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Abstract

We study revenue maximization for agents with additive preferences, subject to
downward-closed constraints on the set of feasible allocations. In seminal work,
Alaei [Ala14] introduced a powerful multi-to-single agent reduction based on an
ex-ante relaxation of the multi-agent problem. This reduction employs a rounding
procedure which is an online contention resolution scheme (OCRS) in disguise, a
now widely-used method for rounding fractional solutions in online Bayesian and
stochastic optimization problems. In this paper, we leverage our vantage point, 10
years after the work of Alaei, with a rich OCRS toolkit and modern approaches to
analyzing multi-agent mechanisms; we introduce a general framework for design-
ing non-sequential and sequential multi-agent, revenue-maximizing mechanisms,
capturing a wide variety of problems Alaei’s framework could not address. Our
framework uses an interim relaxation, that is rounded to a feasible mechanism using
what we call a two-level OCRS, which allows for some structured dependence
between the activation of its input elements. For a wide family of constraints,
we can construct such schemes using existing OCRSs as a black box; for other
constraints, such as knapsack, we construct such schemes from scratch. We demon-
strate numerous applications of our framework, including a sequential mechanism
that guarantees a 2e

e−1 ≈ 3.16 approximation to the optimal revenue for the case
of additive agents subject to matroid feasibility constraints. The simplicity of our
developed two-level CRSs and OCRSs highlights the strength of our framework:
even with a simple analysis, it yields state-of-the-art approximation guarantees
across a wide range of settings. Finally, we show how it naturally extends to
multi-parameter procurement auctions.

1 Introduction

We consider the problem of a revenue-maximizing seller with m heterogeneous items for sale to
n strategic agents with additive preferences, subject to downward-closed constraints on the set
of feasible allocations. Revenue maximization for multi-agent environments is a central problem
in Computer Science and Economics. Beyond Myerson’s [Mye81] single-item mechanism, char-
acterizing the revenue optimal mechanism in multi-item settings is a notoriously hard problem.
Revenue-optimal mechanisms are hard to compute even in basic settings, and exhibit various counter-
intuitive properties [MV07, DDT13, DDT15, BCKW15, HR15, Das15, HN19, PSCW22]. An active
research area strives to understand optimal and approximately optimal mechanisms from various
perspectives, e.g., their computational complexity [CDW12a, CDW13a, CDW12b, CDW13b], sam-
ple complexity [CR14, HMR15, DHP16, MR16, CD17, GHZ19, GW21], robustness [BS11, CD17,
DK19, LLY19, PSW19, BCD20, MMPT24], and the tradeoffs between simplicity and optimal-
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ity [CHK07, CHMS10, CMS15, Yao15, RW15, CM16, CZ17, KW19, CDW19, BILW20, BGN17,
KMS+19].

Influential work by Alaei [Ala14] provides a framework for constructing multi-agent mechanisms
with ex-post supply constraints via a reduction to single-agent mechanism design with ex-ante
supply constraints. On a high level, Alaei’s framework first finds a feasible in expectation ex-ante
allocation rule: a vector x ∈ [0, 1]nm, where xi,j is the probability of allocating item j to agent i,
over the randomness in the mechanism and all agents’ valuations. Given this ex-ante relaxation, the
framework needs a single agent mechanism for each agent i, such that item j is allocated to agent i
with probability at most xi,j . Alaei shows that running such single-agent mechanisms independently
can be combined with a rounding procedure (in order to satisfy the supply constraints ex-post) to give
an overall approximately optimal multi-agent mechanism. This rounding step, Alaei’s solution to his
“magician’s problem,” is an online contention resolution scheme (henceforth, OCRS), in disguise.
OCRSs, later defined by Feldman et al. [FSZ21], are a widely applicable tool for rounding fractional
solutions in Bayesian and stochastic online optimization problems.

In this paper, we leverage our vantage point, 10 years after the work of Alaei [Ala14], with a rich
OCRS toolkit and modern approaches to analyzing multi-agent mechanisms, to introduce a novel,
general framework for designing both non-sequential and sequential multi-agent, revenue-maximizing
mechanisms for agents with additive preferences, subject to downward-closed constraints on the
set of feasible allocations. Our framework uses an interim relaxation, that is rounded to a feasible
mechanism, using what we call a two-level OCRS, allowing for some structured dependence between
the activation of its input elements. For a wide family of constraints, we can construct such schemes
using OCRSs as a black box; for other constraints, e.g., knapsack, we construct such schemes from
scratch. We demonstrate numerous applications of our framework, including a sequential mechanism
that guarantees a 2e

e−1 ≈ 3.16 approximation to the optimal revenue for the case of additive agents
subject to matroid feasibility constraints. We also show how our framework can be easily extended to
multi-parameter procurement auctions, where we provide an OCRS for Stochastic Knapsack that
might be of independent interest.

1.1 Our Contributions

Our framework relies on an interim relaxation. Intuitively, an interim form (or reduced form) of a
mechanismM has variables πM

i,j (vi), which indicate the probability that agent i receives item j when
reporting valuation vi toM (over the randomness inM, as well as the randomness in other agents’
valuations), and variables qMi (vi), which indicate the expected payment of agent i when reporting
valuation vi toM (over the same randomness). Writing a linear program that optimizes revenue over
the space of all feasible interim rules has proven to be a useful endeavor when computing optimal
and approximately optimal mechanisms [CDW12a, CDW13a, CDW12b, CDW13b], as well as for
deriving upper bounds (via duality) to the revenue optimal mechanism [CDW19]. While the number
of variables in this program (corresponding to interim rules) is polynomial, the number of constraints
needed to ensure that an interim rule is feasible (i.e., that there exists a mechanismM that induces
it) is typically exponential (even for, e.g., the simple case of selling a single item to n agents). Our
starting point is to consider a relaxation of these feasibility constraints, resulting in interim rules that
are feasible in expectation.

Given (optimal or approximately optimal) interim rules that are feasible in expectation the first
natural step for rounding to an actual mechanism is to use a CRS/OCRS. Contention resolution
schemes, or CRSs, were defined by Chekuri et al. [CVZ14] as a tool for rounding fractional solutions
in (submodular) optimization problems. In this framework, there is a finite ground set of elements
N = {e1, . . . , ek}, a downward-closed family F of subsets of N , and a fractionally feasible point
x∗ ∈ [0, 1]k. The main idea is to obtain a (possibly infeasible) random set R(x∗) from x∗, by treating
x∗ as a product distribution: element i is included in R(x∗) with probability x∗

i . Given R(x∗), a
c-selectable CRS selects a set I ⊆ R(x∗) that is feasible (i.e., I ∈ F), in a way that each element is
selected with probability at least c if it is in R(x∗). A refined definition, (b, c)-selectable CRSs, for
b ∈ [0, 1], extends the concept of c-selectable CRSs (which are simply (1, c)-selectable) and provides
the same guarantee per element when given as input a set R(b x∗). Feldman et al. [FSZ21] extended
this framework to online settings and defined OCRSs.

Back to our problem, a first blueprint for a mechanism, given interim rules that are feasible in
expectation, would be to elicit reports r1, . . . , rn from the agents, and then construct a set of active

2



elements (the input to the CRS/OCRS) according to πi,j(ri), for every agent i and item j. A technical
complication is that CRSs/OCRSs receive as input elements that become active independently. In our
blueprint, the event that element “(i, j, ri)” becomes active is correlated with the event that element
“(i, j′, ri)” becomes active. To bypass this obstacle, we define variants of CRSs and OCRSs which
we call two-level contention resolution schemes, or tCRS, and two-level online contention resolution
schemes, or tOCRS. Intuitively, a tCRS/tOCRS receives an n by m matrix of elements, such that
elements in the same row are independent, conditioned on the value of a row-specific random variable
(and these row-specific random variables are independent).

Our framework. Informally, our overall framework takes as input feasible in expectation interim
rules and a tCRS/tOCRS and outputs a mechanism; for the case of tOCRS the mechanism is sequential,
i.e., it sequentially approaches each agent i, elicits a report ri, and decides on the outcome of agent
i (her allocation and payment) before proceeding to the next agent. We require that valuations are
independent across agents, but the value of agent i for item j can be correlated with her value for
item j′. Our mechanisms are Bayesian incentive compatible (BIC) and Bayesian individually rational
(BIR). Given an α ≥ 1 approximately optimal interim form, and a (b, c)-selectable tCRS/tOCRS, our
mechanism is α

b c approximately optimal (Theorem 1). See Figure 1.

Figure 1: Given an interim form (π, q) our framework (sequentially in the case of tOCRSs) elicits
agents’ valuations. Given the report vi of agent i, it executes the tCRS/tOCRS on a set of active
elements R, and returns a set Z. The allocation of i is constructed from Z; when given only black-box
access to the tCRS/tOCRS this construction can be done efficiently via a division Bernoulli factory.

Towards constructing tCRSs/tOCRSs, we first give a general reduction for constructing a
tCRS/tOCRS, that uses CRSs/OCRSs as a black-box (Theorem 2). Informally, if CRSs/OCRSs for
certain feasibility sets F1, . . . ,Fk exist, we can provide a tCRS/tOCRS for certain combinations of
the Fis. Combining with known CRS/OCRS results we get tCRSs/tOCRSs for various settings of
interest. Next, we give 1/10-selectable tOCRS for Knapsack constraints and a 1/9-selectable tOCRS
for Multi-Choice Knapsack constraints (Theorems 3 and 4). Notably, our tOCRS for knapsack
implies a 1/10-selectable OCRS for knapsack, which is better than the 0.085-selectable OCRS
given by Feldman et al. [FSZ21], but not as good as the state-of-the-art 1/(3 + e−2)-selectable
(≈ 0.319-selectable) OCRS of Jiang et al. [JMZ22].

Applications. Plugging the aforementioned tCRSs/tOCRSs into our framework gives numerous
interesting applications. As a first application, consider the problem of auctioning off m items to n
agents with additive preferences, such that the set of agents that each item j is allocated to must be
an independent set of a matroid, and the items allocated to each agent must be an independent set
of a matroid. Our results give a sequential, BIC and BIR mechanism that guarantees a 2e

e−1 ≈ 3.16
approximation to the optimal revenue (Application 1). The previously best-known approximation
possible by a sequential mechanism was 70 (for the special case where every item can be allocated at
most once, and where items’ values are independent), due to Cai and Zhao [CZ17], whose mechanism
has additional desirable simplicity properties (that we do not guarantee here, and are in fact impossible
to guarantee for correlated items [BCKW15, HN19]). Beyond its simplicity, their mechanism applies
to a broader class of valuation functions.

As a next application, consider the problem of auctioning off m items to n agents with additive
preferences, where each item j ∈ [m] has some weight kj and the total weight of items sold cannot
exceed K. Our results imply that there exists an efficiently computable, sequential, BIC and BIR
mechanism that guarantees a 10 approximation to the optimal revenue. Additionally, if each agent i
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can get at most one item, there exists an efficiently computable, sequential, BIC and BIR mechanism
that guarantees a 9 approximation to the optimal revenue (Application 2). Finally, consider the
problem of auctioning off m items to n agents with arbitrary valuation functions, where each item
j ∈ [m] has some weight kj and the total weight of items sold cannot exceed K. Then, our results
imply that there exists a (computationally inefficient) sequential, BIC and BIR mechanism that
guarantees a 9 approximation to the optimal revenue (Application 3).

