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Abstract
Recent advances in large language models
(LLMs) have demonstrated potential for LLM
agents. To facilitate the training for these agents
with both linguistic feedback and non-linguistic
reward signals, we introduce Learning through
Communication (LTC). We design a universal
buffer to store all the feedback, and an iterative
pipeline to enable an LLM agent to explore and
update its policy in an given environment. To
utilize our universal buffer for capturing agent in-
teractions in various tasks, we introduce diverse
communication patterns tailored for both single-
agent and multi-agent environments. We evaluate
the effectiveness of our LTC approach on four
diverse datasets: ALFWorld (single-agent), Hot-
potQA (multi-agent collaboration), Chameleon
(multi-agent competition), and GSM8k (multi-
agent teacher-student). On these datasets, LTC
outperforms supervised instruction fine-tuning
baselines by 3.6% to 12%. These results demon-
strate the versatility and effectiveness of LTC in
facilitating online adaptation for LLM agents.

1. Introduction
Recent advances in large language models (LLMs) (Ouyang
et al., 2022; Bubeck et al., 2023; Wei et al., 2022a) have
shed light on human-like LLM agents. In addition to de-
sign prompting methods (Wei et al., 2022b; Yao et al.,
2023; Wu et al., 2023a), recent works also focus on how
to train the LLMs agent use linguistic feedback and non-
linguistic reward signals. The linguistic feedback is usually
processed as instruction data to do Instruction Fine-tuning
(IFT) (Chung et al., 2022; Lee et al., 2023; Honovich et al.,
2022; Wang et al., 2022e), while the non-linguistic reward
signals are generally used to do alignment with human pref-
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erence (Ouyang et al., 2022; Bai et al., 2022a; Stiennon
et al., 2020; Leike et al., 2018).

While some scenarios provide agents with heterogeneous
feedback, existing methods can only utilize the feedback
partially. For instance, in multiplayer board role-playing
games, players generate a wealth of linguistic data, and the
game concludes with definitive reward signals indicating
victory or defeat. Current approaches employ the linguistic
data for IFT (Li et al., 2023; Micheli & Fleuret, 2021), while
the reward signals serve solely as a filtering criterion to
select the IFT data instead of the objective of reinforcement
learning.

To address this gap, we propose a universal framework,
named Learning through Communication (LTC), to train
LLM agents with both linguistic feedback and non-linguistic
reward signals. We design a universal buffer to store all the
feedback, and an iterative pipeline to enable an LLM agent
to explore and update its policy in an given environment.
Each iteration of LTC comprises two distinct phases: (1)
Exploration: During this phase, the agent interacts with the
environments and other agents to gather diverse trajecto-
ries (linguistic) and reward signals (non-linguistic) into the
universal buffer. (2) Updating: In this phase, the agent’s
model is updated based on the collected data in the universal
buffer. For updating, LTC combines the language modeling
loss and the PPO loss to strike a balance between language
consistency and reward signals As the pivot of the iterative
pipeline, the replay buffer is updated after each exploration
phase, and a subset of the buffer is sampled for the updating
phase.

To universally supports linguistic feedback and non-
linguistic reward signals during communication, we de-
sign the replay buffer structure as a trajectory of tokens
sequences (Figure 3). Such a replay buffer structure is
applicable to diverse tasks, including single-agent and multi-
agent environments. To facilitate collecting trajectories with
linguistic data and reward signals, we devised three com-
munication patterns: (1) Single-agent Monologue: This
pattern allows a single agent to collect trajectories contain
linguistic data and receive reward signals from the envi-
ronments. (2) Multi-agent Dialogue: This pattern enables
multiple agents to interact with each other and external tools
to collect linguistic data, and utilize reward signals provided
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Figure 1. The LTC framework is adept for both single-agent and multi-agent environments. Within these environments, agents have
the capability to persistently engage in exploration and interaction to collect trajectories through various communication patterns.
Concurrently, LTC facilitates the training of these agents utilizing the data acquired from their exploratory activities. This process enables
the agents to autonomously adapt to their respective environments, negating the necessity for human supervision.

by the environments. (3) Teacher-student Dialogue: This
variant of multi-agent dialogue that collect the linguistic
feedback and non-linguistic reward signals provided by a
teacher agent instead of the environment.

We evaluate LTC method on several representative datasets:
ALFWorld for decision-making, HotpotQA for knowledge-
intensive reasoning, and GSM8k for numerical reasoning.
Throughout these experiments, LTC consistently outper-
forms the baselines. In ALFWorld, LTC outperforms the
strong instruction tuning baseline by 12% on success rate,
even in the challenging Pick 2 task. This shows that our
communication mechanism enables the agent to learn from
its experiences for task solving. On HotpotQA, LTC outper-
forms the instruction tuning baseline by 5% on EM score,
and our Llama-7B based agent even obtains slightly better
(0.6%) performance than the ReAct-Tuning baseline which
uses 9× larger PaLM-62B model. On GSM8k, LTC also
beats the CoT-Tuning baseline by 3.6% on accuracy. These
results highlight the adaptability and effectiveness of LTC
approach across varied domains.

Our key contributions are:

1. Learning through Communication (LTC): We pro-
pose a universal framework, named Learning through
Communication (LTC), to train LLM agents with both
linguistic feedback and non-linguistic reward sig-
nals. We design a universal buffer to store all the
feedback, and an iterative pipeline to enable an LLM
agent to explore and update its policy in an given envi-
ronment.

2. Task-specific Communication Patterns: The LTC
paradigm allows for flexible design of communica-
tion patterns tailored to different tasks. We introduce
three specific patterns: Single-agent Monologue, Multi-
agent Dialogue, and Teacher-student Dialogue. These
patterns can be combined to generate diverse structured

interactions and feedback signals for agent training,
catering to various task types.

3. Empirical Study and Findings: We conduct rigorous
experiments on public benchmark tasks to demonstrate
the effectiveness of LTC. Our results indicate that LTC
can be a superior approach compared to instruction-
tuning or prompting baselines.

