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Abstract

LiDAR point cloud semantic segmentation enables the robots to obtain fine-grained
semantic information of the surrounding environment. Recently, many works
project the point cloud onto the 2D image and adopt the 2D Convolutional Neural
Networks (CNNs) or vision transformer for LiDAR point cloud semantic segmen-
tation. However, since more than one point can be projected onto the same 2D
position but only one point can be preserved, the previous 2D projection-based seg-
mentation methods suffer from inevitable quantized information loss, which results
in incomplete geometric structure, especially for small objects. To avoid quantized
information loss, in this paper, we propose a novel spherical frustum structure,
which preserves all points projected onto the same 2D position. Additionally,
a hash-based representation is proposed for memory-efficient spherical frustum
storage. Based on the spherical frustum structure, the Spherical Frustum sparse
Convolution (SFC) and Frustum Farthest Point Sampling (F2PS) are proposed to
convolve and sample the points stored in spherical frustums respectively. Finally,
we present the Spherical Frustum sparse Convolution Network (SFCNet) to adopt
2D CNNs for LiDAR point cloud semantic segmentation without quantized infor-
mation loss. Extensive experiments on the SemanticKITTI and nuScenes datasets
demonstrate that our SFCNet outperforms previous 2D projection-based semantic
segmentation methods based on conventional spherical projection and shows bet-
ter performance on small object segmentation by preserving complete geometric
structure. Codes will be available at https://github.com/IRMVLab/SFCNet.

1 Introduction

Nowadays, 3D LiDAR point clouds are widely used sensor data in autonomous robot systems. Many
recent works focus on resolving perception [1, 2] and localization [3, 4, 5] tasks on autonomous
robot systems using LiDAR point clouds. Among them, semantic segmentation on the LiDAR
point cloud enables the robot a fine-grained understanding of the surrounding environment. In
addition, the semantic segmentation results can be adopted for the reconstruction of the semantic
map [6, 7, 8, 9, 10] of the environments.

Inspired by the achievements of deep learning in image semantic segmentation, researchers focus on
searching for effective approaches to transfer the achievements to the field of point cloud semantic
segmentation. Most previous works convert the raw point cloud to regular grids, like 2D images [11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and 3D voxels [22, 23, 24, 25], to exploit Convolutional Neural
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Figure 1: Difference between our spherical frustum and conventional spherical projection. In
conventional spherical projection, the points projected onto the same 2D grid are dropped, which
leads to quantized information loss, e.g., dropping the boundary between the person, a small object,
and the road, and results in incorrect prediction of the 2D projection-based method RangeViT [21]
for the person. In contrast, our spherical frustum preserves all points in the frustum, which eliminates
quantized information loss and makes SFCNet correctly segment the person.

Networks (CNNs) and transformers in the field of point cloud semantic segmentation. The CNNs
and transformer can easily process the regular grids to effectively segment the point cloud. However,
due to the limited resolution, more than one point can be projected onto the same grid, and only one
point is preserved, which results in quantized information loss to the regular grid-based point cloud
semantic segmentation methods. The quantized information loss poses a challenge for small object
segmentation since most points belonging to the small objects can be dropped during the projection.
A few methods [13, 17] are proposed to compensate for the quantized information loss by restoring
complete semantic predictions from partial predictions. However, quantized information loss still
exists in the feature aggregation.

To overcome quantized information loss during 2D projection, in this paper, a novel spherical frustum
structure is proposed. Fig. 1 shows the comparison between the conventional spherical projection [11]
and spherical frustum. Through spherical frustum, all the points projected onto the same 2D grid are
preserved. Therefore, spherical frustum can avoid quantized information loss during the projection
and improve the segmentation of small objects. However, without specific designs, the spherical
frustum is an irregular structure and can not be processed by CNNs. Using dense grids to store the
spherical frustums is an intuitive method to regularize the spherical frustum. However, since the
point number of the spherical frustums is different, each point set is required to be padded to the
maximal point number of the spherical frustums before being stored in the dense grid, which results
in many redundant memory costs. To avoid redundant memory occupancy, we propose a hash-based
spherical frustum representation, which stores spherical frustums in a memory-efficient way. In the
hash-based spherical frustum representation, the neighbor relationship of spherical frustums and
points is represented through the hash table, which enables the points to be simply stored in the
original irregular point set.

In the hash-based representation, each point is uniquely identified by the hash key, which consists of
the 2D coordinates of the corresponding spherical frustum and the point index in the spherical frustum
point set. Thus, the points projected onto any specific 2D grids can be efficiently queried. Based
on the hash-based representation, we propose the Spherical Frustum sparse Convolution (SFC) to
exploit 2D CNNs on spherical frustums. SFC aggregates point features of nearby spherical frustums
to obtain the local feature of the center point.

Moreover, previous 2D projection-based segmentation methods downsample the projected point
cloud based on stride-based 2D sampling, which is unable to uniformly sample the 3D point cloud.
However, the stride-based 2D sampling uniformly samples the spherical frustums. Therefore, we
propose a novel uniform point cloud sampling method, Frustum Farthest Point Sampling (F2PS).
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F2PS firstly samples spherical frustums by stride, and then uniformly samples the point set inside each
sampled spherical frustum by Farthest Point Sampling (FPS) [26]. Since the computing complexity
of sampling points in each spherical frustum is constant-level, F2PS is an efficient sampling algorithm
with a linear computing complexity.

In summary, our contributions are:

• We propose a novel spherical frustum structure with a memory-efficient hash-based repre-
sentation. Spherical frustum avoids quantized information loss of spherical projection and
preserves complete geometric structure.

• We integrate spherical frustum structure into 2D sparse convolution, and propose a novel
Spherical Frustum sparse Convolution Network (SFCNet) for LiDAR point cloud semantic
segmentation.

• An efficient and uniform 3D point cloud sampling named Frustum Farthest Point Sampling
(F2PS) is proposed based on the spherical frustum structure.

• SFCNet is evaluated on the SemanticKITTI [1] and nuScenes [27] datasets. The experiment
results show that SFCNet outperforms previous 2D projection-based methods and can better
segment small objects.

2 Related Work

Point-Based Semantic Segmentation. A group of works [26, 28, 29, 30, 31, 32, 33] learn to
segment point cloud based on the raw unstructured point cloud. However, learning of raw point cloud
requires the neighborhood query with high computing complexity to learn effective features from the
local point cloud structure. Therefore, the efficiency of these point-based methods is limited.

3D Sparse Voxel-Based Semantic Segmentation. Storing large-scale LiDAR point clouds in
dense 3D voxels requires huge memory consumption. Therefore, Graham et al [34] proposes
the 3D sparse voxel structure. Instead of dense grids, the hash table is adopted to represent the
neighborhood relations of the 3D sparse grids. Based on the hash table, the convolved grids are
recorded in the rule book. According to the rule book, the 3D sparse convolution is performed.
Based on the sparse 3D voxel architecture, the methods of 3D sparse convolution and 3D attention
mechanisms [22, 23, 24, 35, 36, 25, 37] are proposed.

