano.

ML workflows, requiring models to align code
implementation with task objectives, evaluation
metrics, and domain-specific constraints. GenML-
Bench thus evaluates not only code correctness
but also semantic fidelity, generalization capability,
and robustness in complex, real-world scenarios.

We incorporate a systematic error taxon-
omy—including hallucinations, data leakage, syn-
tax and runtime failures, and timeouts—which en-
ables fine-grained diagnostic evaluation across task
types and domains. Our findings reveal that hallu-
cination and validation misalignment are common
failure modes, especially in NLP and time-series
tasks, while tabular problems remain comparatively
tractable.

Additionally, we show that structured metadata
(e.g., data cards) substantially improves generation
outcomes even under resource-constrained offline
execution. These results highlight the importance
of metadata-aware prompting and the potential of
GenMLBench to serve as a diagnostic and extensi-
ble testbed for future research on LLM-based ML
agents.

Moving forward, we envision several extensions:
increased modality coverage, richer agent-based
planning frameworks, and direct comparisons with
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Figure 8: Outcome type distribution of the Datalnter-
preter framework using (A) gpt-3.5-turbo and (B)
gpt-4.1-nano on GenMLBench tasks after augment-
ing input with structured data descriptions.



human practitioners. As ML automation advances,
GenMLBench provides a critical foundation for
evaluating and improving language models that
aim to operate in real, productive ML development
settings.

Limitations

While GenMLBench represents a meaningful ad-
vance in language-to-code generation benchmark-
ing for machine learning tasks, we acknowledge
the following limitations as opportunities for future
research:

6.1 Scope and Coverage

Despite our best efforts at domain diversity, the first
version of GenMLBench has only 50 tasks with an
imbalanced distribution across data modalities (37
tabular, 6 vision, 6 text, and 1 time series tasks). Al-
though this distribution is a function of the practical
limitations of Kaggle competitions and our inclu-
sion criteria, it may limit the benchmark’s ability
to fairly assess model performance on underrepre-
sented modalities like time series data.

6.2 Evaluation Environment

Our evaluation protocol operates in an offline en-
vironment with fixed computational resources and
strict time constraints. While this ensures repro-
ducibility and comparability, it may not fully re-
flect the performance potential of LLMs in envi-
ronments with greater computational resources or
longer execution times. Some complex ML tasks
might inherently require more than the 10-minute
timeout we impose, potentially leading to an over-
representation of "solution stuck" errors for certain
task types.

6.3 Metric Validation

Our approach to validating submissions relies on
comparing model-generated metrics with manually
computed ones. This method, while effective for
detecting many types of errors, may not capture
all forms of subtle data leakage or methodological
flaws in the generated pipelines. More sophisti-
cated validation techniques could potentially pro-
vide deeper insights into model behavior.

6.4 LLM Diversity

Our experimental evaluation focused on two com-
mercial LLMs (GPT-3.5-turbo and GPT-4.1-nano).
While these models represent strong baselines, the
performance characteristics we observed may not

generalize to other architectures, particularly open-
source models that may have different training dis-
tributions or specialized capabilities. Expanding
the evaluation to include a wider variety of models
would provide more comprehensive insights.

6.5 Human Expertise Comparison

GenMLBench evaluates LLM performance in isola-
tion rather than comparing it directly to human ML
practitioners. While our benchmark offers valuable
insights into model capabilities, it does not address
the broader question of how LLM-generated solu-
tions compare to those created by human experts
in terms of innovation, efficiency, or explainability.
Despite these limitations, GenMLBench provides
a valuable foundation for systematic evaluation of
language models on ML code generation tasks. We
view these limitations not as fundamental flaws
but as opportunities for the research community
to build upon and extend this work in meaningful
directions.
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Appendix

A Domain extraction prompt

You are given a description of kaggle competition:
data description. You need to identify the tag that
the business belongs to in the competition field.

Example of you task completed:

Given description: The input data set is provided
in a plain text file containing exclusively ASCII
characters with lines terminated with a single ’
n’ character (UNIX-style line endings). The rest
line of the data set contains a single integer N
(1 < N < 10°) — the number of photos in the
collection.

This is followed by N lines, where line i contains
a description of the photo with ID i (0 <4 < N).
The description of photo i contains the following
data, separated by a single space:single character
‘H’ if the photo is horizontal, or ‘V” if it is vertical.

An integer Mi (1 < M3 < 100) — the number
of tags for that photo.

Mi text strings — the tags for photo i. Each
tag consists only of lowercase ASCII letters
and digits, between 1 and 10 characters in to-
tal.Optimizing a photo album from Hash Code
2019 Answer Tag: social media

Examples of tags: "healthcare and medical’, ’fi-
nance’, ‘urban planning’, ’eCommerce’, ’social
media’, ’insurance and finance’, environmental
science’, ‘real estate’, Thuman resource manage-
ment ’, ’synthetic’, 'maritime studies’, ’content
moderation’, *information retrieval’, marketing’.
Return only the tag name without any additional
text or comments.

B Benchmark prompt template

You are participating in an offline version of Kag-
gle competitions adapted to test the coding ability
of agents like yourself.
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You will be given a machine learning task. You
must solve the task by training a model and run-
ning the model on the test set to produce a sub-
mission file.

COMPETITION INSTRUCTIONS

- *#*Competition-specific instructions**: The in-
structions for the competition are available. Read
this description to understand the problem setup
for the competition you are currently solving: task
description.

- **Dataset™*: The dataset files for the competi-
tion are available in path to data. If you can’t find
test data, take 10% random sampled data from
train data and use it as test data.

- **Training**: Do not include any details about
runtime constraints, submission formats, team
rules, or implementation environments. Focus
solely on the core problem-solving task and its
evaluation. Return only pure text without any
markdown. Do not build graphs, return only code
and errors during code generation.

- **Submission**: Use simple CSV submission
format: ’your model score, target test score’. Re-
gardless of what the competition instructions say,
you MUST produce a submission file based on
test dataset in path to data at path to submission
file. We will only evaluate submissions found at
this path; failure to submit a ‘submission.csv* at
this path will result in a failed attempt.

Your submission will be graded based on the met-
ric in the competition-specific instructions: met-
ric type. Your goal is to achieve the best score
possible on the competition task.

Evaluate and return metric metric type on test
datset if format.

If you can’t return metric, return 'No solution
found’.
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