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ABSTRACT

Existing Large Language Model (LLM) serving systems prioritize maximum
throughput. They often neglect Service Level Objectives (SLOs) such as Time to
First Token (TTFT) and Time Per Output Token (TPOT), which leads to suboptimal
SLO attainment. This paper introduces SCORPIO, an SLO-oriented LLM serving
system designed to maximize system goodput and SLO attainment for workloads
with heterogeneous SLOs. Our core insight is to exploit SLO heterogeneity for
adaptive scheduling across admission control, queue management, and batch se-
lection. SCORPIO features a TTFT Guard, which employs least-deadline-first
reordering and rejects unattainable requests, and a TPOT Guard, which utilizes
a VBS-based admission control and a novel credit-based batching mechanism.
Both guards are supported by a predictive module. Evaluations demonstrate that
SCORPIO improves system goodput by up to 14.4× and SLO adherence by up to
46.5% compared to state-of-the-art baselines.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly integral to online applications, powering diverse
functionalities such as programming assistance (Nguyen & Nadi, 2022), enhanced deep search
engines (xAI, 2025), and conversational agents (Manus, 2025). In order to handle the substantial
computational requirements of LLM inference, state-of-the-art serving systems such as vLLM (Kwon
et al., 2023) and SGLang (Zheng et al., 2024b) employ advanced techniques, including continuous
batching (Yu et al.), paged attention (Kwon et al., 2023), chunked prefilling (Agrawal et al., 2023),
etc. These optimizations markedly improve inference throughput and resource utilization.

Despite these efficiency improvements, existing LLM serving systems (Kwon et al., 2023; Yu et al.;
Zheng et al., 2024b; NVIDIA, 2024) predominantly prioritize maximum throughput, often neglecting
Service Level Objectives (SLOs), such as time-to-first-token (TTFT) and time-per-output-token
(TPOT). Typically, these systems greedily admit and serve incoming requests (Miao et al., 2023),
without deep visibility into the SLO requirements of requests. Simultaneously, SLO requirements
across different applications are inherently heterogeneous (Patke et al., 2025). For instance, program-
ming assistants often demand low latency for real-time response, whereas chatbots might tolerate
slightly higher latency as long as the generation rate exceeds human reading speed (Li et al., 2025).
However, existing LLM serving systems treat all requests equally in all scheduling stages. This undif-
ferentiated handling leads to suboptimal SLO attainment. These problems necessitate a fine-grained
and adaptive scheduling method to support heterogeneous SLOs.

In this paper, we focus on designing an SLO-oriented LLM serving system that is tailored for
heterogeneous SLOs, with the goal of maximizing both system goodput and SLO attainment. Our
key insight is that the inherent heterogeneity of SLOs can be exploited to dynamically schedule the
right requests across all scheduling stages (e.g., queue management, admission control, and batch
selection), thereby achieving system-level high SLO attainment. From the TTFT perspective, requests
with looser SLO can be served a little later. From the TPOT perspective, requests with looser TPOT
can skip some iterations of generation, leaving more resources for requests with tighter TPOT.

Based on this insight, we design TPOT Guard and TTFT Guard to handle the heterogeneous TPOT
and TTFT SLOs, respectively. For the TPOT Guard, we first define a core concept of TPOT-relative
Proportionality (TRP), which quantifies the heterogeneity of TPOT SLOs. Utilizing TRP, we propose
a novel VBS-based Admission Control mechanism and a Credit-based Batching mechanism. The
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Figure 1: Comparison of throughput-oriented and SLO-oriented scheduling approaches. The
throughput-oriented scheduler greedily admits and processes requests without considering per-
request SLOs. During the prefill phase, request 4 violates its SLO constraint (4 steps> 3 steps). The
SLO-oriented scheduler prevents such violations through least-deadline-first prioritization. During
the decode phase, we assume a normalized decode step time as 0.25× BatchSize. The throughput-
oriented scheduler batches all requests in each step (BatchSize=6), causing requests 0, 1, 3, and 5
to violate their TPOT constraints (each step consumes a time of 1.5). In contrast, the SLO-oriented
scheduler rejects unattainable requests (e.g., request 5) and implements an adaptive fine-grained
batching strategy (BatchSize=4). This strategy allows requests with looser TPOT SLOs (requests 2
and 4) to skip certain iterations, ensuring all admitted requests satisfy their TPOT constraints.

former is to control the admission of requests to prevent mass TPOT violations due to overwhelming
request ingress. The latter mechanism adaptively batches requests according to their per-request
TPOT SLO, achieving system-level high TPOT SLO attainment. For the TTFT Guard, we implement
a simple but effective least-deadline-first reordering strategy that prioritizes requests nearing their
TTFT deadlines. Additionally, under heavy load, we reject the requests that are unattainable for their
TTFT SLOs. To provide decision-making support for these two modules, we develop a predictor
module consisting of a sequence length predictor and two analytical models. By orchestrating these
complementary mechanisms in concert, SCORPIO enables robust support for diverse workloads.

Our contributions are summarized as follows:

• We identify the critical gap in existing LLM serving systems that prioritize throughput over SLO
attainment and propose a scheduling methodology to serve requests with heterogeneous SLOs.

• We propose a TPOT Guard, which consists of a VBS-based Admission Control mechanism and a
Credit-based Batching mechanism to provide heterogeneous TPOT SLO guarantees.

• We propose a TTFT Guard, which consists of a least-deadline-first reordering mechanism and an
unattainable TTFT SLO reject mechanism to provide heterogeneous TTFT SLO guarantees.

