
Under review as a conference paper at ICLR 2024

FROM PDES TO WINGBEATS: A NOVEL CONVOLU-
TIONAL FOURIER LAYER-BASED RESNET MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in Deep Learning apply Fourier Neural Operators (FNOs)
for generating numerical solutions of Partial Differential Equations (PDEs). They
are efficient due to their global spectral representations. However, their abilities
in applied classification or regression tasks for time series have not been stud-
ied previously. We further investigate the motivation behind FNOs and provide a
more detailed Discrete Fourier Transform-based definition. Furthermore, we in-
troduce CF-ResNet-1D, a novel ResNet-inspired model built from Convolutional
Fourier Layers being parallel units of FNO and 1D-Convolution. CF-ResNet-1D
can perform time-series data analysis on raw time-domain signals while also tak-
ing advantage of the parallel spectral processing of the FNOs. This combined
processing method outperforms spectrogram-based models for insect wingbeat
sound classification, achieving state-of-the-art accuracy on benchmark datasets.
The outcomes of our research offer promising insights about FNO application in
real-world problems, such as mosquito management and the mitigation of insect-
related diseases.

1 INTRODUCTION

A Convolutional Neural Network (CNN) can learn time series features well using one-dimensional
local convolutional kernels (Goodfellow et al., 2016). On the other hand, time series can also be
thought of as continuous functions. Therefore, they can be represented in Fourier space and global
convolutions can be used to obtain global features.

The Fourier Neural Operator (FNO) (Li et al., 2021) is a modern technique that builds on top of
the Discrete Fourier Transform. This neural operator performs learnable transformations in the
Fourier domain as a layer-level unit of a deep neural network. These transformations are analogous
to convolutions (Kabri et al., 2023) in nature, with the advantage of directly accessible frequency
components, thus they are suitable for frequency-based machine learning processes. These operators
are extensively used in modeling partial differential equations (PDEs) that govern mathematical and
physical simulations providing state-of-the-art engineering solutions (Chaohao et al., 2022; Li et al.,
2022; Zhang et al., 2022).

However, only a few studies focus on applying FNOs for classical data science-motivated tasks.
Among these according to our best knowledge, only image classification capabilities have been ex-
plored (Johnny et al., 2022; Kabri et al., 2023). Both of these studies use FNOs as a global alternative
to the convolution operator. While this is a good strategy for processing high-level features, locality
is also important in such CNNs. To explore the time series processing-related capabilities of the
FNO operator we apply them in the domain of insect wingbeat sound classification.

Every year, around 700 million people are infected and more than one million die from mosquito-
borne diseases (Caraballo & King, 2014). Such diseases include malaria, dengue, Zika virus fever,
yellow fever, West Nile fever, and encephalitis viruses (Palmer et al., 2017). For each disease, one
or more mosquito species are responsible for the transmission. Monitoring is an essential part of
control and successful intervention. This is why it is important to classify mosquitoes efficiently
and quickly.

Two types of machine learning approaches are applied for this task: audio and image-based. For
image-based solutions, classification is based on images of mosquitoes (Okayasu et al., 2019; Motta
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et al., 2020; Kittichai et al., 2021). It has previously been shown that the wingbeats of different
species have different audio characteristics (Offenhauser & Kahn, 1949), this also justifies the exam-
ination of audio or audio-like signals. For audio-based methods, either the raw wingbeat recording
is used (Yin et al., 2021), or data obtained after applying some kind of transformation on the raw
signals, such as the short-time Discrete Fourier Transform or the Discrete Fourier Transform (Arthur
et al., 2014; Chen et al., 2014b; Ouyang et al., 2015; Vasconcelos et al., 2019; Luna-Gonzalez et al.,
2020; Wei et al., 2022).

A system was presented to record the wingbeat of insects based on the large aperture optical sensors
that turn the light fluctuations into sound (Potamitis & Rigakis, 2016; Rigakis et al., 2019). Here,
the light fluctuations are caused by the partial occlusion of light from the wings. Without aiming
to be exhaustive, the acquired datasets include namely Wingbeats and Fruitflies. The Wingbeats
dataset was investigated using different state-of-the-art deep learning architectures (Wei et al., 2022;
Fanioudakis et al., 2018). Fanioudakis et al. (2018) converted the audio signals into spectrograms,
and a DenseNet-121 based model achieved 96% test accuracy. However, these results could not be
reproduced by Wei et al. (2022). Chen et al. (2014a) have used a very similar technique to capture
insect flying sounds, the collected dataset is called Insects. Mukundarajan et al. (2017) have shown
that even low-cost mobile phones are capable of acquiring acoustic data on mosquito wingbeat
sounds. The resulting Abuzz dataset was investigated with the same technique and with the same
WbNet architecture (Wei et al., 2022) as the Wingbeats dataset, too.

