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ABSTRACT

Hand gesture classification using high-quality structured data such as videos, im-
ages, and hand skeletons is a well-explored problem in computer vision. Alterna-
tively, leveraging low-power, cost-effective bio-signals, e.g. surface electromyo-
graphy (sEMG), allows for continuous gesture prediction on wearable devices.
In this work, we aim to enhance EMG representation quality by aligning it with
embeddings obtained from structured, high-quality modalities that provide richer
semantic guidance, ultimately enabling zero-shot gesture generalization. Specif-
ically, we propose EMBridge, a cross-modal representation learning framework
that bridges the modality gap between EMG and pose. EMBridge learns high-
quality EMG representations by introducing a Querying Transformer (Q-Former),
a masked pose reconstruction loss, and a community-aware soft contrastive learn-
ing objective that aligns the relative geometry of the embedding spaces. We eval-
uate EMBridge on both in-distribution and unseen gesture classification tasks and
demonstrate consistent performance gains over all baselines. To the best of our
knowledge, EMBridge is the first cross-modal representation learning framework
to achieve zero-shot gesture classification from wearable EMG signals, showing
potential toward real-world gesture recognition on wearable devices.

1 INTRODUCTION

Hand gesture recognition on wearable devices has recently attracted significant interest (Pyun et al.,
2024; Moin et al., 2021) and demonstrated potential across diverse applications such as rehabil-
itation (Marcos-Antón et al., 2023), human–computer interaction (Jarque-Bou et al., 2021), and
prosthetic control (Yu et al., 2023). With advances in deep learning and the availability of large-
scale visual data, including videos and motion capture (Casile et al., 2023), vision-based models
have achieved remarkable success (Pavlakos et al., 2023; Qi et al., 2024). However, cameras suffer
from high power demands and privacy concerns, and potential occlusions can destabilize vision-
based classification. This has motivated growing interest in low-power, easily integrable sensors
(Tchantchane et al., 2023), such as surface electromyography (sEMG), for gesture recognition on
wearable devices (Tchantchane et al., 2023; Wang et al., 2023). Deep learning approaches have been
explored for EMG-based gesture classification, including convolutional neural networks (CNNs)
(Atzori et al., 2016), recurrent neural networks (RNNs) (Liu et al., 2021), and Transformers (Mon-
tazerin et al., 2023). However, predicting hand gestures from wearable EMG, especially generaliz-
ing to unseen gestures without task-specific training, remains challenging (Laput & Harrison, 2019).
This is mainly because of the high variability and fine dexterity of human hand movements, sensor
noise, and/or the limited scale of publicly available data (Lee et al., 2024a; Pereira et al., 2024;
Tam et al., 2024). Due to the noisy and heterogeneous nature of EMG signals, learning from EMG
alone (through self-supervised learning or supervised end-to-end training) may not reliably yield
generalizable and discriminative representations (later demonstrated in our experiments).

An effective strategy to overcome the above limitations is to leverage another modality that offers
richer semantic structure and higher signal quality as guidance during representation learning. This
can be achieved through cross-modal representation learning, which has proven highly effective
in improving the quality of learned embeddings and shown remarkable success in vision-language
models (Xie et al., 2025; Li et al., 2023), audio-visual language models (Gurram et al., 2022; Guo
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et al., 2025), and in biosignals such as IMU-video-text alignment (Moon et al., 2022) and EEG-text
alignment (Feng et al., 2023). However, aligning representations across modalities has not yet been
fully explored for wearable EMG signals. Given paired EMG recordings and kinematic hand pose
annotations collected simultaneously, we can study cross-modal alignment between EMG and pose.
Unlike visual data, pose data directly captures the kinematics of hand movements, making it an
informative modality for guiding EMG representation learning. Therefore, we introduce a cross-
modal framework for EMG representation learning that leverages a high-quality anchor modality,
where structured pose data provides richer supervisory signals by capturing structural and semantic
relationships. Our goal is to improve the quality of EMG embeddings, enabling generalization to
new users and unseen gestures at test time without the need for additional training or large-scale data
collection. The potential practical application of our framework can be wearable Human-Computer
Interaction. In scenarios like VR/AR and prosthetic control applications (Jarque-Bou et al., 2021;
Yu et al., 2023), a wrist-worn device must continuously infer hand gestures from EMG signals to
drive a virtual avatar or robotic hand. A critical bottleneck is that users cannot be expected to record
training data for every possible movement they might perform. Our framework is designed to enable
zero-shot generalization, allowing the system to recognize novel gestures without requiring the user
to provide training samples.