• We develop a predictive module, including a sequence length predictor and two analytical models,
which supports the decision-making of the SLO guarantee modules.

• Orchestrating these modules together, we implement SCORPIO. Compared to state-of-the-art
baselines, our methods improve the system goodput by up to 14.4× and the SLO adherence rate by
up to 46.5% under different scenarios.

2 BACKGROUND AND PROBLEM FORMULATION

A typical LLM generative inference task has two stages: i) the prefill stage, which takes a prompt
sequence to generate the first output token; and ii) the decoding stage, which generates new tokens
autoregressively. The quality of LLM service is typically evaluated by two key metrics: time to first
token (TTFT) and time per output token (TPOT) (Zhong et al., 2024). TTFT captures latency for
generating the first output token after a request is received, while TPOT sets an upper bound on
the average latency for generating subsequent tokens. Meeting SLOs plays a key role in providing
high-quality LLM services and has been fully researched in other fields like cloud computing (Liu
et al., 2017; Zhang et al., 2019) and edge computing (Seo et al., 2021). However, this problem has
not been well explored in LLM serving. Also, from the perspective of Model as a Service (MaaS)
providers, different applications and users have different SLO requirements (Patke et al., 2025; Chen
et al., 2025). This inspires us to explore the heterogeneous SLO attainment problem in LLM serving.
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Figure 2: Impact of input sequence length (a), batch size (b), and output token index (c) on prefill
latency and inter-token latency (ITL).

We define the heterogeneous SLO attainment problem as follows: During a time interval T , there is a
sequence of user requestsR = {r1, r2, . . . , rN} arriving. An LLM inference system processes the
requests with a scheduling policy π. A request ri ∈ R with its TTFT SLO threshold STT (ri) and
TPOT SLO threshold STP (ri) is considered SLO-compliant if it satisfies both TTFT (ri) ≤ STT (ri)
and TPOT (ri) ≤ STP (ri). Let Rgood(π) ⊆ R be the subset of those requests that are SLO-
compliant. Then the system goodput and SLO adherence rate can be defined as:

Goodput(π) =
|Rgood(π)|

T
(1)

Adherence(π) =
|Rgood(π)|
|R|

(2)

The objective is to design an online scheduling policy π aiming to achieve:

max
π

(
lim

T→∞
E[Goodput(π, T )], lim

T→∞
E[Adherence(π, T )]

)
(3)

3 METHOD

3.1 SYSTEM OVERVIEW

SCORPIO is a system-algorithm co-design framework designed to maximize goodput and SLO
adherence. SCORPIO consists of three key components: 1) a predictor, 2) a TTFT Guard, and 3) a
TPOT Guard. The two guards leverage predicted SLO metrics to explicitly handle heterogeneous
request requirements.

Figure 3 shows the workflow of SCORPIO: when a request arrives, the predictor (§3.2) first predicts
the output sequence length, which is used by two analytic models to estimate the TPOT and TTFT.
Given the estimated information, the TTFT and TPOT Guards make scheduling decisions accordingly.
Specifically, the TTFT Guard (§3.3) first reorders the requests according to their TTFT SLO deadline
(i.e., Least Deadline First Reordering ). Additionally, it uses the estimated TTFT to reject requests
that are unattainable with respect to their TTFT SLOs. Given the new reordered requests, the TPOT
Guard (§3.4) uses the estimated TPOT to decide whether to admit the requests into the running
batch (i.e., VBS-based Admission Control Mechanism ). Then, it employs a Credit-based Batching
Mechanism to select which requests to batch in each processing iteration. Lastly, the selected requests
are batched and processed in the execution engine.

3.2 PREDICTOR

Sequence Length Predictor. We design a lightweight predictor for output sequence length with
minimal overhead. In contrast to prior work (Jin et al., 2023; Qiu et al., 2024), which typically uses
coarse-grained bucketing (e.g., 10 bins), we conduct a systematic analysis of bucketing strategies
(§A.6) and show that medium-grained binning (e.g., 100 bins) provides a superior accuracy (§A.6).
This design addresses two major limitations of prior approaches: (i) significant class imbalance,
which inflates overall accuracy but degrades prediction on minority classes, and (ii) excessively wide
bin intervals, which constrain resolution as maximum context lengths grow in modern LLMs. Model
training details can be found in Appendix A.2.

3
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Figure 3: The workflow of SCORPIO.

SLO Metric Estimation. We observe two key statistical correlations from our empirical analysis
(Figure 2): (1) inter-token latency (ITL) is positively correlated with batch size and average sequence
length, and (2) prefill time is positively correlated with prompt length. Based on these observations,
we develop analytical models to estimate TPOT and TTFT for scheduling decisions.

For TPOT estimation, we model ITL as F(|R|, L) where |R| is batch size and L is average sequence
length. Given a new request r with predicted output length P (r), we estimate the batch-level TPOT
as the expected ITL over the next P (r) generation steps. For TTFT estimation, we model prefill time
as G(LP ) where LP is prompt length. The estimated TTFT for a waiting request is the cumulative
prefill time of all preceding requests in the queue. Our empirical evaluation shows these estimators
achieve high accuracy with R2 scores exceeding 0.9. Detailed derivations, implementations, and
experimental validation are provided in Appendix A.4.