2. Learning Through Communication
We design Learning Through Communication (LTC), an
iterative training method for LLM agents to continuously
adapt to new environments. As shown in Figure 2, LTC
iterates between two phases: (1) An exploration phase where
agents can interact with new environments and other agents
to collect trial data with feedback, and (2) a updating phrase
to fine-tune the agent to update the policy.

2.1. Exploration Phase

At the start of each iteration, the agent explores the en-
vironments to get the trajectories and the reward signal
data. We denote these data as a tuple: S = (T ,M,R),
where T = {t1, t2, . . . , tn} represents the text data gen-
erated by the communication process during agent explo-
ration, M = {m1,m2, . . . ,mn} with mi ∈ {0, 1, 2}
indicates the source of the text data (system or agents),
R = {r1, r2, . . . , rn} with ri ∈ {−1, 0, 1} represents the
reward signals provided by either the system or the agents.
We demonstrate the the details of this data structure in Fig-
ure 3, M is the mask list, and R is the reward list. In PPO
training, both the value list and the log-prob list correspond
directly to the action list. For brevity, we denote these three
lists together as T here. Please see Appendix C.3 for more
detaills.

To collect the trajectories data S = (T ,M,R) from differ-
ent types of tasks, we design the communication patterns for

2



Adapting LLM Agents with Universal Communication Feedback

these tasks. Here we provide three communication patterns:

• Single-agent Monologue: Single-agent Monologue
is a single-agent soliloquy style communication pat-
tern, designed for general instruction following tasks
(Algorithm 1). It split the tasks into step by step like
ReAct and CoT, and their own trajectories with sys-
tem rewards are collected to train themselves at the
same time with their exploration. Figure 1 left is a toy
example of ALFWorld to demonstrate the Monologue
pattern with a single agent. This agent soliloquizes to
think the situation and take the actions to explore the
environment and finally get the reward provided by the
environment. This pattern is based on the think and act
steps in the ReAct formulation (Yao et al., 2023), we
design the training buffer collection process to make it
aligh with our reinforcement learning formulation.

• Multi-agent Dialogue: Multi-agent Dialogue is a
multi-agent discussion style pattern (Algorithm 2). It
is designed for multi-agent collaborating and compet-
ing tasks, where multiple agents will play their role
by speaking or taking actions in a certain order and a
final reward will be given by the environment based
on the performance of the agents. The left figure of
Figure 4 is a toy example of HotpotQA to illustrate this
pattern for collaborating, where the GPT-4 agent play
as a thinker to analyze the situation and give sugges-
tions to the actor agent who is responsible for making
decisions. The reward in HotpotQA is the correctness
of the answer obtained by two agents. And we can use
their communication data to train the LTC agents do
both thinker and actor so that they can learn how to
cooperate with each other to solve the task. The right
figure of Figure 1 is a toy example of Multi-agent Di-
alogue for a competing game task Chameleon, where
three agents play different roles. The reward is the win
or loss of the game, so they need do with deduction
and bluffing in the communication process to win the
game. And their games trajectories will be use in LTC
iterations to boost the agents.

• Teacher-student Dialogue: Teacher-student Dialogue
is a teacher-student style pattern for powerful agents to
teach the novice agents (Algorithm 3). We design this
pattern for complex analytical tasks such as numerical
reasoning, which require extensive analytical examples
for agents to improve the specific reasoning ability lack-
ing in the pretrained models. Teacher-student Dialogue
pattern has two roles (student and teacher) played by
two agents, however, in addition to the linguistic feed-
back, the teacher roles can directly provide the non-
linguistic reward signals, which are all provided by
the system (environments) in the previous pattern. The
right figure of Figure 4 is a toy example with GSM8k

to demonstrate how the student agent communicates
with the teacher agent in a homework-correcting style.
In the math question environment, the student agent
starts with an initial answer to the current question,
then the teacher directly corrects the answer with a
reward. To help the student improve ability instead of
just memorizing the solution, the teacher will generate
another individual question and provide a new reward
to the student.

2.2. Updating phase

In the updating phase, the LLM agent model could be opti-
mized through the conversation sessions collected in the ex-
ploration stage. Given a example session S = (T ,M,R),
we mainly utilize two training objects for model training.

• Language model Objective: LLM encourages the model
to learn from the trajectory T , serving as an unsu-
pervised learning schema to help model for behavior
cloning from other agents’ response or predicting sys-
tem feedbacks.

• Reinforcement Objective: Lreinforce optimizes the
model by maximizing the expectation reward provided
by environment or a teacher agent (i.e., GPT-4 (Ope-
nAI, 2023)). It is an goal-oriented objective, and allows
the model to learn through both positive and negative
signals in the communication session.

Thus, the overall training objective for LTC combines the
above two terms:

LLTC(S) = βLLM(T ) + Lreinforce(S), (1)

where β is a balancing hyper-parameter. The off-policy PPO
algorithm (Schulman et al., 2017) is utilized for optimizing
Lreinforce(S), and it can be further breakdown into policy
loss, value loss and policy entropy regularization terms in
implementation. The vanilla PPO algorithm takes the triplet
(state, action, rewards) for training. In this case, we sample
from the trajectories (T<i, ti) for simulating the state-action
pairs, specifically, we only keep the tokens generated by
agent model itself as actions for policy updating.

3. Experiments
3.1. Settings
Model Architecture We use a modified version of
Llama (Touvron et al., 2023) as the base model. To generate
state values corresponding to the action tokens, we intro-
duce an additional linear layer to serve ast the value head.
This value head acts as an auxiliary output module, and the
output values are processed using the tanh() function to
ensure they fall within the range of (-1, 1). This adaptation
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Figure 2. LTC has an iterative two-phase framework. During the exploration phase, the agent proactively explores new environments and
communicates with other agents, gathering the trajectories to update the replay buffer. Then the agent is trained for updating the policy in
the updating phase.

for RL has also been discussed in prior studies (Santacroce
et al., 2023).