We first introduce two unimodal encoders trained separately on EMG and pose data, and then align
their output embeddings. Unlike classical approaches such as CLIP or BLIP (Radford et al., 2021;
Li et al., 2023; 2022), which symmetrically update both encoders toward a shared latent space,
our design adopts an asymmetric setup, where the pose encoder is frozen as an anchor and only
the EMG encoder is optimized. On this basis, we propose EMBridge, a cross-modal representa-
tion learning framework that bridges the modality gap between EMG and pose and enhances the
representation quality learned from EMG signals through advanced alignment with pose representa-
tions. EMBridge consists of three components: a Querying Transformer (Q-former) (Li et al., 2023)
that extracts pose-informative queries and aligns EMG and pose, a masked pose reconstruction loss
(MPRL) that encourages queries to carry structured pose information, and a community-aware soft
contrastive learning (CASCLe) objective that considers the neighborhood structures of poses and
aligns the relative geometry in the latent space across modalities. Standard contrastive learning
approaches (e.g., InfoNCE) treat all non-matching samples as equally distant negatives. However,
this assumption is suboptimal for our pose data, which is inherently continuous. And poses across
different gesture categories can be semantically close. To capture these structural similarities and
avoid confusing the model with hard negatives, we introduce CASCLe, which utilizes geometric
proximity in the pose space to generate soft targets. Together, these objectives guide the EMG
encoder to capture pose-relevant semantics and produce discriminative, generalizable embeddings.
Unlike general-purpose multi-modal alignment, EMBridge is designed as a specialized solution for
EMG-based gesture classification through cross-modal supervision.

We utilize large-scale public EMG datasets (Salter et al., 2024; Atzori et al., 2014), which pro-
vides simultaneous paired EMG and pose recordings to pre-train our EMBridge model and perform
downstream evaluations. We design a gesture classification task to evaluate EMG representation
quality. Following CLIP evaluation protocol (Radford et al., 2021), we validate the learned EMG
representations through zero-shot classification and linear probing, demonstrating superior perfor-
mance on both in-distribution and unseen gestures compared to benchmark models. In summary,
our contributions are two-fold:

• We propose a cross-modal representation learning strategy to enhance the quality of EMG
representations learned from noisy EMG signals by aligning them with high-quality pose
representations.

• To the best of our knowledge, EMBridge is the first cross-modal framework enabling zero-
shot classification of unseen gestures for EMG signals from wearable devices.

2 METHODOLOGY

2.1 PRELIMINARIES

Definition 1. EMG, pose data, and gesture classes. Let X = {xi ∈ RC×T }Ni=1 denote multi-
channel EMG sequences with C channels and window length T , and let P = {pi ∈ RJ×T }Ni=1
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Figure 1: (a) Motivation for cross-modal representation learning: using the same MAE pre-training,
pose embeddings are semantically structured and well-separated across gestures (colors), whereas
EMG embeddings are not. This motivates leveraging pose as guidance to structure the EMG repre-
sentation space. (b) Detailed architecture of EMBridge. Only one transformer block (self-attention,
cross-attention, and feed-forward layers) is shown for clarity, the model uses four such blocks.

denote the paired pose sequences of joint angles, where J is the number of joints in a predefined
hand skeleton (Salter et al., 2024). Here, N is the total number of paired samples. We define a
pose as the instantaneous state of the hand skeleton (20 joint angles) at a single time point, whereas
a gesture is a temporal sequence of poses over a time window. Let Y = {1, . . . ,K} denote the
gesture classes, and let {yi}Ni=1 be the labels with yi ∈ Y . Each pose pi has a unique label yi,
although multiple samples may share the same label. The paired dataset is

D = {(xi,pi, yi)}Ni=1,

which we split into Dtr, Dval, and Dtest. Let Yin ⊂ Y be the in-distribution gesture classes and
Yunseen ⊂ Y be the unseen gesture classes, with Yin ∩ Yunseen = ∅. For subset S ∈ {tr, val, test},

Din
S = {(x,p, y) ∈ DS : y ∈ Yin}, Dunseen

S = {(x,p, y) ∈ DS : y ∈ Yunseen}.