Extensions. Our framework can be easily extended to other mechanism design problems, beyond
auctioning off items to agents. In Appendix F we give an extension to procurement auctions, where a
value-maximizing buyer is interested in buying services from strategic sellers, subject to a budget
constraint. In this case, we show how, given an OCRS for Stochastic Knapsack (see Appendix F for
definitions) it is possible to design an approximately optimal sequential multi-parameter procurement
auction. Combining with a result of Jiang et al. [JMZ22], we then have a (3 + e−2)-approximately
optimal sequential procurement auction (Application 4). As an aside, we also give an OCRS for the
stochastic knapsack setting that might be of independent interest (Theorem 6). Feldman et al. [FSZ21]
give a greedy and monotone1 (3/2−

√
2)-selectable OCRS (≈ 0.0858) for Knapsack, while Jiang et

al. [JMZ22] give a 1
3+e−2 -selectable OCRS (≈ 0.319) for Stochastic Knapsack (this OCRS induces

a non-greedy and non-monotone OCRS for Knapsack). We give c-selectable OCRS for Stochastic
Knapsack (that induces a greedy and monotone OCRS for Knapsack), where c = max{ 1−k∗

2−k∗ , 1/6},
and k∗ is a parameter that depends on the maximum possible weight (in the support of the distributions
from which the stochastic weights are drawn); our OCRS is therefore always better than the OCRS of
Feldman et. al., and better than the OCRS of Jiang et. al. when k∗ is small.

2 Preliminaries

We consider the problem of a seller with m indivisible, heterogeneous items for sale to n strategic
agents. Each agent i has a private valuation vector vi that is drawn independently from an m-
dimensional distribution Di (that is known to the seller). We write Vi = supp(Di) for the set of
possible valuations for agent i. Agent i has a value vi,j for item j. We write Di,j for the marginal
distribution for item j, noting that Di,j is not necessarily independent of Di,j′ . We assume that
agents have additive preferences, i.e., the value of agent i with valuation vi for a subset of items
S ⊆ [m] is

∑
j∈S vi,j . Agents are quasi-linear: the utility of an agent is her value minus her

payment. An (integral) allocation x ∈ {0, 1}n·m indicates which item was received by which agent,
i.e., xi,j ∈ {0, 1} is the indicator for whether agent i received item j. There are constraints on the
set of feasible allocations represented by a set F ⊆ {0, 1}n·m; that is, an allocation x is feasible if
x ∈ F (therefore, one can equivalently think of the agents as constrained additive). Let PF be the
convex hull of all characteristic vectors of F , i.e. PF = conv{1F : F ∈ F}. We write P i

F for the
polytope that corresponds to agent i, i.e., the polytope PF when we only consider the m dimensions
that correspond to the allocation of agent i.

2.1 Mechanism Design Preliminaries

A mechanismM takes as input a reported valuation from each agent and selects a (possibly random)
allocation in F , and payments to charge the agents. An agent’s objective is to maximize her expected
utility. A mechanismM is Bayesian Incentive Compatible (BIC) if every agent i ∈ [n] maximizes
her expected utility by reporting her true valuation vi, assuming other agents do so as well, where
this expectation is over the randomness of other agents’ valuations, as well as the randomness of
the mechanism. A mechanism is Bayesian Individually Rational (BIR) if every agent i ∈ [n] has
non-negative expected utility when reporting her true valuation (assuming other agents do so as well).
The (expected) revenue of a BIC mechanism is the expected sum of payments made when agents
draw their valuations from D (and report their true valuations to the mechanism). We say that a
mechanism is BIC-IR if it is both BIC and BIR.

1An OCRS is greedy if it fixes a downward-closed family of feasible sets before the (online) process starts,
and greedily accepts any active element e that will not violate feasibility if included. An OCRS µ is monotone
if for all e ∈ A ⊆ B, the probability that µ selects e when A is the set of active elements is at most the
probability that µ selects e when B is the set of active elements. These properties are important for applications
in submodular optimization [CVZ14].
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The optimal mechanism for a given distribution D, whose revenue is denoted by Rev(D), maximizes
expected revenue over all BIC-IR mechanisms. For a given mechanismM, we slightly abuse notation
and write RevM(D) to denote its revenue under a distribution D. A mechanism guarantees an α

approximation to the optimal revenue if αRevM(D) ≥ Rev(D). Finally, we say that a mechanism
is sequential if it sequentially approaches agent i, elicits a report ri, and allocates items to i before
proceeding to the next agent.

Interim allocations and payments. The interim allocation of a mechanismM, πM, indicates, for
each agent i and item j the probability πM

i,j (ri) that agent i receives item j when she reports valuation
ri (over the randomness inM and the randomness in other agents’ reported valuations v−i, drawn
from D−i). The interim payment of agent i, qMi (ri), is the expected payment she makes when she
reports valuation ri (again, over the randomness inM and the randomness in other agents’ reported
valuations). It is easy to see that the expected utility of agent i with valuation vi when reporting ri
to a mechanismM, is

∑
j∈[m] vi,jπ

M
i,j (ri) − qMi (ri). We will drop the superscriptM when the

mechanism is clear from the context.

Given interim allocations and payments, it is not a straightforward task to determine whether they
are ex-post feasible, i.e., whether there exists a mechanismM that induces the exact probabilities
promised by the interim allocations. In fact, doing this task efficiently is at the core of the frame-
work of Cai et al. [CDW12a, CDW13a, CDW12b, CDW13b] for computing approximately optimal
mechanisms. However, it is typically straightforward to find interim allocations that are feasible in
expectation.
Definition 1 (Feasibility in expectation). An interim allocation rule π is feasible in expectation if (i)
∀i ∈ [n], vi ∈ Vi, πi(vi) ∈ P i

F , and (ii)
[∑

vi∈Vi
Pr[vi] · πi,j(vi)

]
(i,j)∈[n]×[m]

∈ PF .

We say that an interim allocation, payment pair (π, q) is BIC if ∀i ∈ [n], vi, v
′
i ∈ Vi it holds that∑

j∈[m]

vi,jπi,j(vi)− qi(vi) ≥
∑
j∈[m]

vi,jπi,j(v
′
i)− qi(v

′
i).

An interim allocation, payment pair (π, q) is BIR if ∀i ∈ [n], vi ∈ Vi,
∑

j∈[m] vi,jπi,j(vi)−qi(vi) ≥
0. An interim allocation, payment pair (π, q) is BIC-IR if it is both BIC and BIR. Finally, an
interim allocation, payment pair (π, q) guarantees an α-approximation to the optimal revenue if
α
(∑

i∈[n]

∑
vi∈Vi

Pr[vi] · qi(vi)
)
≥ Rev(D).

2.2 OCRS and tOCRS Preliminaries

Consider a finite ground set N = {e1, · · · , ek} and a family of feasible subsets F ⊆ 2N . Let
PF = conv({1I |I ∈ F}) be the convex hull of all characteristic vectors of feasible sets. Let x ∈ PF ,
and let R(x) ⊆ N be a random set obtained by including each element i ∈ N independently with
probability xi. The set R(x) is feasible in expectation (with respect to F ) but not necessarily ex-post
feasible. Given R(x), a contention resolution scheme (CRS) selects a subset I ⊆ R(x) such that
I ∈ F . If elements of R(x) are given in an online manner, the corresponding scheme is called an
online contention resolution scheme (OCRS). To avoid trivial solutions (e.g., I = ∅), we would
additionally like to have the property that each element i ∈ N appears in I with probability at least
cxi for some c. We call such schemes c-selectable. Some schemes only work if elements come from
R(b x); such schemes are called (b, c)-selectable. Formally:
Definition 2 (Online Contention Resolution Scheme(OCRS) [FSZ21]). Let b, c ∈ [0, 1]. For every
x ∈ PF , let R(b x) be a random subset of active elements, where element i ∈ N is active with
probability b xi, independently. A (b, c)-selectable Online Contention Resolution scheme (OCRS) µ
for PF is a (possibly randomized) online procedure that, given active elements one by one, decides
whether to select an active element irrevocably before the next element is revealed. The OCRS µ
returns a set I ⊆ R(b x), such that (i) I ∈ F , and (ii) Pr [i ∈ I|i ∈ R(b x)] ≥ c,∀i ∈ N .

We introduce a variant of the previous OCRS model that allows for dependencies between the
activation of different elements. This slightly changes the setup, as well as the definition of a
“scheme.” Consider the ground set N = {ei,j}i∈[n],j∈[m], where |N | = nm, and a family of feasible
subsets F ⊆ 2N . Let PF = conv({1I |I ∈ F}) be the convex hull of all characteristic vectors
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of feasible sets. Let P i
F be the restriction of PF to the m dimensions that correspond to elements

(i, j), j ∈ [m]. Elements will become active in a certain, dependent way, as induced by a two-level
stochastic process (D, x), defined as follows:
Definition 3 (Two-Level stochastic process). We say that (D, x) is a two-level stochastic process
over {0, 1}nm, where D = ×n

i=1Di is a product distribution and x ∈ [0, 1]m
∑n

i=1 |Vi|, if it is
induced by the following procedure: (i) we first sample di from Di, independently, and (ii) for each
(i, j) ∈ [n]× [m], element ei,j becomes active with probability xi,j(di), independently.

For the case of OCRSs, since elements became active independently, (expected) feasibility for a
product distribution x boiled down to x being fractionally feasible for F , i.e. x ∈ PF . Here, since
elements are active in a dependent way, our notion of feasibility needs to be further refined:

Definition 4 (Feasibility). Let F ⊆ 2[n]×[m] be a feasibility set and PF be its relaxation. We say
that a two-level stochastic process (D, x) is feasible with respect to F if:

1. For each i ∈ [n] and each di ∈ supp(Di), (xi,1(di), · · · , xi,m(di)) ∈ P i
F .

2. w ∈ PF , where wi,j =
∑

di∈supp(Di)
Pr [Di = di]xi,j(di).

Let (D, x) be a two-level stochastic process that is feasible with respect to F , and let R(D, x) ⊆ N
be a random set of elements obtained by sampling from (D, x). Our goal is to select a subset
I ⊆ R(D, x) (possibly online) such that I ∈ F and the probability that an active element is selected
is lower bounded by a constant c. Formally, our definitions of two-level Online Contention Resolution
Schemes (tOCRSs) is as follows.
Definition 5 (Two-level OCRS (tOCRS)). Let b, c ∈ [0, 1]. Let (D, x) be a two-level stochastic
process that is feasible with respect to F , and let R(D, b x) ⊆ N be a random set of elements
obtained by sampling from (D, b x). Elements of R(D, b x), and the corresponding samples from
the first level of (D, x), appear online, in batches of size m: the process selects some i ∈ [n]
and reveals di (sampled from Di) and all elements {ei,j}j∈[m], before selecting a new i′ ∈ [n]. A
(b, c)-selectable two-level OCRS (tOCRS) µ for F is a (possibly randomized) online procedure that,
given active elements that satisfy the aforementioned ordering, decides whether to select an active
element irrevocably before the next element is revealed, i.e., returns a set I ⊆ R(D, b x), such that (i)
I ∈ F , and (ii) Pr [i ∈ I|i ∈ R(D, b x)] ≥ c,∀i ∈ N .