Agent Pre-training We use the Llama-7B model (Tou-
vron et al., 2023) for our LLM agent. To enhance the agent’s
ability to follow task-specific instructions, we initialize it
by instruction fine-tuning (IT). And this initialized agent
works as the baseline for a fair comparison. This step is
crucial because the original Llama-7B model, without prior
instruction fine-tuning, struggled to follow task instructions
and generation sensible actions in the environments. To
collect data for instruction fine-tuning, we employ GPT3/4
as our agent to explore the environments created from the
training set. We then filter out negative examples and re-
tain positive examples to train the initial agent. For both
the ALFWorld and HotpotQA datasets, we leverage GPT3
(specifically, text-davinci-003). However, for the GSM8k
dataset, we use GPT4 due to GPT3’s inadequate perfor-
mance in handling mathematical problems, which resulted
in a scarcity of positive examples.

Training details We utilize the AdamW opti-
mizer (Loshchilov & Hutter, 2017) with a batch size
of 32. The learning rate is set to 2e-4. In each iteration, the
sizes of new environments for agents to explore are: 256
for ALFWorld, 512 for GSM8k, and 1024 for HotpotQA.
For parameter-efficient fine-tuning, we employ LoRA (Hu
et al., 2021) with hyperparameters R = 16 and α = 16.
For distributed training, we utilize 4 nodes with 8×A100
GPUs on HotpotQA and GSM8k. For the experiments on
ALFWorld, we use 1 node with 2×A100 GPUs due to the
dataset’s small scale.

Baselines We compare the agents trained by LTC with ex-
isting prompting and instruction tuning methods, including
ReAct (Yao et al., 2023), ReAct-IM (Huang et al., 2022b),
CoT (Wei et al., 2022b), CoT-SC (Wang et al., 2022c;d),
BUTLER (Micheli & Fleuret, 2021). The detailed of these
baselines are described in Appendix C.8. Most of these

Method \ Task Pick Clean Heat Cool Look Pick 2 All

ReAct (avg) 65 39 83 76 55 24 57
ReAct (best of 6) 92 58 96 86 78 41 71

ReAct-IM (avg) 55 59 60 55 23 24 48
ReAct-IM (best of 6) 62 68 87 57 39 33 53

BUTLERg (best of 8) 33 26 70 76 17 12 22
BUTLER (best of 8) 46 39 74 100 22 24 37

ReAct-Tuning (avg) 83 91 91 90 72 8 77
ReAct-Tuning (best of 3) 92 97 96 95 78 24 78
LTC (avg) 89 91 93 97 96 67 90
LTC (best of 3) 92 97 96 100 100 76 91

Table 1. AlfWorld success rates (%) for 6 tasks. The results of the
bottom block are obtained by fine-tuning Llama-7B model.

methods focus on few-shot prompting, and different pre-
trained models are used. To ensure a fair comparison, we
include the additional baselines named ReAct-Tuning and
CoT-Tuning by fine-tuning the Llama-7B model using the
collected trajectories as fine-tuning data. In addition, GPT-4
are not used in the test time, and all the results reported are
obtained by the trained agent itself.

3.2. Results
ALFWorld As shown in Table 1, LTC outperforms the
previous best methods* on all of tasks of ALFWorld. We can
see that Instruction Fine-tuning is already a strong baseline
outperforming others, yet our LTC achieves a success rate
of 91%, remarkably outperforming the best Instruction Tun-
ing baseline (78%). Notably, on both Cool and Look tasks,
LTC obtains a 100% success rate. Even on the hardest Pick
Two & Place task (e.g., “put two pencils in the drawer”),
it achieves a decent 76% success rate. The Pick Two task
requires the agent to perform two sequences of ”pick and
place” actions in one task, while keeping track of the desired
type and the location. The combined sequences and the need

*For ALFWorld, ReAct and ReAct-IM results are from Table
3 of (Yao et al., 2023). BUTLER and BUTLERg results are from
Table 4 of (Shridhar et al., 2020b), and they are trained with
DAgger (Ross et al., 2011).
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to remember the previous location make this task challeng-
ing. This may be the reason why baselines achieve lower
success rates on this task. In contrast, our LTC agent, which
further trains the agent with self-exploration significantly
outperforms other agents. This underscores the effective-
ness of the communication mechanism in LTC.

Model Method EM score

PaLM-540B
CoT (Wei et al., 2022b) 29.4
CoT-SC (Wang et al., 2022c) 33.4
ReAct (Yao et al., 2023) 27.4
ReAct → CoT-SC 35.1

GPT3-175B ReAct 30.8

PaLM-62B ReAct-Tuning 32.6
CoT-Tuning 25.2

PaLM-8B ReAct-Tuning 25.0
CoT-Tuning 14.0

Llama-7B ReAct-Tuning 28.2
LTC(single-agent monologue) 31.0
LTC(multi-agent dialogue) 33.2

Llama2-13B ReAct-Tuning 33.8
LTC(multi-agent dialogue) 35.8

Table 2. EM scores on HotpotQA with prompt and tuning methods.
Methods that use fine-tuning are marked by “-Tuning”.

HotpotQA As shown in Table 2, LTC outperforms the
instruction tuning baseline† by 5% on Exact Match (EM)
score, and it even outperforms ReAct and CoT on their de-
fault settings. Note that ReAct and CoT use PaLM-540B
and GPT3-175B as the pre-trained LM model, which is 77x
and 25x larger than our the Llama-7B model we used. By
sampling 21 CoT trajectories during inference and adopt-
ing the majority answer, CoT-SC is slightly better (0.2%)
than LTC, and their combined method ReAct → CoT-SC
surpasses LTC by 1.9%. Compared to other models with tun-
ing, our Llama-7B based agent even obtains slightly better
(0.6%) performance than the ReAct-Tuning baseline with
9× larger PaLM-62B model.