In our contribution, we provide further details on the mathematical motivation of the FNO for dis-
crete time series processing. One advantage of this task type is that the heuristic justification of
the FNO definition is much clearer. We provide a refined definition of the Discrete Fourier Neural
Operator that is directly applicable to Deep Learning. We propose a novel Convolutional Fourier
Layer by extending FNO’s point-wise operation to a proper 1D-Convolution. This Convolutional
Fourier (CF) Layer is then used to build ResNet-style models (CF-ResNet-9-1D) that are capable of
sound classification. To the best of our knowledge, this is the first attempt that FNO has been used
to investigate a real-world time series dataset. We test the proposed model on insect wingbeat sound
classification benchmarks, due to the impact of their possible applications.

We run numerical experiments on the Wingbeats, Fruitflies, Insects, and the Abuzz datasets for eval-
uation using the above-mentioned state-of-the-art spectrum-based MobileNet, DenseNet-121, and
WbNet architectures. We also report the performance of classical 1D ResNet architectures and
vanilla FNO-based ResNet architectures trained on raw time-series data. We repeat experiments by
Wei et al. (2022) and Fanioudakis et al. (2018) as their original implementation does not differen-
tiate between 1 validation and test data, thus it contains an inherent data leakage which results in
misleading test performance.

Our proposed model achieves state-of-the-art results with the largest one overperforming all of the
baselines on the majority of benchmark datasets. Furthermore, Convolutional Fourier Layers signif-
icantly improve the performance compared to the original FNO implementation by Li et al. (2021).

The paper is structured as follows. In Section 2, we provide some background materials concerning
the definition of the Discrete Fourier Neural Operator and the investigated Wingbeats, Fruitflies,
Insects and Abuzz datasets. Also, the proposed CF-ResNet-9-1D architecture is described in detail,
then the corresponding classification results are presented in Section 3. Finally, we summarize our
findings in Section 4.

2 METHODS

2.1 DISCRETE FOURIER NEURAL OPERATOR

In this subsection, we discuss the motivation behind defining a crucial component of our proposed
architecture: the Fourier Neural Operator, which is based on the work by Li et al. (2021). In this
motivation part, rigorous mathematical precision is ignored. Although, the precise definition of the
operator is given at the end of this subsection.

1Reevaluated experiment solving data leak in the original implementation.
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Let the numbers I,O ∈ N and the functions r ∈ L1
(
R;RO×I

)
, u ∈ L1

(
R;RI

)
be given. Here,

r is called as the kernel function. The convolution of these functions v = r ∗ u ∈ L1
(
R;RO

)
is

obtained by the next formula.

v(x) = (r ∗ u) (x) =
∫
R
r (x− y)u(y) dy, x ∈ R. (1)

Applying the convolution theorem the following equation holds.

v(x) = F−1 (F (r) · F (u)) = Fr(u)(x), x ∈ R. (2)

The operator Fr in equation (2) is called the Fourier Neural Operator. Assume that D = (−π, π)
and r ∈ L2

(
D;RO×I

)
, u ∈ L2

(
D;RI

)
also hold true. Here, we assume the quadratic integrability

holds per component. Let u(x) = (u1(x), u2(x), . . . , uI(x))
T , or shortly u(x) = (uj(x))

T given
by its Fourier series componentwise, i.e. uj(x) =

∑
k∈Z Uk,je

ikx. Similarly, we suppose that
r(x) = (rl,j(x)) ∈ RO×I , where rl,j(x) =

∑
k∈Z Rk,l,je

ikx. The following equations are used.

F(x 7→ eikx)(y) =
√
2πδ(y − k) and F−1(y 7→

√
2πδ(y − k))(x) = eikx, (3)

where δ is the Dirac-delta distribution. Let us assume that the Fourier transformation can be carried
out term by term in the Fourier series of the r and u functions. In this case, F(r)(y) ∈ CO×I and
F(u)(y) ∈ CI . With this assumption, we investigate their product, namely F(r) (y) · F(u) (y) ∈
CO. The l-th component of this vector is to be calculated as follows.