3.3 HETEROGENEOUS TTFT GUARD

Least Deadline First (LDF) Reordering. To handle heterogeneous TTFT SLOs, SCORPIO uses
a simple but effective LDF reordering strategy. The deadline for a request ri is calculated as the
time left to its TTFT deadline STT (ri). This strategy puts more urgent requests (with earlier TTFT
deadlines) at the front of the queue, achieving better system-level TTFT attainment.

Unattainable SLO Rejection. When the system load is excessively high, some requests will
inevitably violate their TTFT SLO and need special handling. In this paper, we tag these requests as
unattainable SLO requests and reject them for simplicity. These rejected requests can also be handled
with alternative approaches common in cloud computing, such as migration to other nodes or elastic
scaling (Wang et al., 2024; Gu et al., 2023). We leave this as our future work.

Starvation Prevention. The combination of LDF Reordering and Unattainable SLO Rejection
inherently prevents request starvation. As time progresses, requests with approaching deadlines gain
higher priority and move to the front of the queue, while requests that would inevitably miss their
deadlines are proactively rejected rather than allowed to starve.

To quantitatively assess starvation prevention in our heterogeneous SLO environment, we propose a
max_waiting_ratio fairness metric to evaluate the fairness among requests. Different from absolute
waiting time metrics (Fu et al., 2024), we define max_waiting_ratio as:

max_waiting_ratio = max
r∈R

(
waiting_time(r)

STT (r)

)
(4)

where STT (r) is the TTFT SLO requirement for request r. This metric captures relative starvation
by accounting for individual SLO, where lower values indicate better starvation prevention (§4.4.

3.4 HETEROGENEOUS TPOT GUARD

Key Insight. As shown in Figure 1, existing methods indiscriminately admit all incoming requests
and process them equally in each step. This approach leads to two primary issues: 1) SLO violations
for requests with strict TPOTs when contending with those having looser TPOT SLOs, and 2) when

4
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the system workload exceeds its processing capacity, greedily serving all requests causes a cascading
effect where all requests fail to meet their SLOs. To address the first issue, we design a novel batching
mechanism that provides differentiated batching opportunities based on a request’s TPOT SLO (i.e.,
Credit-based Batching Mechanism). Requests with looser TPOT SLOs are offered fewer credits
(opportunities) for batching, thereby skipping some execution iterations and leaving more resources
for requests with tighter TPOT SLOs. For the latter issue, inspired by load control techniques
in cloud computing (Wang et al., 2024; Gawlick, 1995), we introduce a novel admission control
mechanism that accounts for the heterogeneity of TPOT SLOs. On one hand, requests estimated
to cause TPOT violations are rejected. On the other hand, since a request with looser TPOT SLOs
is served intermittently, it can be regarded as a partial request when calculating the batch size (i.e.,
Virtual Batch Size) for TPOT estimation (§3.2). These two mechanisms together provide TPOT
guarantees, as illustrated in Algorithm 1.

Credit-based Batching offers requests of different TPOT SLOs with different credits (opportunities)
for batching each iteration as mentioned above. To decide how many credits a request earns, we first
introduce a concept called TPOT-relative Proportionality (TRP):
Definition 1 (TPOT-relative Proportionality (TRP)). Let STP (r) denote the TPOT SLO of request r.
Given current processing iteration t and the running requests set R(t), the TPOT-relative Proportion-
ality (TRP) of a request r ∈ R(t) is defined as:

TRP(r) =
minr∈R(t) STP (r

′)

STP (r)

The TRP quantifies the urgency of a request r to be batched compared to admitted requests with the
strictest TPOT SLOs. Note that the TRP of a request adaptively responds to changing workloads.
Therefore, each request earns credits at its TRP. Accumulating sufficient credit (≥ 1.0) grants a
request to be batched in the next processing batch. Its credit is then decremented by 1.0, representing
the consumption of one processing opportunity. Formally, in each batching step t, the following
actions are taken:

• Credit Earning: For every request r ∈ R(t), its credit is updated based on its TRP rate:
Cr(t)← Cr(t) + TRP (r)

where Cr(t) is the credit of request r at step t, which is initialized as 0.
• Batch Selection: The batch B(t) is formed by including all requests whose credit, after accumula-

tion, is greater than or equal to the threshold:
B(t) = {r ∈ R(t) | Cr(t) ≥ 1.0}

• Credit Debit: For every request r included in B(t), its credit is decremented by 1.0:
If r ∈ B(t), then Cr(t)← Cr(t)− 1.0

This mechanism ensures that over many steps, the frequency of a request r being batched will
converge towards its TRP rate.

VBS-based Admission Control. When a new request r arrives, to guarantee TPOT SLOs, an intuitive
approach is to admit requests into the running batch if admitting it will neither violate its own TPOT
SLO nor cause other running requests to violate their TPOT SLOs. However, since credit-based
batching causes some requests to skip some execution iterations as mentioned above, directly using
the number of running requests as batch size overestimates the actual system load. Since the request
r can earn a TRP (r) opportunity to be batched in each iteration if admitted, it can be regarded as a
virtual TRP (r) request. Let R(t)′ = R(t) ∪ {r}, we can project the actual load of the system as the
sum of the TRP of all requests, which we denote as virtual batch size (VBS):

VBS(R′) =
∑
r∈R′

TRP (r) (5)

The request r is admitted to the running queue at step t if adding it would not cause the estimated
TPOT to exceed the minimum TPOT SLO of the running requests set R′:

EstimatedTPOT(V BS(R′), Lavg(R
′)) ≤ min

r′∈R(t)
STP (r

′)

The mechanism guarantees that the admitted requests obey their TPOT SLOs.