Chameleon As shown in Table 3, LTC outperforms the
instruction tuning baselines by 3.1% on winning rate against
GPT-4 players. In the training, all the players are played
by the same Llama2-7B model that we are training. While
in the testing, to get the winning rate of our trained agent
against GPT4, only 1 player is randomly picked to use our
trained agent as backend, and other players are played by
GPT4. We could see that the LTC agents winning rate im-
proves with the increasing of number of players, we explain
this by the more players, the higher chance that the GPT4
players carry the game.

†For HotPotQA, Prompting method results without fine-tuning
are from Table 1&5 of (Yao et al., 2023). PaLM-8B and PaLM-62B
scores are estimates from Figure 3 of (Yao et al., 2023).

Method \ #players n=3 n=4 n=5 overall

Llama-Tuning 20.8 20.3 23.8 21.9
Llama-LTC 22.9 23.4 27.5 25.0

Table 3. Chameleon game winning rates (%) of different number
of players settings. At each game, one player is played by target
evaluated model, and the others are played GPT-4.

GSM8k As shown in Table 4, LTC(teacher-student dialogue) out-
performs the instruction fine-tuning baseline by 3.6% on
accuracy, and it surpasses the LTC(single-agent monologue) baseline,
which does not use the reward and feedback from GPT-4.

Model Method Accuracy

PaLM-540B CoT (Wei et al., 2022b) 56.5
CoT-SC (Wang et al., 2022c) 74.4

GPT3-175B CoT (Wei et al., 2022b) 60.1
CoT-SC (Wang et al., 2022c) 78.0

Llama-7B CoT (Touvron et al., 2023) 11.0
CoT-SC (Touvron et al., 2023) 18.1

Llama-7B
CoT-Tuning 37.7
LTC(single-agent monologue) 39.6
LTC(teacher-student dialogue) 41.3

Table 4. Accuracy on GSM8k. The results of the bottom block are
obtained by fine-tuning LLaMA-7B model, while the others are
prompting methods without fine-tuning.

However, LTC underperforms CoT and CoT-SC with the
much larger models (PaLM-540B and GPT3-175B). This
phenomenon is because numerical reasoning requires a
larger model size and sufficient pretraining data, as observed
in (OpenAI, 2023). Unfortunately, due to computational
resource limitations, we can only train the relatively small
Llama-7B model but were unable to train larger-scale mod-
els. Nevertheless, we believe that exploring LTC with larger
models is promising for future research.

4. Conclusion
We introduced LTC, a paradigm that adapts LLM agents
to new tasks and environments via communication-based
iterative learning. Within this LTC framework, we have de-
signed three communication modes to facilitate interactions
between LLM agents and their environments. The history
of these interactions can be autonomously organized into
training data for PPO training so that the agent can adapt to
the new task. Our approach represents a closed loop where
the agent self-interacts with the environment or other agents,
and learning to improve itself with minimal human interven-
tion. Empirically, LTC consistently outperforms existing
LLM agent and instruction tuning baselines, showing the
promise of the LTC paradigm in adapting LLM agents to
new tasks and environments with minimal human effort.
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Figure 3. The buffer data is a serial of integer/float sequences. We treat each token id as the action in our reinforcement learning formula.
We also save its corresponding mask indicating the source of the token, the value from the critic model, the log-prob indicating the
log-likelihood when sampling the action and the reward from the environment/other agents.

A. Related Work
A.1. Instruction Tuning

Instruction tuning (IT) is an important technique for improving the capabilities and controllability of LLMs (Radford
et al., 2019; Brown et al., 2020; Wei et al., 2022a; Qin et al., 2023; OpenAI, 2023; Chowdhery et al., 2022; Touvron et al.,
2023). Many studies have been dedicated to instruction data generation and selection (Chung et al., 2022; Wang et al.,
2022e; Lee et al., 2023). For instance, Unnatural Instructions (Honovich et al., 2022) is created by using the Super-Natural
Instructions dataset (Wang et al., 2022f) as a seed to prompt InstructGPT (Ouyang et al., 2022). Self-Instruct (Wang et al.,
2022e) employs a recursive pipeline that generates instruction data from hand-crafted seed tasks using ChatGPT (OpenAI,
2022). Other studies focus on fine-tuning pre-trained LLMs with instruction data. BLOOMZ (Muennighoff et al., 2022)
is initialized with BLOOM (Scao et al., 2022) and then fine-tuned using the xP3 instruction dataset (Muennighoff et al.,
2022). Flan-T5 is initialized with T5 (Raffel et al., 2020) and fine-tuned with the FLAN dataset (Longpre et al., 2023).
Additionally, after the release of LLaMA (Touvron et al., 2023), many works have utilized it as the base model for instruction
tuning, such as Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), and GPT-4-LLM (Peng et al., 2023). Some
papers explore alignment fine-tuning using RLHF (Ouyang et al., 2022; Bai et al., 2022a; Stiennon et al., 2020; Leike et al.,
2018). InstructGPT (Ouyang et al., 2022) employs GPT-3 for supervised fine-tuning on a human-filtered instruction dataset,
followed by training a reward model and using PPO (Schulman et al., 2017) for RLHF. Claude investigates RLHF (Bai et al.,
2022a) and constitutional approaches (Bai et al., 2022b) for making LLMs both harmless and helpful. DPO (Rafailov et al.,
2023) fine-tunes the LLMs to align with human preferences by directly optimizing a classification problem on preference
data instead of RLHF. While these prominent research works focus on aligning LLMs for general instruction-following, our
objective is to adapt LLM agents for specific tasks or environments.