Definition 2. Unimodal Encoders. Let Ex and Ep map EMG and pose, respectively, into Rd. When
the pose encoder is used frozen, we write E∗p .

Unimodal Encoder Pre-training. We adopt a Transformer encoder (Vaswani et al., 2023) with a
linear tokenizer to map raw signals into d-dimensional token embeddings. A patch length S along
time yields L =

⌊
T/S

⌋
non-overlapping tokens. We flatten channels within each patch and project

to ai ∈ Rd. Following masked autoencoders (MAE) (He et al., 2021), we randomly mask a certain
ratio of input tokens. The encoder processes only unmasked tokens and the transformer decoder
reconstructs all tokens. The reconstruction loss is an mean squared error loss only applied to the
masked tokens. We pre-train the EMG and pose encoders independently, yielding Ex and Ep. We
use a mask ratio of 0.5 and a patch length of S = 200. Unlike CLIP, which is trained on billions of
image–text pairs, we align strong unimodal encoders to reduce the need for large-scale paired data.

2.2 EMBRIDGE

The proposed cross-modal representation learning framework EMBridge comprises three compo-
nents: (i) a Querying Transformer that acts as an information bottleneck, extracting pose-informative
features from the EMG encoder; (ii) a Masked Pose Reconstruction Loss that strengthens represen-
tation learning; and (iii) a Community-Aware Soft Contrastive Learning objective that aligns the
relative geometry of the EMG and pose spaces by matching their community-level similarity struc-
tures, yielding a more structured EMG latent space. The framework is shown in Figure 1.

2.2.1 QUERYING TRANSFORMER (Q-FORMER).

Inspired by BLIP-2 (Li et al., 2023), we use a set of learnable queries to extract pose-informative
features from the EMG encoder. Let Q(0) ∈ RM×d be M learnable queries. The Q-Former Fϕ
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stacks 4 self-attention blocks (each with a feed-forward layer) and 2 cross-attention layers in-
serted every other block, whose keys/values are from Ex(x). The self-attention modules of the
Q-Former are initialized from the pre-trained Pose-MAE encoder E∗p while cross-attention lay-
ers are randomly initialized. All Q-Former parameters and the EMG encoder Ex are trainable,
while the pose encoder E∗p remains frozen. The Q-Former takes the learnable queries Q(0) as in-
put and produces the same length of queries with learned representations Q′ ∈ RM×d. We train
the Q-Former using a contrastive objective following Li et al. (2022). Given the pose embed-
ding vi = E∗p (pi), we select the query token that has the highest cosine similarity with vi as

ui = Q′
m∗(i),m

∗(i) = argmaxm∈{1,...,M}
Q′

m
⊤vi

∥Q′
m∥ ∥vi∥ . Given a mini-batch of size B, we define

the softmax over EMG–pose similarities qij =
exp(u⊤

i vj/τ)∑B
k=1 exp(u⊤

i vk/τ)
. Let I ∈ {0, 1}B×B be the one-

hot indicator matrix with Iij = 1 iff j = i (matching pairs on the diagonal). The Information
Noise-Contrastive Estimation (InfoNCE) loss (van den Oord et al., 2019) can then be written as

LInfoNCE = − 1

B

B∑
i=1

B∑
j=1

Iij log qij . (1)

Unlike CLIP, where both encoders are trained jointly, in our setup the pose encoder is frozen and
serves as a fixed anchor, since pose representations are higher-quality and more structured compared
to EMG representations. So we adopt the standard InfoNCE loss (EMG→pose) rather than a sym-
metric variant, since gradients only flow into the EMG encoder while the pose embeddings remain
fixed. By encouraging the learnable queries to extract EMG features that are most consistent with
pose representations, the Q-Former efficiently and effectively aligns EMG and pose.