5
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Algorithm 1: TPOT Guarantee Mechanism
Input: LLM model M , Sequence Length Predictor P , LDF Sorted Waiting Queue W , Running

Queue R
Output: Batched requests set B

1 while True do
2 B ← ∅
3 foreach w ∈W do
4 R′ ← R ∪ {w}
5 if EstimatedTPOT(V BS(R′), Lavg(R

′)) ≤ minr∈R′ STP (r) then
6 B ← B ∪ {w}, W ←W \ {w} , R← R′ // Admission Control
7 end
8 end
9 foreach r ∈ R do

10 Cr(t)← Cr(t) + TRP (r) // Credit Earning
11 if Cr(t) ≥ 1.0 then
12 B ← B ∪ {r}, Cr(t)← Cr(t)− 1.0 // Batch Selection and Credit Debit
13 end
14 end
15 end

4 EXPERIMENTS

In this section, we evaluate our proposed method against the baselines and the effectiveness of each
component. We show that our proposed method can achieve state-of-the-art performance in terms of
goodput and SLO attainment rate under different scenarios.

4.1 EXPERIMENTAL SETUP

Testbed. We conduct our experiments on a server with 4 NVIDIA A100 GPUs, each with 80GB of
memory. The GPUs are interconnected with NVLink between pairs (GPU0-GPU1 and GPU2-GPU3),
while communication between pairs utilizes the PCIe fabric and the system’s NUMA interconnect.

Serving Models. We use Meta Llama-3.1 8B (Grattafiori et al., 2024) and Google Gemma-2 27b
(Team, 2024) as serving models. All experiments use FP16/BF16 precision, which is the most
common setting in LLM deployment. The 8B model runs on a single GPU, and the 27B model runs
on 4 GPUs with tensor parallelism (Shoeybi et al., 2020).

Workloads. We evaluate using the ShareGPT (Team, 2023) and LMSYS-Chat-1M (Zheng et al.,
2024a) datasets, which are the widely used datasets collected from real-world conversations. For each
dataset and model pair, we use the same prompt set to train the predictor for consistency. Regarding
the SLO setting, to fully explore the serving heterogeneous requests, we refer to prior works (Li
et al., 2025; Zhong et al., 2024) and consider requests with 6 categories, as summarized in Table 1.
Category 1 represents requests with both tight TTFT and TPOT constraints (e.g., code generation
(Li et al., 2025)). Categories 2 and 3 represent requests with tight TPOT and relatively loose TTFT
constraints (e.g., tool call response). Categories 4 and 5 represent requests with loose TPOT and tight
TTFT constraints (e.g., reading-speed responses of chatbot (Li et al., 2025)). Category 6 represents
requests with both loose TPOT and TTFT constraints (e.g., Summarization (Zhong et al., 2024)).
Note that for the 27B model, we loosen the SLO constraints to account for the increased model size.

Table 1: SLO categories for different model sizes.

Model Metric Category
1 2 3 4 5 6

Llama-3.1 8B TTFT (s) 0.5 2 3 0.5 1 7.5
TPOT (ms) 30 30 30 50 50 50

Gemma-2 27B TTFT (s) 1.0 4 6 1.0 2 15
TPOT (ms) 60 60 60 100 100 100

6
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Figure 4: Impact of different scheduling strategies on goodput and SLO adherence vs QPS.

Baselines. We compare our method with the following baselines:

• vLLM (Kwon et al., 2023): A state-of-the-art LLM serving system that uses a throughput-oriented
scheduling strategy. The vLLM scheduler prioritizes prefills.

• S3 (Jin et al., 2023): An LLM inference system that predicts the output sequence length and
employs the shortest job first scheduling. Since S3 is implemented on basic LLM inference without
techniques like PagedAttention, we re-implement its core scheduling strategy within vLLM for a
fair comparison.

• Mooncake (Qin et al., 2024): A production-grade LLM serving platform that employs an early-
rejection-based admission control for SLO guarantees. We integrate this mechanism into vLLM.

4.2 QPS-SCALING SLO ATTAINMENT

We compare SCORPIO’s goodput and SLO attainment rate against baselines on ShareGPT and
LMSYS-Chat-1M with heterogeneous SLOs, under varying request arrival rates (Li et al., 2025;
Zhong et al., 2024). As shown in Figure 4, SCORPIO achieves higher goodput and SLO adherence
than the baselines, especially at high QPS. For example, at a QPS of 15, it yields up to 8.8-14.4×
higher goodput and 40.7-46.5% higher SLO adherence than baselines, demonstrating robust burst
handling through its SLO-oriented scheduling. In contrast, vLLM’s greedy admission leads to severe
TPOT violations. S3’s output-length ranking and Mooncake’s strict rejection both exhibit suboptimal
SLO adherence. Note that at lower QPS, baselines occasionally show better performance than
SCORPIO. For example, when serving Gemma2-27b on ShareGPT at a QPS of 5, vLLM achieves a
1.08× goodput and a 1.5% higher SLO adherence rate. One contributing factor is resource contention
between the sequence length predictor and the LLM server when co-located on the same GPUs. This
can be mitigated by deploying the predictor on a separate low-cost GPU, which we find improves
performance by 5-20% by eliminating resource contention(§A.7). Alternatively, even without an
extra GPU, this could be addressed by detecting low-load conditions and dynamically switching to
a simpler, lower-overhead scheduling strategy, which is left as future work. We also evaluate the
SCORPIO’s performance on long input/output scenarios (§A.5), which yields consistent results.