A.2. LLM Agents

LLMs have demonstrated the potential to act as advanced agents (Ouyang et al., 2022; Bubeck et al., 2023; Wei et al., 2022a),
and significant progress has been made in developing versatile LLM agents (Weng, 2023; Sumers et al., 2023; Park et al.,
2023; Liu et al., 2023a; Lin et al., 2023; Xu et al., 2023) and benchmarks (Wang et al., 2022a; Deng et al., 2023; Liu et al.,
2023b). For planning, Chain-of-Thought (CoT(Wei et al., 2022b)) prompts the model to think step by step, by decomposing
complex tasks into smaller and simpler steps. Self Consistency (Wang et al., 2022c;d) extends CoT by using ensembles of
predictions to improve consistency of the LLM. Inner Monologue (Huang et al., 2022b) leverages environment feedback to
enhance LLMs’ planning and processing capabilities in embodied robotics tasks without extra training. ReAct (Yao et al.,
2023) integrates reasoning and action taking, expanding the action space to include both task-specific discrete actions and
language. Reflexion (Shinn et al., 2023) equips agents with dynamic memory and self-reflection capabilities to improve
reasoning by using continuous trials in the same environment as feedback. Recent research has also shown that LLMs can
be augmented as an autonomous agent to use external tools to solve problems in interactive environments. These techniques
include retrieval augmentation (Shi et al., 2023; Yao et al., 2023; Izacard et al., 2022), math tools (Schick et al., 2023; Yao
et al., 2023; Lu et al., 2023), and code interpreters (Gao et al., 2022; Wang et al., 2022b). Prior works also have explored
using multiple LLMs in a collaborative setting to solve complex tasks (Hong et al., 2023; Qian et al., 2023; Li et al., 2023;
Wang et al., 2023; Talebirad & Nadiri, 2023; Akata et al., 2023). Open-source projects like AutoGPT (Significant-Gravitas,
2023), GPT-Engineer (AntonOsika, 2023), and BabyAGI (yoheinakajima, 2023) also showcase the potential of LLM not just
in generating content but also as a general problem solver. Most of the above methods are based on either human-designed
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Figure 4. The toy examples to demonstrate communication patterns: 1) the left figure is the Multi-agent Dialogue pattern, where two
agent play different roles to collaborate on the task. The thinker agent is responsible for analyzing the situation and give suggestion to the
actor agent who is responsible for making decisions. We can just assign the LTC agent to play the thinker agent when testing without
GPT-4 agent. 2) the right figure is the Teacher-student Dialogue pattern, where the student agent starts with an initial answer to the current
question, and then the teacher directly corrects the answer with a reward. To help the student improve ability instead of just memorizing
the solution, the teacher will generate another analogous question to ask the student. Eventually, the student gives a new answer for this
analogous question and gets a new reward signal from the teacher.

few-shot prompting examples, or finetuning with pre-collected instruction datasets. Our LTC is not a few-shot prompting
method and we focus on adapting the agent by collecting training data automatically by exploration.

B. Discussion

Method GSM8k Hotpot-QA Alfworld
(CoT) (ReAct) (ReAct)

ICL 836 1937 1744

LTC 107 167 189

Table 5. Average number of tokens of the input prompts on test sets. LTC does not use any few shot examples in the prompt, hence uses
only a fraction of tokens compared to ICL.

Efficiency As mentioned above, prompting-based methods such as ReAct (Yao et al., 2023) and CoT (Wei et al., 2022b)
use a subset of exemplary trajectories from the given task as few-shot prompts during inference. However, these few-shot
prompts are often long, which leads to increased inference cost and limited context length for user queries. As shown in
Table 5, we compare the number of input tokens for each task. We compute the CoT prompts for GSM8k, and we use
ReAct for the other two tasks. All the few-shot prompts are sourced from the original paper. As shown, our LTC agents used
only 12.8%, 8.6%, and 10.8% of the input tokens required by the ICL methods on the three tasks, respectively.

Shortcuts One interesting observation is that the GPT-4 agent sometimes employs ”shortcuts” to solve problems when
serving as a teacher to generate new training data. These shortcuts rely on the internal knowledge acquired during its
pretraining process. To illustrate this, we present a case study from HotpotQA in Figure 7. In this case, the GPT-4 agent
quickly retrieves the answer by leveraging its memorized knowledge about the second entry after receiving the Wikipedia
page of the first entry. On the other hand, the bottom of Figure 7 demonstrates a comparison with LLaMA-7B, which was
trained using our LTC method with the GPT-4 agent in the loop. LLaMA-7B does not employ shortcuts and instead performs
a search for the second entry. This case study demonstrates that communication mechanism in LTC provide additional
benefits during learning, compared to soley relying on data generated by GPT-4.
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0 1000 2000 3000 4000
N episode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

Alfworld Loss
LM loss
Value loss
Policy loss

Figure 6. The loss curves of PPO training.
Ablation We conducted ablation studies on the loss design of LTC. Figure 5 illustrates the success rate of agents on
the ALFWorld dataset under different loss settings. Without using our communication pattern for interactions and merely
sampling pre-collected instruction data for training, the improvement was limited. However, when we incorporated our
communication pattern to gather data, the model’s performance quickly surpassed 80%. Furthermore, employing PPO
loss to handle positive and negative samples separately resulted in faster and more significant improvement (blue line). In
Figure 6, we present the separate curves of the three main losses during training. Initially, the LM loss showed a decreasing
trend. Interestingly, as training iterations progressed, both the value loss and policy loss gradually decreased, which possibly
causes the LM loss to increase temporarily. After the value loss and policy loss reached a certain threshold, the LM loss
continued to decrease till convergence.

C. Appendix
C.1. Datasets

We conducted experiments on four datasets: ALFWorld (Shridhar et al., 2020b), HotpotQA (Yang et al., 2018), Chameleon
(Wu et al., 2023b) and GSM8k (Cobbe et al., 2021). Each of these datasets represents a different environment type,
namely single-agent, multi-agent collaborating, multi-agent competing, and teacher-student, respectively. And different
communication patterns are used: Single-agent Monologue for ALFWorld, Multi-agent Dialogue for HotpotQA and
Chameleon (Wu et al., 2023b), and Teacher-student Dialogue for GSM8k.

