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Abstract

Stereo Depth Estimation in real-world environments poses significant challenges
due to dynamic domain shifts, sparse or unreliable supervision, and the high cost
of acquiring dense ground-truth labels. While recent Test-Time Adaptation (TTA)
methods offer promising solutions, most rely on static target domain assumptions
and input-invariant adaptation strategies, limiting their effectiveness under con-
tinual shifts. In this paper, we propose RobIA, a novel Robust, Instance-Aware
framework for Continual Test-Time Adaptation (CTTA) in stereo depth estimation.
RobIA integrates two key components: (1) Attend-and-Excite Mixture-of-Experts
(AttEx-MoE), a parameter-efficient module that dynamically routes input to frozen
experts via lightweight self-attention mechanism tailored to epipolar geometry, and
(2) Robust AdaptBN Teacher, a PEFT-based teacher model that provides dense
pseudo-supervision by complementing sparse handcrafted labels. This strategy
enables input-specific flexibility, broad supervision coverage, improving generaliza-
tion under domain shift. Extensive experiments demonstrate that RobIA achieves
superior adaptation performance across dynamic target domains while maintaining
computational efficiency.

1 Introduction

Stereo Depth Estimation (SDE) is a fundamental task for 3D scene understanding, with applications
in autonomous driving and robotics. While deep learning-based stereo approaches have achieved
notable accuracy improvements [1} 2], their success relies largely on supervised training with dense
ground-truth disparity maps, which are costly and labor-intensive to obtain. As a result, they are
typically pre-trained on large-scale synthetic datasets [2] and later adapted to real world training
datasets. However, they suffer from domain shifts by challenging conditions unseen in the training
datasets, leading to performance degradation during inference. To deal with these challenges, Test-
Time Adaptation (TTA) has recently emerged [3H6]], aiming to adapt a model on-the-fly to unseen
target domains during inference, generally conducted in an unsupervised manner.

Current TTA approaches for SDE [[7, 8] operate under the assumption of a single, stationary target
domain, overlooking more realistic scenarios where the domain distribution evolves over time,
including changing weather, lighting, or scene structure. Continual Test-time Adaptation (CTTA) [9-
12] has recently emerged as a framework for continuously adapting models to consistently evolving
target domains, and has been applied to other vision tasks such as classification and semantic
segmentation. In this regard, we explore a more practical and challenging CTTA setting for SDE. In
general, CTTA introduces two major challenges: catastrophic forgetting, where the model gradually
loses the knowledge acquired from source domains while adapting to new target domains, and error
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accumulation, where noisy pseudo-labels progressively degrade model performance. Addressing
these issues requires a careful balancing between stability, to preserve prior knowledge, and plasticity,
to accommodate new domain-specific variations.

To address the stability-plasticity trade-off, recent CTTA methods have explored Parameter-Efficient
Fine-Tuning (PEFT) strategies [[L0, [12], which preserve the representation capacity of pre-trained
backbones by freezing them, while enabling adaptation via a small set of trainable components such
as prompt and meta-networks. These approaches have shown promising results in classification tasks,
but their effectiveness diminishes in more complex settings such as semantic segmentation [13]],
which requires dense, spatially structured predictions. A key limitation lies in the input-invariant
nature of standard PEFT modules where adapters or prompts are fixed for all inputs, making it
difficult to capture instance-specific variations [[14,[15)]. This underscores the need for PEFT methods
that dynamically adapt to each instance, particularly under continual domain shifts.

In addition to architectural adaptability, the quality of supervision plays a crucial role in effective
adaptation. Existing methods for SDE commonly rely on photometric consistency loss [[7} 18]
or pseudo-labels generated by handcrafted stereo matching algorithms [16], which are considered
relatively robust to domain shifts [[17]. Prior works typically filter these pseudo-labels with confidence-
based thresholding, since they are often unreliable in challenging regions such as occlusions, reflective
surfaces, or low-texture areas. While this selective supervision improves pseudo-label quality, it
introduces a critical drawback: the model is trained only on a subset of the input target domains,
leading to over-reliance to confident pseudo labels and weak generalization to uncertain or structurally
complex regions. These observations highlight the need for more comprehensive supervision signals
that can cover the full input distribution and mitigate the risk of pseudo-label over-reliance during
continual adaptation.

To enable instance-aware adaptation and improve pseudo-supervision under dynamic conditions,
we propose Robust, Instance-Aware CTTA approach, termed RobIA, which is tailored for stereo
depth estimation in continually shifting domains. RobIA addresses the limitations of conventional
PEFT and proxy-labeling approaches through two key components. First, we introduce the Attend-
and-Excite Mixture-of-Experts (AttEx-MoE), a compact yet effective MoE architecture that enables
input-specific adaptation without updating the backbone. Inspired by selective channel excitation [[18],
AttEx-MoE dynamically activates the convolutional channel experts via a self-attention, conditioned
on instance-aware global features. To reduce computational overhead, we constrain the attention
operation to be row-wise along epipolar lines, leveraging stereo geometry while preserving long-
range contextual reasoning. This design allows AttEx-MoE to maintain the efficiency of PEFT while
introducing fine-grained, content-aware adaptability crucial for dense stereo predictions.

Second, we propose the Robust AdaptBN Teacher, a complementary PEFT-based model that enhances
the coverage of pseudo-labels during adaptation. Prior work [3}[19] has presented an effective test-
time adaptation mechanism by updating only the affine parameters of batch normalization layers,
known as AdaptBN [20, [21]]. Building on this, we leverage an AdaptBN-trained teacher model to
complement the sparsity of handcrafted stereo pseudo-labels in low-confidence regions. Specifically,
we adopt a hybrid supervision scheme: reliable pseudo-labels from handcrafted stereo matching
algorithms are used in high-confidence areas, while predictions from the Robust AdaptBN Teacher
supervise low-confidence regions. This dual-source guidance allows the model to retain the precision
of proxy labels where they are reliable, while extending supervision coverage to previously ignored
areas, thus promoting better generalization across the entire input space.

Our key contributions are summarized as follows: (1) We propose RoblIA, a novel CTTA framework
specifically designed for stereo depth estimation under dynamic domain shifts. (2) We introduce a
parameter-efficient, instance-aware adaptation module (AttEx-MoE) that dynamically routes input
through frozen convolutional experts using a lightweight row-wise self-attention mechanism. (3)
We design a complementary PEFT-based (AdaptBN) teacher that provides pseudo-supervision in
low-confidence regions, enhancing coverage and robustness of pseudo labels. (4) We propose a dual-
source supervision scheme that combines reliable handcrafted stereo pseudo-labels with predictions
from the AdaptBN Teacher, enhancing coverage and robustness of pseudo labels.

2 Related Works

Test-Time Adaptation for Stereo Depth Estimation Test-Time Adaptation (TTA) in stereo depth
estimation (SDE) aims to adapt a model to new domains in an online or real-time manner without



access to source data or ground-truth labels. Early approaches include modularized model update [8],
meta-learning-based adaptation [[7]], and pixel-wise focused adaptation [22]. Despite these advance-
ments, prior stereo TTA approaches have mostly focused on single-domain adaptation or long-term
adaptation using large sequences (typically each domain contains more than 2K frames) within a
static domain. These approaches overlook practical scenarios in which domains evolve continuously
over time. To address this gap, we introduce a continual test-time adaptation scenario for SDE that
reflects temporally evolving domain distributions.

Self-supervised Learning for Stereo Depth Estimation A long-standing challenge in SDE is the
low density and high acquisition cost of ground-truth labels. To overcome this, self-supervised
learning has been widely adopted [23, 24]] , commonly using the photometric loss between stereo
pairs. However, this signal often suffers from matching ambiguities, such as occlusions and specular
surfaces, leading to unreliable supervision. [24}17] exploited traditional stereo algorithms to generate
pseudo-labels, filtering the outliers with confidence measures. [25]] further introduced a monocular
completion network to distill hard-to-match regions from stereo matching. While effective, it requires
a separate network and multiple inference steps, leading to significant computational overhead,
making it impractical for online adaptation. In contrast, our approach leverages a robust teacher
model with lower computational cost, offering reliable guidance even in challenging regions where
handcrafted pseudo-labels are absent.