4.3 REAL-WORLD TRACE SERVING

We further evaluate SCORPIO using 20-minute real-world traces (Azure, 2023), which exhibit periods
of both bursty and light load (§A.3). Figure 5 reports the cumulative number of SLO-met requests for
Llama3-8B and Gemma2-27B models across both datasets. Across all settings, SCORPIO achieves the
highest cumulative SLO-met counts. For example, SCORPIOachieves a 1.25, 2.01, and 2.11× higher
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Figure 5: Cumulative number of SLO-met requests over time on the LMSYS and ShareGPT dataset.
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Figure 6: Starvation prevention on the impact of different scheduling strategies.

SLO-met requests compared with Mooncake, vLLM, and S3, respectively. Throughput-oriented
baselines like vLLM exhibit noticeable slowdowns during traffic spikes (e.g., minutes 3-5 and 9-
11), caused by uniform batching and greedy admission, leading to widespread TPOT violations.
Mooncake (Figure 5b,d) alleviates some pressure via early rejections, but its SLO gains taper off with
a too strict admission control mechanism and lack of consideration for the heterogeneous SLOs. S3’s
length ranking also exhibits suboptimal SLO attainment. In contrast, SCORPIO steadily maintains
a lead in cumulative SLO-met requests. By combining TTFT Guard and TPOT Guard, SCORPIO
effectively handles the heterogeneous SLOs.

4.4 EFFECTIVENESS ANALYSIS

Ablation Study. For this evaluation, we evaluate the core components of SCORPIO. As shown
in Figure 7, we add the proposed components incrementally and assess the performance. For
simplicity, we only present results at a QPS of 14. We find that 1) without any component, SCORPIO’s
goodput is significantly reduced. 2) Including only the TTFT Guard effectively reduces TTFT
violations as intended, but results in severe TPOT violations, and vice versa. These results show the
interdependence of the components, highlighting their importance for the overall performance.

Overhead of SCORPIO’s Scheduling. We illustrate the overhead of SCORPIO’s scheduling in
responding to 512 requests, shown in Table 2. The SCORPIO’s overhead is measured by summing the
time taken by all scheduling sub-components, including the TTFT Guard and TPOT Guard. We find
that the overhead is negligible, less than 1% in all settings. We do not account the time of predictor
since it is shown to be negligible in previous works (Jin et al., 2023; Fu et al., 2024).

Starvation Prevention. We evaluate the starvation prevention of SCORPIO, shown in Figure 6.
SCORPIO achieves comparable mean max_waiting_ratio with Mooncake, while outperforming
other baselines by 1-2 orders of magnitude. These results confirm that SCORPIO successfully prevents
request starvation in heterogeneous SLO environments.
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Figure 7: Ablation study on the impact of different scheduling strategies.

Table 2: Overhead of SCORPIO’s scheduling

Model Dataset Overall Time (s) Schedule Time (s) Scorpio (s) Overhead (%)

Llama-3-8B ShareGPT 58.1 1.83 0.073 0.12%
Llama-3-8B LMSYS-Chat-1M 58.4 2.04 0.102 0.17%
Gemma-27B ShareGPT 81.2 2.26 0.126 0.16%
Gemma-27B LMSYS-Chat-1M 84.9 2.08 0.097 0.11%

5 RELATED WORK

In recent years, LLM serving systems have been widely studied. Orca (Yu et al.) and vLLM
(Kwon et al., 2023) introduce continuous batching and paged attention for efficient GPU VRAM
utilization, which have been adopted as ad-hoc strategies for LLM serving (Li et al., 2024). Building
on this, subsequent research further optimizes GPU utilization. Sarathi-Serve (Agrawal et al., 2023)
proposes a piggyback strategy to schedule prefill and decode together. SplitWise (Patel et al., 2024)
and DistServe (Zhong et al., 2024) propose to split the prefill and decode into different instances,
preventing interference between batch-like prefill jobs and latency-critical decode tasks. Beyond
raw performance, (Sheng et al., 2024) and (Shen et al., 2024) propose fairness-aware scheduling
mechanisms to ensure equitable service among requests. Prediction of request characteristics (e.g.,
output length) is another significant direction, enabling scheduling policies such as SSJF (Jin et al.,
2023; Cheng et al., 2024; Qiu et al., 2024; Fu et al., 2024) and SRTF (Shahout et al., 2024). Recently,
adhering to SLOs has gained more focus. Mooncake (Qin et al., 2024) proposes an early-rejection
strategy to handle the overload scenario. QM (Patke et al., 2025) proposes a queue management
framework to improve TTFT SLO adherence. Concurrent work (Li et al., 2025; Chen et al., 2025)
adjusts the allocation of tokens on the fly with speculative decoding (Leviathan et al., 2023) to achieve
customized SLO serving. In this work, we explore scenarios with heterogeneous SLOs. We propose
a fine-grained scheduling strategy that exploits the heterogeneity of SLOs to maximize goodput and
SLO adherence.

6 CONCLUSION

In this paper, we present SCORPIO, a novel SLO-oriented LLM serving system designed to maximize
system goodput and SLO adherence for requests with heterogeneous SLOs. By exploiting SLO
heterogeneity, we employ specialized mechanisms working in concert: a TPOT Guard and a TTFT
Guard, supported by an accurate predictor. Evaluations demonstrate that SCORPIO significantly
outperforms state-of-the-art throughput-oriented systems, improving system goodput by up to 14.4×
and SLO adherence rate by up to 46.5% across various scenarios.