ALFWorld ALFWorld (Figure 1) is a text-based game that follows the ALFRED benchmark (Shridhar et al., 2020a). In this
game, agents are presented with six types of tasks that involve navigating a simulated household environment using textual
actions. With over 50 locations to explore, these tasks demand strategic planning and thorough exploration. Following
(Shridhar et al., 2020b), we utilize the train set that consists of 3553 environments for training our model and the baselines;
and we use the unseen test set that comprises 134 environments for evaluatation.

HotpotQA HotpotQA is a question-answering dataset that focuses on multi-hop reasoning based supporting facts, with
the goal of improving the explainability of QA systems. In this dataset, agents are required to reason across two or more
Wikipedia passages to derive answers. We initialize the environments using only the text of the questions, meaning that
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Algorithm 1 The Python-style algorithm to demonstrate Monologue pattern

# agent: LLaMA agent
# input: Task description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["think:"]
thought = agent.api(T)
T.append(thought)
M.append(1) # agent message mask
R.append(0)

T += ["act:"]
action = agent.api(T)
T.append(action)
M.append(1) # agent message mask
R.append(0)

response = env.excute(action)
reward = parse(response)
T.append(response)
M.append(0) # system message mask
R.append(reward)

i += 1
if reward != 0:

break
S = (T, M, R)
return S

agents are provided with the question and task description but do not have access to supporting paragraphs. To support their
reasoning, agents must either rely on their internal knowledge or interact with an external Wikipedia tool to retrieve the
necessary information. For training, we sample the environments from the training set, which consists of 90,447 QA-pairs.
For evaluation, we run 500 random examples from the test set, following (Yao et al., 2023).

Chameleon Chameleon is a multi-player social deduction game environment implemented by the ChatArena (Wu et al.,
2023b). There are two roles in the game, chameleon and non-chameleon. The topic of the secret word will be first revealed
to all the players. Then the secret word will be revealed to non-chameleons. Non-chameleons try to identify the chameleon
without giving away the secret word, while the chameleon tries to blend in and guess the word. The game involves giving
clues, voting on who the chameleon might be, and a final guess from the accused chameleon. We use [3, 4, 5] players setting
to train and test the agents’ performance.

GSM8k The GSM8k dataset is a collection of 8.5K math problems for grade school students. These problems have been
crafted by human experts to ensure linguistic diversity. The dataset is divided into two sets: 7.5K problems for training
and 1K problems for testing. Each problem in the dataset requires 2 to 8 steps of reasoning to arrive at the solution. The
problems primarily focus on fundamental arithmetic operations like addition, subtraction, multiplication, and division.

C.2. Communication Patterns

To collect the trajectories and the reward signal data from different types of tasks, we design the communication patterns for
these tasks and unified the data format as described in Figure 3. Here we use three python-sytle algorithms (Algorithm 1
Algorithm 2 Algorithm 3) to demonstrate how three types of communication patterns help the agent collect exploration data.

C.3. Buffer Structure

The communication data will be saved as replay buffers for the updating phase, and the buffer data format is a serial of
tokens sequences demonstrated in Figure 3. We treat each token as the action unit in our reinforcement learning formula,
and each exploration trail is processed into 5 data sequences [Sa,Sm,Sv,Sl,Sr]:

• Sa: A list of integers representing the generated token ids encoded by the tokenizer. All the valid text trajectories are
recorded as a queue, including system texts like environment descriptions, feedback, and agent texts like parsed actions,
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Algorithm 2 The Python-style algorithm to demonstrate Dialogue pattern

# agent1: LLaMA agent
# agent2: GPT-4 agent
# input: Task description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["think:"]
thought = agent2.api(T)
T.append(thought)
M.append(2) # teacher agent message mask
R.append(0)

T += ["act:"]
action = agent1.api(T)
T.append(action)
M.append(1) # student agent message mask
R.append(0)

response = env.excute(action)
reward = parse(response)
T.append(response)
M.append(0) # system message mask
R.append(reward)

i += 1
if reward != 0:

break
S = (T, M, R)
return S

thinking processes, and hints from other agents. While the invalid generated text of the agent will be skipped, such as
nonsense string and action text can not be parsed. These tokens are treated equally as the input for the LLM, but they
have different masks to apply different losses.

• Sm: The system mask to mask different types of input tokens to control the training loss. We set 0 as the default mask
for system texts like environment descriptions, system feedback, and system prompts, the actions encoded from these
kinds of texts are not actions we want the agent to learn, so they will be masked out both policy loss and value loss in
the PPO algorithm. We set 1 as the mask for agents-generated tokens like the keywords of decisions and the thinking
process, which are the main supervising objects of our reinforcement learning pipeline, so they will be assigned full
policy loss and value loss. We set 2 as the mask for hints or feedback from other agents, which are the actions we also
want our own agent to learn but without instant state values since they are not generated by our agent. So the tokens
with mask 2 will be mask out only the value loss and supervised by the policy loss.

• Sv: The state values corresponding to the actions obtained by the value head our the agent model. The value head is an
addition layer inserted to the original pre-trained LLM architecture, we implement it by inserting a linear layer after the
second-to-last LlamaDecoderLayer as the auxiliary output module and the output values are processed by a tanh()
function to keep it range inside (−1, 1).

• Sr: The rewards corresponding to the actions. The rewards are very sparse, most of the actions are zero-reward, and
only when the current task is finished or the token length of the current buffer has just overflowed it will be non-zero
value: +1 for positive, -1 for negative.