2D Projection-Based Semantic Segmentation. The research of image semantic segmentation [38,
39, 40, 41, 42] has gained great achievement. Thus, many works [11, 12, 13, 14, 15, 43, 18, 19, 20,
21, 16, 17] project the point cloud onto the 2D plane and utilize 2D neural networks to process the
projected point cloud. Spherical projection is a widely used projection method first introduced by
SqueezeSeg [11]. The subsequent works [11, 12, 13, 14, 43, 20, 21] effectively segment the point
cloud with the image semantic segmentation architecture including 2D CNNs and vision transformers.

Due to the limited resolution, the 2D projection-based segmentation methods suffer from quantized
information loss. With quantized information loss, networks can only process the incomplete geomet-
ric structure and output partial semantic predictions, which results in the penalty of segmentation
performance. The previous works only focus on restoring complete semantic predictions from the
partial predictions of 2D neural networks. RangeNet++ [13] proposes a post-processing strategy to
restore the complete predictions. The semantic predictions of dropped points are voted by the predic-
tions of their K-Nearest Neighbors (KNN). In addition to KNN-based post-processing, KPRNet [17]
directly reprojects incomplete predictions to the complete point cloud and adopts point-based network
KPConv [29] to refine the predictions. However, few works explore the method of preserving the
complete geometric structure during projection.

In this paper, we propose the spherical frustum which avoids the quantized information loss of
spherical projection. Our spherical frustum structure can not only preserve the complete geometric
structure but also output the complete semantic predictions without any post-processing or point-based
network refinement.
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3 SFCNet

In this section, the spherical frustum and the hash-based representation will be first illustrated in
Sec. 3.1. Based on the hash-based spherical frustum representation, the spherical frustum sparse
convolution and frustum farthest point sampling for LiDAR point cloud semantic segmentation will
be introduced in Sec. 3.2 and 3.3 respectively. Finally, the architecture of the Spherical Frustum
sparse Convolution Network (SFCNet) is illustrated in Sec. 3.4.

3.1 Spherical Frustum

Conventional Spherical Projection. The LiDAR point cloud P is composed of N points. The
k-th point in P is represented by its 3D coordinates xk = [xk, yk, zk]

T and the input point features
fk ∈ RCin , where Cin represents the channel dimension of the features. The conventional spherical
projection [11] first calculates the 2D spherical coordinates of each point:(

uk

vk

)
=

(
1
2 [1− arctan(yk, xk)π

−1] ·W
[1− (arcsin(zk/rk) + fdown) · f−1] ·H

)
, (1)

where (H,W ) is the height and width of the projected image. rk =
√

x2
k + y2k + z2k is the range of

the point. f = fup + fdown is the vertical field-of-view of the LiDAR sensor, where fup and fdown

are the up and down vertical field-of-views respectively. According to the computed 2D spherical
coordinates, the point features {fk}Nk=1 are projected onto the 2D dense image. If multiple points
have the same 2D coordinates, the conventional spherical projection only projects the point closest to
the origin and drops the other points, which results in the quantized information loss.

From Spherical Projection to Spherical Frustum. Since dropping the redundant points projected
onto the same 2D position results in quantized information loss, we propose the spherical frustum to
preserve all the points projected onto the same 2D position. Specifically, we organize these points
as a point set and assign each point with the unique index mk in the point set. In addition, the 3D
coordinates of each point {(xk, yk, zk)}Nk=1 are preserved as the 3D geometric information for the
subsequent modules.

Hash-Based Spherical Frustum Representation. The irregular spherical frustums can not be
directly processed by the 2D CNNs. A natural idea to regularize the spherical frustums is putting
them in dense grids. To store the point set of each spherical frustum in the dense grids, an extra
grid dimension is required. The size of this dimension should be the maximal point number M of
each spherical frustum point set. However, since most of the spherical frustum point numbers are
much less than M , many grids are empty. To avoid saving these empty grids in memory, we propose
the hash-based spherical frustum representation to regularize the spherical frustum, where the hash
table replaces the dense grids to map the 2D coordinates to the corresponding spherical frustums and
points. In the hash table, the index k of any point in the original point cloud can be queried using the
key (uk, vk,mk), which is the combination of the 2D spherical coordinates and the point index in
the spherical frustum point set. Based on the hash-based representation, the spherical frustums are
regularly stored in a memory-efficient way.

3.2 Spherical Frustum Sparse Convolution

Since multiple points are stored in a single spherical frustum, the conventional 2D convolution can not
be directly performed on the spherical frustum structure. Therefore, we propose Spherical Frustum
sparse Convolution (SFC). As shown in Fig. 2, SFC can be seen as the sparse convolution on the
virtual spherical plane of the center point. The feature of each convolved 2D position on the virtual
spherical plane is filled with the feature of the nearest point in the corresponding spherical frustum.

Selecting Convolved Spherical Frustums. SFC first selects the convolved spherical frustums for
each center point p. The 3D coordinates and the 2D spherical coordinates of the center point p are
(x, y, z) and (u, v) respectively. The conventional 2D convolution convolves the features of the grids
in the convolution kernel. Similar to the conventional convolution, the spherical frustum of each
2D position in the convolution kernel is selected to perform the convolution. The coordinates of the
2D positions are {(u+∆ui, v +∆vi)}K

2

i=1, where K is the kernel size and (∆ui,∆vi) are the shift
inside the kernel. Then, the points inside each spherical frustum are queried through the hash table.
Meanwhile, the features {f j}

Mi
j=1 of these points are obtained, where Mi is the number of the points
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Figure 2: Pipeline of Spherical Frustum sparse Convolution. The spherical frustums in the
convolution kernel and the points in these spherical frustums are first selected through the hash table.
Then, the nearest point in each spherical frustum is determined by the 3D geometric information.
Finally, the sparse convolution is performed on the selected point features.

in the i-th spherical frustum. Notably, Mi can be zero, which means that no points are projected onto
the corresponding 2D position, and the spherical frustum is invalid. The invalid spherical frustums
are ignored in the subsequent convolution.

Selecting the Nearest Point in Each Spherical Frustum. After identifying the points in the
spherical frustum, a feature should be selected from the features of the frustum point set for 2D
convolution. PointNet++ [26] emphasizes that the local feature of the center point is expected to be
aggregated from the 3D neighboring points. Inspired by PointNet++, we select the feature of the
nearest point to the center point in each spherical frustum. Specifically, based on the 3D geometric
information, the 3D coordinates {(xj , yj , zj)}Mi

j=1 of the frustum points are obtained for the nearest
point selection. Inspired by the post-processing of RangeNet++ [13], we select the distance of range
rj =

√
x2
j + y2j + z2j rather than the Euclidean distance as the metric of the nearest point for efficient

distance calculation. Therefore, the selected point index of each spherical frustum is argminj |rj −r|,
where r is the range of the center point. According to the indexes, the convolved features {f i}K

′

i=1
are obtained, where K ′ is the number of valid spherical frustums.

Sparse Convolution. Finally, the sparse convolution is performed as:

f ′ =

K′∑
i=1

Wif i, (2)

where Wi is the convolution weight of the i-th valid 2D position, and f ′ is the aggregated feature.

Through the proposed spherical frustum sparse convolution, we realize effective regularization and
2D convolution-based feature aggregation for all points in the unstructured point cloud.