7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide an anonymous repository containing all experimental har-
nesses and visualization scripts described in this paper, along with model training details, dataset
distributions, and trace patterns used in our experiments (See §A.2 and §A.3).
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A APPENDIX

A.1 AI ASSISTANTS

Gemini-2.5 Pro was used purely with the language of the paper during the writing process, including
spell-checking and paraphrasing the authors’ original content, without suggesting new content. Any
content generated with the assistant underwent meticulous manual review and subsequently received
final approval from the authors.

A.2 IMPLEMENTATION DETAILS

Our codebase contains the complete codebase for SCORPIO, including all experimental harnesses
and visualization scripts described in this paper. It is built upon a fork of the vLLM project, which
we extended with our scheduling system. We open-source our code at https://anonymous.
4open.science/r/Scorpio-BC01.

For the sequence length predictor, we bucketize the output length distribution into discrete bins and
fine-tune an OPT-125M model (Zhang et al., 2022) as a text classifier to predict the appropriate
bin for each sequence. We augment the original OPT architecture with a simple linear projection
layer that maps the hidden state of the final token to the predicted output length bin. We collect
20K samples from ShareGPT and LMSYS-Chat-1M datasets. We split the dataset into the training
set, validation set, and test set with a ratio of 6:2:2. We train the model on the training set using a
batch size of 64 for 8 epochs. Following (Fu et al., 2024), we truncate input prompts to a maximum
of 2048 tokens to accommodate OPT’s context window constraints. The training data example is
shown in Listing 1. Recognizing that traditional accuracy metrics can be misleading with imbalanced
class distributions, we introduce multiple evaluation metrics, including off-by-n accuracy (predictions
within n bin of the ground truth), Kendall’s Tau correlation coefficient and root mean squared error
of length prediction for comprehensive assessment (§A.6). Note that we deploy the sequence length
predictor in the same GPU with the LLM inference server for resource efficiency. We also study the
impact of the interference of the sequence length predictor on the serving system (§A.7). For the
analytic models, we profile the step time of the inference of the same training set that is used for the
sequence length predictor, ensuring consistency.

Listing 1: Training data example.
{

"prompt": "Translate the following English text to French: ’Hello,
world!’",

"output_length": 128,
"label": 1

}

Table 3: Hyperparameters when training the sequence output length predictor

Hyperparameter Value
Optimizer Adam
Learning Rate 2e-5 (constant)
β1 0.9
β2 0.999
Batch Size 64
Epochs 8

A.3 DATASET DISTRIBUTION AND TRACE PATTERN

For Meta Llama3.1-8b, we directly use the dataset provided by (Fu et al., 2024). For Gemma2-27b,
we randomly sample 20k samples and collect the prompt-response pairs. We show the dataset
distribution as in Figure 8. For the input length, we compute the input length by appending the chat
template onto the prompts. On average, the Gemma-27B has a slightly shorter input length of about
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Figure 8: Dataset distribution of different models on ShareGPT and LMSYS.

150 tokens and an output length of around 130 tokens. For the trace pattern used in our Real-World
Trace Serving experiment 4.3, we select the first 20 minutes of the Azure Inference Trace (Azure,
2023). As shown in Figure 9, the trace exhibits periods of both bursty and light load, with the QPS
reaching a peak of over 60 requests per second at around 14 minutes from the start of the trace.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timeline (min)

0

20

40

60

R
PS

Figure 9: Requests per second over time of first 20 minutes of Azure Inference Trace (Azure, 2023).

A.4 ANALYTIC MODEL

This subsection elaborates on the SLO metric estimation introduced in section 3.2, and present
experimental validation of our analytical models.

TPOT Estimation. To estimate the TPOT of a request, we first observe that the inter-token latency
(ITL) is positively correlated with GPU execution state (e.g., batch size and average sequence
length) (§2). Therefore, given processing iteration t and the corresponding running requests set
R(t) = {r1, r2, ..., rn}, we develop an analytical model to estimate the ITL:

F(|R|, Lavg(R)) = α · |R| · Lavg(R) + β · |R|+ γ · Lavg(R) + δ (6)

where |R| represents the running batch size, Lavg(R) denotes the average sequence length (including
the prompt and generated tokens) of the batch in iteration t, and α, β, γ, δ are model coefficients
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determined through empirical measurements. Experiments show that this estimator is highly accurate
with an R2 score of over 0.9 (§A.4). Given that a new request r arrives and its predicted output length
is P (r), if it is admitted to the running batch R(t), the new set of running requests becomes R′(t),
with average length Lavg(R

′). The batch-level TPOT over the next P (r) steps can be derived as:

EstimatedTPOT(|R′|, Lavg(R
′), P ) = ε×{(α · |R′|+ γ) · (Lavg(R

′)+
P (r)

2
)+β · |R′|+ δ} (7)

Here, to avoid the computational complexity associated with tracking individual request completion
times in the batch, we make a simplified conservative assumption: all requests currently in the batch
(r1, r2, . . . , rn) are assumed to continue processing for at least the next P (r) steps. Furthermore, we
introduce an inefficiency coefficient ε (ε ≥ 1) to account for system overheads (Patke et al., 2025).