The existence of a (b, c)-selectable tOCRS implies the existence of a (b, c)-selectable OCRS, by a
simple simulation argument (for m = 1).

Due to space constraints, preliminaries on CRSs and tCRSs are deferred to Appendix B.1, and
preliminaries on Bernoulli factories are deferred to Appendix B.2.

3 Mechanisms from two-level OCRSs

We give two frameworks for constructing mechanisms. Due to space limitations the framework for
tCRSs can be found in Appendix C. The input to a framework is (i) a BIC-IR interim allocation,
payment rule pair (π, q) that is feasible in expectation and is an α approximation to the optimal
revenue, (ii) a (b, c)-selectable tCRS/tOCRS for F , and (iii) a parameter ϵ ≥ 0. Our frameworks
produce BIC-IR, α

b (c−ϵ) approximately optimal (and sequential, for tOCRSs) mechanisms for agents
with constrained (with respect to F) additive valuations.

Given a tOCRS, our framework, Algorithm 1, works as follows. We approach each agent i sequentially.
Agent i reports r∗i ∈ Vi and pays b (c− ϵ) · qi(r∗i ). We consider each item j sequentially. We make
element (i, j) active with probability b · πi,j(r

∗
i ), and then ask the tOCRS if this element should be

selected (assuming it was active). If the tOCRS selects the element (i, j), we again flip an additional
coin to decide whether agent i should get item j. This last coin essentially balances the randomness
of the tOCRS and ensures that the probability that agent i gets item j when they report r∗i is exactly
b(c− ϵ)πi,j(r

∗
i ), which, combined with the chosen payment, ensures that BIC and BIR are satisfied.

Theorem 1. Given (i) a BIC-IR interim allocation, payment rule pair (π, q) that is feasible in
expectation and is an α ≥ 1 approximation to the optimal revenue (ii) a (b, c)-selectable tOCRS
(resp. tCRS) for F , and (iii) a parameter ϵ ≥ 0, Algorithm 3 and Algorithm 1 give BIC-IR,

α
b (c−ϵ) -approximately optimal (and sequential for the case of Algorithm 1) mechanisms for F .
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ALGORITHM 1: Our framework for tOCRSs
Input: allocation, payment rule pair (π, q), (b, c)-selectable tOCRS µ, parameter ϵ ≥ 0.

for each agent i ∈ [n] do
Agent i reports r∗i ∈ Vi and pays b (c− ϵ) qi(r

∗
i ).

for each item j ∈ [m] do
Ri,j ← 1 with probability b πi,j(r

∗
i ).

Zi,j ← µ(Ri,j , r
∗
i ). // Zi,j ≤ Ri,j indicates if the tOCRS selects element (i, j)

when active
if Zi,j = 1 then

Allocate item j to agent i with probability c−ϵ
p∗i,j(r

∗
i )

, where p∗i,j(r
∗
i ) is the probability that µ

selects (i, j) conditioned on i’s report r∗i and Ri,j being equal to 1.
end

end
end

If we only have query access to the tCRS/tOCRS, our mechanisms can be implemented using a
O(poly(

∑
i |Vi|,m, 1

ϵ )) number of queries in expectation.

The proof is deferred to Appendix D.

3.1 Implementation Considerations

Here, we highlight some implementation details for our framework. First, we give a simple LP that
computes optimal (α = 1), feasible in expectation, BIC-IR interim allocation and payment rules (π, q).
Second, we flesh out implementation details of Line 3 of Algorithm 3 and Line 1 of Algorithm 1,
flipping a coin with probability (c− ϵ)/p∗i,j(vi), when given only black-box access to a tCRS/tOCRS.
This is not a straightforward task, since p∗i,j(vi) might be unknown, and approximating this probability
(e.g., via sampling), instead of computing it exactly, results in a violation of the BIC constraint.

Finding feasible in expectation, optimal interim rules. The following linear program, (LP1)
computes an interim relaxation of the revenue-optimal BIC-IR mechanism.

maximize
∑
i∈[n]

∑
vi∈Vi

Pr[vi]qi(vi)

s.t.
∑

j∈[m] vi,jπi,j(vi)− qi(vi) ≥
∑

j∈[m] vi,jπi,j(v
′
i)− qi(v

′
i) ∀i ∈ [n], vi, v

′
i ∈ Vi∑

j∈[m] vi,jπi,j(vi)− qi(vi) ≥ 0 ∀i ∈ [n], vi ∈ Vi

πi(vi) ∈ P i
F ∀i ∈ [n], vi ∈ Vi[∑

vi∈Vi
Pr[vi] · πi,j(vi)

]
(i,j)∈[n]×[m]

∈ PF

(LP1)

This linear program has O(m
∑

i∈[n] |Vi|) variables and O(
∑

i∈[n] |Vi|2) constraints, excluding the
constraints necessary to represent P i

F and PF . Therefore, the overall computational complexity of
solving this LP depends on whether PF and P i

F have an efficient representation.

We note that, in a series of papers, Cai et al. [CDW12a, CDW13a, CDW12b, CDW13b] propose a
similar linear program for finding approximately optimal mechanisms. The variables in their LP
are the same: the interim allocations and payments. In their framework, however, finding interim
allocation rules that can be induced by ex-post feasible allocation rules is crucial. To do so, their
constraints, even for simple feasibility sets, are exponential; see Border [Bor07].2 To solve their LP
efficiently they show how to construct (efficient) separation oracles. Once interim allocation and

2For single item settings, [AFH+19] gave a polynomial-sized LP describing Border’s inequalities. For
general matroids, such a succinct representation is not possible [GNR18].
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payment rules are found, they use complicated techniques — techniques that are not amenable to
online arrivals of agents — to construct a final mechanism. In contrast, our LP, even though it uses
exactly the same variables, only needs to ensure feasibility in expectation. For many settings of
interest, our LP has a polynomial-size description, and thus can be solved by any LP solver, making
our approach more convenient in practice. Furthermore, our techniques are designed to accommodate
for online arrivals of agents.

Flipping a coin with probability p∗i,j(vi). To implement Line 3 of Algorithm 3 and Line 1 of Algo-
rithm 1 we can use a Bernoulli factory for division, which, given a (c− ϵ)-coin and a p∗i,j(vi)-coin,
outputs a c−ϵ

p∗
i,j(vi)

. We know c − ϵ exactly, so the (c − ϵ)-coin can be implemented trivially. One

can implement a p∗i,j(vi)-coin as follows: For each i′ ̸= i sample r̂i′ ∼ Di′ and let Ri′,j ← 1 with
probability b πi′,j(r̂i′). Also let Ri,j = 1 with probability b πi,j(vi). Querying the tCRS/tOCRS µ on
the active set R returns a set Z of selected elements; output Zi,j as the coin flip for the p∗i,j(vi)-coin.

4 Constructing tCRS and tOCRS

In this section, we construct tCRSs and tOCRSs for various feasibility constraints; missing proofs
are deferred to Appendix E. First, we prove that for a general family of constraints we call Vertical-
Horizontal (VH) constraints, it is possible to construct tOCRSs (resp. tCRSs) given OCRSs (resp.
CRSs) in a black-box manner.
Definition 6 (VH Constraints). We call F a Vertical-Horizontal (VH) constraint with respect to a
ground set N = {ei,j}i∈[n],j∈[m] if there exist sets of constraints {Fi}i∈[n], {F j}j∈[m] such that
I ∈ F iff (i) ∀i ∈ [n], I ∩ {ei,j}j∈[m] ∈ Fi, (ii) ∀j ∈ [m], I ∩ {ei,j}i∈[n] ∈ Fj .

Theorem 2. Given (b, c)-selectable CRSs (resp. OCRSs) for constraints {Fi}i∈[n] and (b, c′)-
selectable CRSs (resp. OCRSs) for constraints {F j}j∈[m], there exists a (b, c · c′)-selectable tCRS
(resp. tOCRS) for the induced Vertical-Horizontal constraint F .

By combining Theorem 2 with known results (e.g., [HKS07, LS18, KS23]) we can get tCRSs and
tOCRSs for various settings of interest; we show these applications in Theorem 1 in Section 5.

Next, we construct tOCRSs for knapsack constraints.
Definition 7 (Knapsack Constraints). Consider a ground set of elements N = {ei,j}i∈[n],j∈[m],
where, for each i, j ∈ [n]× [m], element ei,j has a weight ki,j , and there is a maximum weight K. We
say that F is a Knapsack constraint when I ∈ F if and only if I ⊆ N , and

∑
(i,j):ei,j∈I ki,j ≤ K.

Definition 8 (Multi-Choice Knapsack). Consider a ground set of elements N = {ei,j}i∈[n],j∈[m],
where, for each i, j ∈ [n] × [m], element ei,j has a weight ki,j , and there is a maximum weight
K. We say that F is a Multi-Choice Knapsack constraint when I ∈ F if and only if I ⊆ N ,∑

(i,j):ei,j∈I ki,j ≤ K, and, for all i ∈ [n], |I ∩ {ei,j}j∈[m]| ≤ 1.

The following theorem gives a (b, 1
2+8b )-selectable tOCRS for Knapsack Constraints, for b ∈ [0, 1].

Interestingly, since tOCRSs are OCRSs, our result implies a (1, 0.1)-selectable OCRS for knapsack;
this is better than the (1, 0.085)-selectable OCRS given by Feldman et al. [FSZ21], but not as
good as the state-of-the-art (1, 1/(3 + e−2))-selectable (≈ (1, 0.319)-selectable) OCRS of Jiang et
al. [JMZ22].
Theorem 3. For all b ∈ [0, 1], there exists a (b, 1

2+8b )-selectable tOCRS for Knapsack.

Next, we give a (b, 1
2+7b )-selectable tOCRS for Multi-Choice constraints, for all b ∈ [0, 1]. The proof

of the following theorem is deferred to Appendix E.
Theorem 4. For all b ∈ [0, 1], there exists a (b, 1

2+7b )-selectable tOCRS for Multi-Choice Knapsack.

4.1 Efficient Implementation Considerations

Theorem 3 and Theorem 4 show that “Knapsack” and “Multi-Choice Knapsack” tOCRSs exist.
Both tOCRSs have non-constructive coin-flipping steps (e.g., selecting an active light element with
probability 1

(1+4b) Pr[Bi,j(di)]
, where Bi,j(di) is the event that, at the time step when element ei,j is
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considered, the total weight of elements in I so far is strictly less than K/2, when di was sampled
from the two-level stochastic process (D, bx)). The following propositions show how to efficiently
implement these steps, albeit with a small loss in the performance guarantee.

Proposition 1. We can implement a
(
b, 1

2+8b

(
1−δ

1+10ϵ

))
-selectable tOCRS for Knapsack in time

poly(1/ϵ2, log(1/δ),m, n).

Proposition 2. We can implement a
(
b, 1

2+7b

(
1−δ
1+8ϵ

))
-selectable tOCRS for Multi-Choice Knapsack

in time poly(1/ϵ2, log(1/δ),m, n).

5 Applications

In this section, we combine results from Sections 3 and 4 to get mechanisms for various problems.