[F (r) (y) · F (u) (y)]l =

I∑
j=1

F(rl,j)(y) · F(uj)(y) (4)

It is necessary to calculate F(rl,j)(y) and F(uj)(y), which, taking the Fourier transform element-
wise in the Fourier series satisfy the following equations.

F(rl,j)(y) = F

(∑
k∈Z

Rk,l,j · eikx
)
(y) =

√
2π
∑
k∈Z

Rk,l,jδ(k − y), (5)

similarly

F(uj)(y) = F

(∑
k∈Z

Uk,j · eikx
)
(y) =

√
2π
∑
k∈Z

Uk,jδ(k − y). (6)

Using the identities in the formulas (5)-(6), equation (4) can be further modified as follows.

[F (r) (y) · F (u) (y)]l

=
I∑

j=1

(
√
2π
∑
k∈Z

Rk,l,jδ(y − k)

)
·

(
√
2π
∑
k∈Z

Uk,jδ(y − k)

)

= 2π

I∑
j=1

∑
k∈Z

Rk,l,j · Uk,jδ(y − k) = 2π
∑
k∈Z

I∑
j=1

Rk,l,j · Uk,jδ(y − k).

(7)

At the last equation, it was assumed that the two sums can be exchanged. Let us note that this is the
Fourier transform of the function v(x) = (v1(x), v2(x), . . . , vO(x)), v ∈ L2

(
D;RO

)
, given by the

following Fourier series, assuming that we can take its Fourier transform term by term in its Fourier
series.

vl(x) =
∑
k∈Z

I∑
j=1

Rk,l,j · Uk,j

√
2πeikx. (8)

Now, we take finite-dimensional parameterizations of both u and r by truncating their Fourier repre-
sentation at the maximum number of modes |k| ≤ kmax. Thus, we write R = (Rk,l,j) ∈ Ckmax×O×I

directly as a complex-valued tensor and similarly U = (Uk,j) ∈ Ckmax×I . We may assume this, be-
cause both the function u and the kernel function r are real-valued, and we want v to be real-valued
as well. Therefore, we impose conjugate symmetry on the coefficients of the Fourier series of r and
u, i.e. Rk,l,j = R−k,l,j and Uk,j = U−k,j where k ∈ Z, |k| ≤ kmax and j = 1, . . . , I , l = 1, . . . , O.
After this heuristic approach, we introduce the following definition.
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Definition 2.1 Assume that kmax ≤ [n2 ]+1 and let the Discrete Fourier Neural Operator F̂R, kmax
:

Rn×I → Rn×O defined by the equation

F̂R, kmax
(U) = F̂−1

(
R · F̂(U)

)
∈ Rn×O,

where R ∈ Ckmax×O×I , U ∈ Rn×I , F̂(U) ∈ C[n2 ]+1×I and F̂ denotes the one-dimensional Fast
Fourier Transform for real-valued functions (RFFT). We calculate the product R · F̂(U) in the way
we truncate the higher order modes in F̂(U) and obtain F̂(U) ∈ Ckmax×I then we can apply the
straightforward modification of equation (8), i.e.(

R ·
(
F̂ (U)

))
k,l

=

I∑
j=1

Rk,l,j

(
F̂ (U)

)
k,j

,

where k = 1, . . . , kmax, l = 1, . . . , O. The product R · F̂ (U) ∈ Ckmax×O must be padded with zeros
in order to bring it to the appropriate shape, i.e. R · F̂ (U) ∈ C[n2 ]+1×O before applying the inverse
of the RFFT operator.

Remark: we use the Fourier Neural Operator expression for the Discrete Fourier Neural Operator in
the following.

2.2 CONVOLUTIONAL FOURIER LAYER

We use the Discrete Fourier Neural Operator in our proposed model in a very similar way to usual
convolution layers. The layer corresponding to the operator has three parameters: the number of the
input channels I , the number of the output channels O, and the size of the kernel truncation kmax. In
the network architecture, we refer to a Fourier layer as the parallel coupling of a layer corresponding
to a Discrete Fourier Neural Operator and a conventional one-dimensional convolution layer with
the corresponding padding size to get the same output size, see Figure 1. The motivation behind this
coupling is the following. Filters in convolutional neural networks are usually local. They are good
at capturing local patterns. The filters in the Fourier Neural Operator are global functions, therefore
we expect they are good at capturing global patterns.

