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Abstract001

Recent advances in large language models002
(LLMs) have enabled promising results in gen-003
erating executable code from natural language.004
However, existing benchmarks typically rely on005
synthetic prompts or constrained domains, lim-006
iting insight into LLM performance on realistic007
machine learning (ML) workflows. We intro-008
duce GenMLBench, a domain-diverse bench-009
mark for evaluating language-to-code gener-010
ation in the context of ML pipeline creation.011
GenMLBench extends the Code4ML corpus012
with natural language task descriptions and013
structured metadata derived from 50 Kaggle014
competitions across domains including finance,015
healthcare, and computer vision. We evaluate016
LLMs using an open-source code-generation017
framework, applying standardized execution018
constraints and metric validation. Our analysis019
reveals key failure modes, such as hallucina-020
tions and data leakage, and highlights variation021
in success across data modalities and task types.022
GenMLBench provides a rigorous testbed for023
future research on robust, agent-based ML code024
generation.025

Resources and Evaluation Interpretability and026

Analysis027

1 Introduction028

Large language models (LLMs) have increasingly029

become powerful tools for automating complex030

software engineering tasks (Hou et al., 2024).031

Enhanced with the ability to model both code032

and text (Chen et al., 2021), (Roziere et al.,033

2023), (Chowdhery et al., 2023), LLMs have shown034

considerable potential in generating code from035

natural language descriptions (Li et al., 2023;036

Luo et al., 2023; Bubeck et al., 2023; Wang037

et al., 2023b). Multi-agents (MA) LLM frame-038

works (Trofimova et al., 2024; Hong et al., 2024;039

Jiang et al., 2025) tackle the transformation of ML040

task descriptions into executable code. This capa- 041

bility promises to accelerate ML development in 042

both research and industry by enabling AI agents 043

and AutoML systems to interpret high-level goals 044

and automatically produce executable solutions. 045

However, current evaluations of such language-to- 046

code models often rely on benchmarks containing 047

synthetic prompts or limited domain scope, which 048

inadequately reflect the diversity and complexity 049

encountered in real-world ML workflows. 050

Despite these advances, the evaluation of sys- 051

tems like these is underdeveloped. Existing bench- 052

marks frequently rely on synthetic prompts, toy 053

tasks, or narrow domains that do not capture the 054

complexity and variability of real-world ML sce- 055

narios. While several recent ML-focused bench- 056

marks have been proposed, they mostly target tab- 057

ular data tasks and lack complete metadata frame- 058

works anduniform error taxonomies, limiting the 059

scope of their ability to provide systematic insights 060

into model behavior for a broad array of domains 061

and data modalities. A critical gap remains in 062

benchmarking LLMs for ML code generation: the 063

need for comprehensive metadata structures, di- 064

verse data modalities beyond tabular tasks, and 065

standardized error taxonomies to systematically an- 066

alyze performance variations and identify specific 067

failure modes across domains. 068

To address these gaps, we introduce GenML- 069

Bench, a domain-diverse benchmark designed to 070

rigorously evaluate LLMs on the task of generat- 071

ing complete ML pipelines from natural language. 072

Unlike existing benchmarks, GenMLBench is con- 073

structed to reflect the diversity, ambiguity, and prac- 074

tical constraints of real-world ML workflows. It 075

builds on Code4ML (Drozdova et al., 2023) and 076

extends it significantly by: 077

• Curating 50 Kaggle competitions and extract- 078

ing rich natural language task descriptions 079

from competition metadata, kernels, and user 080
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discussions.081