3.3 Frustum Farthest Point Sampling

Sampling is a significant process of point cloud semantic segmentation. Through sampling, the
network can aggregate the features of different scales and recognize objects of different sizes.
Moreover, the sampling should uniformly sample the point cloud to avoid key information loss.
The previous 2D projection-based methods sample the projected point cloud using stride-based 2D
sampling. This sampling ignores the 3D geometric structure of the point cloud. In contrast, as shown
in Fig. 3, our Frustum Farthest Point Sampling (F2PS) only samples the spherical frustums by stride,
while the spherical frustum point set is sampled by farthest point sampling.

Sampling Spherical Frustums by Stride. Specifically, we split the 2D spherical plane into several
non-overlapping windows of size Sh × Sw, where (Sh, Sw) are the strides. The spherical frustums in
each window are merged as the downsampled spherical frustum. Meanwhile, the points inside the
merged spherical frustums are queried through the hash table. Then, the queried points are merged
as the point set {pl}Ll=1 in the downsampled spherical frustum, where L is the point number in the
downsampled spherical frustum.
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Figure 3: Pipeline of Frustum Farthest Point Sampling. According to the downsampling strides, the
spherical frustums in each stride window are downsampled. Then, through the hash table, the points
in each downsampled spherical frustum are queried. The queried points are sampled by Farthest Point
Sampling (FPS) based on the 3D geometric information. Finally, the uniformly sampled spherical
frustums and point cloud are obtained.

Sampling Frustum Point Set by Farthest Point Sampling. The Farthest Point Sampling (FPS) [26]
is adopted to uniformly sample the point set in the downsampled spherical frustum. Since the point
number of each downsampled spherical frustum is much smaller than the point number of the point
cloud, performing FPS is not time-consuming. Specifically, the 3D coordinates of each point in
{pl}Ll=1 are first acquired from the 3D geometric information for 3D distance calculation. Then,
the ⌈L/(Sh × Sw)⌉ points are iteratively sampled from the original point set. At each iteration, the
distance of each non-sampled point towards the sampled point set is calculated. The point that has
the maximal distance is added to the sampled set. Finally, the uniformly sampled spherical frustum
point set is obtained.

F2PS integrates the stride-based spherical frustum sampling with the FPS-based frustum point set
sampling. Thus, F2PS can sample the original point cloud uniformly. In addition, since performing
FPS on the frustum point set costs O(1) time, the computing complexity of F2PS is O(N). Thus,
F2PS is an efficient point cloud sampling algorithm.

3.4 Network Architecture

Based on the Spherical Frustum sparse Convolution (SFC) and Frustum Farthest Point Sampling
(F2PS), the Spherical Frustum sparse Convolution Network (SFCNet) is constructed. SFCNet is
an encoder-decoder architecture. The hash-based spherical frustum representation is first built for
convolution and sampling in the subsequent modules. Then, the point features {f ∈ RC} are
extracted through the encoder of SFCNet, where C is the channel dimension. The encoder consists
of the residual convolutional blocks from ResNet [44], where the convolutions are replaced by the
proposed SFC. In addition, the point cloud is downsampled based on F2PS to extract the features
of different scales. After each downsampling operation, an SFC layer is adopted to aggregate the
neighbor features for each sampled point. Since F2PS can uniformly sample the point cloud, the
information of the original point cloud can be fully gathered in the downsampled point cloud. In the
decoder, the extracted features are upsampled, concatenated, and fed into the head layer to output the
prediction of semantic segmentation.

4 Experiments

In this section, we first introduce the datasets adopted in the experiments and the implementation
details of the SFCNet. Then, the quantitative results of the two datasets and the qualitative results
of the SemanticKITTI dataset are presented. Finally, the ablation studies and comparison with
restoring-based methods are conducted to validate the effectiveness of the proposed modules.
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Table 1: Quantative results of semantic segmentation on the SemanticKITTI [1] test set. Bold results
are the best in each block of methods.
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Point Based
PointNet++ [26] 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9
RandLA [31] 55.9 94.2 47.4 32.2 43.9 39.1 48.4 47.4 9.4 90.5 61.8 74.0 24.5 89.7 60.4 83.8 63.6 68.6 51.0 50.7
KPConv [29] 58.8 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4

3D Voxel Based
Cylinder3D [23] 67.8 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6
(AF)2-S3Net [22] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
SphereFormer [25] 74.8 97.5 70.1 70.5 59.6 67.7 79.0 80.4 75.3 91.8 69.7 78.2 41.3 93.8 72.8 86.7 75.1 72.4 66.8 72.9

2D Projection Based
RangeNet++ [13] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
PolarNet [16] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5
SqueezeSegV3 [14] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
SalsaNext [15] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
KPRNet [17] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1
Lite-HDSeg [19] 63.8 92.3 40.0 55.4 37.7 39.6 59.2 71.6 54.1 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7
RangeViT [21] 64.0 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7
CENet [20] 64.7 91.9 58.6 50.3 40.6 42.3 68.9 65.9 43.5 90.3 60.9 75.1 31.5 91.0 66.2 84.5 69.7 70.0 61.5 67.6
SFCNet (Ours) 65.0 95.1 64.2 63.2 23.5 45.6 78.3 73.1 26.4 87.9 65.6 71.9 29.1 91.1 64.5 83.7 72.6 69.6 62.6 67.2

Table 2: Quantative results of semantic segmentation on the nuScenes [27] validation set. Bold
results are the best in each block of methods.
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3D Voxel Based
(AF)2-S3Net [22] 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
Cylinder3D [23] 76.1 76.4 40.3 91.3 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
SphereFormer [25] 78.4 77.7 43.8 94.5 93.1 52.4 86.9 81.2 65.4 73.4 85.3 97.0 73.4 75.4 75.0 91.0 89.2

2D Projection Based
RangeNet++ [13] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [16] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
SalsaNext [15] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
RangeViT [21] 75.2 75.5 40.7 88.3 90.1 49.3 79.3 77.2 66.3 65.2 80.0 96.4 71.4 73.8 73.8 89.9 87.2
SFCNet (Ours) 75.9 76.7 40.4 89.5 91.3 46.7 82.0 78.1 65.8 69.4 80.6 96.6 71.6 74.5 74.9 89.0 87.5

4.1 Datasets

We train and evaluate SFCNet on the SemanticKITTI [1] and nuScenes [27] datasets, which provide
point-wise semantic labels for large-scale LiDAR point clouds.

SemanticKITTI [1] dataset contains 43551 LiDAR point cloud scans captured by the 64-line Velodyne-
HDLE64 LiDAR. Each scan contains nearly 120K points. These scans are split into 22 sequences.
According to the official setting, we split sequences 00-07 and 09-10 as the training set, sequence 08
as the validation set, and sequences 11-21 as the test set. Moreover, SemanticKITTI provides the
point-wise semantic annotations of 19 classes for the LiDAR semantic segmentation task.