Mixture-of-Experts Mixture-of-Experts (MoE)[26} [27]] has been widely used in various domains,
including CTTA MOoE enables dynamic selection of expert subnetworks via routing mechanism,
making it effective for multi-task learning [28}129] and continual learning [30}31]]. In CTTA, several
studies have explored parameter-efficient fine-tuning (PEFT) approaches that integrate MoE modules
into pre-trained backbones [32,|33]], enabling domain adaptation with minimal trainable parameters.
However, most of this research has been conducted on Transformer-based architectures, and the
application of MoE within CNNs remains relatively unexplored. DeepMoE [34] is a common
approach in CNN-based architecture to treat individual channels as experts, allowing fine-grained
modulation of feature representations and improving model sparsity. Our work is motivated by this
underexplored direction, proposing a CNN-compatible MoE design that supports instance-aware
adaptation under continual domain shifts.

3 Preliminaries

Continual Test-time Adaptation In CTTA paradigm, we are given a model pre-trained on a source
dataset (Xg,Ys). The goal is to adapt the model to multiple unlabeled target data distribution

Xr ={Xp,, X1, ..., Xr, } during deployment, where n represents the number of unseen domains.
When the target domain data X7, consists of V; target samples for 7 = 1, ..., n, for simplicity, we
denote (I}, IT?) as the t™ target stereo image pair fort = 0, ..., |X7| — 1, where | Xr| = 1| N;.

Similarly, in the following sections of this paper, we omit the domain notation X7, as all target
domains are considered to be integrated into a single sequence. Therefore, at each time step t,
the stereo model predicts disparity map from a single stereo image pair (I, I]?), and updates its
parameters before proceeding to the next input.

Pseudo-supervision for SDE Since ground-truth labels are unavailable at test time, the model
must be trained in a self-supervised manner. Following prior work [17], we obtain the handcrafted
disparity map Dyoxy as a pseudo-label using the traditional stereo matching algorithm, Semi-Global
Matching (SGM) [[L6]. Then, Dyroxy is filtered by the confidence threshold e, where confidence ¢, (p)
is calculated via left-right consistency at the corresponding pixel p. Consequently, the mask Mg,
which indicates the reliable region of Dy (i.e. valid region), is denoted as follows:

1 ifelp) >e
0 otherwise

Mvalid(p) = { (1)

Minvatia = 1 — M iid, indicating the unreliable region of Dproxy (i.e. invalid region).

Mixture-of-Experts in CNN Prior work [34] applying Mixture-of-Experts (MoE) to convolutional
neural networks (CNNs) formulates C' convolutional kernels (i.e. the output channels of the previous
layer) as an individual expert F; for ¢ = 1, .., C, and introduces a gating network GG to compute a
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Figure 1: The Overview of RobIA. During test time, the student model is trained using dense pseudo-
labels generated by combining sparse handcrafted proxy Dp.xy, With Robust Teacher prediction
Dieacher, €nsuring stable adaptation under dynamic conditions. AttEx-MoE integrates a row-wise
self-attention router and gating network G into deep encoder blocks. The row-wise self-attention
router extracts global context from an input feature map z, which is subsequently processed by a
gating network. The student backbone is kept frozen, and only the router, gating network, and the
regression parameters of the decoder are updated.

weighted combination of expert outputs. The output feature y is defined as:

C
y=>_ g Eix), 2)
=1

where g € R is the gating values obtained from the gating network G, with g; being the weight
assigned to the 7" expert F;(z). In this case, the gating network G' is implemented as a multi-headed
sparse gating network that takes a shallow embedding e of the raw input image and produces a
channel-wise activation score. G(e) is obtained by projecting the embedding e into a score vector via
a learnable weight matrix W, followed by ReLU activation:

G(e) = ReLU(W, - e). 3)

This formulation enables input-dependent dynamic selection of feature channels, improving both
model sparsity and representational flexibility.

4 Proposed Method

4.1 Motivation and Overview

CTTA presents several key challenges, notably catastrophic forgetting and error accumulation.
Parameter-efficient fine-tuning (PEFT) methods address these issues by freezing pretrained weights,
preserving source knowledge. However, in conventional PEFT-based CTTA approaches, an efficient
module that adapts to the target domain is added to the original feature, performing the uniform
transformation on all inputs. This rigid transformation is insufficient for handling various input
variations, particularly in dense predictions under domain shifts. Moreover, pseudo-labels from
handcrafted stereo algorithms are often consistently filtered in the unreliable supervision regions due
to inherent matching difficulties. Despite their domain-agnostic properties, they lead to over-reliance
on reliable regions, misdirected adaptation elsewhere, and ultimately degrading overall performance.

To overcome these limitations, we propose a novel CTTA framework, RobIA (see Fig.[I)). RobIA is
designed to preserve the rich representational capacity of source knowledge while enabling stable and
effective adaptation through the Attend-and-Excite Mixture-of-Experts (AttEx-MoE) architecture.
This module extracts instance-specific features via a row-wise self-attention router and dynamically



excites frozen channel experts, allowing the model to adapt flexibly without modifying the pretrained
backbone. To further address the challenge of biased and sparse pseudo-labels, we additionally
introduce the Robust AdaptBN Teacher. It provides a hybrid supervision strategy that combines
reliable handcrafted pseudo-labels with predictions from the robust teacher model.

4.2 Input-Aware Mixture-of-Experts via Attend-and-Excite

Mixture-of-Experts (MoE) in CNNs consists of a shallow embedding network and gating network
with ReLU activation to treat each convolutional kernel as an individual expert and introduce sparsity
into the model. However, this approach presents two key limitations: (1) shallow convolutional
layers used in the embedding network lack sufficient spatial context for optimal expert selection, and
(2) ReLU-induced sparsity limits representational capacity, especially when the backbone is frozen.
To address these challenges, we propose Attend-and-Excite Mixture-of-Experts (AttEx-MoE), a
novel MoE design tailored for PEFT-based adaptation in stereo depth estimation. AttEx-MoE enables
instance-aware, channel-wise modulation under continual domain shifts.

Row-wise Self-Attention Router A key component of AttEx-MoE is the row-wise self-attention
router, which extracts global context to guide instance-aware expert excitation. Since convolutions
are effective at capturing local patterns but struggle with modeling long-range dependencies, prior
work [[18]] identified this limitation and proposed global average pooling (GAP) to create channel-wise
features. However, GAP has the drawbacks of treating all spatial positions uniformly and ignoring
spatial importance. Therefore, we employ a self-attention mechanism in the gating network to
explicitly capture inter-channel dependencies and their spatial relationships. This allows Attend-and-
Excite operations to adaptively excite the most relevant features for each target instance. Moreover,
we apply 1D self-attention along each epipolar line (i.e., row) of the feature map by leveraging stereo
geometry [33], significantly lowering computational overhead while maintaining global context.

As shown in Fig. [l the encoder of our model consists of N blocks, with the AttEx-MoE module
applied to the final, deepest encoder block (i.e., at 1/32 resolutions) and the corresponding upsampling
module connected via skip connections. In each block, the row-wise self-attention router R; for
i =1, ..., N computes the gating input e from the input feature map z*~!, which is then passed to the
gating network G in each convolutional layer.

1 H
e=2D e €
r=1
Q'rk;-r

where e, = softmax ( i ) v, is computed for r € [1, H] using g, = 2,Wy, k, = 2, W}, and

v, = 2, W,. Here, z., € RV*® denotes the r-th row of the feature map z € R#*Wx*C and the
attention is computed independently for each row. The attention score e, obtained along the epipolar
line is averaged over the height dimension H to compute the final gating input e.