2.2.2 MASKED POSE RECONSTRUCTION LOSS (MPRL)

Beyond the contrastive loss, we add a masked reconstruction objective on input pose tokens to en-
rich the representation learning process (Li et al., 2023). Specifically, in the first forward pass, the
Q-Former produces query embeddings Q′ ∈ RM×d. In the second forward pass, we concatenate
masked pose tokens P̃ = [p̃1, . . . , p̃L] with Q′ and apply the same self–attention modules with
an attention mask: pose tokens may attend to all queries, while queries attend only to themselves.
Cross–attention from pose tokens to EMG is also disabled, pose cannot directly access EMG fea-
tures. Thus, the information required to reconstruct masked pose tokens must be captured in Q′,
enforcing that queries extract pose-informative content from EMG. Let M be the set of masked
pose-token indices and HP = Fϕ

(
[Q; P̃ ]

)
∈ R(M+L)×d denote the outputs of Q-Former. The mask

ratio is r. A decoding layer g maps the outputs back to input pose token space. We minimize

LMPRL =
1

|M|
∑

m∈M

∥∥g(HP [m]
)
− P [m]

∥∥2
2
, (2)

where P [m] is the ground-truth pose token at index m. Jointly optimizing LMPRL with the con-
trastive loss encourages the Q-Former to learn denoised, pose-informative EMG representations and
then yields a EMG latent space with richer pose semantics that can extrapolate to new gestures.

2.2.3 COMMUNITY-AWARE SOFT CONTRASTIVE LEARNING (CASCLE)

We propose CASCLe, which aligns EMG to pose by matching relative geometry of embeddings
spaces rather than only instance-level pairs. In standard contrastive learning, all non-matching poses
are treated as negatives, even if some are semantically very close to the true positive. This treatment
is suboptimal because grouping similar poses as strict negatives confuses the model and leads to
unstable gradients. CASCLe addresses this by assigning soft targets. Poses that are more similar to
the ground-truth pose receive higher probabilities, while relatively dissimilar ones receive lower or
zero probabilities. Since the pose encoder E∗p is frozen, its embedding space defines a fixed relational
graph. CASCLe builds soft targets from this graph and trains the Q-Former queries to learn similar
neighborhood structures for EMG embeddings, which strengthens overall semantic consistency with
pose. An illustration of CASCLe is shown in Figure 2.

Pose communities. We cluster pre-trained Pose-MAE embeddings (offline) using k-means (Likas
et al., 2003) to obtain Nc centroids C ∈ RNc×d (all ℓ2-normalized). For a mini-batch of pose
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Sim(Pose1, Pose2) =

Community 1

Community 2

0.72

[Sp,c]1 = [0.7,0.8,0.9,0,0,0,0… . ]

[Sp,c]2 = [0.0,0.0,0.8,0.9,0.6,0…]

Pose-Cluster Affinity Matrix   Sp,c

[Sp,c]1 ⋅ [Sp,c]T2 =

C2

Ci

Cluster Centroid
C1

Pose1

C3
Pose2

C4

C5
Pose

Pose Embedding

Pose-Pose 
Similarity

(a). Conceptual Illustration of Community-Aware Soft Contrastive Learning 
Pull

Pose

Pose

Pose

EMG1.0

Push

Standard 
Contrastive Loss

Pose

Pose

1.0
0.4

0.6

Pose EMG

CASCLe

(b). Hard One-hot vs. Soft

Figure 2: Unlike conventional contrastive loss that relies on one-hot targets, (a). CASCLe constructs
soft targets based on community-level similarity. Each community is represented by affinities to
cluster centroids, and pose–pose similarity is computed from affinity vectors. Soft targets used in
CASCLe are shown in (b), computed from a batch of 64 samples for clearer visualization.

embeddings P = [v1; . . . ; vB ] ∈ RB×d, We compute a pose–cluster affinity matrix Sp,c = P C⊤ ∈
RB×Nc , where each row is sparsified by keeping only the top-kc closest clusters. This keeps the
community size reasonable and excludes irrelevant clusters, reducing noise in soft targets.

[Sp,c]ij ←
{
[Sp,c]ij , j ∈ TopK(Sp,c[i, :]),

0, otherwise.
(3)

Pose–pose similarity matrix. The community-aware pose–pose similarity matrix is then defined as
Sp,p = Sp,c S

⊤
p,c ∈ RB×B . To prevent self-matches from dominating the probability distribution

after softmax when generating soft targets, we remove the diagonal: S̄p,p = Sp,p − diag(Sp,p). A
similar strategy has been adopted in prior work (Gao et al., 2023) for soft target construction and
proven effective. Soft targets are then defined as