First, our framework can give a sequential mechanism with a 2e
e−1 (≈ 3.16) approximation guarantee

for the problem of auctioning off m items to n agents with additive preferences, under “matroid
Vertical-Horizontal” constraints F : (i) the set of agents that each item j is allocated to must form
a matroid, and (ii) the set of items allocated to each agent i must form a matroid. Observe that,
F is a VH constraint (Definition 6), induced by the aforementioned constraints (i) and (ii). Both
(i) and (ii) are matroid constraints, [CVZ14] give a (1, 1 − 1

e )-selectable CRS and [LS18] give a
(1, 1/2)-selectable OCRS for matroid constraints. Therefore, Theorem 2 (where we use the CRS for
the constraints over items and the OCRS for the constraints over agents) implies a (1, e−1

2e )-selectable
tOCRS for F :

Corollary 1 (Theorem 2 and [LS18]). There exists a (1, e−1
2e )-selectable tOCRS for matroid Vertical-

Horizontal constraints.

Corollary 1 and Theorem 1 readily give the following result.

Application 1 (Corollary 1 and Theorem 1). Consider the problem of auctioning off m items to n
agents with additive preferences, such that the set of agents that each item j is allocated to must
form a matroid, and the items allocated to each agent must form a matroid. There exists a sequential,
BIC-IR mechanism that guarantees a 2e

e−1 (≈ 3.16) approximation to the optimal revenue.

Notably, the previously best-known approximation guarantee for a sequential mechanism for even a
special case of this problem (agents with preferences that are constrained additive with a matroid
constraint, and each item can be allocated to at most one agent) was 70 [CZ17].

CRSs and OCRSs with approximation factors better than 2 (i.e. better than the result of [LS18]
for general matroids) are possible for some special cases. E.g., for k-uniform matroids, [HKS07]

give a
(
1−O

(√
log k
k

))
-selectable OCRS, and [KS23] give a

(
1, 1−

(
n
k

) (
1− k

n

)n+1−k ( k
n

)k)
-

selectable CRS, where n is the number of elements (for a fixed k, this approaches
(
1, 1− e−k kk

k!

)
).

Combining with Theorem 2 we can get tOCRSs/tCRSs for these cases, and applying Theorem 1 gives
an overall (sequential for tOCRSs) mechanism with a slightly improved guarantee.

We note that, depending on the choice of matroids, (LP1) might not be efficiently computable. For
example, the representation of PF might require an exponential (in n, m and

∑
i∈[n] |Vi|) number of

inequalities; in such cases, our approach does not give an end-to-end efficient procedure for finding
a mechanism. However, if one is given feasible in expectation, BIC-IR and approximately optimal
interim rules, all remaining steps of our framework can be efficiently computed.

Finally, we combine Theorem 1 with our tOCRSs for Knapsack and Multi-Choice Knapsack.

Application 2 (Theorem 3, Theorem 4, and Theorem 1). Consider the problem of auctioning off m
items to n agents with additive preferences, where each item j ∈ [m] has some weight kj and the
total weight of items sold cannot exceed K. There exists an efficiently computable, sequential, BIC-IR
mechanism that guarantees a 10 approximation to the optimal revenue. Additionally, if each agent i
can get at most one item, there exists an efficiently computable, sequential, BIC-IR mechanism that
guarantees a 9 approximation to the optimal revenue.
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Recently, [ABM+22] gave a simple and approximately optimal, with respect to welfare, mechanism
for the Rich-Ads problem. Application 2 readily gives a sequential, approximately optimal, with
respect to revenue, mechanism for the same problem.

Finally, by creating a meta-item for each possible subset of items (where the weight of the meta-item
is simply the sum of weights from the corresponding subset), our approach gives an approximately
optimal, sequential, BIC-IR mechanism for arbitrary valuation functions (subject to a knapsack
constraint). For a logarithmic (in n) number of items, this approach gives a computationally efficient
procedure as well (but, of course, this is not true in general).
Application 3 (Theorem 4 and Theorem 1). Consider the problem of auctioning off m items to n
agents with arbitrary valuation functions, where each item j ∈ [m] has some weight kj and the total
weight of items sold cannot exceed K. There exists a sequential, BIC-IR mechanism that guarantees
a 9 approximation to the optimal revenue.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theorems are accompanied by a proof either in the main paper or the
Appendix. All assumptions are either defined in the preliminaries or in each theorem
statement.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The reserach conducted in this paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We discuss the scope of our work in the introduction. We are interested in
foundational aspects of mechanism design and machine learning. We believe direct (positive
or negative) societal impact is implausible.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Further Related Work

Approximations in Bayesian Mechanism Design. There is a rich body of literature on approxi-
mately optimal mechanism design, as discussed in the introduction. The work most related to ours is
[Ala14] which provides a framework for designing multi-agent mechanisms by a reduction to single
agent mechanisms via an ex-ante relaxation and using an online rounding procedure or OCRS. This
framework yielded approximately optimal non-sequential and sequential mechanisms for several
fundamental settings including selling k identical items to n additive buyers, who may be subject to
additional constraints such as budget constraints, although does not support any inter-buyer constraints
(except for per item supply constraints). In particular, a sequential posted price mechanism can obtain
a 1−O(1/

√
k) to the optimal revenue. In the special case of unit-demand buyers with independent

values for heterogeneous items (where each item can be allocated to at most one bidder), [Ala14]
establishes a sequential posted price mechanism that obtains a 4-approximation—recovering a prior
result of [CHMS10]. Sequential mechanisms have been of particular interest due to their simplicity
in implementation. The [Ala14] framework (along with other influential techniques like [CDW19]
duality) has enabled the design of approximately optimal and simple sequential mechanisms in vari-
ous follow-up works. [AFHH13] show that revenue maximization in a multi-dimensional multi-agent
setting reduces (exactly or approximately) to a single-agent problem in a variety of settings, including
risk-averse agents. [AW18] use random order OCRS to design a (k + 4)-approximation mechanism
for unit demand bidders under k-matroid feasibility constraints. [CM16] consider a more general
case where agents have constrained additive valuations (aka matroid rank valuations) and provide a
simple sequential two-part tariff mechanism that obtains a constant approximation. This constant
was then improved to 70 by [CZ17], who also extend their results to the setting where agents have
XOS (and subadditive) valuations over m heterogeneous, independent items, and [DKL20] provide
improved approximation ratio of O(log logm) for subadditive valuations. Crucially, these works
assume that the agents’ valuations are independent over the item. For the setting of correlated items
and constrained additive buyers (with matroid constraints), [Ala14] provides a sequential mechanism
that is a 2-approximation to the optimal revenue. However, this mechanism is not “simple" (unlike
posted price or two-tariff). Indeed when the item distributions are correlated no “simple” mechanism
can obtain any non-trivial approximation [HN19, BCKW15]. A recent line of work circumvents
these impossibilities by studying approximation guarantees of simple mechanisms with respect to a
weaker benchmark called buy-many mechanisms [BCKW15, CRTT23, CCD+24].

CRSs, OCRSs, and their applications. Contention resolution schemes were defined by [CVZ14],
and extended by [FSZ21] to online settings. CRSs and OCRSs have since found numerous applica-
tions in Bayesian and stochastic online optimization, such as stochastic probing [FTW+21, GN13]
(with applications to posted price mechanisms), prophet inequalities [EFGT20] (in fact, OCRSs
are equivalent to ex-ante prophet inequalities [LS18]), pricing problems [PRSW22, CCD+24], and
network revenue management [MMZ24]. In this paper, we define a type of dependent CRSs and
OCRSs, which we call two-level CRSs/OCRSs. Online dependent rounding schemes, under the name
of ODRS, were introduced by [NSW23] in the context of rounding fractional bipartite b-matchings
online; here we give a different name to our schemes to highlight the specific dependence we can
handle. There has also been a recent work studying OCRSs with limited correlation or pairwise inde-
pendence [GHKL24, DKP23]. A special case of tOCRS called random-element OCRS, where at most
one element from {eij}j becomes active for each i, is studied in [MMZ24] for constraints induced
by “L-bounded products". Other works study OCRSs under negative correlations [Dug19, QS22].

B Additional Preliminaries

B.1 CRS and tCRS Preliminaries

Definition 9 (Contention Resolution Scheme (CRS) [CVZ14]). Let b, c ∈ [0, 1]. For every x ∈ PF ,
let R(b x) be a random subset of active elements, where element i ∈ N is active with probability
b xi, independently. A (b, c)-selectable Contention Resolution scheme (CRS) µ for PF is a (possibly
randomized) procedure that, given a set of active elements R(b x) returns a set µ(R(b x)) = I ⊆
R(b x), such that (i) I ∈ F , and (ii) Pr [i ∈ I|i ∈ R(b x)] ≥ c,∀i ∈ N .

Definition 10 (Two-level CRS (tCRS)). Let b, c ∈ [0, 1]. Let (D, x) be a two-level stochastic process
that is feasible with respect to F , and let R(D, b x) ⊆ N be a random set of elements obtained by
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sampling from (D, b x). A (b, c)-selectable two-level CRS (tCRS) µ for F is a (possibly randomized)
procedure that, given a set of active elements R(D, b x) ⊆ N and realizations d = (d1, . . . , dn) that
were sampled in the first level of (D, x), returns a set µ(R(D, b x), d) = I ⊆ R(D, b x), such that (i)
I ∈ F , and (ii) Pr [i ∈ I|i ∈ R(D, b x)] ≥ c,∀i ∈ N .

B.2 Bernoulli Factories

Bernoulli factories were introduced by Keane and O’Brien [KO94], where they are defined as follows.
Definition 11 (Bernoulli Factory). Given a function f : (0, 1) → (0, 1), a Bernoulli factory for f
outputs a sample of a Bernoulli variable with bias f(p) (i.e. an f(p)-coin), given black-box access to
independent samples of a Bernoulli distribution with bias p ∈ (0, 1) (i.e. a p-coin).

As an illustrative example, imagine that we are given a p-coin, a coin that outputs 1 with probability
p and 0 otherwise. Our goal is to create a new coin that outputs 1 with probability f(p) = p2. The
complication here is that we do not know the value of p. f(p) = p2 can be implemented as follows:
flip the p-coin twice. If both are 1 then output 1 (otherwise output 0). We include additional examples
of Bernoulli factories in Appendix B.2. Bernoulli factories have recently been used in mechanism
design in the context of black-box reductions [DHKN21, COVZ21]. In this paper, we make use of
a Bernoulli factory for division: given one p0-coin and one p1-coin, implement f(p0, p1) = p0/p1
for p1 − p0 ≥ δ. This problem was considered by [NP05] but their construction is rather involved.
Instead, consider Algorithm 2, the Bernoulli Division factory of [Mor21].

ALGORITHM 2: Bernoulli Division [Mor21]
while true do

X ∼ Bern[1/2].
if X = 0 then

W ∼ Bern[p0].
if W = 1 then

return 1
end

end
else

W ∼ Bern[p1 − p0].
if W = 1 then

return 0
end

end
end

Lemma 1 ([Mor21]). Given a p0-coin and a p1-coin, assume p1 − p0 ≥ δ, and let N be the
number of tosses required. Then, Algorithm 2 is a Bernoulli factory for (p0/p1) which satisfies
E [N ] ≤ 22.12

p1
(1 + δ−1).