NuScenes [27] dataset consists of 34149 LiDAR point cloud scans collected in 1000 autonomous
driving scenes using the 32-line Velodyne HDL-32E LiDAR. Each scan contains nearly 40K points.
We adopt the official setting to split the scans of the nuScenes dataset into the training and validation
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Figure 4: Qualitive results on SemanticKITTI validation set. The first column presents the ground
truths, while the following three columns show the error maps of the predictions from the three
methods. Specifically, the reference from point color to the semantic class in the ground truths is
shown at the bottom. In addition, the false-segmented points are marked as red in the error maps.
Moreover, we use circles with the same color to point out the same objects in the ground truth and
the three error maps. Furthermore, the corresponding RGB images of each scene with the colored
point cloud projected are demonstrated. We also show the corresponding zoomed RGB image view
of circled objects if they are visible in the RGB images.

sets. In addition, in nuScenes dataset, 16-class point-wise semantic annotations are provided for the
LiDAR semantic segmentation task.

On both datasets, the performance of LiDAR point cloud semantic segmentation is evaluated by mean
Intersection-over-Union (mIoU) [45].

4.2 Implementation Details

SFCNet is implemented through PyTorch [46] framework. For spherical frustum, the height and width
in the calculation of spherical coordinates are set as H = 64,W = 1800 for the SemanticKITTI
dataset, and H = 32,W = 1024 for the nuScenes dataset. The channel dimensions C of the extracted
point features for SemanticKITTI and nuScenes datasets are set as 128 and 256 respectively. The
strides (Sh, Sw) of the F2PS are all set as (2, 2). The multi-layer weighted cross-entropy loss and
Lovász-Softmax loss [47] are adopted for network optimization. Adam [48] with the initial learning
rate 0.001 is treated as the optimizer. The learning rate is delayed by 5% in every epoch. Random
rotation, flipping, translation, and scaling are utilized for data augmentation on both datasets. Model
training is conducted on a single NVIDIA Quadro RTX 8000. The training batch size is set as 4.

4.3 Quantative Results

We compare our SFCNet to the State-of-The-Art (SoTA) 2D projection-based, point-based and 3D
voxel-based segmentation methods on the SemanticKITTI and nuScenes datasets.

8



As shown in Tabs. 1 and 2, SFCNet outperforms the previous SoTA 2D convolution-based seg-
mentation methods CENet [20] and SalsaNext [15] on the SemanticKITTI and nuScenes datasets
respectively. In addition, SFCNet also has better performance than the vision transformer-based
segmentation method RangeViT [21] on both two datasets. SFCNet also outperforms the point-based
methods and realizes a smaller performance gap between the 2D projection-based methods and the
3D voxel-based methods. As for the per-class IoU comparison, SFCNet has better IoU than the other
2D projection-based methods on the small 3D objects, including the motorcycle, person (which is
pedestrian in nuScenes), bicyclist, trunk, and pole. The performance improvement on these small
objects results from the elimination of quantized information loss. Without quantized information
loss, the complete geometric structure of the small 3D objects can be preserved, which enables more
accurate segmentation. We also observe the slightly weaker performances on wide-range classes, e.g.,
road, parking, and terrain, on the SemanticKITTI dataset. However, since preserving complete points
significantly improves the accuracies of the hard small objects, SFCNet has a higher mean IoU than
the previous 2D projection-based methods.

4.4 Qualitative Results

Fig. 4 presents the qualitative comparison between our SFCNet and the 2D projection-based seg-
mentation methods CENet [20] and RangeViT [21]. The comparison shows that the predictions of
SFCNet have the minimal segmentation error among the three methods. Moreover, the circled objects
in the three rows of Fig. 4 demonstrate the accurate segmentation of SFCNet to the persons, poles,
and trunks respectively. This result further indicates our better segmentation performance of 3D small
objects by eliminating the quantized information loss.

4.5 Ablation Study

In this section, we conduct the ablation study on the SemanticKITTI dataset to validate the effec-
tiveness of the proposed modules. We adopt the baseline network using the conventional spherical
projection and stride-based sampling. The results of ablation studies are shown in Tab. 3.

Table 3: Results of ablation studies on the Se-
manticKITTI validation set.

ID Baseline SFC F2PS mIoU (%)

1 ✓ 56.2
2 ✓ ✓ 60.5
3 ✓ ✓ ✓ 62.9

Spherical Frustum Sparse Convolution
(SFC). First, we replace spherical projection
in the baseline with spherical frustum and adopt
spherical frustum sparse convolution for fea-
ture aggregation. After replacement, the mIoU
increases 4.3%, which indicates that spherical
frustum structure can avoid the quantized infor-
mation loss, and thus prevent segmentation error from incomplete predictions.

Frustum Farthest Point Sampling (F2PS). After replacing the stride-based 2D sampling with
F2PS, the mIoU increases 2.4%. F2PS uniformly samples the point cloud and preserves the key
information. Thus, the performance of semantic segmentation has been improved.

4.6 Comparision with Restoring-Based Methods

Table 4: The performance comparison between
the restoring-based methods and SFCNet on the
SemanticKITTI validation set.

Method mIoU (%)

KNN-based Post-processing [13] 59.7
KPConv Refinement [17] 60.1
SFCNet (Ours) 62.9

Based on the same baseline network in Sec. 4.5,
we compare our SFCNet with the methods that
compensate for the quantized information loss
by restoring complete predictions from par-
tial predictions, including the KNN-based post-
processing [13] and KPConv refinement [17].
Tab. 4 shows that SFCNet has 3.2% mIoU im-
provement to the KNN-based post-processing
and 2.8% mIoU improvement to KPConv refine-
ment. Compared to the restoring-based methods, SFCNet preserves the complete geometric structure
for the feature aggregation rather than compensating for the information loss by post-processing or
refinement, which results in higher performance of semantic segmentation.
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5 Conclusion

In this paper, we present the Spherical Frustum sparse Convolutional Network (SFCNet), a 2D
convolution-based LiDAR point cloud segmentation method without quantized information loss.
The quantized information loss is eliminated through the novel spherical frustum structure, which
preserves all the points projected onto the same 2D position. Moreover, the novel spherical frustum
sparse convolution and frustum farthest point sampling are proposed for effective convolution and
sampling of the points stored in the spherical frustums. Experiment results on SemanticKITTI and
nuScenes datasets show the better semantic segmentation performance of SFCNet compared to the
previous 2D projection-based semantic segmentation methods, especially on small objects. The
results show the great potential of SFCNet for safe autonomous driving perception due to the accurate
segmentation of small targets.

Limitations and future work. To implement the 2D convolution on the spherical frustum, only
the nearest points in the neighbor spherical frustums are adopted in the spherical frustum sparse
convolution. This design may limit the receptive field of the network and thus result in a slightly
weaker performance of the wide-range classes. To maintain the performance on both the wide-range
classes and small classes, the improvement direction is to expand the receptive field based on our
spherical frustum structure. To realize this, future work can lie in combining the vision network
architecture with a larger receptive field, like the vision transformer [49] or vision mamba [50], with
our spherical frustum structure. In addition, our work mainly focuses on the supervised and unimodal
point cloud semantic segmentation. Future work can also lie in adopting the spherical frustum
structure on the weakly-supervised [51] and multi-modal [52] point cloud semantic segmentation.
Moreover, applying the spherical frustum structure to more tasks on the LiDAR point cloud, like
point cloud registration [53, 54] and scene flow estimation [55], is also a direction for future work.
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Appendix

In the appendix, we first introduce the detailed architecture of the Spherical Frustum sparse Con-
volution Network (SFCNet) in Sec. A. Then, the additional implementation details of SFCNet are
presented in Sec. B. Next, the additional experimental results are illustrated in Sec. C. Finally, more
visualization of the semantic segmentation results on the SemanticKITTI [1] and nuScenes [27]
datasets are presented in Sec. D.
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Figure 5: The Detailed Architecture of SFCNet. (a) presents the detailed pipeline of SFCNet. In
addition, (b), (c), and (d) show the detailed module structures of the SFC layer, SFC block, and
downsampling SFC block respectively, where SFC means spherical frustum sparse convolution, and
F2PS means the frustum farthest point sampling.