Figure 1: The Convolutional Fourier layer is a parallel coupling of a layer corresponding to the
Discrete Fourier Neural Operator and a conventional one-dimensional convolution layer with the
corresponding padding size.

2.3 PROPOSED CF-ResNet-9-1D MODEL

The model we propose is a simple ResNet-type model (He et al., 2016), we call it CF-ResNet-9-1D.
The total number of trainable parameters is 2.6M-8M. Essentially, we have replaced only the one-
dimensional convolution layers with Fourier layers in the simplest ResNet-9 model, thus obtaining
a smaller and larger network, see Figure 2. More technical information about the network is coming
now with some explanations for the notations. We use Gaussian Error Linear Units (GELU) as
activation functions (Hendrycks & Gimpel, 2016). The further abbreviations on Figure 2 are:

• FL(I,O): Fourier Layer with I input channels and with O output channels,
• GELU: The GELU activation function
• BN(I): Batch normalization in I channels,
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• FC(I,O): Fully connected layer between I and O neurons.

• avgpool,2: Performs average pooling operation on the input by the kernel size 2, this is
also the size of the stride here.

• AdaptiveAvgPool1d(1): Performs adaptive average pooling operation, in this case,
the size of the output is 1 by each channel.

• num classes: number of classes at the output layer.

Other important parameters of the layers are:

• The size of the truncation in the Fourier Layers are the same with the parameter kmax = 16.

• The size of the kernel is 11 and the size of the padding is 5 in the one-dimensional convo-
lution layers.

Figure 2: The architecture of the proposed small and large CF-ResNet-9-1D models.

Furthermore, the two sideways arrows in the figure represent the residual connections.

2.4 DATASETS

This study utilizies four publicly available dataset whose names are Wingbeats (Potamitis & Rigakis,
2016), Fruitflies (Rigakis et al., 2019), Insects (Chen et al., 2014b) and Abuzz (Mukundarajan et al.,
2017).

The Wingbeats and Abuzz datasets contain raw audio signals of six mosquito species of three differ-
ent genera, namely these are Ae. aegypti, Ae. albopictus, An. arabiensis, An. gambiae, Cu. pipiens,
and Cu. quinquefasciatus. The data were collected individually at the premises of Biogents (Re-
gensburg, Germany) and recorded by large aperture optoelectronic devices in the Wingbeats dataset.
Each recorded audio sound is 0.65s long or has a length of 5000 samples at 8KHz sampling rate.
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The total number of records is 279556. The dataset is imbalanced, the details can be seen in Table
5.

The Fruitflies dataset was collected from Gouves and Chersonisos areas in Crete using the same
collection method as the Wingbeats dataset. It comprises audio signals from three distinct species of
fruit flies: Drosophila melanogaster, Drosophila suzukii, and Zaprionus. The signals were sampled
at 8kHz. The dataset contains 34, 518 recordings, each lasting 0.65 seconds. The class sizes are
shown in Appendix, Table 6.

The Insects dataset was generated by the UCR Computational Entomology Group (Chen et al.,
2014b) collected in a similar manner using pseudo-acoustic optical sensors. It contains 10 classes,
namely Aedes aegypti (female), Aedes aegypti (male), Drosophila simulans, Musca domestica, Cx.
quinquefasciatus (female), Cx. quinquefasciatus (male), Cx. stigmatosoma (female), Cx. stigmato-
soma (male), Cx. tarsalis (female) and Cx. tarsalis (male). The dataset contains a total of 50, 000
recordings, each 0.1s long sampled at 6kHz, and each class consists of 5, 000 elements.

In the Abuzz dataset the data were collected by mobile phones. Originally, the length of the record-
ings varies up to 5 min, with sample rates of 8000Hz and 44, 100Hz. Here, we use the pre-processed
dataset from the article (Wei et al., 2022). This means that we have 10s long signals. The total
amount of recording is 915, and the element numbers of each class can be seen in Appendix, Table
5. During the numerical experiments, we converted each signal at 8000Hz sampling rate.

2.5 DATA PREPROCESSING

In all scenarios, we consistently utilize raw audio signals. We aim to compare our results fairly
with those presented by Wei et al. (2022). Following the methodology Fanioudakis et al. (2018), we
partition the dataset exactly the same way into training and testing sets.