Expert Excitation via Sigmoid In [34]], each expert output F;(x) is scaled by a gate value G(x)
produced via ReLLU activations, which suppresses certain experts by zeroing their outputs, as explained
in (2) and (B). While these sparse expert outputs can enhance generalization [36], this sparsity may
reduce expressivity when the backbone is frozen in the PEFT setting.

Therefore, we adopt a Sigmoid-based soft gating mechanism, in contrast to the commonly used ReL.U.
This design allows all experts to be activated to varying degrees rather than enforcing hard selection
of a subset of experts, promoting richer expert combinations and diverse representations conditioned
on each input instance. We find that soft gating is particularly effective in the PEFT setting (See
Tab. [5), as it maximizes the utilization of all available experts with limited learning capacity. The
gating mechanism is defined with the Sigmoid activation o as:

G(e) =o(Wy-e). (%)

4.3 Dense Pseudo-label Generation via Dual Supervision

For effective adaptation to the target domain, the design of the supervision plays a critical role.
Pseudo-labels generated by traditional stereo algorithms are typically sparsified through reliability-
based thresholding [[L7], which leads to over-reliance on sparse supervision and consequently limits
performance gains in CTTA. To address this, we propose a dense pseudo-label generation strategy that



combines the domain-agnostic reliability of handcrafted pseudo-labels with the learning capability of
a learnable teacher model.

AdaptBN [3] 20} 21]] adapts only the affine parameters (scale -, shift 3) of batch normalization layers,
enabling low-dimensional, channel-wise feature modulation and stable adaptation. We leverage
the AdaptBN-based teacher model to complement unreliable regions in sparse, handcrafted pseudo-
labels, producing dense pseudo-labels as supervision for student model. This mitigates the student’s
over-reliance on sparse pseudo labels and reduces performance degradation in unreliable regions.

Why AdaptBN? Most CTTA frameworks [9, [11]] avoid stochastically-updated teacher model, as
it is expected to provide stable supervision with minimal computational and memory overhead.
Accordingly, common CTTA designs adopt Mean Teacher models updated via exponential moving
average (EMA) [37] or fixed, source-trained models [38]. However, stereo depth estimation task
presents a unique setting where handcrafted stereo algorithms can yield reliable pseudo-labels (i.e.
proxy), reducing the need for stability-focused teachers. In this context, the teacher must not only
stabilize but also generalize beyond the limitations of the sparse proxy, particularly in regions where
handcrafted labels are unreliable.

Since AdaptBN performs adaptation via low-dimensional affine transformations, it offers a controlled
yet expressive adaptation mechanism for test-time adaptation. This makes AdaptBN spatially robust,
allowing the teacher to effectively adapt to the target domain while reducing the model’s over-reliance
to the sparsely provided proxy labels. In contrast, EMA-based teachers are less suitable in this context.
Although they maintain stability by updating weights gradually, they are prone to error accumulation
when the student produces biased predictions. In such cases, EMA teachers tend to reinforce incorrect
predictions, failing to provide correct guidance to the student [39]. We further validate these claims
through analysis and ablation studies, which demonstrate AdaptBN teacher’s contributions to both
stability and adaptive refinement, especially in regions where handcrafted labels are unreliable.

4.4 Continual Test-time Adaptation Process

Model Initialization We insert the lightweight AttEx-MoE module into a source-trained base
model. Following recent CTTA studies [32], we train the AttEx-MoE module on the labeled source
dataset while keeping the backbone frozen. This short warm-up phase allows the MoE module to
learn instance-aware routing behavior without altering the core representations, providing a stable
initialization for CTTA. During the supervised warm-up phase, we trained the model in the same
way as DeepMoE [34]]. For test-time adaptation, we freeze the base network and only update the
AttEx-MoE module and the regression parameters of the decoder.

Total Loss The overall loss function is as follows:

L= ACproxy + )\Eteacher (6)
[fproxy = Maiia - smOOﬁhLl(Dproxy - Dpred)a @)
Licacher = Minvalia - SmOOthLl(Dteacher - Dpred)7 (®)

where Dproxy and Dieacher denote the pseudo-labels generated by the handcrafted stereo algorithm [16]

and the AdaptBN teacher model, respectively. The predicted disparity map Dy.q is supervised by two
loss terms, Lproxy and Licacher, corresponding to each pseudo-label source. Incorporating supervision
from Die,cher helps regularize the student model, mitigating over-reliance on sparse handcrafted labels
and preventing performance drops in regions lacking reliable pseudo-labels. A is a loss weight, which
controls the influence of teacher predictions in our dense pseudo-label formulation.

S Experiments

Datasets. To simulate TTA and CTTA scenarios, following prior work [8]], all experiments were
conducted on well-renowned stereo benchmarks, including KITTI RAW [40], DrivingStereo [41]],
and DSEC [42]]. These datasets cover various conditions, such as different weather scenarios and
urban cityscapes in both daylight and nighttime. The synthetic Flyingthings3D, part of the synthetic
SceneFlow dataset [2] was used to pretrain the stereo model before test time. Sparse pseudo-labels
Dyroxy were obtained via Semi-Global Matching (SGM) [[16]], followed by a left-right consistency
check. The effective label density varies across datasets—roughly 92% for KITTI RAW, 72% for
DrivingStereo, and 45% for DSEC, highlighting the need for robust dense supervision, especially in
relatively sparser datasets such as DrivingStereo and DSEC.



Table 1: Performance comparison of Continual Test-time Adaptation on DrivingStereo benchmark
over 10 rounds. To save space, only 1st and 10th round scores are written. Bold denotes best and AT
denotes our method with dense pseudo-label Dieycper-

Round 1 10 All |

Condition dusky cloudy rainy dusky cloudy rainy Mean
Method Adapt. Dl-all EPE Dl-all EPE Dl-all EPE|Dl-all EPE Dl-all EPE Dl-all EPE|Dl-all EPE
MADNet 2 [45] (a) no adapt. 1324 1.69 6.56 122 11.51 2.18|13.24 1.69 6.56 122 11.51 2.18| 10.44 1.70
(b) FT 508 106 482 109 64 143] 6.04 166 585 206 7.13 19| 6.13 1.73
(c) MAD++ 646 1.15 436 104 6.01 129| 579 1.60 6.04 201 7.28 189 586 1.4l
CoEx [43] (d) no adapt. 553 1.14 355 099 7.61 1.64| 553 1.14 355 099 7.61 1.64| 556 1.26
(e) AdaptBN 516 1.11 3.13 093 6.14 141|271 085 236 0.8 3.32 1.03| 3.08 0.94
() FT 525 1.11 298 091 581 1.37] 3.05 088 248 081 3.63 1.09| 3.04 0.92
(g) FT + AT 509 1.1 3.01 091 583 1.38| 2.63 0.84 233 0.79 3.08 0.99| 293 091
EcoTTA [12]  (h) MetaNet | 461 105 2389 0.89 421 117|342 093 269 087 446 126 3.07 095
RobIA (ours) (i) AttEx-MoE 401 1.01 24 0.84 444 1.13| 272 0.88 229 0.84 3.89 122] 298 097

(j) AttEx-MoE + AT | 428 1.03 24 0.84 454 1.16| 24 084 224 082 3.02 1.00| 2.77 091

For CTTA, we constructed a new benchmark by sampling 500 frames per domain from existing TTA
sequences, constructing a short sequence with frequent domain shifts. Each cycle consists of 3—4
domains and is repeated over 10 rounds to simulate long-term adaptation with recurring conditions.
Specifically, we obtained a sequence of dusky—cloudy—rainy for DrivingStereo, nightl to night4 for
DSEC, and city—residential +campus—road for KITTI RAW. Unlike prior works that simulate long-
term shifts over 44K frames [[17], our CTTA setting imposes more rapid domain adaptation within
short sequences, reflecting real-world constraints where environmental changes occur frequently and
previously seen conditions may reappear. We include TTA results for all datasets, additional results
on CTTA, and ablation studies on pseudo-supervision in the supplementary material.