ỹij =
exp

(
S̄p,p[i, j]/τs

)∑
k ̸=i exp

(
S̄p,p[i, k]/τs

) , j ̸= i, (4)

with temperature τs > 0. Intuitively, ỹij is the probability that pose vj is a semantically relevant
neighbor of vi in the fixed pose relational graph. Using the same EMG-pose similarities qij defined
earlier for InfoNCE, CASCLe minimizes a Soft contrastive objective defined as the cross-entropy
between soft targets ỹij and qij , i ̸= j:

LCASCLe = −
1

B

B∑
i=1

B∑
j=1

ỹij log qij . (5)

This objective can be interpreted as predicting the degree of similarity between EMG–pose pairs,
where this degree is measured according to the structural organization of the pose latent space.
The total training objective of EMBridge combines instance-level and structural community-level
supervision:

L = LInfoNCE + αLCASCLe + λLMPRL,

with weights λ, α > 0. InfoNCE enforces instance alignment, while CASCLe aligns relational
structure of the latent space between two modalities. In this way, the EMG encoder is guided to
align not only with its exact pair but also with poses that share similar semantics, providing more
robust and informative supervisory signals.

3 EXPERIMENTS AND RESULTS

3.1 EVALUATION PROTOCOLS.

We employ two evaluation protocols to examine the learned representation quality. Linear prob-
ing (LP): with labeled EMG data {(xi, yi)}, we freeze Ex and train a randomly-initialized linear
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Table 1: Dataset splits with gesture and user counts. Four unseen gestures evaluated out of six total.
Split (totals) Subset Gesture Counts User Counts

In-dist. Unseen In-dist. Unseen

Dtr (23 gestures / 158 users) Din
probe-tr 4 0 158 0

Dval (29 gestures / 15 users)
Dtune 4 4 0 3
Dunseen

probe-tr 0 4 0 12

Dtest (29 gestures / 158 users) Deval 4 4 0 20

classifier C on top of its embeddings, reporting accuracy on a held-out split. Zero-shot classi-
fication (ZS) is performed as k-nearest-neighbor voting in the embedding space, following stan-
dard practice in representation learning (Marks et al., 2024; Radford et al., 2021). For each
EMG sample, we retrieve its top-k nearest poses in the embedding space, then vote the corre-
sponding gesture labels to determine the predicted gesture. Given a test EMG sample xj , let
Rj = TopKp∈Ptest

(
Ex(xj)

⊤E∗p (p))
)

be the set of k pose samples with highest cosine similarity
to xj . We then predict ŷj = mode

{
y(p) | p ∈ Rj

}
, where y(p) is the gesture class of pose p.

3.2 DATASETS

emg2pose dataset. We use emg2pose (Salter et al., 2024), a large-scale open-source EMG dataset
containing 370 hours of sEMG and synchronized hand pose data across 193 consenting users, 29
different behavioral groups that include a diverse range of discrete and continuous hand motions
such as making a fist or counting to five. The hand pose labels are generated using a high-resolution
motion capture system. The full dataset contains over 80 million pose labels and is of similar scale
to the largest computer vision equivalents. Each user completed four recording sessions per gesture
category, each with a different EMG-band placement. Each session lasted 45–120 s, during which
users repeatedly performed a mix of 3–5 similar gestures or unconstrained freeform movements. We
use non-overlapping 2-second windows as input sequences. EMG is instance-normalized, band-pass
filtered (2–250 Hz), and notch-filtered at 60 Hz. For more details, please refer to Salter et al. (2024).

Data Split for emg2pose. We evaluate on two disjoint gesture sets drawn from the public emg2pose
corpus. First, we select four representative single-hand motions covering various finger movements
as our in-distribution gestures. Second, from the six held-out classes that are not seen during train-
ing, we exclude the two-handed gesture and the highly variable “finger freeform” class, yielding four
unseen gestures. Details of gesture classes are in Appendix. For data splits, we follow the public
train Dtr, val Dval , test Dtest splits and define our data splits for downstream gesture classification
tasks as shown in Table 1. The model is pre-trained on the full Dtr. A linear head is trained on
Din

probe-tr, and report final accuracy on the evaluation set Din
eval. For linear probing on unseen gestures

(which appear only in the original val and test splits), we train on Dunseen
probe-tr, and report accuracy on

Dunseen
eval . Zero-shot classification is evaluated only on Deval. All users in Deval are unseen, so both

the LP and ZS results also assess user-level generalization. A held-out dataset Dtune, strictly disjoint
from all other sets, is reserved for hyper-parameter tuning.