• Annotating each task with comprehensive082

structured metadata, including competition083

type, data modality, science domain, evalua-084

tion metrics, and detailed error categorization,085

enabling multi-dimensional analysis.086

• Including non-tabular tasks from NLP and087

computer vision domains alongside traditional088

tabular data tasks, providing a more realistic089

assessment of ML code generation capabili-090

ties.091

• Introducing a comprehensive error taxonomy092

for analyzing failure modes, including hal-093

lucinations, data leakage, syntax errors, and094

value errors that vary substantially across data095

modalities.096

2 Related Work097

2.1 Text-to-Code generation benchmarks098

Code generation from natural language has re-099

ceived significant attention, with benchmark100

datasets such as CodeXGLUE (Lu et al., 2021) and101

HumanEval (Chen et al., 2021) enabling the evalu-102

ation of LLMs like Codex and InCoder. These cor-103

pora are typically comprised of general program-104

ming or algorithmic tasks, and while they have in-105

spiredprogress in model abilities, they lack the do-106

main specificity and multi-step complexity present107

in real-world ML pipelines.108

Benchmarks based on ML more recently have at-109

tempted to bridge this gap. RE-Bench (Wijk et al.,110

2024) evaluates agents on open-ended ML research111

tasks but lacks reproducibility and structured eval-112

uation due to its subjective nature. GAIA (Mi-113

alon et al., 2023) assesses general AI assistants114

on tasks requiring reasoning and multi-modality115

handling but emphasizes broader assistant capabili-116

ties rather than specific ML engineering challenges.117

MLE-Bench (Chan et al., 2024) benchmarks LLM118

agents on ML tasks sourced from Kaggle but lim-119

its itself to performance metrics without structured120

metadata or detailed error analysis. Weco, Kaggle121

benchmark (Jiang et al., 2025), tests LLMs on Kag-122

gle competitions in terms of leaderboard accuracy123

but lacks an error taxonomy or metadata to enable124

fine-grained diagnostic evaluation.125

2.2 Dataset creation for ML code126

Domain-specific datasets have emerged to improve127

the generation process for ML-specific implemen-128

tations. Code4ML (Drozdova et al., 2023) com- 129

piles Python notebooks and task annotations from 130

Kaggle, forming a foundational corpus for ML- 131

oriented code generation. However, Code4ML is 132

based on competitions collected only up to 2021, 133

and its natural language task descriptions are au- 134

tomatically scraped from Kaggle and lack human- 135

curated refinement. In addition, it lacks structured 136

metadata such as data cards and domain labels 137

that are critical for meaningful benchmarking and 138

domain-aware evaluation. CodeSearchNet (Hu- 139

sain et al., 2019) aligns code and text pairs but 140

is not ML-specific. SciCode (Tian et al., 2024) and 141

BioCoders (Tang et al., 2024) introduce domain- 142

focused code datasets for scientific computing and 143

bioinformatics respectively, but overlook the wider 144

context of ML engineering. 145

2.3 LLM agent planning for dataset 146

enhancement 147

LLMs have opened new avenues for enhancing 148

and expanding datasets, particularly in the domain 149

of machine learning code. LLM agent planning 150

techniques have emerged as powerful tools for gen- 151

erating high-quality, contextually relevant content 152

systematically. Huang et al. (2024) provide a taxon- 153

omy of LLM-Agent planning, highlighting five key 154

categories: task decomposition, selection of one 155

plan over multiple suggestions, external planner- 156

aided planning, reflection and refinement, and plan- 157

ning with an extra memory module. 158

Task decomposition, a fundamental technique 159

in this field, involves breaking down complex 160

tasks into manageable sub-tasks. Yao et al. (2023) 161

demonstrate that LLMs can be prompted to decom- 162

pose tasks, reason about each step, and then act on 163

that reasoning. This approach is crucial for dataset 164

enhancement, allowing the generation of problem 165

statements or metadata from code to be divided 166

into smaller, more manageable steps. 167

The concept of decomposition extends to divid- 168

ing a one-step planning process into sequential 169

sub-tasks creation and planning. The Zero-shot 170

Chain-of-Thought (CoT) method (Kojima et al., 171

2022) showcases LLMs’ reasoning abilities using 172

the "Let’s think step-by-step" prompt. Building on 173

this, Wang et al. (2023a) introduce Plan-and-solve 174

prompting, which provides a two-step prompt in- 175

struction on plan division and execution, further 176

advancing the zero-shot CoT approach. 177

Refinement techniques play a crucial role in en- 178

hancing the quality of generated content. Drozdov 179
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et al. (2022), Madaan et al. (2024), and Shinn et al.180