Implementation Details. We use CoEx [43], a compact and real-time stereo network using Mo-
bileNetV2 [44]] backbone, as our base architecture. Following prior work [45]], we retrained the
model on the synthetic source datasets with strong data augmentations to improve generalization. All
experiments were conducted on NVIDIA A6000 and RTX 3090 GPUs and further implementation
details, including hyper parameters, are in the supplementary material.

no adapt. denotes the source-trained model without adaptation. We additionally evaluated two
variants of MADNet2 [45]: FT, which updates all model parameters, and MAD++, which applies
modular updates. All PEFT-based CTTA methods, including AdaptBN, MetaNet, and our proposed
AttEx-MoE, were implemented on top of the CoEx for a fair comparison. AdaptBN tunes the affine
parameters of batch normalization layers, MetaNet tunes the meta network from EcoTTA [12]], and
AttEx-MoE updates the lightweight gating module for expert selection. In all cases, the decoder’s
regression parameters were jointly updated. AT setting uses dense pseudo-labels generated from our
AdaptBN teacher.

Evaluation Metrics. We reported End-Point Error (EPE) and D1-all that measures the percentage
of pixels with absolute disparity error exceeding 3 pixels and 5% of the ground truth. We adopt the
standard online adaptation protocol: the model predicts each frame before updating, then uses that
frame to adapt before moving to the next, reflecting deployment without access to ground truth.

5.1 Main Results

CTTA Experiments. Tab.|l|presents the 10-rounds CTTA performance on the DrivingStereo. Our
method (h) consistently outperforms all baselines across different weather conditions and adaptation
rounds on DrivingStereo. Compared to MADNet-based experiments (a)-(c), which is a state-of-the-art
stereo TTA method, our approach yields substantial improvements in all domains (dusky, cloudy,
rainy), demonstrating stronger generalization and adaptability under continual shifts.

While full tuning approach (f) achieves performance gains in the early rounds of the experiment, it
suffers from performance degradation due to error accumulation and forgetting over time. Parameter-
efficient tuning methods including (e) and (h) tend to preserve source knowledge more effectively,
leading to more stable performance across rounds. However, these approaches often exhibit limited
adaptation performance due to the restricted capacity of parameter-efficient tuning. For instance, (h)
EcoTTA—which adapts meta network—shows reduced effectiveness on structured prediction tasks such



Table 2: Performance comparison of Continual Test-time Adaptation on DSEC benchmark over 10
rounds. To save space, only 1st and 10th round scores are written. Bold denotes best and AT denotes
our method with dense pseudo-label Dieycher-

Round 1 10 All |

Condition Night#1  Night#2 Night#3 Night#4 | Night#1 Night#2 Night#3 Night#4 Mean
Method  Adapt. D1-all EPE DI-all EPE D1-all EPE D1-all EPE|D1-all EPE D1-all EPE D1-all EPE D1-all EPE|D1-all EPE
MADNet2  (a) no adapt. 8.38 1.80 14.71 2.37 11.00 1.86 11.82 1.85| 8.38 1.80 14.71 2.37 11.00 1.86 11.82 1.85]11.48 1.97
(b) FT 47 124 779 149 597 131 6.33 1.31| 3.57 1.11 7.34 14 5.62 125 58 124|571 1.27
(c) MAD++ 5.52 1.34 843 1.53 6.21 134 6.66 1.33| 3.89 1.16 7.53 142 5.7 127 589 1.27| 6.04 1.32
CoEx (d) no adapt. 6.10 1.38 12.24 1.94 834 1.58 8.05 1.50| 6.10 1.38 12.24 1.94 8.34 1.58 8.05 1.50| 8.68 1.60
(e) AdaptBN 496 1.22 847 149 459 1.11 4.67 1.09| 297 1.04 6.07 1.27 432 1.1 445 1.11| 454 1.13
(f) FT 499 1.23 841 148 466 1.12 4.67 1.1|3.00 1.04 624 1.28 4.44 1.11 457 1.12| 459 1.13
(g) FT + AT 511 1.24 876 1.52 473 1.13 473 1.1| 2.87 1.01 586 1.24 4.02 1.06 4.15 1.07| 438 1.10
EcoTTA (h) MetaNet | 436 1.17 7.17 139 4.69 1.13 533 1.18] 346 1.08 6.71 136 471 1.14 528 1.19] 5.13 1.21
RobIA (ours) (i) AttEx-MoE 433 1.17 792 146 438 1.1 479 1.12] 3.00 1.03 5.69 1.23 423 1.09 4.61 1.11| 447 1.12
(j) AttEx-MoE + AT| 445 1.17 8.18 148 4.75 1.15 497 1.12| 296 1.01 5.65 1.22 4.11 1.05 4.34 1.08| 446 1.11

as stereo depth estimation. In contrast, our approach (i) AttEx-MoE enables input-dependent expert
routing and selective feature excitation, achieving both robust and adaptive test-time performance,
leading to improved adaptation accuracy.

Incorporating dense pseudo-labels via the AdaptBN teacher (denoted AT) further enhances long-term
stability. As shown in 10%-round results, models trained with dense supervision ((g) and (j)) exhibit
notably lower error rates after long-term adaptation compared to their sparse-only counterparts.
This underscores the importance of broader supervision coverage, as our dual-source dense pseudo-
label strategy helps prevent the model from focusing exclusively on the reliable regions of sparse
handcrafted labels.

Tab. 2] reports results on the DSEC benchmark, which includes challenging nighttime conditions. Our
method again outperforms MADNet2 and other baselines, maintaining strong adaptation performance.
Notably, both FT and MoE variants benefit from AdaptBN-based supervision, showing improved
accuracy and stability by round 10. For instance, in Night#4, D1-all error drops from 4.57 to 4.15 in
(f) and (g), and from 4.61 to 4.34 in (i) and (j), respectively. Moreover, these results highlight that
AttEx-MoE tuning provides greater adaptability than other PEFT-based methods ((e) and (h)), while
achieving comparable performance to full model tuning with improved efficiency.

Table 3: Performance comparison of Continual Test-time Adaptation on KITTI RAW benchmark
over 10 rounds. To save space, only 1st and 10th round scores are written. Bold denotes best and AT
denotes our method with dense pseudo-label Dyeqcher-

Round 1 10 All |

Condition City  Residential Campus( %2)  Road City  Residential Campus( X2)  Road Mean
Method  Adapt. D1-all EPE Dl-all EPE Dl1-all EPE Dl-all EPE|Dl-all EPE D1-all EPE Dl1-all EPE Dl-all EPE|Dl-all EPE
MADNet 2 (a) no adapt. 383 1.08 3.06 1.09 543 1.12 3.34 1.05/ 3.83 1.08 3.06 1.09 543 1.12 3.34 1.05| 3.92 1.09
(b) FT 1.21 092 096 093 2.06 0.82 1.12 0.86] 0.91 0.88 0.79 091 1.56 0.75 1.01 0.84| 1.13 0.85
(c) MAD++ 1.51 098 095 0.94 228 0.87 1.22 0.88 0.92 0.87 0.85 092 1.72 0.77 1.08 0.88] 1.24 0.88
CoEx (d) no adapt. 2.08 0.99 1.75 096 2.89 096 2.79 1.00] 2.08 0.99 1.75 096 2.89 0.96 2.79 1.00| 2.38 0.98
(e) AdaptBN 1.09 0.86 082 09 1.5 0.74 1.05 0.85 0.66 0.84 0.72 0.89 125 0.7 0.86 0.82] 0.91 0.82
) FT 1.04 0.86 0.82 0.92 133 0.73 0.97 0.86| 0.63 0.84 0.68 0.90 1.16 0.71 0.81 0.81] 0.836 0.82
(g) FT + AT 1.06 0.87 0.79 091 127 0.72 1.03 0.85| 0.55 0.84 0.6 0.89 1.13 0.7 08 0.82| 0.82 0.82
EcoTTA (h) MetaNet [ 094 087 096 092 1.65 077 129 0.87| 124 092 117 095 178 0.83 1.69 0.91] 1.33 0.88
RobIA (ours) (i) AttEx-MoE 1.18 0.88 0.97 092 145 0.75 1.26 0.86/ 0.76 0.85 0.8 0.89 1.32 0.74 1.07 0.83| 1.06 0.84
(j) AUtEx-MOE + AT| 1.21 0.89 1.04 0.92 151 0.75 141 0.86/ 0.78 0.86 0.77 0.89 136 0.75 1.19 0.84| 1.09 0.84