NinaPro dataset: We utilized two NinaPro EMG datasets for a more comprehensive evaluation of
EMBridge. Specifically, Ninapro DB2 (Atzori et al., 2014) is used for pre-training , which includes
paired EMG-pose data from 40 subjects. It contains 49 hand gestures (including basic finger flex-
ions, functional grasps, and combined movements) performed by 40 healthy subjects. EMG signals
are recorded from 12 electrodes placed on the forearm at a sampling rate of 2 kHz, alongside hand
kinematics data captured by a data glove. For downstream gesture classification, we use NinaPro
DB7 (Krasoulis et al., 2017), which contains data from 20 non-amputated subjects collected with
the same EMG device and gesture set as DB2 (more details on NinaPro Website1). Data split. The
entire DB2 dataset was used for pre-training, except Gestures 1, 5, 10, and 15 from exercise B,
which were excluded to serve as unseen gestures in DB7. Gestures 1, 5, 10, and 10 from exercise
C were used as in-distribution gestures. Within each gesture, sessions were randomly divided into
probe-training and evaluation sets, and zero-shot evaluation was conducted only on the latter.

1https://ninapro.hevs.ch/
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3.3 GESTURE CLASSIFICATION RESULTS

Comparing Schemes. We evaluate EMBridge against various baselines. Unimodal models trained
solely on EMG include: a supervised encoder–decoder Transformer (PoseT) regressing poses
from EMG; the supervised regression models from the emg2pose benchmark (Salter et al., 2024)
(emg2pose, Vemg2pose, NeuroPose); and a self-supervised MAE model trained only on EMG
(EMG-MAE). We also compare to multi-modal models: a CLIP-style Contrastive Pose–EMG Pre-
training framework (CPEP), which applies LInfoNCE directly to [CLS] tokens from EMG and pose
encoders via a projection layer; and a plain Q-Former variant trained only with LInfoNCE. Unlike
Q-Former, CPEP does not introduce a transformer but uses a projection layer. We further evaluate
label-smoothed variants of both models. Label smoothing has been shown to improve contrastive
learning by mitigating overconfidence and handling noisy similarities (Wickstrøm et al., 2022; Li
et al., 2022). We introduce CPEP-LS and Q-Former-LS, where InfoNCE targets are softened with
a smoothing factor of 0.1. For a fair comparison under linear probing, each baseline’s encoder is
frozen and a softmax linear head is trained on top. As an additional reference, we report an upper
bound from linear probing the pre-trained Pose-MAE. Since the pose encoder is the fixed alignment
anchor, this represents the best achievable performance if EMG features were perfectly aligned. For
LP, we use publicly available emg2pose checkpoints with the same data splits.

We evaluate EMG representation quality on both in-dist. and unseen gestures using two protocols:
zero-shot classification (ZS) and linear probing (LP). Supervised baselines do not support zero-shot
(K-nearest neighbor) classification in the embedding space. We report balanced accuracy on both
emg2pose and NinaPro dataset to account for class imbalance across gesture classes. As shown in
Table 2, EMBridge consistently outperforms all baselines, with the largest gains in zero-shot classi-
fication, where it even surpasses the LP performance of all unimodal models. The most significant
improvements appear on unseen gestures for emg2pose and ZS on in-dist. gestures for NinaPro,
demonstrating the stronger generalization capacity of EMBridge and its practical value for wear-
able gesture recognition. We note that CPEP achieves higher LP performance on unseen gestures
than EMBridge for both datasets. This is likely due to our use of query averaging in EMBridge
instead of selecting the query with maximum similarity to the paired pose, which may be subopti-
mal. Maximum-similarity selection is avoided here during LP to prevent potential data leakage. We
also evaluate EMBridge in the few-shot setting with LP on emg2pose. Even with only 50% of the
probe-training data, EMBridge outperforms all unimodal baselines.2

Table 2: Comparison of gesture classification results across unimodal and multi-modal models.
Results are reported on the emg2pose dataset and the NinaPro dataset.