Although the process and its correctness are fully described by [Mor21], the end-to-end expected
number of tosses is not explicitly calculated. For completeness, we show these calculations, and also
argue that Algorithm 2 is a Bernoulli factory for (p0/p1).

Proof of Lemma 1. Consider the following distribution:

Pr[Yk = yk] =


1− 1

2p1 if yk = −1
1
2 (p1 − p0) if yk = 0
1
2p0 if yk = 1

Then it is not difficult to see that:
∞∑
k=0

Pr[Yk = 1]

k−1∏
i=0

Pr[Yi = −1] =
1

2
p0

∞∑
k=0

(
1− 1

2
p1

)k

=
p0
p1

,

and thus Algorithm 2 is a valid Bernoulli factory for p0/p1.
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Let Nt be the random variable that represents the number of tosses at round t, and let Xt be a random
variable that is 1 if the experiment lasts at least t rounds and 0 otherwise. Then N =

∑∞
t=1 Nt Xt.

Linearity of expectation implies that E [N ] =
∑∞

t=1 E [Nt Xt], however Xt and Nt are independent
and thus E [N ] =

∑∞
t=1 E [Nt] E [Xt]. From [Mor21] (Proposition 2.27) we know that E [Nt] ≤

11.06(1 + δ−1). On the other hand
∑∞

t=1 E [Xt] =
∑∞

t=1

(
1− 1

2pi
)t

= 2
p1

. Combining the above
concludes the proof.

Finally, we outline a few Bernoulli factories and their construction to help the reader gain some
intuition:

1. Bernoulli Negation: Given a p-coin, implement f(p) = 1 − p. This can be implemented
with one sample from the p-coin:

• P ∼ Bern[p].
• If P = 0 output 1 (otherwise output 0).

2. Bernoulli Down Scaling: Given a p-coin, implement f(p) = λ · p for a constant λ ∈ [0, 1].
This can be implemented with one sample from the p-coin:

• Draw Λ ∼ Bern[λ] and P ∼ Bern[p].
• Output Λ · P .

3. Bernoulli Averaging: Given one p0-coin and one p1-coin, implement f(p0, p1) = p0+p1

2 .
This can be implemented with one sample from the p0-coin or one sample from the p1-coin:

• Draw Z ∼ Bern[1/2], P0 ∼ Bern[p0], and P1 ∼ Bern[p1].
• Output PZ .

4. Bernoulli Doubling: Given a p-coin, implement f(p) = 2p for p ∈ (0, 1/2− δ]. This can
be implemented with O(1/δ) samples in expectation from the p-coin. The algorithm was
introduced by [NP05].

5. Bernoulli Addition: Given one p0-coin and one p1-coin, implement f(p0, p1) = p0 + p1 for
p0 + p1 ∈ [0, 1− δ]. This can be implemented with O(1/δ) samples in expectation from
the p0-coin and p1-coin:

• Use Bernoulli Averaging to create a p0+p1

2 -coin.

• Use Bernoulli Doubling on the p0+p1

2 -coin.

6. Bernoulli Subtraction [Mor21]: Given one p0-coin and one p1-coin, implement f(p0, p1) =
p1 − p0 for p1 − p0 ≥ δ. This can be implemented with O(1/δ) samples in expectation
from the p0-coin and p1-coin:

• Use Bernoulli Negation on the p1-coin to create a 1− p1-coin.
• Use Bernoulli Addition on the 1− p1-coin and p0-coin to create a 1− p1 + p0-coin.
• Use Bernoulli Negation on the 1− p1 + p0-coin.

C Mechanisms from two-level CRSs

The input to the tCRS framework is (i) a BIC-IR interim allocation, payment rule pair (π, q) that is
feasible in expectation and is an α approximation to the optimal revenue, (ii) a (b, c)-selectable tCRS
for F , and (iii) a parameter ϵ ≥ 0. Our frameworks produce BIC-IR, α

b (c−ϵ) approximately optimal
mechanisms for agents with constrained (with respect to F) additive valuations.

Given a tCRS, our framework, Algorithm 3, works as follows. First, each agent i reports r∗i ∈ Vi and
pays b (c− ϵ) · qi(r∗i ). We then construct a set R = {xi,j}i∈[n],j∈[m] of n ·m elements, one for every
agent, item pair, where xi,j = 1 (i.e., element (i, j) is active) with probability b · πi,j(r

∗
i ). We query

the tCRS on input R, to get back a subset Z of selected elements (which is in F , by definition). We
flip an additional coin to decide whether to keep an element (i, j), i.e. whether we should allocate
item j to agent i. Recall that this last coin essentially balances the randomness of the tCRS and
ensures that the probability that agent i gets item j when they report r∗i is exactly b(c− ϵ)πi,j(r

∗
i ),

which, combined with the chosen payment, ensures that BIC and BIR are satisfied.
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ALGORITHM 3: Our framework for tCRSs
Input: allocation, payment rule pair (π, q), (b, c)-selectable tCRS µ, parameter ϵ ≥ 0.

for each i ∈ [n] do
Agent i reports r∗i ∈ Vi and pays b (c− ϵ) qi(r

∗
i ).

end
Construct R = {xi,j}i∈[n],j∈[m], where xi,j ← 1 with probability b πi,j(r

∗
i ), and xi,j ← 0 otherwise.

Z = {Zi,j}i∈[n],j∈[m] ← µ(R, r∗). // Z ⊆ R is the set of elements that the tCRS picks
for each element (i, j) ∈ [n]× [m] with Zi,j = 1 do

Allocate item j to agent i with probability c−ϵ
p∗i,j(r

∗
i )

, where p∗i,j(r
∗
i ) is the probability that µ selects (i, j)

conditioned on i’s report r∗i and xi,j being equal to 1.
end

D Missing Proofs from Section 3

Proof of Theorem 1. First, we argue that our frameworks output allocations in F . By definition, and
assuming truthful reports, the interim allocation π defines a feasible (for F) two-level stochastic
process, where we first sample vis independently, and then πi,j(vi). Let x ∈ R(b π) be the input to the
(b, c)-selectable tCRS (resp. for tOCRS); by definition, the set of selected elements Z satisfies Z ∈ F .
We allocate a subset of Z, thus our allocations are feasible, since F is downward closed. Furthermore,
for any element zi,j , Pr[zi,j = 1|xi,j = 1] = p∗i,j(vi) ≥ c, and thus c−ϵ

p∗
i,j(vi)

is a probability. Second,
we argue that our mechanisms are BIC. From the perspective of agent i, a report ri ∈ Vi costs
b (c− ϵ) ·qi(ri) and allocates item j with probability b πi,j(ri) ·p∗i,j(ri) · c−ϵ

p∗
i,j(ri)

= b (c− ϵ) ·πi,j(ri),

and therefore translates to an expected utility of costs b (c− ϵ)
∑

j∈[m] vi,jπi,j(ri)− b (c− ϵ) · qi(ri);
since (π, q) is BIC, so is the mechanism we output. Near-identical arguments imply the BIR guarantee
and revenue guarantees.

When given only black-box access to a tCRS/tOCRS, it is not immediately clear how one can
flip a coin with probability exactly (c − ϵ)/p∗i,j(vi) (efficiently or otherwise), as needed in Line 3
of Algorithm 3 and Line 1 of Algorithm 1. Using a Bernoulli factory for division (such as the
result of [Mor21] discussed in Section 2), this step can be implemented using 22.12

p∗
i,j(vi)

(1 + ϵ−1) ∈
O(1/ϵ) calls in expectation (Lemma 1), assuming that c ≤ p∗i,j(vi) is a constant. Overall, we have
O(poly(

∑
i |Vi|,m, 1

ϵ )) queries in expectation for the entire execution of a framework; we discuss
implementation details in Section 3.1.

E Missing Proofs from Section 4

Proof of Theorem 2. Let (D, b x) be the two-level stochastic process through which elements become
active. Let µi be the (b, c)-selectable CRS/OCRS for constraint Fi, for i ∈ [n], and let µj be
the (b, c′)-selectable CRS/OCRS for constraint F j , for j ∈ [m]. Given a set of active elements
R(D, b x) sampled from (D, b x), our tCRS/tOCRS selects element ei,j ∈ R(D, b x) if (i) µj on
input R(D, b x) ∩ {ei,j}i∈[n] selects ei,j , and (ii) µi on input R(D, b x) ∩ {ei,j}j∈[m] selects ei,j
(noting that this is process does make decisions online when µj and µi are OCRSs and are queried in
an online fashion).

Let Ai,j be the event that ei,j ∈ R(D, b x). By the definition of a two-level stochastic process,
event Ai,j is independent from event Ai′,j , for all j ∈ [m] and i′ ∈ [n] such that i ̸= i′. Therefore,
the CRSs/OCRSs µj , j ∈ [m], are queried about elements that become active independently (as
required by the definition of a CRS/OCRS). Now, overloading notation, let Ai,j(di) be the event
that ei,j ∈ R(D, b x) given that di was sampled from Di. By the definition of a two-level stochastic
process, event Ai,j(di) is independent from event Ai,j′(di), for all j ̸= j′ ∈ [m] and all i ∈ [n].
Therefore, the CRSs/OCRSs µi, i ∈ [n], are queried about elements that become active independently
(as required by the definition of a CRS/OCRS). Let Bi,j be the event that µj selects an active element
ei,j ∈ R(D, b x) on input R(D, b x) ∩ {ei,j}i∈[n], and note that, since µj is a (b, c′)-selectable
CRS/OCRS, we have that then Pr[Bi,j |Ai,j ] ≥ c′. Similarly, let Ci,j be the event that µi selects
an active element ei,j ∈ R(D, b x) on input R(D, b x) ∩ {ei,j}j∈[m]; Pr[Ci,j |Ai,j ] ≥ c. Finally,
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conditioned on Ai,j events Bi,j and Ci,j are conditionally independent due to the definition of a
two-level stochastic process. Thus, Pr[Bi,j ∩ Ci,j |Ai,j ] ≥ c c′, which concludes the proof.

Proof of Theorem 3. Let (D, bx) be the two-level stochastic process through which elements become
active. Let ki,j be the weight of element ei,j , and K bet the total weight. Let Sh = {ei,j : i ∈
[n], j ∈ [m]|ki,j > K/2} be the set of elements whose weight is at least K/2, the “heavy elements,”
and let Sℓ = {ei,j : i ∈ [n], j ∈ [m]|ki,j ≤ K/2} be the set of “light elements.” Our tOCRS is
randomized: with probability 1/2 we run a scheme that considers only heavy elements, the “heavy
scheme,” and with probability 1/2 we run a scheme that considers only light elements, the “light
scheme.” In both cases, we use I to indicate the set of elements we output. Without loss of generality
(from the definition of a tOCRS) we assume that elements arrive in the order e1,1, e1,2, . . . , en,m.