Tab. 3] reports the CTTA performance on the KITTI RAW. Our method outperforms MADNet2,
a state-of-the-art stereo TTA method, maintaining strong adaptation performance throughout the
experiment. In the case of KITTI RAW, more than 90% of the handcrafted pseudo-labels are
considered reliable, as the dataset primarily consists of daytime urban scenes that are less challenging
for stereo matching compared to weather-affected or nighttime scenes. This leads to relatively stable
adaptation compared to other benchmarks. However, (g) FT + AT benefit from the additional dense
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Figure 2: D1-all error rate in different pseudo-label regions. D1-all error rate over 10 adaptation
rounds in different pseudo-label regions. We separate evaluation into (left) the entire image, (middle)
regions with valid handcrafted pseudo-labels, and (right) regions without reliable supervision (invalid).

pseudo-labels, which improve model adaptability by further expanding the supervision coverage,
resulting in better performance by round 10.

5.2 Analyses

Performance degradation due to Sparse Pseudo-labels. To understand the limitations of sparse
handcrafted pseudo-labels, we evaluate model performance under continually shifting weather
conditions by separately analyzing regions with reliable (valid) and unreliable (invalid) pseudo-labels
with higher learning rate(2e—6). As shown in Fig. 2} models trained solely with sparse supervision
show a stable reduction in error within valid regions but suffer from sharp performance degradation
in invalid regions—even when revisiting previously seen domains.

In contrast, the model adapted with AdaptBN progressively exhibit consistent improvement across
both valid and invalid regions over time. Notably, when incorporating our dual-source dense pseudo-
labels (denoted as AT'), we observe that the error rate in invalid regions, which previously increased
due to lack of supervision, is significantly mitigated. This indicates that the AdaptBN teacher provides
reliable supervisory signals even in regions previously lacking ground-truth guidance, effectively
supporting generalization across the entire image.

Table 4: Computational Cost Analysis. The aver- Table 5: Ablation study on AttExMoE Architecture.
age computational cost and error rate during 10  The average D1-all and EPE error rate during 10 round

round experiments of DrivingStereo dataset. experiments of DrivingStereo dataset.
Mean| Mean|
Method Adapt. #_Trainable Mem. Runtime|D1-all EPE Router Activation |Dl-all EPE
M) (MB)  (ms) | (%) (px)
Shallow Embedding ReLU 3.16 0.96
MADNet2  (a) no adapt. - 179 11 |10.44 170 Sigmoid ‘ 3.11 096
(b)FT 322 276 31 | 613 173
(c) MAD++ 322 398 18 | 586 141 GAP ReLU ‘ 4.06 1.06
Sigmoid 327 095
CoEx (d) no adapt. - 694 23 5.56 1.26 -
(¢) AdaptBN 003 2704 139 |3.08 094 Self-auention ReLU ‘ 361 1.13
() FT 273 2744 255 | 3.04 092 Sigmoid 309 0.94
() FT + EMA 2.73 2835 267 2.96 0.92 Column-wise Self-attention ReLU 4.11 1.07
(h) FT + AT 279 5469 378 | 293 091 Sigmoid ‘ 390 0.97
RobIA (ours) (i) AttEx-MoE 1.19 1392 97.34 | 298 0.97 Row-wise Self-attention ReLU 3.77 1.09
() AUEX-MOE + AT| 122 4096 204 | 2.77 0091 Sigmoid (ours) | 2.98 0.97

Computational Cost Tab. @] provides a comparative analysis of computational cost and adaptation
performance. All runtime and memory measurements were recorded on an NVIDIA RTX 3090
GPU. MADNet2, while designed for test-time efficiency, shows consistent performance degradation
under continual domain shifts, indicating limited robustness in dynamic settings. In contrast, our
AttEx-MoE tuning (i) achieves comparable or superior accuracy with approximately half the number
of trainable parameters and reduced memory usage compared to full model tuning methods such as
(f) FT and (g) FT + EMA. (j) achieves the best overall mean D1-all and EPE, while maintaining a
reasonable computational cost, demonstrating the effectiveness of input-aware expert selection for
resource-efficient adaptation.



Table 6: Ablation study on .

1 10 All}
dusky cloudy rainy dusky cloudy rainy Mean
A |Dl-all EPE Dl-all EPE Dl-all EPE|DI-all EPE Dl-all EPE Dl-all EPE|Dl-all EPE

(a) 0.05] 431 1.03 2.54 0.85 4.16 1.07| 329 09 245 083 325 1.03| 297 091
(b)0.1 | 428 1.03 24 084 454 1.16| 24 084 224 0.82 3.02 1.00| 2.77 091
(0.2 | 456 1.05 275 0.88 476 1.17| 2.69 0.85 223 0.8 282 0.96| 2.84 0.90
(d)0.3 | 469 1.07 2.88 0.89 539 127|244 0.83 2.14 0.8 284 0.95| 2.89 091

5.3 Ablation Studies

AttEx-MoE architecture. Tab. [5|presents an ablation study on the architectural components of
AttEx-MoE. We compare different gating network designs, including the type of router and the
activation function (ReLU vs. Sigmoid), under the same training setting.

Shallow embedding and GAP-based routing result in higher error rates, supporting our observation
that these methods lack sufficient spatial context for precise expert selection. Self-attention routers
improve performance, but full 2D attention introduces additional computation without significant
gains. Although column-wise self-attention does not leverage epipolar geometry, it partially pre-
serves spatial structure and maintains comparable efficiency. However, its higher error rates further
validate our design choice of row-wise attention. ReLU activation—commonly used to enforce
sparsity—consistently underperforms across all router types, likely due to reduced expressivity under
frozen backbones in the PEFT setting.

Our final design, combining row-wise self-attention with sigmoid-based expert excitation, achieves
the best overall results. The router effectively captures structured global context along epipolar lines,
and sigmoid activation enables more expressive and stable expert modulation. These results confirm
the effectiveness of our Attend-and-Excite design for robust and efficient instance-aware adaptation.

Loss weight \ for L;.qcn.,. We ablated the loss weight X in Tab.[6] As shown in Tab. [6] we
evaluated a range of X values over 10 CTTA rounds on the DrivingStereo sequence, using AttEx-MoE
as the student model. The best performance is achieved with (b) A = 0.1, which is also adopted in the
main experimental results. Since the teacher model needs to newly adapt to the target domain and the
effect of proxy supervision is relatively more important in the early stages, the larger A values tend to
limit the model’s adaptability at the early rounds of the adaptation. However, as teacher predictions
become more accurate over time, the larger A leads to better performance in later rounds. In contrast,
smaller values behave similarly to single-source supervision, resulting in higher error rates at the end
of adaptation.