A Detailed Architecture

Fig. 5 shows the detailed architecture of SFCNet. In SFCNet, the spherical frustum structure of the
input point cloud is first constructed. Then, the encoder, which consists of the context block and
extraction layers 1 to 4, is adopted for the point feature extraction. Next, in the decoder, the point
features extracted in extraction layers 2 to 4 are upsampled by the upsampling Spherical Frustum
sparse Convolution (SFC). The upsampled features are concatenated with the features extracted in
the context block and the extraction layer 1. The concatenated features are fed into the head layer to
decode the point features into the semantic predictions.

In addition, Fig. 5 also shows the three basic modules in SFCNet, including the SFC layer, SFC block,
and downsampling SFC block. Moreover, we present the detailed hyperparameters of SFCNet in
Tab. 5.

Basic Modules of SFCNet. Specifically, the SFC layer is composed of the SFC, batch normalization,
and the activation function. Inspired by [20], we use Hardswish [56] as the activation function. The
formula of Hardswish is:

Hardswish(x) =


0 if x ≤ −3

x if x ≥ 3

x · (x+ 3)/6 otherwise

. (3)
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Table 5: The Detailed Hyperparameters of the Components and Modules in SFCNet. Component
shows the names of components in SFCNet. Module Type shows the types of basic modules used
in the components. Kernel Size shows the convolution kernel size of Spherical Frustum sparse
Convolutions (SFCs) used in the modules. In the column of Stride, [1, 1] strides mean the SFC
treats all the points as the center points, while [2, 2] strides show the strides used in Frustum
Farthest Point Sampling (F2PS). The column of Upsampling Rate shows the upsampling rate used
in the upsampling SFCs. Number of Modules shows the number of composed modules used in
corresponding components. Width shows the output channel dimensions of the modules. In addition,
in the column of Width, C means the channel dimensions of the extracted point features, which is 128
for the SemanticKITTI dataset and 256 for the nuScenes dataset. n means the number of semantic
classes, which is 19 for the SemanticKITTI dataset and 16 for the nuScenes dataset.

Component Module Type Kernel Size Stride Upsampling Rate Number of Modules Width

Context Block SFC Layer [3,3] [1,1] — 3 [C/2,C,C]
Extraction Layer 1 SFC Block [3,3] [1,1] — 3 [C,C,C]

Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 2

SFC Block [3,3] [1,1] — 3 [C,C,C]
Downsampling SFC Block [3,3] [2,2] — 1 [C]

Extraction Layer 3
SFC Block [3,3] [1,1] — 5 [C,C,C,C,C]

Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 4

SFC Block [3,3] [1,1] — 2 [C,C]
Upsampling SFC for Extraction Layer 2 [3,3] [1,1] [2,2] 1 [C]
Upsampling SFC for Extraction Layer 3 [7,7] [1,1] [4,4] 1 [C]Upsampling
Upsampling SFC for Extraction Layer 4 [15,15] [1,1] [8,8] 1 [C]

SFC Layer [3,3] [1,1] — 2 [2·C,C]
Head Layer

Linear — — — 1 [n]

The SFC block consists of two SFC layers. In addition, the residual connection [44] is adopted in the
SFC block to overcome network degradation.

The downsampling SFC block combines the downsampling of Frustum Farthest Point Sampling
(F2PS) and the feature aggregation of the SFC block. Notably, in the downsampling SFC block, the
first SFC treats the sampled points as the center points and the features of the point cloud before
sampling as the aggregated features.

Moreover, after the downsampling, the 2D coordinates of each spherical frustum are divided by the
stride to gain the 2D coordinates on the downsampled 2D spherical plane. Meanwhile, each point is
assigned a new point index in the downsampled spherical frustum point set according to the sampled
order in F2PS.

Components in the Encoder of SFCNet. In the encoder, the context block consists of three SFC
layers to extract the initial point features from the original point cloud. The subsequent four extraction
layers are composed of 3, 3, 5, and 2 SFC blocks respectively. In addition, a downsampling SFC
block with (2, 2) strides is adopted in the last three layers to downsample the point cloud into different
scales. Thus, the multi-scale point features are extracted.

Components in the Decoder of SFCNet. We implement the upsampling SFC in the decoder of
SFCNet according to the deconvolution [57] used in the 2D convolutional neural networks. In the
upsampling SFC, we first multiply the 2D coordinates of the spherical frustums in the corresponding
layer by the upsampling rate to obtain the 2D coordinates on the original spherical plane. Then, each
point in the raw point cloud is treated as the center point in SFC. The spherical frustums fall in the
convolution kernel are convolved. As shown in Tab. 5, we set the appropriate kernel size according to
the upsampling rate for each upsampling SFC.

After the upsampling, the point features from different extraction layers are of the same size. Thus,
the point features can be concatenated. In the head layer, two SFC layers and a linear layer are
adopted for the decoding of the concatenated features.
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B Additional Implementation Details

Data Normalization. For the k-th point in the LiDAR point cloud P , the combination of the
3D coordinates xk = [xk, yk, zk]

T , the range rk =
√

x2
k + y2k + z2k, and the intensity is treated as

the input point feature fk. Because of the different units of the different data categories, the input
features should be normalized.

Table 6: The statistics of each input data cate-
gory on SemanticKITTI dataset.

Statistics x y z range intensity

Mean 10.88 0.23 -1.04 12.12 0.21
Standard Deviation 11.47 6.91 0.86 12.32 0.16

Specifically, for the SemanticKITTI [1] dataset, like
RangeNet++ [13], we minus the features by the mean
and divide the features by the standard deviation to
obtain the normalized features. The mean and stan-
dard deviation are obtained from the statistics of each
input data category on the SemanticKITTI dataset,
which are presented in Tab. 6.

For the nuScenes [27] dataset, like Cylinder3D [23],
a batch normalization layer is applied on the input
point features to record the mean and standard deviation of the nuScenes dataset during training.
During inferencing, the recorded mean and standard deviation are used to normalize the input point
features.

Spherical Frustum Construction. We construct the spherical frustum structure by assigning each
point with the 2D spherical coordinates (uk, vk) and the point index mk in the spherical frustum
point set, where k is the index of the point in the original point cloud. The 2D spherical coordinates
can be calculated through Eq. 1. Thus, the key process is to assign the point index mk for each point
based on the 2D spherical coordinates.

We implement this by sorting the 2D coordinates (uk, vk) of the points. The points with smaller
uk and vk are ranked ahead of the points with larger uk and vk. Thus, the points with the same 2D
coordinates are neighbors in the sorted point cloud. For each point, we count the number of points
that have the same 2D coordinates and appear ahead or behind the point in the sorted point cloud
separately. The number of the points appearing ahead is treated as the point index mk of each point.