For the case of the heavy scheme, it is obvious that we can only take one heavy element. We
initialize I = ∅ and consider elements sequentially. Let Ai,j(di) be the event that I is empty until
element ei,j is considered when we run the heavy scheme and di was sampled from the two-level
stochastic process (D, bx). If element ei,j is active, ei,j ∈ Sh and I = ∅, then with probability

1
(1+4b) Pr[Ai,j(di)]

we set I ← {ei,j}, otherwise we move on to the next element. Assuming that
1

(1+4b) Pr[Ai,j(di)]
is a valid probability, each heavy element is selected with probability exactly

Pr[Ai,j(di)]
1

(1+4b) Pr[Ai,j(di)]
= 1

(1+4b) when we run the heavy scheme. Towards proving that
Pr[Ai,j(di)] ≥ 1

(1+4b) we have

Pr[Ai,j+1(di)] = 1−

∑
i′≤i

∑
j′:ei′,j′∈Sh

Pr[ei′,j′ picked] +
∑

j′<j+1:ei,j′∈Sh

Pr[ei,j′ picked]


= 1−

∑
i′≤i

∑
j′:ei′,j′∈Sh

Pr[ei′,j′ active] · Pr[ei′,j′ picked|ei′,j′ active]

+
∑

j′<j+1:ei,j′∈Sh

Pr[ei,j′ active] Pr[ei,j′ picked|ei,j′ active]


= 1− 1

1 + 4b

∑
i′≤i

∑
j′:ei′,j′∈Sh

Pr[ei′,j′ active] +
∑

j′<j+1:ei,j′∈Sh

Pr[ei,j′ active]


= 1− 1

1 + 4b

∑
i′≤i

∑
j′:ei′,j′∈Sh

wi′,j′ +
∑

j′<j+1:ei,j′∈Sh

xi,j′(di)


> 1− 4b

1 + 4b
=

1

1 + 4b
,

where wi,j =
∑

di∈Vi
Pr[Di = di]xi,j(di), is the probability that ei,j is active in (D, bx).

For the case of the light scheme, we again initialize I = ∅. Let Bi,j(di) be the event that, at the
time step when element ei,j is considered, the total weight of elements in I so far is strictly less than
K/2, when di was sampled from the two-level stochastic process (D, bx). We consider each (light)
element ei,j one at a time, and if ei,j is active and the weight of elements in I is less than K/2, we set
I ← I ∪ {ei,j} with probability 1

(1+4b) Pr[Bi,j(di)]
; otherwise we move on to the next element. Again,

if 1
(1+4b) Pr[Bi,j(di)]

is a valid probability, each light element is selected with probability exactly
Pr[Bi,j(di)]

1
(1+4b) Pr[Bi,j(di)]

= 1
(1+4b) when we run the light scheme. It therefore remains to prove

that Pr[Bi,j(di)] ≥ 1
(1+4b) . Let Wi,j(di) be the random variable that represents the total weight of

elements in I at the time when we consider elements ei,j when di was the sample from (D, bx). We
have that:

E [Wi,j(di)] =
∑
i′<i

∑
di′∈Vi′

Pr[Di′ = di′ ]
∑

j′:ei′,j′∈Sℓ

1

(1 + 4b) Pr[Bi′,j′(di′)]
Pr[Bi′,j′(di′)]bxi′,j′(di′)ki′,j′︸ ︷︷ ︸

Contribution from agents before i
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+
∑
j′<j:

ei,j′∈Sℓ

1

(1 + 4b) Pr[Bi,j′(di)]
Pr[Bi,j′(di)]bxi,j′(di)ki,j′

︸ ︷︷ ︸
Contribution from i’s items before j

=
b

1 + 4b

∑
i′<i

∑
j′:ei′,j′∈Sl

wi′,j′ki′,j′ +
∑
j′<j:

ei,j′∈Sl

xi,j′(di)ki,j′


≤ 2b

1 + 4b
K. (Feasibility of (D, bx))

Therefore, we have

Pr[Bi,j(di)] = Pr[Wi,j(di) < K/2]

= 1− Pr[Wi,j(di) ≥ K/2]

≥ 1−
2b

1+4bK

K/2
(Markov’s Inequality)

=
1

1 + 4b
.

Since we run each scheme with probability 1/2, for an element ei,j ∈ Sh that is active we have:

Pr[ei,j ∈ I] = Pr[“heavy scheme”] Pr[ei,j ∈ I|“heavy scheme”] ≥ 1

2

1

1 + 4b
=

1

2 + 8b
.

Similarly, for an active element ei,j ∈ Sℓ, Pr[ei,j ∈ I] ≥ 1/(2 + 8b), concluding the proof.

Proof of Theorem 4. Let (D, bx) be the two-level stochastic process through which elements become
active. Let ki,j be the weight of element ei,j , and K bet the total weight. Our overall approach is
similar to Theorem 3.

Let Sh = {ei,j : i ∈ [n], j ∈ [m]|ki,j > K/2} be the set of “heavy elements” and Sℓ = {ei,j : i ∈
[n], j ∈ [m]|ki,j ≤ K/2} be the set of “light elements.” Our tOCRS is randomized: with probability
1+4b
2+7b we run a scheme that considers only heavy elements, the “heavy scheme,” and with probability
1+3b
2+7b we run a scheme that considers only light elements, the “light scheme.” In both cases, we use I
to indicate the set of elements we output. Without loss of generality (from the definition of a tOCRS)
we assume that elements arrive in the order e1,1, e1,2, . . . , en,m.

For the heavy scheme, initialize I = ∅ and consider elements sequentially. Let Ai,j(di) be the event
that I = ∅ when element ei,j is considered when we run the heavy scheme and di was sampled
from the two-level stochastic process (D, bx). If element ei,j is active, heavy, and I = ∅, then with
probability 1

(1+4b) Pr[Ai,j(di)]
we set I ← {ei,j}; otherwise we move on to the next element. The

analysis in Theorem 3 proves that 1
(1+4b) Pr[Ai,j(di)]

is a valid probability. Notice that each heavy
element is selected with probability exactly Pr[Ai,j(di)]

1
(1+4b) Pr[Ai,j(di)]

= 1
(1+4b) given that we

run the heavy scheme.

Now consider the light case. We initialize I = ∅. Let Bi be the event that
∑

i′,j:ei′,j∈I,i′<i ki′,j <

K/2. Also let Ci,j(di) be the event that, when di was sampled from the two-level stochastic process
(D, bx), ∀j′ ∈ Sℓ, j

′ < j : ei,j′ /∈ I . We consider each light element ei,j ∈ Sℓ sequentially and, if
it is active, and the weight of elements in I is less than K/2, and no other element of i has been
selected, we set I ← I ∪ {ei,j} with probability 1

(1+3b) Pr[Bi∩Ci,j(di)]
; otherwise we move on to

the next element. If Pr[Bi ∩ Ci,j(di)] ≥ 1
(1+3b) (i.e., if 1

(1+3b) Pr[Bi∩Ci,j(di)]
is a valid probability),

each light element is selected with probability exactly 1
1+3b when we run the light scheme. Towards

proving that Pr[Bi ∩ Ci,j(di)] ≥ 1
(1+3b) , let Wi elements in I when we consider the first element of

i. We have:
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E [Wi] =
∑
i′<i

∑
di′∈Vi′

∑
j∈Sℓ

Pr[Di′ = di′ ] Pr[Bi′ ∩ Ci′,j(di′)]
b

(3b+ 1)Pr[Bi′ ∩ Ci′,j(di′)]
bxi′,j(di′)ki′,j

=
b

1 + 3b

∑
i′<i

∑
j∈Sℓ

wi′,jki′,j

≤ b

1 + 3b
K. (Knapsack feasibility of (D, bx))

Therefore:

Pr[Bi] = Pr[Wi < K/2] = 1− Pr[Wi ≥ K/2] ≥(Markov’s Inequality) 1−
b

1+3bK

K/2
=

1 + b

1 + 3b
.

On the other hand,

Pr[Ci,j+1(di)|Bi] = Pr[Ci,j(di)|Bi]

(
1− 1

(1 + 3b) Pr[Bi ∩ Ci,j(di)]
bxi,j(di)

)
= Pr[Ci,j(di)|Bi]−

1

(1 + 3b) Pr[Bi]
bxi,j(di)

= 1− 1

(1 + 3b) Pr[Bi]

∑
j′≤j:j′∈Sℓ

bxi,j(di)

≥ 1− b

(1 + 3b) Pr[Bi]
. (multi-choice feasibility of (D, bx))

Combining the above we have that:

Pr[Bi ∩ Ci,j(di)] = Pr[Bi] Pr[Ci,j+1(di)|Bi] ≥ Pr[Bi]−
b

(1 + 3b)
=

1

1 + 3b
.

We run the heavy scheme with probability 1+4b
2+7b ; thus, for an active element ei,j ∈ Sh we have:

Pr[ei,j ∈ I] = Pr[“heavy scheme”] Pr[ei,j ∈ I|“heavy scheme”] ≥ 1 + 4b

2 + 7b

1

1 + 4b
=

1

2 + 7b
.

We can similarly show that active light elements are also selected with probability at least 1
2+7b . This

concludes the proof of Theorem 4.

Proof of Proposition 1. In the proof of Theorem 3 we give an exact formula for the probability that
Ai,j(di) occurs; therefore, the only step we cannot directly implement from the procedure outlined in
the proof of Theorem 3 is the toss of the 1

(1+4b) Pr[Bi,j(di)]
coin. Even when given a Pr[Bi,j(di)]-coin,

using a Bernoulli factory for division to produce a 1
(1+4b) Pr[Bi,j(di)]

-coin results in an exponential
blow-up in computation, since the factory for the k-th coin would need to also simulate the factory
for the (k − 1)-st coin, and so on. Instead, we approximate these probabilities, sequentially, using
multiple experiments and bounding the error using Chernoff bounds.

In order to decide whether to select some element ei,j ∈ Sℓ, we repeatedly simulate our algorithm
until element ei,j , for T = 1

2ϵ2 log
2nm
δ repetitions, where the choice of running the “light scheme”

and di are fixed. In this simulation, the coins needed to make decisions until element ei,j are replaced
with estimated coins (described shortly). Let Xt be the indicator random variable for the event that
Bi,j(di) occurred at simulation t ∈ [T ]. We select element ei,j (when it is active) with probability

1

(1+4b)( 1
T

∑
t∈[T ] Xt+ϵ)

. Standard Chernoff–Hoeffding bounds [Hoe94] imply that

Pr

∣∣∣∣∣∣ 1T
∑
t∈[T ]

Xt − Pr[Bi,j(di)]

∣∣∣∣∣∣ > ϵ

 ≤ 2 exp
(
−2ϵ2T

)
= 2 exp

(
−2ϵ2 1

2ϵ2
log

2nm

δ

)
≤ δ

nm
.

Assuming that
∣∣∣ 1T ∑

t∈[T ] Xt − Pr[Bi,j(di)]
∣∣∣ ≤ ϵ,

(
1
T

∑
t∈[T ] Xt + ϵ

)
∈

[Pr[Bi,j(di)],Pr[Bi,j(di)] + 2ϵ].
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When bounding E [Wi,j(di)] (in the proof of Theorem 3), the term 1
(1+4b) Pr[Bi,j(di)]

· Pr[Bi,j(di)]

is replaced with Pr[Bi,j(di)]

(1+4b)( 1
T

∑
t∈[T ] Xt+ϵ)

, which is at most 1
1+4b . Thus E [Wi,j(di)] ≤ 2b

1+4bK, which

gives us Pr[Bi,j(di)] ≥ 1
1+4b ≥ 1/5 using the same arguments presented in the proof of Theorem 3.