The learning set contains 80% of the data and it is further divided into training and validation sets
in a stratified fashion for cross-validation. This means that we consider a 60/20/20% split for the
training/validation/test sets, the exact sizes of the sets can be seen in Table 1. Then, we normalize
the data as simply as possible, which means that the entire dataset is considered as the measured
data of one variable. Therefore, we perform simple standardization by calculating the two required
scalars, the mean and the standard deviation of the training set.

Table 1: Sizes of the training, validation, and testing sets.

Dataset Training Validation Testing
Wingbeats 167, 739 55, 914 55, 913

Abuzz 549 184 182
Fruitflies 20, 710 6, 904 6, 904
Insects 30, 000 10, 000 10, 000

2.6 TRAINING

A stochastic Gradient optimizer is used with Nesterov momentum during the training. We also
use the One-cycle learning rate scheduler (Smith & Topin, 2017). The setting and choosing of the
learning rate scheduler was also a crucial part of our work.

The further parameter settings for the training can be seen in Table 2. These parameters were chosen
by hand among evaluating the model with different settings on the validation set, to avoid overfitting
and underfitting. This is also true for the selection of the optimizer. As the evaluation metric on the
test set, we use accuracy. More precisely, this means that the model with the best validation accura-
cies during training was saved and then evaluated on the test set. All models were implemented on
NVIDIA GeForce RTX 3090 GPU of 24GB of memory, using Python3.8 with supported libraries of
PyTorch, Librosa, Pandas, and NumPy.
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Table 2: Parameter settings in the training processes.

Dataset Batch size Epochs Learning rate Weight decay
Wingbeats 32 25 0.0005 0.005

Abuzz 4 150 0.0005 0.005
Fruitflies 32 25 0.0002 0.005
Insects 32 25 0.0005 0.005

3 RESULTS

We found that our proposed CF-ResNet-9-1D models have outperformed other models on the Wing-
beats, the Fruitflies and the Insects datasets, i.e. the WbNet (Wei et al., 2022) and even DenseNet-
121, MobileNet models (Fanioudakis et al., 2018). We summarize these results in Table 3, the two
largest values are written in bold in each column.

Figure 3: Confusion matrices on the testing datasets for the large CF-ResNet-9-1D model which
has the best validation accuracy among 5 different runs.

The proposed model was also evaluated without the Fourier layer in the numerical experiments as
well, so that to substantiate the utility of the Fourier layer. To be more specific, the numerical ex-
periments were performed using both small (with 670K trainable parameters) and large (with 8.0M
parameters) ResNet-9 models, which include one-dimensional convolutional layers. The specifics
of these ResNet-9 models can be found in the figure 5 included in the Appendix.

The small and large CF-ResNet-9-1D models achieved 95.87% and 96.01% average test accuracy
on the Wingbeats dataset among five different runs. The average test accuracies achieved by the
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Table 3: Accuracies for different architectures. The abbreviations stand for the following: TP - the
number of the trainable parameters, BVA - the best validation accuracy over five different runs, TA -
the corresponding test accuracy, ATA - average test accuracy, RS - raw samples, SP - spectrogram.

WINGBEATS
Architecture TP Data BVA % TA % ATA %

small CF-ResNet-9-1D (ours) 2.6M RS 96.08 95.92 95.87
large CF-ResNet-9-1D (ours) 7.8M RS 96.12 95.99 95.98
small vanilla FNO-ResNet-9 2.0M RS 88.24 88.27 88.25
large vanilla FNO-ResNet-9 6.0M RS 88.77 88.61 88.53

small ResNet-9 1 0.7M RS 95.55 95.43 95.37
large ResNet-9 1 8M RS 95.65 95.35 95.43

DenseNet121 (Fanioudakis et al., 2018) 2 7M SP 92.16 91.97 91.92
MobileNet (Fanioudakis et al., 2018) 2 2M SP 91.41 91.14 91.20

WbNet (Wei et al., 2022) 2 11M SP 87.62 91.09 90.32
ABUZZ

Architecture TP Data BVA % TA % ATA %
small CF-ResNet-9-1D (ours) 2.6M RS 93.48 86.26 85.05
large CF-ResNet-9-1D (ours) 7.8M RS 95.11 90.66 86.59
small vanilla FNO-ResNet-9 2.0M RS 63.04 57.69 52.42
large vanilla FNO-ResNet-9 6.0M RS 62.50 48.35 54.39

small ResNet-9 1 0.7M RS 95.11 87.36 85.49
large ResNet-9 1 8M RS 97.28 92.86 90.33