(2024) have explored various refinement methods181

that involve generating initial content and then it-182

eratively improving it based on specific criteria or183

feedback. In the context of ML code datasets, this184

could involve generating an initial task description,185

evaluating its quality, and then prompting the LLM186

to improve specific aspects of the description.187

The choice of improvement criteria is critical in188

refinement processes. Zhuo (2024) proposes using189

an LLM as a scoring agent, which can provide inter-190

pretability to the refinement method as scoring can191

be based on predefined conditions. This approach192

allows for a more transparent and controllable en-193

hancement process. By leveraging the described194

methods, researchers can potentially automate the195

generation of high-quality task descriptions, meta-196

data, and other relevant information, significantly197

expanding the utility and scope of existing ML198

code datasets.199

2.4 Natural Language understanding in ML200

contexts201

ML code generation entails models understanding202

advanced task semantics like evaluation targets,203

properties of data, and domain demands. Frame-204

works like Linguacodus (Trofimova et al., 2024)205

and DataInterpreter (Hong et al., 2024) showcase206

initial steps toward pipeline generation from natu-207

ral language, but rely on synthetic benchmarks or208

lack systematic evaluation protocols.209

2.5 Evaluation of LLMs on downstream210

coding tasks211

Current evaluation methods are typically founded212

on pass@k scores or coarse-grained success/failure213

metrics, obscuring insights into specific failure214

modes such as data leakage or model misalign-215

ment. Recent efforts such as ToolLLM (Qin et al.,216

2024) emphasize the need for interpretable diag-217

nostics. MLBench (Tang et al., 2023) introduces218

a high-level taxonomy of errors, including halluci-219

nations, knowledge absence, knowledge manipula-220

tion, and syntax errors—highlighting challenges in221

LLM-generated code. However, these categories222

are domain-independent and not context-specific223

to particular ML environments, making it diffi-224

cult to gauge their implications in real-world ML225

pipelines.226

LLM Agent

Goal: Reverse Task Inference Input data: ML Code

Description Scoring

SubGoal:  
Code Analysis and 

Information Extraction

SubGoal:  
Task Description 

Structuring 

SubGoal:  
Constrained Task 

Description Formatting 

The main task or problem the 
code is trying to solve

Key input data and its 
characteristics

Expected output or result

A clear statement of the task's 
objective

Detailed description of the 
input data

A concise explanation of the 
desired output or result

‘NOTE that you task must not 
include any information about 
solution (data preprocessing, 

model name). ‘

+

LLM Agent

Score

Evaluation Criteria: 
Appropriateness of 

Task Description

Goal Decomposition

LLM Agent

Updated Task 
Description

Refinement

‘Avoid phrases "use ensemble 
models" or "neural networks", 

pretend that you've never seen 
the code and you don't know 

how to solve the task.‘

EXAMPLE

Figure 1: Code-Based problem statement generation
framework. The scheme incorporates three LLM agents.
The first agent inputs the ML code to infer the task
description from it through sequential subgoals. The
second agent evaluates the quality of the inferred de-
scription based on predefined scoring criteria. The third
agent receives the ML code along with the score and
updates the description if necessary.

3 Corpus creation 227

3.1 Data source expansion 228

MLBench builds on the Code4ML dataset (Droz- 229

dova et al., 2023), which comprises over 20,000 230

annotated Jupyter notebooks tied to ML competi- 231

tions. However, Code4ML contains mostly pre- 232

2021 data and lacks consistent domain coverage. 233

To address this, we integrate it with Meta Kaggle 234

Code (Plotts and Risdal, 2023), a large corpus of 235

publicly licensed competition notebooks published 236

since 2022. We select and process 200 ML com- 237

petitions from this dataset using an LLM-based 238

inference pipeline (Fig. 1) for task description cre- 239

ation, avoiding tasks for students and non-English 240

descriptions. The data cards, describing the data, 241

corresponding to the ML tasks, are manually added 242

to the new version of the corpus. We name it 243

Code4ML 2.0 (Anonymous, 2025a). 244

We use GPT-4o and Claude 3.5 Sonnet with 245

one-shot Chain-of-Thought prompting for gener- 246

ation and refinement, correspondingly. Empirical 247

evaluation on 100 sampled tasks from the orig- 248

inal Code4ML corpus showed that the scoring- 249

refinement loop improves high-quality description 250

rates from 80% to 96% (Fig. 2, Alg. 1). 251

As a result, the Code4ML 2.0 dataset represents 252

an enhancement of the original Code4ML, offering 253

a more comprehensive and diverse representation 254

of machine learning tasks and their solutions. The 255

reverse task inference algorithm can be effortlessly 256

used to automatically update the corpus. The en- 257

hanced set incorporates data from an additional 258

3



Benchmark Real ML Tasks Domain diversity Metadata Error taxonomy Code executability

CodeXGLUE - - - - ✓
HumanEval - - - - ✓
RE-Bench ✓ ✓(research-focused) - - -
GAIA ✓ ✓ (multi-modal) - - -
MLE-Bench ✓ - (mostly tabular) ✓ ✓ ✓
Weco Kaggle Benchmark ✓ - - - ✓
Code4ML ✓ ✓ Partial - ✓
GenMLBench (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of language-to-code benchmarks relevant to ML pipeline generation. GenMLBench provides
the most comprehensive coverage across task realism, domain diversity, metadata support, and error analysis.