6 Conclusion

We presented RobIA, a robust and instance-aware framework for continual test-time adaptation
(CTTA) in stereo depth estimation. RoblIA addresses key challenges posed by dynamic domain
shifts and sparse supervision through two core components: AttEx-MoE, a lightweight Mixture-
of-Experts module guided by epipolar-aware self-attention, and a Robust AdaptBN Teacher that
complements handcrafted pseudo-labels for generating dense supervision. This design enables
flexible, input-specific adaptation while maintaining computational efficiency. Extensive experiments
across dynamically shifting target domains demonstrate that RobIA consistently outperforms existing
methods, highlighting the importance of instance-aware adaptation and hybrid supervision strategies
for reliable deployment of stereo depth models in real-world settings.

Limitations and Future Work. While RobIA demonstrates strong performance in CTTA, it has cer-
tain limitations. Although AttEx-MOoE offers input-aware adaptation, its reliance on predefined expert
structures may limit flexibility in highly heterogeneous environments. Future work includes online
expert refinement to further improve adaptation performance in long-term deployment scenarios.
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A Implementation Details

For the warm-up process, we trained the model using the Adam optimizer for 10 epochs with a
fixed learning rate of Se-4. During test-time adaptation (TTA), we also used Adam optimizer across
all methods. The learning rate was set to Se-6 for training the AdaptBN teacher model and le-5
for MADNet2 [45]. Tab.[7]reports the learning rates of student models used in experiments. For
full-tuning methods, we used relatively smaller learning rates—approximately 10 times lower than
those used in efficient tuning methods such as AdaptBN, MetaNet [12]], and our AttEx-MoE. This
choice is motivated by the observation that large learning rates in full-tuning settings significantly
impair generalization performance.

Our baseline model is CoEx [43]], a compact and real-time stereo matching network. The feature
extractor in CoEx is composed of four scale levels, with upsampling modules built using long skip
connections at each scale. To implement EcoTTA [12] in the CTTA setting for stereo matching , we
inserted its meta network into the MobileNetV2 backbone of CoEx at four scale-level blocks (K=4).

Table 7: Learning rates.

Dataset Exp.  Learning Rate
Full tuning
DrivingStereo CTTA Se-7
DSEC CTTA 2e-6
KITTIRAW CTTA le-5
Efficient tuning

DrivingStereo  CTTA Se-6
DSEC CTTA 3e-5
KITTIRAW  CTTA le-4

B Additional Analysis and Ablation Studies

Pseudo-label visualization. Fig. 3| visualizes the pseudo-labels generated by different methods
after ten rounds of adaptation from the rainy sequences of the DrivingStereo dataset. On each, we
reported disparity maps of the student model and the corresponding error rate. Note that, for sparse
pseudo-labels, we only measured error for regions where both the pseudo-label and the ground truth
are valid.

The handcrafted sparse pseudo-labels often lack supervisory signals in challenging regions for stereo
matching, such as reflective surface, low-texture regions, or occlusions. Furthermore, this issue
extends to image borders, where the hand-crafted stereo algorithms (e.g., SGM) often struggles due

D1-all:1.38%] D1-all:2.28%

(a) Left image (b) Sparse pseudo-label (c) Dense pseudo-label

D1-all:2.31% D1-all:2.23%

(d) AttEx-MoE (e) AttEx-MoE + AT

Figure 3: Pseudo-labels (top row) and predictions (bottom row) after ten adaptation rounds. We
visualize the sparse handcrafted pseudo-label (b) and the dense pseudo-label using the AdaptBN
teacher (c), and the student predictions of AttEx-MoE trained with sparse (d) and dense (e) supervision.
(a) shows the input left image.



Table 8: Ablation study on Pseudo Supervision. Average D1-all and EPE over 10 adaptation rounds
on DrivingStereo. We use single- or dual-source supervision based on whether only one or both of
handcrafted and learned signals are used.

1 5 10 All}

dusky cloudy rainy dusky cloudy rainy dusky cloudy rainy Mean
Source Method D1-all EPE D1-all EPE D1-all EPE|D1-all EPE D1-all EPE D1-all EPE|D1-all EPE D1-all EPE D1-all EPE[D1-all EPE
Single (a) proxy 4.01 1.01 24 0.84 444 1.13]| 2.54 0.86 2.23 0.83 3.839 1.2]2.72 0.88 2.29 0.84 3.89 1.22| 2.98 0.97
(b) photometric 43 1.04 245 0.85 4.76 1.18 3.21 0.95 2.75 0.89 4.74 1.25| 3.67 1.01 2.91 0.91 4.45 1.22| 3.55 1.02
(c) AdaptBN 5.5 1.13 3.48 0.98 691 1.5]3.73 0.97 2.83 0.88 5.65 1.3|3.15 0.92 2.55 0.85 5.03 1.21| 4.16 1.06

Dual  proxy

+ (d) Source 428 1.03 24 0.84 4.62 1.18 2.75 0.88 2.3 0.82 4.0 1.13] 2.78 0.87 2.31 0.82 3.82 1.1]3.09 0.95
+(e) EMA 427 1.03 2.38 0.84 4.56 1.16| 2.84 0.88 2.26 0.82 4.09 1.16| 3.11 0.91 2.32 0.82 4.03 1.15| 3.16 0.96
+ (f) photometric [46]| 4.02 1.01 2.4 0.84 4.44 1.13]| 2.54 0.86 2.23 0.83 3.87 1.18| 2.69 0.87 2.29 0.84 3.87 1.22| 2.98 0.96
+ (g) AT (ours) 428 1.03 24 0.84 454 1.16| 2.46 0.85 2.2 0.81 3.27 1.01| 2.4 0.84 2.24 0.82 3.02 1.0|2.77 091

to the lack of neighboring pixels for reliable cost aggregation. As a result, models relying solely
on these handcrafted labels tend to exhibit reduced adaptability in CTTA. In contrast, our dense
pseudo-labels provide complete spatial coverage, allowing the model to adapt effectively even in
unreliable regions. This confirms the role of dense, teacher-guided pseudo-supervision in enhancing
spatial robustness under continual adaptation settings.

Pseudo-supervision ablation. Tab. [§] presents an ablation study comparing various pseudo-
supervision strategies using our AttEx-MoE based Parameter-efficient tuning method. Single-source
supervision methods (a—c) perform worse overall. (a) Proxy supervises the model effectively, but
the limited guidance of sparse handcrafted pseudo-supervision means that the model’s performance
degradation later in the round. (b) photometric loss leads to increasingly higher error rates due to
noisy guidance. (c) AdaptBN supervision alone shows more stable error reduction but underperforms
when used without proxy supervision, as the teacher model itself requires time to adapt to the target
domain.

Dual-source variants (d—g) combine proxy labels with additional supervision to improve generalizati-
ion across the entire input space. Although using a fixed source model (d) enhances stability, it lacks
adaptability under distribution shift. (¢) EMA initially helps, but tends to propagate student errors.
Following [46], (f) augments proxy label with photometric and smoothing losses to compensate
for its sparsity, but does not yield meaningful improvement over (a) proxy-only. In contrast, our
method (g) leverages a robust AdaptBN teacher to provide dense supervision, achieving the best
overall results (D1-all 2.77% , EPE 0.91), maintaining the performance in long-term and continuously
changing conditions. These findings underscore the importance of dense, complementary supervision
in overcoming the limitations of sparse pseudo-labels during continual adaptation.