DenseNet121 Fanioudakis et al. (2018) 2 7M SP 99.79 97.09 95.94
MobileNet Fanioudakis et al. (2018) 2 2M SP 100.00 92.98 93.69

WbNet Wei et al. (2022) 2 11M SP 62.50 73.63 67.25
FRUITFLIES

Architecture TP Data BVA % TA % ATA %
small CF-ResNet-9-1D (ours) 2.6M RS 98.49 97.99 97.96
large CF-ResNet-9-1D (ours) 7.8M RS 98.49 97.96 98.00
small vanilla FNO-ResNet-9 2.0M RS 93.60 93.86 93.45
large vanilla FNO-ResNet-9 6.0M RS 93.63 93.61 93.53

small ResNet-9 1 0.7M RS 98.16 97.75 97.64
large ResNet-9 1 8M RS 98.32 97.71 97.67

DenseNet121 Fanioudakis et al. (2018) 2 7M SP 92.65 92.68 92.91
MobileNet Fanioudakis et al. (2018) 2 2M SP 91.73 91.01 91.57

WbNet Wei et al. (2022) 2 11M SP 86.37 86.15 86.67
INSECTS

Architecture TP Data BVA % TA % ATA %
small CF-ResNet-9-1D (ours) 2.6M RS 85.27 85.44 85.10
large CF-ResNet-9-1D (ours) 7.8M RS 85.31 85.27 85.24
small vanilla FNO-ResNet-9 2.0M RS 75.59 74.98 74.81
large vanilla FNO-ResNet-9 6.0M RS 76.00 75.62 75.28

small ResNet-9 1 0.7M RS 84.91 84.63 84.73
large ResNet-9 1 8M RS 85.26 85.18 85.16

DenseNet121 Fanioudakis et al. (2018) 2 7M SP 81.77 81.59 81.36
MobileNet Fanioudakis et al. (2018) 2 2M SP 79.25 79.28 78.79

WbNet Wei et al. (2022) 2 11M SP 76.29 78.11 77.91

large CF-ResNet-9-1D model were 85.05%, 98.00% and 85.24% on the Abuzz, Fruitflies and on the
Insects datasets respectively.

1According to another accepted article by the authors.
2Reevaluated experiment solving data leak in the original implementation.
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These five results were obtained by saving the model with the best validation accuracy during the
training process and then evaluating them on the test set. Importantly, while CF-ResNet-9-1D does
not achieve the highest average test accuracy on the Abuzz dataset, it outperforms the other models
on the remaining two datasets. The evaluation on the validation set was performed on every 1000
training minibatches in each epoch for the Wingbeats dataset, while for the Abuzz, the Fruitflies and
the Insects datasets, the model was evaluated after every 30, 100 and 200 minibatches, respectively.
The evolution of the accuracies on the training and the validation sets is shown in Figures 4.

The exact details about the test results based on each species can be seen in Table 7. These re-
sults were obtained from the models with the best validation accuracy. In Figures 3, we present
the confusion matrices for the large CF-ResNet-9-1D model. It can be observed that the structures
are strongly diagonal. The classes are arranged by genus in pairs, i.e. Anopheles, Aedes and Culex
for the Wingbeats and the Abuzz datasets. There are also two species of the same genus in Fruit-
flies, namely Drosophila. Most misclassifications occur between species of the same genus. For
the Insects dataset, the larger CF-ResNet-1D network is not significantly more efficient than other
models as it is for Wingbeats and Fruitflies, perhaps the spectral properties of the recordings are not
as dominant in this case. Nevertheless, we can see from Table 4 that both training and inference are
substantially faster with our proposed CF-ResNet-1D models compared to, for example, the second-
best performing ResNet model. We can also observe from Table 7 that the CF-ResNet-1D network
tends to overly predict two classes in both cases, specifically the Cx. quinq. (male) and Cx. tarsalis
(male) classes at the expense of accuracy. In the case of the Insects dataset, most of the confusion
occurred between the Cx. quinquefasciatus (male) and Cx. tarsalis (male) classes. Further compli-
cating the classification here is the presence of samples from the same species that included both
female and male individuals in the dataset.

Table 3 also illustrates that the conventional convolution with a kernel size of 1 in the original
approach proposed by Li et al. (2021) is insufficient for time series processing. We refer to this
network as vanilla FNO-ResNet-9 here, in order to clearly distinguish it from the CF-ResNet-9-1D
architecture we propose. As the results indicate Convolutional Fourier Layers improve significantly
on traditional FNO layers.