In addition, we assign each point an indicator ξk ∈ {0, 1} according to the number of the points
appearing behind. The point with zero point appearing behind is assigned a zero indicator. Otherwise,
the point is assigned with an indicator equal to one. The indicator indicates the end of the frustum
point set and is used for the subsequent spherical frustum point set visiting.

The sorting and the point number counting are implemented through the Graphics Processing Unit
(GPU)-based parallel computing using Compute Unified Device Architecture (CUDA). Thus, the
construction is efficient in practice.

Hash-Based Spherical Frustum Representation. After the construction of the spherical frustum
structure, we build the hash-based spherical frustum representation. Specifically, we construct the
key-value pairs between the key (uk, vk,mk) and the value k. The key-value pairs are inserted into a
hash table, which represents the neighbor relationship of spherical frustums and points.

In practice, we adopt an efficient GPU-based hash table [58]. The GPU-based hash table requires
both key and value to be an integer. The value k satisfies the integer requirement. However, the key
(uk, vk,mk) in the hash-based spherical frustum representation is not an integer.

To adopt the GPU-based hash table for efficient processing, (uk, vk,mk) is transferred to an integer
as vk · (W ·M) + uk ·M +mk, where W is the width of the spherical projection, M is the maximal
point number of the spherical frustum point sets. Through this process, any point represented by the
coordinates (uk, vk,mk) can be efficiently queried through the GPU-based hash table.

Spherical Frustum Point Set Visiting. Both the SFC and F2PS require visiting all the points in any
spherical frustums. Thus, we propose the spherical frustum point set visiting algorithm. The visiting
obtains all the points in the given spherical frustum, whose 2D coordinates are (u, v), by sequentially
querying the points in the hash table.

Specifically, we first query the first point in the spherical frustum using the key (u, v, 0). If the key
(u, v, 0) is not in the hash table, the spherical frustum on (u, v) is invalid. Otherwise, the first point
in the spherical frustum can be queried through the hash table.
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Then, the points in the spherical frustum are sequentially visited. We first initialize the point index
m = 0 in the spherical frustum. At each step, the point index m increases by one. Through the
hash table, the point with m-th index in the spherical frustum is queried using the key (u, v,m).
Meanwhile, the indicator ξ of this point is obtained. ξ indicates whether (u, v,m + 1) refers to a
valid point. Thus, the visiting ends when the indicator of the current point is zero.

Detailed Implementation of Frustum Farthest Point Sampling. In F2PS, we first sample the
spherical frustums by stride. Then, we sample the points in each sampled spherical frustum by
Farthest Point Sampling (FPS) [26]. As mentioned in Sec. 3.3, FPS is an iterative algorithm. The
detailed process of the j-th iteration can be expressed by the following formula:

Sj = Sj−1 ∪ {arg max
p∈Ps\Sj−1

min
s∈Sj−1

dist(p, s)}, (4)

where Ps is the spherical frustum point set to be sampled, Sj and Sj−1 are the sampled point sets in
j-th and (j − 1)-th iterations respectively. Notably, S0 contains the point randomly sampled from Ps.
In addition, dist(p, s) is the distance between point p and point s in 3D space. The iteration starts at
j = 1, and ends when the size of Sk equals the number of sampling points.

Moreover, since the distances between the points in Sj−2 and the points in Ps\Sj−1 have been
calculated before the j-th iteration, we just need to calculate the distance between each p in Ps\Sj−1

and the point sampled in (j − 1)-th iteration for the calculation of mins∈Sj−1 dist(p, s), which is
the minimal distance from point p to the point set Sj−1. Thus, the computing complexity of FPS
for Ps of size n is O(n2). Since the point number of each spherical frustum is O(1), the computing
complexity of FPS for the spherical frustum is also O(1), which ensures the efficiency of F2PS.

Loss Function. We use multi-layer weighted cross-entropy loss and Lovász-Softmax loss [47] to
help the network learn the semantic information from different scales. To get the semantic predictions
of extraction layers 1 to 4, we apply a linear layer to decode the extracted point features of each
extraction layer into the semantic predictions.

Specifically, for extraction layer 1, the linear layer is applied on the extracted point features F1 to
gain the prediction L̃1. For the other extraction layers, the linear layer is applied on the upsampled
point features F ′

2, F ′
3, and F ′

4 to obtain the predictions L̃2, L̃3, and L̃4 respectively.

Based on the predictions of each layer and the final predictions of SFCNet L̃1, the loss function is
calculated as:

L =

4∑
i=1

Lwce(L̃i, L) + LLov(L̃i, L), (5)

where Lwce is the weighted cross-entropy loss, LLov is the Lovász-Softmax loss, and L is the ground
truth. In addition, the weights of weighted cross-entropy loss are calculated as wc = (fc + ϵ)−1,
where c is the semantic class, fc is the frequency of class c in the dataset, and ϵ is a small positive
value to avoid zero division.

C Additional Experiments

C.1 Efficiency Comparison

We evaluate the efficiency of the proposed SFCNet with the previous works and our 2D projection-
based baseline model on a single Geforce RTX 4090Ti GPU.

We adopt the same baseline model used in Sec. 4.5. For RangeViT, we adopt the official code for
efficiency evaluation. Notably, in the inference, RangeViT splits the projected LiDAR image, inputs
each image slice into the network to gain the predictions, and merges the predictions to gain the
prediction of the entire projected LiDAR image. Thus, the inference time of RangeViT includes the
time of all the processes. In addition, since RangeViT adopts the KPConv refinement [17], which
restores the complete predictions from the partial predictions, we use the point number of the entire
point cloud as the processed point number. For PointNet++ [26], we sample 45K points from the
point cloud before inputting into the network as its original setting. For 3D voxel-based methods,
Cylinder3D [23] and SphereFormer [25], only the points preserved after the voxelization are counted
since these points are exactly processed in the 3D sparse convolution network.
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Table 7: Efficiency comparison. The inference time of a single LiDAR scan, the processed point
number, and the normalized time, the inference time per thousand points, are evaluated on the
SemanticKITTI validation set with a single Geforce RTX 4090Ti GPU.

Approach Time (ms)/Points ↓ Normalized Time (ms/K) ↓
PointNet++ [26] 131.0/∼ 45K 2.91

RandLA [31] 212.2/∼ 120K 1.77
Cylinder3D [23] 67.5/∼ 40K 1.69

SphereFormer [25] 108.2/∼ 90K 1.20
RangeViT [21] 104.8/∼ 120K 0.87

Baseline 46.4/∼ 90K 0.52
SFCNet (Ours) 59.7/∼ 120K 0.49

Table 8: The quantitative results of different resolutions used in the baseline model with KNN-based
post-processing [13] on the SemanticKITTI validation set.

Resolution Preserved Points/All Points mIoU (%) ↑
64× 1800 88K/120K 59.7
64× 2048 97K/120K 58.9
64× 4096 113K/120K 57.0

The results are presented in Tab. 7. The results show that SFCNet costs 59.7 ms for a single scan
inference, which reaches real-time LiDAR scan processing. In addition, our SFCNet also has the
highest efficiency evaluated by normalized time (0.49 ms/K) compared to the previous 3D and
2D methods and the 2D baseline model, which indicates that SFCNet can adopt the 2D projection
property to efficiently segment the large-scale point cloud.