C.4. Algorithm of LTC

The implementation of LTC can be summarized as Algorithm 4, we unveil the structural framework that embodies the
Learning Through Communication (LTC) paradigm, meticulously crafted to facilitate autonomous and progressive learning
through iterative cycles. At the outset, the pre-trained Large Language Model (LLM) agent undergoes a fine-tuning phase
to align its initial configuration with the intended learning tasks. Following this, an exploration phase is initiated where a
batch of training environments is sampled and subsequently engaged by the agent to generate trial data asynchronously,
leveraging the power of parallel computing across multiple GPUs to enhance efficiency. This newly generated data is
synchronized across all GPUs to foster a cohesive learning base, which is stored in a replay buffer for further utilization. As
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Algorithm 3 The Python-style algorithm to demonstrate Analogue pattern

# agent1: LLaMA agent
# agent2: GPT-4 agent
# input: Question description
# output: S = (T, M, R)

# initialization
T, M, R = [input], [0], [0]

i = 0
while i < max_steps:

T += ["answer the question step by step:"]
answer1 = agent1.api(T)
query = T + answer1 + ["the answer is correct, yes or no? also gives a better answer"]
response = agent2.api(query)
reward, answer2 = parse(response)
T.append(answer1)
T.append(answer2)
M.append(1) # student agent message mask
M.append(2) # teacher agent message mask
R.append(reward)
R.append(+1) # assume teacher is correct

query = query + response + ["please generate a similar qa pair to teach the student:"]
response = agent2.api(query)
new_question, teacher_answer = parse(response)
new_question += "answer the question step by step:"
student_answer = agent1.api(new_question)
reward = parse(student_answer, teacher_answer)
T.append(new_question + student_answer)
M.append(1) # student agent message mask
R.append(reward)

i += 1

S = (T, M, R)
return S

the agent iterates through this process, it continually samples from this replay buffer during the updating phase, employing
the Proximal Policy Optimization (PPO) algorithm in a distributed data parallel (DDP) setting to refine its strategies and
adapt dynamically. This code snippet, therefore, encapsulates the innovative asynchronous and distributed nature of the LTC
paradigm, marking a significant stride in fostering intelligent, adaptive, and collaborative artificial intelligence agents.

C.5. Training Loss

Algorithm 4 Python-style code of LTC

# agent: Pre-trained LLM agent
# n_gpu: total number of GPUs
# env_cls: the class of environments
# n_gen: the generation size for one iteration
# n_train: the train size for one iteration

# initialization
agent = instruction_finetune(agent)
replay_buffer = []
i = 0
while i < max_iteration:
i += 1
# Exploration Phase
envs = env_cls(sample(data, n_gen//n_gpu))
# asynchronously generate
new_buffer = generate_trials(agent, envs)
# dist.gather and dist.broadcast
new_buffer = sync_all_gpus(new_buffer)
replay_buffer.append(new_buffer)

# Training Phase
rollouts = sample(replay_buffer, n_train))
# distributed training with ppo
agent = ppo_ddp_train(agent, rollouts)

After exploration in each iteration, we update the replay
buffer by incorporating the newly collected trajectories
and then sample the most recent trajectories to train the
parameters πθ of the LLM agent. We design our training
objective to combine: 1) the standard language modeling
loss LLM, 2) the policy loss Lpolicy, 3) the value loss Lvalue,
and 4) the entropy loss Lentropy. The overall training ob-
jective is formulated as:

Ltotal = LLM + β(Lpolicy + λLvalue + Lentropy)

where β and λ are weighting hyperparameters.

The different losses in the above are described as follows:

• The LM loss LLM is defined as the cross entropy be-
tween the agent and its generations which have a pos-
itive reward, akin to self-improving model schemes
(Huang et al., 2022a; Rafailov et al., 2023). By
training on these generations, the agent is further
encouraged to give generations which yield positive
rewards.
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Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

I need to search Atik Valide Mosque and Valens Aqueduct, find the country they are found in.

Search[Atik Valide Mosque]

The Atik Valide Mosque is located in Istanbul, Turkey. I need to search Valens Aqueduct and find the 
country it is found in.

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

Finish[Turkey]

The Aqueduct of Valens (Turkish: Valens Su Kemeri, Ancient Greek: Ἀγωγὸς τοῦ ὕδατος, romanized: 
Agōgós tou hýdatos, lit. 'aqueduct') was a Roman aqueduct system built in the late 4th century AD, to supply 
Constantinople – the capital of the eastern Roman empire. Construction of the aqueduct began during …

Search[Valens Aqueduct]

The Valens Aqueduct is located in Constantinople, Turkey. So the answer is Turkey.

Replace GPT-4 with our LLaMA-7B based agent.

Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

The question refers to two specific landmarks: the Atik Valide Mosque and the Valens Aqueduct. To identify 
the country where these landmarks are found, I'll start by searching for information on the Atik Valide 
Mosque, which may be unique enough to easily pinpoint the country.

Search[Atik Valide Mosque]

The observation confirms that the Atik Valide Mosque is located in Istanbul, Turkey. Although I haven't 
checked the Valens Aqueduct specifically, it's safe to assume that the question is referring to the well-
known Valens Aqueduct in Istanbul. I can confidently answer that both landmarks are found in Turkey.

Finish[Turkey]

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

GPT-4 uses some shortcuts based on its internal knowledge.

Your task is to: solve a question answering task with interleaving Thought, Action, Observation steps … 
Question: The Atik Valide Mosque and Valens Aqueduct are found in what country?

The question refers to two specific landmarks: the Atik Valide Mosque and the Valens Aqueduct. To identify 
the country where these landmarks are found, I'll start by searching for information on the Atik Valide 
Mosque, which may be unique enough to easily pinpoint the country.

Search[Atik Valide Mosque]

The observation confirms that the Atik Valide Mosque is located in Istanbul, Turkey. Although I haven't 
checked the Valens Aqueduct specifically, it's safe to assume that the question is referring to the well-
known Valens Aqueduct in Istanbul. I can confidently answer that both landmarks are found in Turkey.

Finish[Turkey]

The Atik Valide Mosque (Turkish: Atik Valide Camii, Eski Valide Camii) is a 16th century Ottoman imperial 
mosque located on a hill above the large and densely populated district of Üsküdar, in Istanbul, Turkey …

GPT-4 uses some shortcuts based on its internal knowledge.

3

Figure 7. GPT-4 can use shortcuts to solve the problem, while the LLaMA-7B agent cannot mimic it.