In general, our proposed model performed better for the Wingbeats, Fruitflies and Insects datasets
compared to the Abuzz dataset. Of course, this may also be due to the fact that these datasets
are significantly larger than the Abuzz. It is also important to note that the Wingbeats, Fruitflies
and Insects audio recordings were short, only 0.65s and 0.1s long, and captured using advanced
audio equipment, while the Abuzz data were longer and recorded using mobile devices in noisy
environments, varying up to 5 minutes in length. Therefore, Abuzz audio recordings were divided
into multiple 10s long segments.

4 CONCLUSION

In this study, we presented a novel approach for incorporating the Fourier Neural Operator in Deep
Learning models for time series classification, while also providing a definition of the operator more
fitting to this task.

We proposed CF-ResNet-9-1D a ResNet-like model that consists of Convolutional Fourier (CF)
Layers that highly improve on the original Fourier Neural Operators by adding a parallel local con-
volution. Experimental evaluation is carried out on insect wingbeat sound classification datasets
where our models achieve a new state-of-the-art result on the Wingbeats, Fruitflies, and Insects
datasets, outperforming previously published models, while also maintaining a competitive infer-
ence and training speed. To aid mosquito-borne disease control and intervention efforts we release
our implementation and pre-trained models.

As combining FNOs with wide-spread deep learning operators empirically yielded improvements
over current state-of-the-art, exploring the effects of data augmentation, and more complex Fourier
domain processing, such as adaptive filtering, attention, or Short-Time Fourier Transform-based
solutions are promising questions for further research.
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5 REPRODUCIBILITY

We set all possible random seeds during our numerical experiments. To account for the variability
of random processes we repeat each experiment 5 times and report the best and average scores in
Section 3. To retain anonymity the supporting code for our experiments and the open-source datasets
are made available as supplementary material only. The camera-ready version will include a public
repository with the same material.

6 ETHICS STATEMENT

This research does not include any potentially harmful datasets, methods, or bias, nor any human-
related experiments. We declare that the authors have no conflicting interests or funding, that could
influence the research procedure or results.
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A APPENDIX

Table 4: Sample processing speeds of different architectures using the largest power of two batch
sizes which fit into 24GB memory. TP denotes the number of the trainable parameters, BS marks
the batch size, TTPS is training time per sample in milliseconds, ITPS denotes inference time per
sample in milliseconds, RS means raw samples and SP shortens spectogram. Processing speeds were
averaged over a full epoch of training and validation.

WINGBEATS
Architecture TP Features BS TTPS ITPS

small CF-ResNet-9-1D (ours) 2.6M RS 512 0.72 0.21
large CF-ResNet-9-1D (ours) 7.8M RS 512 0.92 0.29

small ResNet-9 3 0.7M RS 512 0.45 0.14
large ResNet-9 3 8M RS 256 1.83 0.43

DenseNet121 Fanioudakis et al. (2018) 4 7M SP 256 0.85 0.30
MobileNet Fanioudakis et al. (2018) 4 2M SP 512 0.38 0.14

WbNet Wei et al. (2022) 4 11M SP 128 1.20 0.38
ABUZZ

Architecture TP Features BS TTPS ITPS
small CF-ResNet-9-1D (ours) 2.6M RS 64 13.42 3.84
large CF-ResNet-9-1D (ours) 7.8M RS 32 17.78 5.53

small ResNet-9 3 0.7M RS 64 3.00 1.08
large ResNet-9 3 8M RS 32 20.97 5.11

DenseNet121 Fanioudakis et al. (2018) 4 7M SP 32 13.08 4.20
MobileNet Fanioudakis et al. (2018) 4 2M SP 32 5.40 1.86

WbNet Wei et al. (2022) 4 11M SP 8 22.04 5.11
FRUITFLIES

Architecture TP Features BS TTPS ITPS
small CF-ResNet-9-1D (ours) 0.7M RS 512 0.69 0.21
large CF-ResNet-9-1D (ours) 8M RS 512 0.96 0.28

small ResNet-9 3 0.7M RS 512 0.44 0.14
large ResNet-9 3 8M RS 256 1.92 0.40

DenseNet121 Fanioudakis et al. (2018) 4 7M SP 256 1.67 0.56
MobileNet Fanioudakis et al. (2018) 4 2M SP 512 0.37 0.13