C.2 Analysis on Different Resolutions of the Baseline Model

Since the limited projection resolution is the reason for quantized information loss, expanding the
resolution of the projected range image can preserve more points during the spherical projection and
ease the quantized information loss. However, expanding the resolution increases the sparsity of the
projected points and makes the convolution hard to aggregate the local features. Thus, resolution
expansion is not a feasible solution for resolving quantized information loss. To validate this, we
expand the image horizon resolution of the baseline model to 2048 and 4096 and conduct the ablation
studies of different resolutions on the SemanticKITTI validation set to show the effect of a larger
resolution. As shown in Tab. 8, the increment of resolution preserves more points but results in worse
performances. In contrast, SFCNet not only overcomes quantized information loss but also effectively
aggregates local features with a suitable resolution by preserving all points using spherical frustum.

C.3 Additional Ablation Studies

In this subsection, we conduct additional ablation studies to evaluate the sensitivity of our SFCNet to
the key parameters.

Stride Sizes in Frustum Farthest Point Sampling (F2PS). The ablation studies of four different
settings of the stride sizes in the F2PS on the three downsampling layers are conducted, including
(1, 2), (2, 1), (2, 4), and (4, 2). The results are shown in Tab. 9. The results show on all the down-
sampling layers, the (2, 2) stride sizes show a better segmentation performance than the other stride
size settings. (2, 2) stride sizes suitably downsample the point cloud in the vertical and horizon
dimensions. Higher or lower downsampling rates result in the oversampling or undersampling of the
point cloud respectively.

Number of Points in the Spherical Frustums. In the spherical frustum structure, the number
of points in the frustum is unlimited and only depends on how many points are projected onto the
corresponding 2D location. To analyze the effect of the number of points in the frustum, we set the
maximal number of points in each spherical frustum and the points exceeding the maximal point
number are dropped. As shown in Tab. 10, preserving more points in the spherical frustum results in
better segmentation performance, since more complete geometry information is preserved. These
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Table 9: Ablation study on the stride sizes of the Frustum Farthest Point Sampling in the downsam-
pling layers on the SemanticKITTI validation set.

Stride Sizes (Sh, Sw)
mIoU (%) ↑

Layer 1 Layer 2 Layer 3

(2,1) 60.7 61.3 61.1
(1,2) 62.4 62.2 62.3
(2,4) 62.3 62.6 61.9
(4,2) 60.5 61.6 61.9

(2,2) (Ours SFCNet) 62.9

Table 10: Ablation study on the maximal number of points in spherical frustums on the Se-
manticKITTI validation set.

Maximal Number of Points in Spherical Frustum mIoU (%) ↑
2 61.0
4 61.9

Unlimited (Ours SFCNet) 62.9

results further indicate the significance of overcoming quantized information loss in the field of
LiDAR point cloud semantic segmentation.

Configuration of the Hash Table. The number of hash functions is the main parameter of the hash
table, which means the number of functions used for the hash table retrieval. In the implementation,
if the first hash function can successfully retrieve the location of the target point, the other functions
will not be used. We change the number of hash functions to show the model sensitivity of hash
table configurations. As shown in Tab. 11, the performance and inference time of SFCNet have
little difference under different numbers of hash functions. The results show that in most cases, the
first function can successfully retrieve the location, and thus the inference times change slightly
in different function numbers. These results indicate that SFCNet is robust to different hash table
configurations.

C.4 Comparison of Sampling Methods

We further validate the effectiveness and efficiency of the proposed Frustum Farthest Point Sampling
(F2PS) by the qualitative comparison with stride-based 2D sampling and the comparison of time
consumption with Farthest Point Sampling (FPS).

Qualitive Comparison. As shown in Fig. 6(a), Stride-Based 2D Sampling (SBS) only samples the
point cloud based on 2D stride. The visualization shows that the stride-based sampled point cloud
is relatively rough. Due to the lack of 3D geometric information, SBS fails to sample the 3D point
cloud uniformly. Thus, the loss of geometric structure in the sampled point cloud is obvious, such as
many broken lines on the ground. Our F2PS takes into account the 3D geometric information based
on the FPS in the spherical frustum, which enables F2PS to sample the 3D point cloud uniformly and
preserve the significant 3D geometric structure during the sampling.

Time Consumption Comparison. As shown in Fig. 6(b), with the increment of sampled point
number, the cost time of our F2PS increases slowly, while the cost time of FPS increases dramatically.
This result shows performing FPS on the frustum point sets is efficient and does not increase the
computing burden.

C.5 Comparison between SFCNet and Baseline Model on Small Object Categories

To further show the improvement of small object segmentation, we compare the quantitative results
on the small object categories between SFCNet and the baseline model with the KNN-based post-
processing [13] on SemanticKITTI and nuScenes validation sets. As shown in Tabs. 12 and 13, our
SFCNet has higher performances on all small object categories compared to the baseline model. The
results show overcoming quantized information loss preserves complete geometric information of the
small objects and thus makes them better recognized and segmented by our SFCNet.
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Table 11: Ablation study on the configuration of the hash table for the spherical frustum structure on
the SemanticKITTI validation set.

Number of Hash Functions Inference Time (ms) ↓ mIoU (%) ↑
2 59.5 62.9
3 60.1 62.9
5 59.5 62.9

4 (Ours SFCNet) 59.7 62.9

Original Point Cloud Stride-Based Sampled Point Cloud F2PS Sampled Point Cloud (Ours)

Broken Lines

(a) Qualitative Comparison (b) Time Consumption Comparison

Figure 6: In this figure, (a) presents the qualitative comparison between stride-based 2D sampling
and our Frustum Farthest Point Sampling (F2PS). The red boxes show the zoomed view of the point
clouds in the close areas. (b) illustrates the time consumption comparison between Farthest Point
Sampling (FPS) and our F2PS.

D More Visualization

To better demonstrate the effectiveness of SFCNet for LiDAR point cloud semantic segmentation, we
conduct more visualization on the SemanticKITTI and nuScenes datasets. The results are shown in
Figs. 7, 8, 9, 10 and the supplementary video SupplementaryVideo.mp4.

Qualitative Comparison on NuScenes Validation Set. The results of qualitative comparison
between our SFCNet and RangeViT [21] are shown in Fig. 7. On the nuScenes validation set, SFCNet
can also have fewer segmentation errors than RangeViT as the results in the SemanticKITTI dataset.
Moreover, the better segmentation accuracy of the 3D small objects, like pedestrians and motorcycles,
can also be observed on the nuScenes validation set. The results once more demonstrate semantic
segmentation improvement of SFCNet due to the overcoming of quantized information loss.

More Qualitative Comparison on SemanticKITTI Test Set. The ground truths on the Se-
manticKITTI test set are not available. Thus, we search for the corresponding RGB image and project
the semantic predictions on the image to compare the semantic segmentation accuracy between the
state-of-the-art 2D image-based method CENet [20] and our SFCNet on the SemanticKITTI test set.
As shown in Figs. 8 and 9, compared to CENet, SFCNet can more accurately segment the LiDAR
point cloud in various challenging scenes on the SemanticKITTI test set.