Figure 2: Task description evaluation prompt: (A) Scoring strategy component; (B) Assessment criteria component.
C/D means “high quality”, A/B needs refinement.

Algorithm 1 Scoring-Refinement algorithm
Require: generated description x0, input code c, model M,

prompts {pscore, prefine}
xt ← x0 ▷ Initialize the description with x0

for iteration t ∈ 0, 1, ... do
scoret =M(pscore||xt) ▷ ModelM evaluates the

current description at step t using the scoring prompt.
if scoret = C or scoret = D then

break ▷ Terminate if the score is satisfactory (C or
D).

else if scoret = A or scoret = B then
xt+1 ←M(prefine||c||xt||scoret) ▷ Refine

the description based on the input code, current description,
and score.

end if
end for

200 competitions, substantially expanding the cor-259

pus of machine learning tasks and solutions. Ta-260

ble 2 provides a comparison between the original261

Code4ML and the new Code4ML 2.0. Each com-262

petition is associated with multiple Jupyter note-263

books, showcasing various approaches to solving264

the same problem. The Kaggle leaderboard ranking265

for notebooks allows for a comparative analysis of266

solution effectiveness. Each notebook is annotated267

with the competition name, data type used in the268

competition, and other relevant metadata.269

Table 2: Comparison of Code4ML and Code4ML 2.0
datasets.

Name Year Notebooks ML Tasks Rank Info Data Info Task Info
Code4ML up to 2021 23,103 443 – – Human-curated
Code4ML 2.0 2022–2024 +18,110 +200 ✓ ✓ LLM-generated
Total Up to 2024 41,213 643 Partial Partial Mixed

3.2 Benchmark task selection 270

High-quality task descriptions are essential for 271

evaluating the ability of LLMs to generate ML 272

solutions. To ensure clarity, neutrality, and 273

implementation-agnostic phrasing, we apply a 3- 274

point rating scheme to assess task descriptions gen- 275

erated by our LLM pipeline. Two independent 276

annotators evaluate each task using the following 277

rubric described in Table 3. 278

Table 3: Task description quality rubric

Score Criteria

0 – Unus-
able

Vague or incorrect; contains implementation
hints. Must be rewritten.

1 – Needs
Revision

Mostly correct, but includes minor flaws. Re-
quires edits for clarity or neutrality.

2 – Good Clear, accurate, and free of implementation
hints.

If annotators disagree by one point, we conser- 279
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vatively adopt the lower score. Disagreements be-280

tween two annotators are resolved by involving a281

third, independent annotator to ensure impartiality282

and reinforce the reliability of the annotation pro-283

cess. All descriptions rated 0 are flagged for full284

rewriting. Annotators also provide comments to285

guide revisions. This protocol ensures that the final286

benchmark includes high-quality, implementation-287

agnostic problem formulations.288

From the enhanced Code4ML 2.0 dataset, we289

select a benchmark subset of 50 ML tasks accord-290

ing to the criteria summarized in Table 4. These291

tasks cover a diverse set of domains while ensur-292

ing practical feasibility and consistency across the293

evaluation pipeline.294

Table 4: Task selection criteria for GenMLBench

Criterion Description

Dataset
size

≤15 GB to ensure feasibility under mem-
ory/runtime limits.

Task types 37 tabular, 6 vision, 6 text, 1 time series.
Evaluation
metrics

Clear, interpretable standard or custom met-
ric required.

Data re-
strictions

No external data, anonymous features, or
leakage.

Resource
constraints

Excludes GPU-optimized or kernel-
restricted tasks.

Competition
source

Selected from Featured, Research, and Play-
ground; vague or oversized tasks excluded.