• The policy loss Lpolicy is introduced to supervise the
agent’s actions. The policy loss Lpolicy is calculated
using a masked version of the surrogate objective
defined in (Schulman et al., 2017) with advantage
estimates Â,

Lpolicy(θ) = −E[mpolicy∗min(r(θ)Â, clip(r(θ), 1−ϵ, 1+ϵ)Â],

where r(θ) is the output probability ratio r(θ) =
πθ(a | s)
πold(a | s) of the agent with its previous version
πold. We define binary mask mpolicy to mask out
the encoded system message in PPO loss (marked
by Sm = 0 in buffers C.3). For example, let
{x1, y1, x2, y2, . . . xn, yn} be a token buffer consist-
ing of system messages xn ∈ X and agents’ mes-
sages (include the target trained agent and the other
teacher agents) πθ output yn ∈ Y , then the binary
mask mpolicy = {0, 1, 0, 1, . . . 0, 1}.
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• The value loss is defined in (Schulman et al., 2017)
as the mean squared error between calculated value
and estimated advantages masked by another binary
mask mvalue (marked by Sm = 1 in buffers C.3).
For example, let {z1, y1, z2, y2, . . . zn, yn} be a to-
ken buffer consisting of all other messages (except
the agent-generated messages) zn ∈ X and trained
agent-generated messages πθ output yn ∈ Y , then
the binary mask mpolicy = {0, 1, 0, 1, . . . 0, 1}.

• Lentropy is an entropy bonus to ensure sufficient
exploration, as suggested in past work (Williams,
1992; Mnih et al., 2016). This entropy is com-
puted as a small negative factor times the entropy
of the policy distribution : Lentropy = 0.01 ×∑

a πθ(a|s) log πθ(a|s).

C.6. Implementation detail

C.7. Asynchronously Distributed Generating

The exploration data is generated in an asynchronous style, so that the agent can handle the environments with open-end
exploration space. The training data are pre-processed into interactive environments which are capable for agents to observe
the states, take actions, and get immediate feedback. According to the number of GPU threads, these environments are
divided into corresponding portions and then distributed to each GPU. Subsequently, these GPUs begin to explore these
environments asynchronously in parallel with the same agent trained by the latest data. Since the lengths of the generated
contents are varied and the interactions inside the environments are generally open-ended, the time cost for the agent to
explore each environment is also varied, some GPU threads may process the data faster than others. A barrier is set for all
the GPU threads so that the early finished GPU threads can wait for the others until the total accumulated buffers generated
by the environments achieve a preset number Sg, which is the quantity of the new training buffers we want to add to the
replay buffers in one iteration. After all the GPU threads reach the barrier, we get enough buffers then gather the buffers
from each GPU thread and merge them together, and broadcast the new buffers to each GPU thread to update their local
replay buffers. The updated replay buffers will be used in the updating phase for training the agents of the next iteration.

C.8. Baselines

ReAct (Yao et al., 2023) uses a subset of training cases as prompts for different tasks, in the format of thought-action-
observation sequences. For knowledge-intensive reasoning tasks like HotpotQA, ReAct designs an action space that includes
search, lookup, and finish actions, enabling the agent to interact with Wikipedia to retrieve necessary information. On the
other hand, ReAct-IM adopts Inner Monologue (IM) (Huang et al., 2022b) style prompting. Chain-of-thought prompting
(CoT) (Wei et al., 2022b), enhances the reasoning capabilities of Language and Vision models (LLMs) by generating a
sequence of intermediate reasoning steps. This can be considered as a reasoning-only baseline of ReAct, excluding actions
and observations. Additionally, CoT-SC (Wang et al., 2022c;d) is a follow-up work of CoT, serving as a self-consistency
baseline. It is worth noting that most of these methods employ greedy decoding, except for BUTLER (Micheli & Fleuret,
2021), which utilizes beam search. Most of these methods focus on few-shot prompting, and different pre-trained models are
used. To ensure a fair comparison, we include the additional baselines named ReAct-Tuning and CoT-Tuning by fine-tuning
the LLaMA-7B model using the collected trajectories as fine-tuning data mentioned in 3.1. In addition, GPT-4 are not used
in the test time, and all the results reported are obtained by the trained agent itself.

C.9. Losses

We conducted ablation studies on the loss design of LTC. Figure Figure 5 illustrates the success rate of agents on the
ALFWorld dataset under different loss settings. Without using our communication pattern for interactions and merely
sampling pre-collected instruction data for training, the improvement was limited. However, when we incorporated our
communication pattern to gather data, the model’s performance quickly surpassed 80%. Furthermore, employing PPO loss
to handle positive and negative samples separately resulted in faster and more significant improvement (blue line). In Figure
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Figure 8. The text version of the toy example in Figure 1 for Monologue pattern of ALFWorld.

Figure 6, we present the separate curves of the three main losses during training. Initially, the LM loss showed a decreasing
trend. Interestingly, as training iterations progressed, both the value loss and policy loss gradually decreased, which possibly
causes the LM loss to increase temporarily. After the value loss and policy loss reached a certain threshold, the LM loss
continued to decrease till convergence.

C.10. Cases study

One interesting observations is that the GPT-4 agent sometimes employs ”shortcuts” to solve problems when serving as a
teacher to generate new training data. These shortcuts rely on the internal knowledge acquired during its pretraining process.
To illustrate this, we present a case study from HotpotQA in Figure Figure 7. In this case, the GPT-4 agent quickly retrieves
the answer by leveraging its memorized knowledge about the second entry after receiving the Wikipedia page of the first
entry. On the other hand, the bottom of Figure Figure 7 demonstrates a comparison with LLaMA-7B, which was trained
using our LTC method with the GPT-4 agent in the loop. LLaMA-7B does not employ shortcuts and instead performs a
search for the second entry. This case study demonstrates that communication mechanism in LTC provide additional benefits
during learning, compared to soley relying on data generated by GPT-4.
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