TTFT Estimation. Given a waiting requests set W (t) = {w1, w2, ..., wn}, the TTFT of the request
wi is greater than or equal to the sum of the predicted prefill time of requests in the queue. To estimate
the TTFT of a sequence, we first formulate the prefill time of a sequence wi according to statistical
observation (Figure 2a):

G(LP (wi)) =

{
φ, if LP (wi) ≤ θ

α ∗ LP (wi) + β, otherwise
(8)

where LP (wi) is the prompt length of request wi, and φ is the constant prefill time for sequences
with prompt length less than θ. Then, we can estimate the minimal estimated TTFT of a sequence wi

with sorting index i in the waiting queue as:

EstimatedTTFT(wi) >=

i∑
j=1

G(LP (wj)) (9)

We report the statistics metrics of the analytic model (including TTFT estimater and TPOT estimater
§3.1) for different metrics in Table 4. The results demonstrate excellent model accuracy across
all metrics. For example, when using Meta Llama3.1-8b and ShareGPT dataset, the R2 values
approaching 1.0 (0.994 for Prefill Time Estimater and 0.987 for Inter-Token Time Estimater) indicate
that our analytic models explain over 98% of the variance in the data, showing strong predictive
power. The low RMSE values (2.07ms for Prefill Time Estimater and 0.871ms for Inter-Token Time
Estimater) suggest minimal prediction errors in absolute terms. Additionally, the MAPE values
(4.812% for Prefill Time Estimater and 2.3% for Inter-Token Time Estimater) indicate that our
predictions are within 5% of the actual values on average, demonstrating high relative accuracy.
These results are consistent across both the ShareGPT and LMSYS datasets, showing the robustness
of our analytic models.

Table 4: Accuracy of the analytic model for different metrics

Model Dataset Analytic model R2 (↑) RMSE (ms) (↓) MAPE (%) (↓)

Llama3.1-8B
ShareGPT Prefill Latency 0.994 2.070 4.812

Inter-Token Latency 0.987 0.871 2.300

LMSYS Prefill Latency 0.983 1.281 4.664
Inter-Token Latency 0.979 0.643 2.224

Gemma2-27b
ShareGPT Prefill Latency 0.988 3.158 5.922

Inter-Token Latency 0.953 3.534 7.859

LMSYS Prefill Latency 0.957 3.436 8.311
Inter-Token Latency 0.905 3.041 7.444

A.5 EXPERIMENTS ON LONG INPUT/OUTPUT SERVING SCENARIOS

We conducted two new sets of experiments to assess our framework’s practical utility in iconic
LLM serving scenarios with long inputs and long outputs. For the long output scenario, we utilized
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the opencoder-reasoning benchmark (Ahmad et al., 2025). We curated a subset of requests with
lengthy generated responses, ranging from 1K to 2K tokens, which are significantly longer than the
datasets used in our main evaluation. For the long input scenario, we simulated tasks using the dataset
from (Cohan et al., 2018), selecting prompts with lengths between 1K and 2K tokens.

Tables 5 and 6 present the results for SLO adherence in these challenging scenarios. Our solution,
SCORPIO, consistently outperforms all baselines. At higher system loads, specifically at a QPS
of 5, SCORPIO achieves up to 43%–50% higher SLO adherence than baselines in the long output
scenario and 34%–38% higher in the long input scenario. This demonstrates the robustness and
effectiveness of our scheduling mechanisms in handling these demanding tasks, aligning with the
findings presented in the main body of our paper (§4.2).

Table 5: SLO Adherence vs. QPS (Long Output Scenario)

Method QPS

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Mooncake 0.99 0.97 0.88 0.69 0.55 0.27 0.17
vLLM 0.99 0.96 0.88 0.69 0.54 0.29 0.10
S3 0.99 0.97 0.88 0.68 0.53 0.26 0.10
Scorpio (Ours) 0.99 0.96 0.88 0.81 0.71 0.66 0.60

Table 6: SLO Adherence vs. QPS (Long Input Scenario)

Method QPS

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Mooncake 0.91 0.46 0.23 0.18 0.13 0.12 0.11
vLLM 0.83 0.56 0.26 0.16 0.13 0.10 0.07
S3 0.94 0.45 0.24 0.14 0.10 0.08 0.07
Scorpio (Ours) 0.90 0.79 0.70 0.65 0.58 0.54 0.45

A.6 COMPLETE RESULTS OF BUCKETING STRATEGY ANALYSIS

In this part, we comprehensively evaluate the bucketing strategies for the sequence length predictor.
As shown in Table 7, we designed bucket numbers ranging from 10 to 1000 based on two strategies:
1) equal-width and 2) equal-frequency. In the former, we evenly divide the sequence length range into
equal-width buckets, while in the latter, we evenly divide the sequence length based on the output
length distribution of the datasets. Different from previous works (Jin et al., 2023; Qiu et al., 2024)
that only report the classification accuracy, we also evaluate the off-by-n accuracy (predictions within
n bin of the ground truth), Kendall’s tau coefficient to measure the relative order accuracy and root
mean square error (RMSE).

Our analysis revealed several key insights. For equal-width bucketing, we find that using a moderate
number of bins (e.g., 100) provides the best balance between multiple performance metrics. For
example, when serving Llama3-8B on ShareGPT, using a number of 100 bins achieves 0.54 in
Kendall’s tau and 195.8 in RMSE. Also, note that even if the exact accuracy is low, the off-n accuracy
remains relatively high. This suggests the model effectively places predictions close to the true bucket.
In contrast, using too few buckets, which are commonly used in previous works, shows very low tau
and high RMSE despite misleading high accuracy. This discrepancy stems from the highly skewed
data distribution, where over 93% of samples concentrate in the first bucket. Too many buckets also
degrade the prediction performance. For equal-frequency bucketing, all binning configurations show
high RMSE, indicating unsuitability for absolute length prediction. This is because with imbalanced
data, equal-frequency bucketing leads to initial bins being narrow and later bins excessively wide,
making precise classification difficult. Based on the analysis, we adopt equal-width bucketing and set
the number of buckets to 100 for sequence length predictor in all experiments (§4).
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Table 7: Performance comparison of Equal-width and Equal-frequency bucketing with different
bucket numbers on ShareGPT and LMSYS datasets using Llama3-8B and Gemma-27B.