3.3 Metadata and annotation295

To enable systematic analysis across diverse ML296

tasks, GenMLBench (Anonymous, 2025b) em-297

ploys a comprehensive metadata structure for298

each benchmark task. Every task includes essen-299

tial fields: comp_name provides the originating300

Kaggle competition name as a unique identifier;301

competition_link offers direct access to source302

materials; data_card presents dataset information303

including formats and feature descriptions; metric304

(formerly EvaluationAlgorithmAbbreviation)305

specifies the standard evaluation metric abbrevia-306

tion (e.g., RMSE, AUC); comp_type categorizes307

competitions as Featured, Research, Community,308

or Playground; data_type classifies the primary309

data modality as tabular, image, text, or time series;310

description offers a curated, implementation-311

agnostic explanation of the task requirements.312

The metadata described above is inherited from313

Code4ML 2.0. Additionally, domain identifies314

the application area (Figure 3), extracted via GPT-315

3.5-turbo analysis of data_card and the competi-316

tion subtitle (see Appendix A), also curated from317

Figure 3: GenMLBench domain distribution

Code4ML 2.0. This structure facilitates multidi- 318

mensional performance analysis across domains, 319

modalities, and task types. 320

4 Evaluation Protocol 321

To evaluate the ability of LLMs to generate ex- 322

ecutable ML solutions, we adopt a standardized 323

protocol. Each benchmark task is attempted three 324

times to account for stochasticity in model out- 325

puts. The evaluation is conducted in an offline 326

LLM agent framework without Docker isolation, 327

using fixed hardware resources to ensure compara- 328

bility across runs. 329

A strict 10-minute timeout is imposed per task; 330

tasks exceeding this limit are classified as solution 331

stuck. Evaluation dimensions include submission 332

success rate, execution time, and a taxonomy of 333

output errors. Error types are categorized into five 334

classes ( Figure 4). To classify an output as a hal- 335

lucination, we rely on multiple diagnostic signals. 336

These include the generation of implausible or un- 337

reachable metric values (e.g., an F1-score of 1.0 338

on complex test sets), the presence of runtime er- 339

rors during training despite a reported evaluation 340

metric, and the absence of a valid submission file 341

corresponding to the reported output. These heuris- 342

tics help isolate cases where the model fabricates 343

success without proper execution or evaluation. 344

Error classification criteria

Correct:
Submission file
generated, metric
matches manual
validation.

Hallucinations:
Fabricated solutions
or metrics not
supported by code.

Data leakage:
Training on test data
or improper validation
split.

Solution stuck:
No output
within 10 minutes
(timeout).

SyntaxError/
ValueError:
Python interpreter
syntax violations.

Figure 4: Taxonomy of model output error types.

5 Experiments and Results 345

We benchmark two LLMs, GPT-4.1-nano and GPT- 346

3.5-turbo, across the 50-task GenMLBench bench- 347

mark. Each task is evaluated in three independent 348
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runs per model. We analyze the resulting code349