C Additional Experiments Results
Table 9: Performance comparison of Continual Test-time Adaptation on DrivingStereo benchmark

over 10 rounds for IGEV-Stereo and LightStereo backbone. Bold denotes best and AT denotes our
method with dense pseudo-label Dieycner-

Mean/]
DrivingStereo
Backbone Adapt. D1-all (%) EPE (px)
IGEV-Stereo (a) no adapt. 7.26 1.32
(b) AdaptBN 3.87 0.98
(c) FT 3.56 0.96
(d) AttEx-MoE 3.15 0.92
(e) AttEx-MoE + AT 2.76 0.87
LightStereo (a) no adapt. 18.59 3.11
(b) AdaptBN 5.95 1.74
(c) FT 591 1.72
(d) AttEx-MoE 5.76 1.28
(f) AttEx-MoE + AT 4.95 1.11




Table 10: Performance comparison of Continual Test-time Adaptation on DrivingStereo and KITTI
RAW benchmark over 10 rounds for MADNet2 backbone. Bold denotes best and AT denotes our
method with dense pseudo-label Dieycher-

Mean/
DrivingStereo KITTI Runtime

Backbone Adapt. Dl-all (%) EPE (px) | Dl-all (%) EPE (px)| (ms)
MADNet2 (a) no adapt. 10.44 1.70 3.92 1.09 11

(b) FT 6.13 1.73 1.13 0.85 31

(c) MAD++ 5.86 1.41 1.24 0.88 18

(d) AttEx-MoE 5.53 1.20 1.12 0.86 23

(e) AttEx-MoE + AT 4.83 1.09 1.10 0.85 49

As shown in Tab.[9] beyond the 3D cost aggregation model CoEx, we also evaluated our method on
IGEV-Stereo [47]]], a widely used iterative-refinement backbone, and on LightStereo [48]], a lightweight
real-time network with 2D cost aggregation. On all three architectures, our RobIA with AttEx-MoE
and AdaptBN-Teacher consistently improves accuracy, demonstrating that our approach generalizes
well to various stereo architectures.

Our components remain consistently effective when applied to IGEV-Stereo. Without adaptation, (a)
IGEV-Source suffers from significant domain shift, yielding high D1-all errors 7.26% and EPE 1.32.
While tuning only BN parameters ((b) AdaptBN) or full fine-tuning ((c) FULL++) reduces error, both
approaches still struggle (Da-all (b) 3.87%, (c) 3.56%). In contrast, (d) our AttEx-MoE based PEFT
lowers D1-all to 3.15%, and our RobIA implementation ((e) AttEx-MoE + AT) further improves it to
2.76%. This demonstrates that our plug-and-play modules effectively enhance generalization even on
top-performing backbones.

Tab.[9] also shows that RobIA generalizes well to LightStereo. Without adaptation, (a) LightStereo-
Source performs poorly due to severe domain shift (18.59%). (b) AdaptBN alone improves results to
5.95%, yet falls short on dynamic scenes. Our AttEx-MoE module (e) further reduces the D1-all error
to 5.76%, and RoblIA (f) achieves the best performance (D1-all 4.95%, EPE 1.11), confirming the
robustness and plug-and-play nature of our method even on compact backbones. These results with
IGEV-Stereo and LightStereo demonstrate that RobIA is effective across both strong and lightweight
backbones, and maintains robustness under significant domain shifts.

Furthermore, we re-implemented our method, including AttEx-MoE and the AdaptBN teacher, on top
of the MADNet2 [8] encoder, which is also used by MAD++. Since MADNet?2 lacks normalization
layers, we inserted BatchNorm layers after each convolution to enable AdaptBN and maintain
architectural consistency.

As shown in Table@ on KITTI, which presents relatively mild domain shifts, (b) FULL++ achieves
D1-all 1.13% by updating all layers, while (d) our AttEx-MoE method achieves a better result (1.12%)
with fewer parameters. (e) RobIA, which combines AttEx-MoE with the AdaptBN teacher, maintains
a strong KITTI score of 1.1%. On DrivingStereo, which exhibits stronger domain shifts, (b) FULL++
struggles with large domain shifts (6.13%), and (c) MAD++ provides only minor improvement
(5.86%). In contrast, (d) our AttEx-MoE method further reduces the error to 5.53%, and (e) RobIA
achieves the best result at 4.83%. These results show that our input-aware AttEx-MoE gate, combined
with dual-source supervision, matches full tuning on stable domains, and significantly outperforms
both full and modular adaptation approaches under large distribution shifts.

Table 11: Performance comparison for Sequential Continual Test-time Adaptation across different
datasets, from KITTI RAW (rounds 1-5) to DrivingStereo (rounds 6—10). Bold denotes best and AT
denotes our method with dense pseudo-label Dieycher-

KITTI DrivingStereo (after KITTI) ALL
Round 1 — 5 Round 6 — 10
Backbone Adapt. Dl-all (%) EPE (px) | Dl-all (%) EPE (px) Dl-all (%) EPE (px)
CoEx (a) AdaptBN 1.11 0.84 5.90 1.70 3.16 1.21
(b) AttEx-MoE 1.11 0.85 4.22 1.08 2.44 0.95
(c) AttEx-MoE + AT 1.15 0.84 2.66 0.90 1.80 0.87




Table 12: Performance comparison of Test-time Adaptation on KITTI RAW benchmarks. Bold
denotes best and AT denotes our method with dense pseudo-label Dieqcher-

(8027 frames) (28067 frames) (1149 x 2 frames) (5674 frames)
Condition City Residential Campus( x2) Road ‘ Mean

Method Adapt. Dl-all EPE Dl-all EPE Dl-all EPE Dl-all EPE ‘ Dl-all EPE
RAFT-Stereo [49]  (a) no adapt. 1.55 0.89 1.77 0.82 2.53 0.89 1.77 0.85 1.90 0.86
CREStereo [50] (b) no adapt. 1.87 0.99 1.71 0.89 3.21 1.07 2.00 0.89 2.20 0.96
IGEV-Stereo [47]  (c) no adapt. 2.26 1.00 2.56 0.94 3.01 0.99 2.52 0.96 2.58 0.97
UniMatch [51] (d) no adapt. 2.66 1.13 3.20 1.10 3.10 1.13 2.26 1.08 2.81 1.11
MADNet 2 [45] (e) no adapt. 4.04 1.10 4.05 1.03 6.07 1.29 4.01 1.08 4.54 1.13
(f) FT 1.23 0.90 1.05 0.80 2.39 0.92 1.02 0.83 1.42 0.86

(g) MAD++ 1.39 0.93 1.16 0.83 2.88 1.00 1.14 0.85 1.64 0.90

CoEx [43] (h) no adapt. 2.66 1.07 2.66 0.99 3.65 1.11 2.46 0.98 2.86 1.04
(i) FT 0.83 0.84 0.75 0.76 1.49 0.8 0.75 0.79 0.96 0.80

(j) FT + AT 0.8 0.84 0.66 0.74 1.45 0.8 0.79 0.8 0.93 0.80

RobIA (ours) (k) AttEx-MoE 0.99 0.87 0.96 0.78 1.6 0.82 0.9 0.81 1.11 0.82
(1) AttEx-MoE + AT 1.05 0.87 0.91 0.78 1.56 0.81 0.94 0.83 1.12 0.82

We simulated a sequential CTTA scenario where the model first adapts to KITTI for 5 rounds,
followed by adaptation to DrivingStereo for another 5 rounds, mimicking a realistic progression from
a stable to a more challenging domain. Results are shown in Tab. [I1] (b) and (c) show similar error
rates with (a) on KITTI, but they achieve substantially lower error on DrivingStereo. (a), despite
strong performance of 1.11% on KITTI, fails to adapt in the second phase (5.90%). These results
highlight the robustness of our AttEx-MoE with AdaptBN teacher, which generalizes better under
sequential, cross-domain conditions, mirroring realistic deployment settings.

TTA Experiments. Previous studies have demonstrated effective performance under TTA, which
motivates us to assess whether our approach, designed for CTTA, also generalizes well in this setting.
To evaluate the effectiveness of our method under standard test-time adaptation (TTA) settings, we
conducted experiments on three real-world stereo datasets: KITTI RAW, DrivingStereo, and DSEC.
The results are reported in Tab. [I2] Tab. [I3] and Tab. [14]for KITTI RAW, DrivingStereo, and DSEC,
respectively. Following prior work [45]], we compared against MADNet2 [45], and several state-of-
the-art stereo models known for strong generalization performance. The stereo models only trained
on synthetic source datasets (a—d) exhibit significant performance degradation on target domains due
to domain shifts. While adaptation-based methods generally improve accuracy, performance gains
remain limited for efficiency-oriented state-of-the-art TTA methods (e—g).