Specifically, SFCNet recognizes the thin poles in distance on the rural road of Fig. 8(a) and in the
complex intersections of Fig. 9(c), while CENet predicts the poles as wrong classes. In addition,
SFCNet recognizes the thin trunks inside the vegetation on the rural scenes of Fig. 8(b) and Fig. 9(b)
while CENet wrongly predicts the trunk as the fetch and vegetation respectively. Moreover, SFCNet
successfully segments the boxed persons in the complex intersection of Fig. 8(c) and in the urban
scene of Fig. 9(a) while CENet gives wrong predictions due to the information loss of the distant
persons during 2D projection. These results further validate the better segmentation performance of
SFCNet to 3D small objects.

More Qualitative Comparison on NuScenes Validation Set. As the visualization on the Se-
manticKITTI test set, we provide the additional qualitative comparison between our SFCNet and
RangeViT on the nuScene validation set with the projected predictions illustrated in Fig. 10. The
results further demonstrate the better semantic segmentation of SFCNet for the challenging street
scenes on the nuScenes validation set compared to RangeViT.

Specifically, in the first scene, the close motorcycle can be correctly segmented by SFCNet, while
RangeViT recognizes the motorcycle as a car, which shows that SFCNet can help the autonomous car
correctly recognize the type of close obstacles, and enable the car to make appropriate decisions.
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Table 12: Quantative comparison of semantic segmentation between baseline model and SFCNet
for the small object categories on SemanticKITTI validation sets. Bold results are the best in each
column. The performance improvement of each category is highlighted in green.
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Baseline w/ KNN-Based Post-processing 44.2 46.0 48.8 71.6 73.6 67.4 63.1 45.7

SFCNet (Ours) 44.9(+0.7) 60.6(+14.6) 50.5(+1.7) 73.1(+1.5) 83.1(+9.5) 68.5(+1.1) 64.6(+1.5) 47.8(+2.1)

Table 13: Quantative comparison of semantic segmentation between baseline model and SFCNet for
the small object categories on the nuScenes validation sets. Bold results are the best in each column.
The performance improvement of each category is highlighted in green.
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Baseline w/ KNN-Based Post-processing 30.6 77.0 73.9 62.8
SFCNet (Ours) 40.4(+9.8) 82.0(+5.0) 78.0(+4.1) 65.8(+3.0)

In the second scene, the distant pedestrians on the other side of the crossing can also be correctly
segmented by SFCNet due to the elimination of quantized information loss. In contrast, RangeViT
wrongly predicts the pedestrians as traffic cones.

In the third scene, since the boxed pedestrian is close to the manmade, RangeViT confuses it with the
manmade and does not segment the pedestrian, while our SFCNet can clearly recognize the boundary
and successfully segments the pedestrian.

Sequential Qualitative Comparison on SemanticKITTI Validation Set. We demonstrate the
qualitative comparison between our SFCNet and the SoTA 2D projection-based segmentation meth-
ods, CENet and RangeViT, on a continuous sequence on the SemanticKITTI validation set in the
supplementary video SupplementaryVideo.mp4. In this video, the semantic predictions in both
the 3D point cloud view and the RGB image view (where the colored point cloud is projected onto
the RGB images) are presented. The results show that our SFCNet can consistently show higher
segmentation accuracy on the point cloud of each frame in the sequence than 2D projection-based
methods, which further indicates the stronger semantic segmentation capability of our SFCNet.
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Ground Truth RangeViT SFCNet (Ours)
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Figure 7: Qualitative Comparison on NuScene Validation Set. In this figure, we conducted the
qualitative comparison between RangeViT [21] and our SFCNet of semantic segmentation on the
nuScenes validation set. The first column presents the ground truths, while the following two columns
show the error maps of the predictions of RangeViT and our SFCNet respectively. In addition, the
reference from point color to the semantic class in the ground truths is shown at the bottom. Moreover,
the false-segmented points are marked as red in the error maps. Furthermore, we use circles with the
same color to point out the same objects in the ground truth and the two error maps.
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Prediction Projected PredictionOriginal RGB Image

(a) Urban

CENet

SFCNet (Ours)

CENet 

SFCNet (Ours)

(c) Complex Intersections

(b) Rural

CENet
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Figure 8: More Qualitative Comparison on Semantic Segmentation on SemanticKITTI Test Set. We
show the qualitative comparison between our SFCNet and the state-of-the-art 2D image-based method
CENet [20] on the SemanticKITTI test set. The visualized challenging autonomous driving scenes
include urban, rural, and complex intersection scenes. The predictions projected on the corresponding
RGB images are also illustrated. In addition, we use the same color boxes to point out the same
objects in the point clouds and images for each scene. Meanwhile, we provide the zoomed-in view of
some boxed objects for clear visualization. Moreover, the reference from point color to the semantic
class in the predictions is shown at the bottom of the figure.
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Figure 9: More Qualitative Results on Semantic Segmentation on SemanticKITTI Test Set. This
figure shows more qualitative results of our SFCNet and the state-of-the-art 2D image-based method
CENet [20] on the urban, rural, and complex intersection scenes of the SemanticKITTI test set. As in
Fig. 8, the predictions projected on the corresponding RGB images are also illustrated. In addition,
the same color boxes are adopted to point out the same objects in the point clouds and images for each
scene. Meanwhile, the zoomed-in view of some boxed objects is illustrated for clear visualization.
Moreover, the reference from point color to the semantic class in the predictions is shown at the
bottom of the figure.
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Figure 10: More Qualitative Comparison of Semantic Segmentation on NuScenes Validation Set.
We show more comparisons between our SFCNet and the state-of-the-art 2D image-based method
RangeViT [21] on the nuScenes dataset. The predictions projected on the corresponding RGB images
are also illustrated. In addition, we use the same color boxes to point out the same objects in the
point clouds and images for each scene. Meanwhile, we provide the zoomed-in view of some boxed
objects for clear visualization. Moreover, the reference from point color to the semantic class in the
predictions and ground truths is shown at the bottom of the figure.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly listed the contributions and pointed out the scope of the paper,
LiDAR point cloud semantic segmentation, in Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Conclusion (Sec. 5), we have discussed the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper mainly focuses on proposing a new data structure for LiDAR point
cloud semantic segmentation. No theoretical results are included.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper has included a description of the implementation details for the
experiments in Sec. 4.2 and the additional implementation details in Sec. B of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our source code on https://github.com/IRMVLab/SFCNet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The dataset splits, hyperparameters, and optimizer choice are described in Sec.
4.1 and 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Some results need to be uploaded to the dataset’s official website for evaluation
since the ground truths of the test set are not publicly available. Thus, it is not feasible for
multiple evaluations to obtain the error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Sec. 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have made sure that the research in this paper conforms with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The research has no potential negative societal impacts. On the contrary, the
work can be applied to the autonomous driving field for perception and scene understanding.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work is aimed at scene understanding from the LiDAR sensor data. There
are no potential risks of misusing.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the papers providing the public datasets used in this paper. The
licenses of the datasets will be included in the released source code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not include new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work is irrelevant to human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work is irrelevant to human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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