for correctness, measure success rates, and verify350

submission validity.351

Submissions are cross-validated against manu-352

ally computed metrics to detect hallucinations or353

incorrect metric implementations. CSV outputs are354

inspected for formatting compliance. Discrepan-355

cies are flagged for further analysis.356

Two radar charts (Figures 5 and 6) illustrate357

model performance when provided with enriched358

task prompts. Specifically, we supply the subtitle359

of each Kaggle competition rather than the default360

title, as subtitles typically contain more informa-361

tive problem context. Additionally, DataInterpreter362

receives the task description and paths to data files363

(see Appendix B).364

Tabular

CV

Time Series 
& NLP

O
Figure 5: Error types passing rate grouped by data type

Figure 5 shows model error rates across different365

tasks. Errors are lowest on Tabular data, suggesting366

strong model alignment with structured inputs. CV367

tasks exhibit moderate errors, reflecting challenges368

in interpreting high-dimensional visual inputs. The369

highest errors occur in Time Series & NLP tasks, in-370

dicating persistent difficulty in capturing temporal371

and semantic patterns, even with enriched prompts.372

Figure 6 reports overall performance across dif-373

ferent competition types. Featured competitions374

benefit most from subtitle-based prompt enrich-375

ment, while Playground tasks also show marked376

gains, likely due to their simplicity. Research com-377

petitions remain the most challenging, with the378

lowest metrics, whereas Community tasks fall in379

between, showing moderate improvement. Figure 7380

assess the inference time per domain for different381

LLMs underneath the framework. Longer infer-382

ence times in certain domains reflect the added383

Community 

Featured

Playground

Research

O
Figure 6: Metric types passing rate grouped by competi-
tion type

complexity in data understanding and pipeline gen- 384

eration. These results highlight how data modality 385

impacts the computational efficiency of multi-agent 386

LLM systems. 387

DataInterpreter is a multi-agent framework that 388

performs exploratory data analysis (EDA) before 389

code generation. This architecture may reduce re- 390

liance on explicit data descriptions. However, Gen- 391

MLBench includes structured data cards for each 392

task, and we hypothesize that these cards can still 393

improve generation quality, even for autonomous 394

systems like DataInterpreter. 395

To test this, we rerun the experiments using aug- 396

mented prompts that include the data card contents 397

(with three attempts). Results, presented by Fig- 398

ure 8 shows that adding data descriptions leads to 399

clear improvements in model performance across 400

all domains. While hallucinations persist, critical 401

errors such as SyntaxError and ValueError are 402

reduced. These results support the hypothesis that 403

structured metadata can meaningfully enhance au- 404

tonomous code generation, even in failure-prone 405

settings. 406

6 Conclusion 407

This paper introduced GenMLBench, a bench- 408

mark designed to evaluate large language models 409

(LLMs) on the practical task of generating com- 410

plete machine learning (ML) pipelines from natu- 411

ral language descriptions. By focusing on realistic 412

task formulations drawn from Kaggle competitions, 413

GenMLBench enables rigorous testing across di- 414

verse domains and data modalities. 415

Our benchmark is unique in simulating full-stack 416
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(A)

(B)

Figure 7: Inference time distribution of the DataInter-
preter framework across different domains using (A)
gpt-3.5-turbo and (B) gpt-4.1-nano.

ML workflows, requiring models to align code417

implementation with task objectives, evaluation418

metrics, and domain-specific constraints. GenML-419

Bench thus evaluates not only code correctness420

but also semantic fidelity, generalization capability,421

and robustness in complex, real-world scenarios.422

We incorporate a systematic error taxon-423

omy—including hallucinations, data leakage, syn-424

tax and runtime failures, and timeouts—which en-425

ables fine-grained diagnostic evaluation across task426

types and domains. Our findings reveal that hallu-427

cination and validation misalignment are common428

failure modes, especially in NLP and time-series429

tasks, while tabular problems remain comparatively430

tractable.431

Additionally, we show that structured metadata432

(e.g., data cards) substantially improves generation433

outcomes even under resource-constrained offline434

execution. These results highlight the importance435

of metadata-aware prompting and the potential of436

GenMLBench to serve as a diagnostic and extensi-437

ble testbed for future research on LLM-based ML438

agents.439

Moving forward, we envision several extensions:440

increased modality coverage, richer agent-based441

planning frameworks, and direct comparisons with442

(A)

(B)

Figure 8: Outcome type distribution of the DataInter-
preter framework using (A) gpt-3.5-turbo and (B)
gpt-4.1-nano on GenMLBench tasks after augment-
ing input with structured data descriptions.
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human practitioners. As ML automation advances,443