Our efficient tuning method (k), which employs AttEx-MoE with input-aware feature excitation,
achieves higher accuracy than prior TTA baselines, while remaining comparable to full model tuning
and reducing computational cost, as discussed in the main paper. Results supervised by our dense
pseudo-labels are shown in (j) and (1). Notably, substantial improvements by dense supervisions with
AdaptBN Teacher are observed on DrivingStereo and DSEC, where pseudo-label sparsity is higher
due to challenging conditions including adverse weather and nighttime imagery.

These findings demonstrate that our method is not only effective in the proposed continual adapta-
tion scenario but also exhibits effective adaptability in standard TTA settings involving long-term
adaptation within individual domains.

Qualitative Comparison of CTTA Results. We report qualitative comparisons of disparity maps
predicted by various models and supervision strategies evaluated in our CTTA experiments. Figs. ]
and [5|show examples from the cloudy and rainy sequences of the DrivingStereo dataset. For each
example, predictions are visualized at round 1, 5, and 10 to highlight temporal adaptation behaviors.

We observed that our method consistently improves predictions across rounds, particularly in chal-
lenging regions such as reflective surfaces, low-texture areas, and image borders. Models trained with
only sparse supervision show limited generalization beyond the confident regions of the handcrafted
pseudo-labels, which limits their adaptability in less confident areas over time. In contrast, dense
pseudo-supervision enables broader coverage and leads to stable improvements across the entire
image, demonstrating stronger generalization under continual domain shifts.



Table 13: Performance comparison of Test-time Adaptation on DrivingStereo benchmarks. Bold
denotes best and AT denotes our method with dense pseudo-label Dieacher-

(1667 frames) (1119 frames) (4950 frames)
Condition dusky cloudy rainy Mean

Method Adapt. Dl-all EPE Dl-all EPE Dl-all EPE | Dl-all EPE
RAFT-Stereo (a) no adapt. 1152 1.59 3.08 0.88  4.18 1.02 6.26 1.16
CREStereo (b) no adapt. 17.43  3.61 7.08 123 4.08 1.07 9.53 1.97
IGEV-Stereo [47]  (c) no adapt. 11.70  1.85 3.57 0.95 5.27 1.26 6.95 1.35
UniMatch [51] (d) no adapt. 1484 269 751 1.27 5.78 1.25 9.38 1.74
MADNet 2 [43] (e) no adapt. 1647 3.03 13.16 1.66 6.72 1.35 | 1212 201
(f) FT 1034 227 441 1.04 5.20 1.63 6.65 1.65

(g) MAD++ 10.06  2.01 5.25 1.09 434 1.09 6.55 1.40

CoEx (h) no adapt. 13.55  3.02 5.24 112 412 1.15 7.64 1.76
CoEx (i) FT 8.85 2.29 3.04 0.9 3.7 1.27 5.20 1.49
(j) FT + AT 793  2.09 2.63 088 229 0.84 4.28 1.27

RobIA (ours) (k) AtEx-MoE 9.05 2.28 3.21 0.96 2.8 0.91 5.02 1.38
(1) AtEx-MOoE + AT 8.27 218  2.61 0.91 2.77 0.92 4.55 1.34

Table 14: Performance comparison of Test-time Adaptation on DSEC benchmarks.

best and AT denotes our method with dense pseudo-label Dicacher-

Bold denotes

(883 frames) (1813 frames) (2315 frames) (2405 frames)
Condition Night#1 Night#2 Night#3 Night#4 ‘ Mean

Method Adapt. Dl-all EPE Dl-all EPE Dl-all EPE Dl-all EPE | Dl-all EPE
RAFT-Stereo (a) no adapt. 13.04 341 21.64 426 1091 191 1007 1.68 | 13.92 2.82
CREStereo (b) no adapt. 11.34 238 2348 3.19 1537 239 1242 175 | 1565 243
IGEV-Stereo [47]  (c) no adapt. 9.14 1.85 1197 196 12,65 201 1001 1.66 | 10.94 1.87
UniMatch [571] (d) no adapt. 3429 543 3980 532 2675 329 2629 328 | 31.78 433
MADNet 2 (e) no adapt. 8.94 197 1386 232 1063 1.83 1055 1.69 | 11.00 195
) FT 4.69 1.28 7.13 1.43 6.20 1.35 6.06 1.27 6.02 1.33
(2) MAD++ 5.66 1.43 8.39 1.53 791 1.50 7.79 1.39 7.44 1.46
CoEx [43] (h) no adapt. 6.14 1.52 1027 177 7.82 1.58 7.64 1.45 7.97 1.58
(i) FT 3.55 1.1 5.14 1.2 4.39 1.11 4.41 1.07 4.37 1.12
(j) FT + AT 3.65 1.1 4.98 1.18 4.19 1.1 4.12 1.04 4.24 1.11
RobIA (ours) (k) AttEx-MoE 3.66 1.13 5.32 1.23 4.59 1.15 4.85 1.13 4.61 1.16

(1) AttEx-MoE + AT 3.51 1.09 5.38 1.23 4.77 1.18 4.58 1.1 4.56

Round 10 Round 5 Round 1

Round 10 Round 5 Round 1

(a) Left image (b) MADNet 2

(c) CoEx

(d) CoEx + AT

(e) AttEx-MoE (ours)

(f) AttEx-MoE
+ AT (ours)

Figure 4: Qualitative results for cloudy sequences in the DrivingStereo dataset.

(a) Left image

(b) MADNet 2

(c) CoEx

(d) CoEx + AT

(e) AttEx-MoE (ours)

(f) AttEx-MoE
+ AT (ours)

Figure 5: Qualitative results for rainy sequences in the DrivingStereo dataset.

W



NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims regarding our proposed continual test-time adaptation framework
for stereo depth estimation (RobIA), including AttEx-MoE and AdaptBN-based dense
supervision, are clearly stated in both the abstract and introduction. These contributions are
consistently supported by methodological details and experiments in Sections 4 and 5.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?



Answer: [Yes]

Justification: We explicitly discuss the limitations of our method in the final paragraph of
the Conclusion. In particular, we note that AttEx-MoE relies on predefined expert structures,
which may limit flexibility in highly heterogeneous environments. We also outline potential
future directions such as incorporating uncertainty estimation or online expert refinement to
improve long-term adaptability.

Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
Justification: Our paper does not include any formal theoretical results or proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?



Answer: [Yes]

Justification: Our paper describes all necessary components to reproduce the main experi-
mental results, including model architecture (Sec. 4,5), training settings and hyperparameters
(Appendix), evaluation metrics, and datasets used (Sec. 5). All experiments are conducted
on publicly available datasets. We also plan to release our code to facilitate reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in our experiments are publicly available (see Sec. 5). We
will release the code and reproduction instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental setting in Section 5. Training details such as
optimizer type, learning rate, and other hyperparameters are provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars or confidence intervals, as each method was
evaluated using a single run with fixed random seed and consistent data splits. Reporting
statistical variability is a direction we plan to explore in future work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources



10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the GPU types (NVIDIA A6000 and RTX 3090), along with runtime
and memory usage in our computational cost analysis (see Table 3).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes—Our work fully conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Not applicable—Our work is theoritical and does not directly affect society.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable—Our work does not involve any data or models that have a high
risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes—Our work properly credits the original owners of assets used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not applicable—Our work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.
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16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable-Our work does not involve crowdsourcing nor research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable—Our work does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not decribe the usage of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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