Model Strategy # Buckets
ShareGPT LMSYS

Tau (↑) Acc. (%) Off-1 Off-2 RMSE (↓) Tau (↑) Acc. (%) Off-1 Off-2 RMSE (↓)
Acc. (%) Acc. (%) Acc. (%) Acc. (%)

L
la

m
a3

-8
B E

qu
al

-w
id

th
10 0.25 88.7 99.9 100.0 301.4 0.25 95.8 100.0 100.0 304.9
20 0.45 70.0 97.6 99.6 247.1 0.50 79.4 99.0 99.9 222.3
50 0.54 43.2 84.0 95.0 202.4 0.60 56.3 85.4 94.0 201.5
100 0.54 27.0 61.3 79.7 195.8 0.61 41.2 67.1 81.0 196.2
200 0.51 15.4 37.2 54.5 199.4 0.62 29.7 49.9 61.6 197.5
500 0.51 7.6 17.8 27.3 201.3 0.62 18.9 33.7 42.0 193.2

1000 0.49 5.0 11.2 16.4 207.9 0.61 13.6 24.0 30.4 196.7

E
qu

al
-f

re
qu

en
cy

10 0.54 28.1 59.8 78.1 1088.7 0.65 38.1 72.4 86.8 1171.4
20 0.53 16.2 37.7 53.8 1042.7 0.64 25.7 50.6 66.8 837.9
50 0.52 8.4 19.2 28.6 689.9 0.63 14.5 28.6 39.6 361.3
100 0.51 5.0 11.4 17.0 652.4 0.62 10.4 17.4 24.1 287.5
200 0.48 2.7 5.8 8.9 474.4 0.60 8.8 12.2 16.1 418.1
500 0.44 2.0 3.2 4.3 994.5 0.57 7.7 8.7 10.1 263.3

1000 0.42 1.6 1.9 3.0 277.0 0.52 7.6 7.8 8.1 237.2

G
em

m
a-

27
B E

qu
al

-w
id

th

10 0.21 94.0 100.0 100.0 249.5 0.22 96.9 100.0 100.0 288.8
20 0.52 74.9 99.6 100.0 195.3 0.47 79.4 98.7 100.0 221.9
50 0.62 52.0 88.8 97.8 157.2 0.63 57.6 86.3 95.9 177.7
100 0.61 34.8 68.2 83.9 156.5 0.65 43.6 69.6 81.8 176.6
200 0.60 21.2 48.5 63.4 154.2 0.64 31.4 53.0 65.0 169.6
500 0.59 11.5 26.6 38.4 156.9 0.64 18.3 34.2 44.3 170.9

1000 0.57 6.8 15.8 23.0 161.6 0.63 14.5 25.0 32.6 171.4

E
qu

al
-f

re
qu

en
cy

10 0.62 36.7 68.6 83.6 1253.8 0.67 38.2 71.0 86.2 949.2
20 0.61 22.3 48.2 63.0 914.6 0.66 26.6 51.8 66.3 865.2
50 0.60 11.5 25.8 37.8 489.9 0.64 14.5 29.4 39.8 503.2
100 0.59 5.7 14.5 21.9 476.9 0.64 9.8 18.6 25.4 552.9
200 0.56 3.2 8.0 12.6 250.4 0.61 7.4 11.3 15.9 235.0
500 0.52 2.0 4.2 5.8 343.0 0.57 6.6 8.1 9.7 268.2

1000 0.51 1.5 1.8 2.8 192.7 0.56 6.2 6.6 7.2 221.2
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Figure 10: Interference of the sequence length predictor on the serving system.

A.7 INTERFERENCE OF THE SEQUENCE LENGTH PREDICTOR ON THE SCHEDULING SYSTEM

Since simply deploying the sequence length predictor and LLM server on the same GPUs may lead
to resource contention, we study the interference of the sequence length predictor on the serving
system in this part. As shown in Figure 10, we compare the goodput and slo adherence of the system
with and without the interference of the sequence length predictor. For w/ interference, we deploy the
predictor and the LLM server on the same A800 GPUs. For w/o interference, we deploy the predictor

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

on a separate GTX 3090 GPU with 24GB memory. On average, we find that the interference of
the sequence length predictor leads to a 5% - 20% performance degradation on goodput and slo
adherence on average.

A.8 LIMITATIONS

The proposed scheduler currently works with standard LLM serving techniques such as continuous
batching and paged attention. How to integrate the scheduler with the latest optimizations, such as
prefill-decode disaggregation (Zhong et al., 2024), is an interesting direction for future work. Also,
as we mentioned in the §4.2, the scheduler shows a bit of performance degradation at low QPS. This
is because while SCORPIO’s complexity is advantageous under heavy load, the intervention of such
control degrades performance at low QPS. This calls for a more flexible and adaptive scheduling
strategy that could switch to a simpler, lower-overhead scheduling method. We leave these as future
work.
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