WbNet Wei et al. (2022) 4 11M SP 128 1.22 0.42
INSECTS

Architecture TP Features BS TTPS ITPS
small CF-ResNet-9-1D (ours) 2.6M RS 8192 0.13 0.03
large CF-ResNet-9-1D (ours) 7.8M RS 4096 0.16 0.04

small ResNet-9 3 0.7M RS 8192 0.08 0.04
large ResNet-9 3 8M RS 2048 0.24 0.07

DenseNet121 Fanioudakis et al. (2018) 4 7M SP 512 0.57 0.18
MobileNet Fanioudakis et al. (2018) 4 2M SP 4096 0.09 0.03

WbNet Wei et al. (2022) 4 11M SP 128 13.24 0.46

3According to another accepted article by the authors.
4Reevaluated experiment solving data leak in the original implementation.
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Table 5: Element numbers of each class in the Wingbeats and in the Fruitflies datasets.

Species Wingbeats Abuzz
Ae. aegypti 85553 324

Ae. Albopictus 20231 197
An. Gambiae 49471 171

An. Arabiensis 19297 95
Cu. pipiens 30415 66

Cu. quinquefasciatus 74599 62

Table 6: Element numbers of each class in the Fruitflies dataset.

Species Fruitflies
Dr. melanogaster 6, 064

Dr. suzukii 10, 142
Zaprionus 18, 312

Figure 4: Performance on the different datasets for the accuracy generated from 5 independent runs
by the large CF-ResNet-9-1D model. The shaded region is enclosed between the maximum and
minimum values over the runs, while the boldface curve displays the average.
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Table 7: The CF-ResNet-9-1D models evaluation metrics on the different datasets.
WINGBEATS

Small CF-ResNet-9-1D Large CF-ResNet-9-1D
Species Precision Recall F1-score Precision Recall F1-score

Ae. aegypti 97.07 97.83 97.45 97.07 97.84 97.45
Ae. Albopictus 94.28 91.32 92.78 94.20 91.20 92.68
An. Gambiae 93.18 94.55 93.91 93.70 94.68 94.19

An. Arabiensis 84.41 81.24 82.79 85.13 82.33 83.70
Cu. pipiens 97.67 97.25 97.46 97.66 97.22 97.44
Cu. quinq. 98.92 99.12 99.02 98.78 99.07 98.93

ABUZZ
Small CF-ResNet-9-1D Large CF-ResNet-9-1D

Species Precision Recall F1-score Precision Recall F1-score
Ae. aegypti 88.24 88.24 88.24 93.75 88.24 90.91

Ae. Albopictus 77.78 73.68 75.68 85.00 89.47 87.18
An. Gambiae 81.16 86.15 83.58 85.51 90.77 88.06

An. Arabiensis 88.89 82.05 85.33 94.44 87.18 90.67
Cu. pipiens 100 100 100 100 100 100
Cu. quinq. 100 100 100 100 100 100

FRUITFLIES
Small CF-ResNet-9-1D Large CF-ResNet-9-1D

Species Precision Recall F1-score Precision Recall F1-score
Dr. melanog. 94.20 94.59 94.40 94.63 93.85 94.24
Dr. suzukii 96.83 96.60 96.72 96.43 96.89 96.66
Zaprionus 99.94 99.94 99.94 99.97 99.97 99.97

INSECTS
Small CF-ResNet-9-1D Large CF-ResNet-9-1D

Species Precision Recall F1-score Precision Recall F1-score
Ae. aegypti (female) 81.53 81.78 81.65 81.13 80.54 80.83
Ae. aegypti (male) 92.09 92.86 92.48 92.68 92.97 92.82

Drosophila simulans 86.61 87.65 87.13 89.07 88.45 88.76
Musca domestica 86.59 87.54 87.06 88.56 87.24 87.90

Cx. quinq. (female) 83.72 78.00 80.76 81.58 79.84 80.70
Cx. quinq. (male) 76.84 78.34 77.58 75.73 75.51 75.62

Cx. stigma. (female) 80.38 84.36 82.32 80.89 82.57 81.72
Cx. stigma. (male) 94.90 93.98 94.44 93.67 94.85 94.26

Cx. tarsalis (female) 96.21 94.18 95.19 94.00 95.89 94.94
Cx. tarsalis (male) 76.46 76.02 76.24 75.54 75.24 75.39
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Figure 5: The architecture of the small and large ResNet-9 models.
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