Thus, the probability that an active, light element ei,j is selected is

Pr[Bi,j(di)]

(1 + 4b)
(

1
T

∑
t∈[T ] Xt + ϵ

) ≥ 1

1 + 4b

(
Pr[Bi,j(di)]

Pr[Bi,j(di)] + 2ϵ

)
≥ 1

1 + 4b

(
1

1 + 10ϵ

)
.

Using a union bound we have that

Pr

∃(i, j) ∈ [n]× [m] :

∣∣∣∣∣∣ 1T
∑
t∈[T ]

Xt − Pr[Bi,j(di)]

∣∣∣∣∣∣ > ϵ

 ≤ δ.

Thus, we overall have that with probability at least 1− δ, when we run the light scheme, each active
element will be selected with probability at least 1

1+4b

(
1

1+10ϵ

)
.

Proof of Proposition 2. Notice again that, similarly to Proposition 1, the only step we cannot directly
implement from the procedure outlined in the proof of Theorem 4 is the toss of a Pr[Ci,j+1(di)∩Bi]-
coin. Specifically, in the proof of Theorem 4 we do not calculate the following probability exactly:

Pr[Ci,j+1(di) ∩Bi] = Pr[Bi] Pr[Ci,j+1(di)|Bi] = Pr[Bi]−
b

1 + 3b

∑
j′<j:j′∈Sl

xi,j(di).

Our procedure will again sequentially approximate these probabilities using multiple experiments,
and bounding the error using Chernoff-Hoeffding bounds.

In order to decide whether to select some element ei,j , we repeatedly simulate our algorithm until
element ei,j , for T = 1

2ϵ2 log
2nm
δ repetitions, where the choice of running the “light scheme” and di

are fixed. Let Xt be the random variable that indicates if Bi occurred at simulation t ∈ [T ]; from
Chernoff–Hoeffding bounds [Hoe94] we have that Pr

[∣∣∣ 1T ∑
t∈[T ] Xt − Pr[Bi,j(di)]

∣∣∣ > ϵ
]
≤ δ

nm .

Instead of selecting element ei,j (when it is active) with probability 1
(1+3b) Pr[Bi∩Ci,j(di)]

, we select

it with probability 1
(1+3b)(ℓ+ϵ) -coin where ℓ = 1

T

∑
t∈[T ] Xt − b

1+3b

∑
j′<j:j′∈Sl

xi,j(di).

Assuming that
∣∣∣ 1T ∑

t∈[T ] Xt − Pr[Bi]
∣∣∣ ≤ ϵ then (ℓ+ ϵ) ∈ [Pr[Ci,j+1(di) ∩ Bi],Pr[Ci,j+1(di) ∩

Bi] + 2ϵ]. Thus Pr[Ci,j+1(di)∩Bi]
(1+3b)(ℓ+ϵ) ≤ 1

1+3b . Thus E [Wi] ≤ b
1+3bK which gives us Pr[Bi] ≥ 1+b

1+3b

and thus Pr[Ci,j+1(di) ∩ Bi] ≥ 1
1+3b ≥ 1/4 using the same arguments presented in the proof of

Theorem 4.

Thus,

Pr[Ci,j+1(di) ∩Bi]

(1 + 3b) (ℓ+ ϵ)
≥ 1

1 + 4b

(
Pr[Ci,j+1(di) ∩Bi]

Pr[Ci,j+1(di) ∩Bi] + 2ϵ

)
≥ 1

1 + 4b

(
1

1 + 8ϵ

)
.

Union bounding we have that

Pr

∃(i, j) ∈ [n]× [m] :

∣∣∣∣∣∣ 1T
∑
t∈[T ]

Xt − Pr[Bi]

∣∣∣∣∣∣ > ϵ

 ≤ δ.

Thus with probability at least 1−δ when we run the light scheme, each active element will be selected
with probability at least 1

1+4b

(
1

1+8ϵ

)
.

F Extensions to procurement auctions

In this section, we show how to extend our framework for the case of procurement auctions. We
only show how our framework works for sequential procurement auctions, where we construct an
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auction using an OCRS (and interim allocations/payments); our results can be extended to give
non-sequential auctions using a CRS, similarly to our results in Section 3.

Budget feasible procurement auctions were introduced by the seminal work of [Sin10]. Following
this, there has been a line of work studying deterministic and randomized budget feasible mechanisms
that obtain approximately optimal welfare, where a major focus has been on single dimensional and
prior-free settings [CGL11, GJLZ20, AGN18, KS22]. We start by defining the procurement problem
we study.

Procurement Preliminaries There is a single buyer and a set of n sellers. Each seller has a total of
m services they can provide. The buyer has a publicly known value vi,j for getting the j-th service
that seller i offers. An (integral) allocation x ∈ {0, 1}nm indicates which services the buyer received:
xi,j ∈ {0, 1} is the indicator for whether the buyer received the j-th service of seller i. The buyer’s
value for an allocation x is

∑
i∈[n],j∈[m] xi,jvi,j . The buyer will pay the sellers for their services; the

buyer’s objective is to maximize her value without paying more than a (publicly known) budget B.
Each seller i ∈ [n] has some cost for providing service j ∈ [m] depicted as ci,j . We will assume
that ci is drawn from a known distribution Ci; we allow for correlation between the cost for different
services for a fixed seller, but require independence between sellers.

A procurement auction elicits reported costs (c1, . . . , cn), and determines which services are procured
from which seller, as well as the payments to the sellers. Our goal is to design BIC-IR, budget-feasible
procurement auctions that maximize the buyer’s expected value. The definition of BIC-IR, approx-
imate optimality, sequentiality, and interim allocations/payments are similar to the corresponding
definitions from Section 2.

A procurement auction elicits reported costs (c1, . . . , cn), and determines which services are procured
from which seller, as well as the payments to the sellers. A seller’s objective is to maximize her
expected utility, which is the total payment to her, minus the total cost she has to pay. A procurement
auction is Bayesian Incentive Compatible (BIC) if every seller i ∈ [n] maximizes her expected utility
by reporting her true costs ci, assuming other sellers do so as well, where this expectation is over the
randomness of other sellers’ valuations, as well as the randomness of the mechanism. A mechanism
is Bayesian Individually Rational (BIR) if every seller i ∈ [n] has non-negative expected utility
when reporting her true cost (assuming other sellers do so as well). The (expected) value of a BIC
procurement auction is the expected value the buyer makes when sellers draw their costs from C (and
report their true costs to the auction). We say that a procurement auction is BIC-IR if it is both BIC
and BIR. A procurement auction is sequential if it sequentially approaches each seller i, elicits a
report, determines payments to seller i, and which services to procure from i, before proceeding to the
next bidder. The optimal procurement auction for a given distribution C, maximizes expected value
over all BIC-IR procurement auctions. A procurement auction guarantees an α ≥ 1 approximation
to the optimal value if its expected value is at least the expected value of the optimal procurement
auction times 1

α .

The interim allocation of a procurement auctionM, πM, indicates, for each seller i and service j the
probability πM

i,j (ri) that seller i receives service j when she reports cost ri (over the randomness inM
and the randomness in other sellers’ reported costs c−i, drawn from C−i). The interim payment of the
buyer to seller i, qMi (ri), is the expected payment she gets when she reports cost ri (again, over the
randomness inM and the randomness in other sellers’ reported costs). The expected utility of seller
i with cost ci when reporting ri to a procurement auctionM, is −

∑
j∈[m] ci,jπ

M
i,j (ri) + qMi (ri).

An interim allocation rule π is feasible in expectation if (i) ∀i ∈ [n], ci ∈ supp(Ci), πi(ci) ∈ [0, 1],
and (ii) ∀i ∈ [n], j ∈ [m],

∑
ci∈supp(Ci)

Pr[ci] · πi,j(ci) ≤ 1.

For ease of exposition, we will assume that there are no constraints on the services we can acquire,
other than the buyer’s budget constraint. If additional constraints exist, our framework can be extended
using the ideas analyzed in the previous sections.

F.1 Procurement Framework

Our procurement framework uses OCRSs for Stochastic Knapsack. A c-selectable OCRS for
Stochastic Knapsack µK is parameterized by a knapsack size K and distributions from which
elements’ weight are drawn. The OCRS is given, in an online manner, elements and their weight
(which is drawn from the aforementioned distributions), one at a time, and it needs to decide,
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immediately and irrevocably, whether to include an element in the knapsack, in a way that every
element is selected with (ex-ante) probability at least c; see Appendix F.3 for more details.

The input to our framework is (i) a feasible in expectation, BIC-IR interim allocation, payment rule
pair (π, q) that is an α ≥ 1 approximation, (ii) a c-selectable OCRS for Stochastic Knapsack, and
(iii) a parameter ϵ ≥ 0. Our framework, Algorithm 4, outputs a BIC-IR procurement auction that is a
α/(c− ϵ) approximately optimal.

Algorithm 4 works as follows. We approach each seller i sequentially. Seller i reports r∗i ∈ supp(Ci),
and we query the OCRS on input qi(r∗i ). If the OCRS selects an element with weight qi(r∗i ), we
pay seller i an amount equal to qi(r

∗
i ), with a certain probability (this step ensures that the expected

payment to seller i is exactly (c− ϵ)qi(r
∗
i )). Finally, for each service j ∈ [m], we receive the service

from seller i with probability (c− ϵ)πi,j(r
∗
i ).

ALGORITHM 4: Our sequential procurement auction when given an OCRS
Input: an interim allocation, payment rule pair (π, q), a c-selectable OCRS µB for Stochastic Knapsack, a

parameter ϵ ≥ 0.

for each seller i ∈ [n] do
Seller i reports r∗i ∈ supp(Ci).
Zi ← µB(qi(r

∗
i )).

if Zi = 1 then
Pay seller i, qi(r∗i ) with probability (c− ϵ)/p∗i (r

∗
i ), where p∗i (r

∗
i ) be the probability that the

OCRS selects an element with weight qi(r∗i ).
end
for each service j ∈ [m] do

Receive service j from seller i with probability (c− ϵ)πi,j(r
∗
i )

end
end

Theorem 5. Given (i) feasible in expectation, BIC-IR interim allocation and payment rules (π, q)
that are an α ≥ 1 approximation, (ii) a c-selectable OCRS for Stochastic Knapsack, and (iii) a
parameter ϵ ≥ 0, Algorithm 4 gives a BIC-IR sequential procurement auction that is α/(c − ϵ)-
approximately optimal. If we have query access to the OCRS, our mechanism can be implemented
using a O(poly(

∑
i |supp(Ci)|,m, 1

ϵ )) number of queries in expectation.

Proof of Theorem 5. First, we argue that Algorithm 4 is budget feasible with probability 1. By
definition, and assuming truthful reports, the interim payment q defines a feasible distribution of
“weights” for each seller. The OCRS always selects a set of elements whose weight is at most the
knapsack size (in our case B), and our total payments are at most the total weight that the OCRS
packs in the knapsack; therefore, our total payments are at most B.

Second, we argue that Algorithm 4 is BIC-IR. From the perspective of seller i, a report ri ∈ Vi
costs c−ϵ

p∗
i (ri)

p∗i (ri)qi(ri) = (c− ϵ)qi(ri). The expected cost of services is
∑

j∈[m] ci,j(c− ϵ)πi,j(ri).