GenMLBench provides a critical foundation for444

evaluating and improving language models that445

aim to operate in real, productive ML development446

settings.447

Limitations448

While GenMLBench represents a meaningful ad-449

vance in language-to-code generation benchmark-450

ing for machine learning tasks, we acknowledge451

the following limitations as opportunities for future452

research:453

6.1 Scope and Coverage454

Despite our best efforts at domain diversity, the first455

version of GenMLBench has only 50 tasks with an456

imbalanced distribution across data modalities (37457

tabular, 6 vision, 6 text, and 1 time series tasks). Al-458

though this distribution is a function of the practical459

limitations of Kaggle competitions and our inclu-460

sion criteria, it may limit the benchmark’s ability461

to fairly assess model performance on underrepre-462

sented modalities like time series data.463

6.2 Evaluation Environment464

Our evaluation protocol operates in an offline en-465

vironment with fixed computational resources and466

strict time constraints. While this ensures repro-467

ducibility and comparability, it may not fully re-468

flect the performance potential of LLMs in envi-469

ronments with greater computational resources or470

longer execution times. Some complex ML tasks471

might inherently require more than the 10-minute472

timeout we impose, potentially leading to an over-473

representation of "solution stuck" errors for certain474

task types.475

6.3 Metric Validation476

Our approach to validating submissions relies on477

comparing model-generated metrics with manually478

computed ones. This method, while effective for479

detecting many types of errors, may not capture480

all forms of subtle data leakage or methodological481

flaws in the generated pipelines. More sophisti-482

cated validation techniques could potentially pro-483

vide deeper insights into model behavior.484

6.4 LLM Diversity485

Our experimental evaluation focused on two com-486

mercial LLMs (GPT-3.5-turbo and GPT-4.1-nano).487

While these models represent strong baselines, the488

performance characteristics we observed may not489

generalize to other architectures, particularly open- 490

source models that may have different training dis- 491

tributions or specialized capabilities. Expanding 492

the evaluation to include a wider variety of models 493

would provide more comprehensive insights. 494

6.5 Human Expertise Comparison 495

GenMLBench evaluates LLM performance in isola- 496

tion rather than comparing it directly to human ML 497

practitioners. While our benchmark offers valuable 498

insights into model capabilities, it does not address 499

the broader question of how LLM-generated solu- 500

tions compare to those created by human experts 501

in terms of innovation, efficiency, or explainability. 502

Despite these limitations, GenMLBench provides 503

a valuable foundation for systematic evaluation of 504

language models on ML code generation tasks. We 505

view these limitations not as fundamental flaws 506

but as opportunities for the research community 507

to build upon and extend this work in meaningful 508

directions. 509
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Appendix672

A Domain extraction prompt673

You are given a description of kaggle competition:674
data description. You need to identify the tag that675
the business belongs to in the competition field.676

Example of you task completed:677

Given description: The input data set is provided678
in a plain text file containing exclusively ASCII679
characters with lines terminated with a single ’680
n’ character (UNIX-style line endings). The rest681
line of the data set contains a single integer N682
(1 ≤ N ≤ 105) — the number of photos in the683
collection.684

This is followed by N lines, where line i contains685
a description of the photo with ID i (0 ≤ i ≤ N).686
The description of photo i contains the following687
data, separated by a single space:single character688
‘H’ if the photo is horizontal, or ‘V’ if it is vertical.689

An integer Mi (1 ≤ Mi ≤ 100) — the number690
of tags for that photo.691

Mi text strings — the tags for photo i. Each692
tag consists only of lowercase ASCII letters693
and digits, between 1 and 10 characters in to-694
tal.Optimizing a photo album from Hash Code695
2019 Answer Tag: social media696

Examples of tags: ’healthcare and medical’, ’fi-697
nance’, ’urban planning’, ’eCommerce’, ’social698
media’, ’insurance and finance’, ’environmental699
science’, ’real estate’, ’human resource manage-700
ment ’, ’synthetic’, ’maritime studies’, ’content701
moderation’, ’information retrieval’, ’marketing’.702
Return only the tag name without any additional703
text or comments.704

B Benchmark prompt template705

You are participating in an offline version of Kag-706
gle competitions adapted to test the coding ability707
of agents like yourself.708

You will be given a machine learning task. You 709
must solve the task by training a model and run- 710
ning the model on the test set to produce a sub- 711
mission file. 712

COMPETITION INSTRUCTIONS 713

—— 714

- **Competition-specific instructions**: The in- 715
structions for the competition are available. Read 716
this description to understand the problem setup 717
for the competition you are currently solving: task 718
description. 719

- **Dataset**: The dataset files for the competi- 720
tion are available in path to data. If you can’t find 721
test data, take 10% random sampled data from 722
train data and use it as test data. 723

- **Training**: Do not include any details about 724
runtime constraints, submission formats, team 725
rules, or implementation environments. Focus 726
solely on the core problem-solving task and its 727
evaluation. Return only pure text without any 728
markdown. Do not build graphs, return only code 729
and errors during code generation. 730

- **Submission**: Use simple CSV submission 731
format: ’your model score, target test score’. Re- 732
gardless of what the competition instructions say, 733
you MUST produce a submission file based on 734
test dataset in path to data at path to submission 735
file. We will only evaluate submissions found at 736
this path; failure to submit a ‘submission.csv‘ at 737
this path will result in a failed attempt. 738

Your submission will be graded based on the met- 739
ric in the competition-specific instructions: met- 740
ric type. Your goal is to achieve the best score 741
possible on the competition task. 742

Evaluate and return metric metric type on test 743
datset if format. 744

If you can’t return metric, return ’No solution 745
found’. 746
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