Therefore, her expected utility is (c − ϵ)
(
qi(ri)−

∑
j∈[m] ci,jπi,j(ri)

)
; since (π, q) is BIC, so

is Algorithm 4. Near-identical arguments imply the BIR guarantee.

The expected value of the buyer is
∑

i∈[n]

∑
ci∈Ci

Pr[ci]
∑

j∈[m] vi,j (c − ϵ)πi,j(ci), which is a
α/(c− ϵ) approximation, since (π, q) is an α approximation.

If we are given only black-box access to an OCRS for Stochastic Knapsack, it is not immediately
straightforward how to flip a coin with probability (c− ϵ)/p∗i (r

∗
i ) (efficiently or otherwise), as needed

in Algorithm 4. Using a Bernoulli factory for division (such as the result of [Mor21] discussed
in Section 2), we can implement this step with O( 1ϵ ) calls in expectation; we discuss efficient
implementation considerations in Appendix F.2

[JMZ22] give a 1
3+e−2 -selectable OCRS for Stochastic Knapsack. Combining with Theorem 5 we

readily get the following application.

Application 4 (Theorem 5 and [JMZ22]). Consider the problem of purchasing m services from n
strategic sellers, subject to a budget constraint. There exists a sequential, budget-feasible, BIC-IR
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procurement auction that guarantees a 3 + e−2 (≈ 3.13) approximation to the expected value of the
optimal BIC-IR auction.

In Appendix F.3 we give a new OCRS for Stochastic Knapsack that is max{ 1−k∗

2−k∗ ,
1
6}-selectable,

where k∗ = 1
K maxi∈[n],ki∈supp(Ki) ki, andKi is the distribution of weights for the i-th element. Our

OCRS outperforms the OCRS of [JMZ22] when k∗ is small (specifically, k∗ ≤ 1/3). Furthermore,
our OCRS induces a greedy and monotone OCRS for the non-stochastic knapsack problem, which
is not true for the OCRS of [JMZ22]. Note that, our OCRS also implies that better approximation
guarantees are possible for sequential procurement auctions if the payment to a seller is never more
than a third of the total budget.

F.2 Implementation Considerations

Here, we highlight some implementation details. First, we give a simple LP that computes optimal
(α = 1), feasible in expectation, BIC-IR interim allocation and payment rule (π, q). Second, we
flesh out implementation details regarding flipping a (c− ϵ)/p∗i (ci)-coin, when given only black-box
access to an OCRS.

Finding feasible in expectation, optimal interim rules Consider the following linear pro-
gram, (F.2), which computes an interim relaxation of the revenue optimal BIC-IR mechanism.

maximize
∑
i∈[n]

∑
ci∈Ci

Pr[ci]
∑
j∈[m]

πi,j(ci)vi,j

s.t. qi(ci)−
∑

j∈[m] ci,jπi,j(ci)≥ qi(c
′
i)−

∑
j∈[m] ci,jπi,j(c

′
i) ∀i ∈ [n], ci, c

′
i ∈ supp(Ci)

qi(ci)−
∑

j∈[m] ci,jπi,j(ci)≥ 0 ∀i ∈ [n], ci ∈ supp(Ci)∑
i∈[n]

∑
ci∈Ci

Pr[ci]qi(ci) ≤ B

qi(ci) ≤ B ∀i ∈ [n], ci ∈ supp(Ci)

(LP2)

This LP has O(n
∑

i∈[n] |supp(Ci)|) variables, and O(n
∑

i∈[n] |supp(Ci)|2) constraints, and is
therefore efficiently computable by standard LP solvers.

Flipping a coin. We again use a Bernoulli factory for division to produce a (c− ϵ)/p∗i (ci)-coin.
c−ϵ is known. And, identically to our approach in Section 3.1, we can flip a p∗i (ci)-coin by simulating
the entire procedure, conditioning on ci being the report of seller i.

F.3 A new OCRS for Stochastic Knapsack

In the Stochastic Knapsack problem, there is a ground set of elements N = {ei}i∈[n] and a knapsack
size K. Each element arrives sequentially and reveals a random weight ki ∈ [0,K] drawn from a
known prior distribution Ki (where a draw of ki = 0 is analogous to element ei being inactive/not
arriving). The input distribution satisfies

∑
i∈[n]

∑
ki∈supp(Ki)

Pr[Ki = ki] · ki ≤ K. Once an
element arrives and reveals its weight we need to immediately and irrevocably decide whether this
element is included in the knapsack. A c-selectable OCRS for this problem is a procedure that selects
elements (online), such that the knapsack constraint is never violated (i.e.,

∑
i∈[n] ki ≤ K in all

outcomes), and every element is selected with probability at least c.

Theorem 6. There exists a max{ 1−k∗

2−k∗ ,
1
6}-selectable OCRS for Stochastic Knapsack, where k∗ =

1
K maxi∈[n],ki∈supp(Ki) ki.

Proof of Theorem 6. We present two OCRSs: a γ-selectable OCRS, where γ = 1−k∗

2−k∗ , and a 1
6 -

selectable OCRS. Our overall OCRS computes k∗ = 1
K maxi∈[n],ki∈supp(Ki) ki. If γ ≥ 1

6 , it
executes the following γ-selectable OCRS; otherwise, it executes a 1

6 -selectable OCRS.
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First, we give the γ-selectable OCRS. Initialize I = ∅, and let Ci(ki) be the event that
∑

i′∈I ki′ ≤
K − ki when element ei arrives, and given that its weight is ki. When element ei ∈ N with weight
ki arrives, if

∑
i′∈I ki′ ≤ K − ki, we include ei in I with probability γ

Pr[Ci(ki)]
, where γ = 1−k∗

2−k∗ .
The probability with which an element ei is selected is then:∑

ki∈supp(Ki)

Pr[Ki = ki] Pr [Ci(ki)]
γ

Pr[Ci(ki)]
= γ

∑
ki∈supp(Ki)

Pr[Ki = ki] = γ.

It remains to prove that γ
Pr[Ci(ki)]

is a valid coin (i.e., Pr[Ci(ki)] ≥ γ). Let Wi be the random
variable that represents the total weight of elements in I (i.e.

∑
i′∈I ki′ ) when element i arrives.

E [Wi] =
∑
i′<i

∑
ki′∈supp(Ki′ )

Pr [Ci′(ki)]
γ

Pr[Ci′(ki)]
Pr[Ki′ = ki′ ]ki′ ≤ γK.

Therefore, we have

Pr[Ci(ki)] = Pr[Ei ≤ K − ki]

= 1− Pr[Wi > K − ki]

≥ 1− γK

K − ki
(Markov’s Inequality)

≥ 1− γ

1− k∗

= γ.

This concludes the proof for the γ-selectable OCRS.

Next, we give a 1
6 -selectable OCRS. With probability 1/2 we run a “heavy scheme,” that only

considers elements ei such that ki > K
2 ; otherwise, we run a “light scheme,” that only considers

elements ei such that ki ≤ K
2 .

Suppose we run the heavy scheme. Initialize I = ∅, and let Ai be the event that I = ∅ when element
ei arrives. For each element ei such that ki > K

2 , if I = ∅, we select ei with probability 1
3Pr[Ai]

.
Assuming that 1

3Pr[Ai]
is a valid coin (i.e., Pr[Ai] ≥ 1/3), the probability with which each element is

selected, given that it is heavy and that we run the heavy scheme, is Pr[Ai]
1

3Pr[Ai]
= 1/3. To prove

that 1
3Pr[Ai]

is a valid coin we have:

Pr[Ai+1] = Pr[Ai]

1− 1

3Pr[Ai]

∑
ki>K/2

Pr[Ki = ki]


= Pr[Ai]−

1

3

∑
ki>K/2

Pr[Ki = ki]

= 1− 1

3

∑
i′≤i

∑
ki>K/2

Pr[Ki = ki]

≥ 1− 2/3 = 1/3.

Now, suppose we run the light scheme. Notice that in this regime, where we ignore elements
whose weight is larger than K/2, the previous γ-selectable OCRS is 1/3-selectable (since k∗ =
1
K maxi∈[n],ki∈supp(Ki) ki). Since each scheme (heavy and light) is chosen with probability 1/2,
this OCRS is 1/6-selectable.

This concludes the proof for the 1
6 -selectable OCRS.

Proposition 3. We can implement a
(
c
(

1−δ
1+2 ϵ/c

))
-selectable OCRS for the Stochastic Knap-

sack setting in time poly(1/ϵ2, log(1/δ), n), where c = max{ 1−k∗

2−k∗ , 1/6}, and k∗ =
1
K maxi∈[n],ki∈supp(Ki) ki.
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Proof of Proposition 3. The only step we cannot directly implement from the procedure outlined
in the proof of Theorem 6 is the toss of the γ

Pr[Ci(ki)]
coin. The use of a Bernoulli factory would

exponentially blow up the complexity of the procedure. Instead, we approximate these probabilities,
sequentially, using multiple experiments and bounding the error using Chernoff bounds.

In order to decide whether to select some element ei ∈ N , we repeatedly simulate our algorithm until
element ei, for T = 1

2ϵ2 log
2|N |
δ repetitions. In this simulation, the coins needed to make decisions

until element ei are replaced with estimated coins (described shortly). Let Xt be the indicator random
variable for the event that Ci(ki) occurred at simulation t ∈ [T ]. Instead of selecting element ei
(when it is active) with probability γ

Pr[Ci(ki)]
, we select it with probability γ

( 1
T

∑
t∈[T ] Xt+ϵ)

. Standard

Chernoff–Hoeffding bounds [Hoe94] imply that

Pr

∣∣∣∣∣∣ 1T
∑
t∈[T ]

Xt − Pr[Ci(ki)]

∣∣∣∣∣∣ > ϵ

 ≤ 2 exp
(
−2ϵ2T

)
= 2 exp

(
−2ϵ2 1

2ϵ2
log

2|N |
δ

)
≤ δ

|N |
.

Assuming that
∣∣∣ 1T ∑

t∈[T ] Xt − Pr[Ci(ki)]
∣∣∣ ≤ ϵ,

(
1
T

∑
t∈[T ] Xt + ϵ

)
∈ [Pr[Ci(ki)],Pr[Ci(ki)] +

2ϵ].

When bounding E [Wi] (in the proof of Proposition 3), the term γ
Pr[Ci(ki)]

· Pr[Ci(ki)] is replaced

with γ Pr[Ci(ki)]

( 1
T

∑
t∈[T ] Xt+ϵ)

, which is at most γ. Thus E [Wi] ≤ γ K, which gives us Pr[Ci(ki)] ≥ γ using

the same arguments presented in the proof of Proposition 3. Thus, the probability that an active,
element ei is selected is

Pr[γCi(ki)](
1
T

∑
t∈[T ] Xt + ϵ

) ≥ γ

(
Pr[Ci(ki)]

Pr[Ci(ki)] + 2ϵ

)
≥ γ

(
1

1 + 2ϵ/γ

)
.

Using a union bound we have that

Pr

∃i ∈ N :

∣∣∣∣∣∣ 1T
∑
t∈[T ]

Xt − Pr[Ci(ki)]

∣∣∣∣∣∣ > ϵ

 ≤ δ.

Thus, we overall have that with probability at least 1− δ, when we run the light scheme, each active
element will be selected with probability at least γ

(
1

1+2ϵ/γ

)
.
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