Unimodal Models emg2pose NinaPro

In-dist. LP Unseen LP In-dist. LP Unseen LP

Upper-bound 0.851 0.649 0.769 0.632
EMG-MAE 0.347 0.334 0.283 0.256
NeuroPose (Salter et al., 2024) 0.692 0.248 / /
emg2pose (Salter et al., 2024) 0.734 0.405 / /
Vemg2pose (Salter et al., 2024) 0.650 0.312 / /
PoseT 0.705 0.433 0.694 0.425

Multi-modal Models In-dist. Unseen In-dist. Unseen

LP ZS LP ZS LP ZS LP ZS

CPEP 0.782 0.757 0.536 0.481 0.675 0.604 0.483 0.413
CPEP-LS 0.780 0.759 0.538 0.487 0.681 0.617 0.494 0.424
Q-Former 0.782 0.763 0.493 0.498 0.688 0.613 0.481 0.447
Q-Former-LS 0.777 0.760 0.495 0.498 0.692 0.618 0.486 0.439
EMBridge 0.785 0.777 0.505 0.528 0.703 0.692 0.492 0.447

Per-Gesture Classification Performance Breakdown. We conduct a detailed analysis on the
emg2pose dataset by computing per-gesture F1 scores from zero-shot classification on unseen ges-
tures to assess performance gains achieved by EMBridge over other cross-modal frameworks (CPEP

2More details are provided in the Appendix.
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and Q-Former). Reporting F1 scores provides a more comprehensive and balanced view of per-class
performance. Confusion matrices in Figure 3(a) offer a clearer illustration of improvements. Com-
pared to CPEP and Q-Former, EMBridge achieves consistently higher F1 scores across all ges-
ture classes, with particularly notable gains on Class 1 (0.513 vs. 0.439/0.494) and Class 3 (0.504
vs. 0.436/0.458). Class 3 is the gesture of counting up and down then finger wiggling, which is very
challenging for vision-based gesture classification due to visual occlusion (Salter et al., 2024). The
improvements underscore EMBridge’s stronger discriminative capability on difficult and frequently
confused gestures, demonstrating its practical value in real-world cases where occlusion is common.

Per-User Performance Gains Breakdown. Similarly, on unseen gestures, we compute the zero-
shot classification performance (F1 score) within each user, where all 20 users are held out from
training. Figure 3(b) illustrates the per-user performance gains of EMBridge compared to CPEP and
Q-Former. For per-user analysis, EMBridge achieves an overall improvement of 14.2% over CPEP
(0.522 vs. 0.457) and 10.2% over Q-Former (0.522 vs. 0.473). The average relative per-user im-
provement is 16.0% compared to CPEP and 11.6% compared to Q-Former, which demonstrates that
EMBridge yields consistent improvements across unseen users, even under inter-subject variability.

(b). Per-user Performance Gains (c). Data Efficiency 

(a). Per-class Performance Breakdown

Figure 3: (a) Confusion matrices from ZS on unseen gestures, with per-class F1 scores shown beside
row labels. (b) Per-user ZS performance on unseen gestures. (c) Data efficiency analysis via ZS on
in-dist. and unseen gestures. Dotted lines indicate LP performance of unimodal baselines.

4 ABLATION STUDY

Individual Contribution of Components in EMBridge. We analyze three ablated variants of EM-
Bridge, each removing a component (Q-Former, MPRL, or CASCLe) to assess its individual impact.
Removing Q-Former reduces the model to CPEP + CASCLe, since without the Q-Former architec-
ture and learnable queries, the masked pose reconstruction task cannot be performed. As shown in
Table 3, removing any component leads to a drop in zero-shot performance. Interestingly, remov-
ing Q-Former yields slightly better linear probing results, consistent with prior CPEP findings, and
demonstrates the versatility of CASCLe that it can be effectively integrated into the CPEP archi-
tecture to improve performance. Removing MPRL or CASCLe reduces generalization to unseen
gestures, underscoring their importance in cross-modal alignment and representation learning.

Soft Contrastive Objectives. We further compare CASCLe with alternative soft contrastive learn-
ing objectives. Label Smoothing, explored in Fini et al. (2023), applies soft targets in CLIP and
has shown consistent gains. We also adapt SoftCLIP (Gao et al., 2023) to our EMG–pose setup
by deriving soft targets from instance-level pairwise similarities between pose samples, providing
a fair baseline against CASCLe, which models community-level structural similarity. We replace
LInfoNCE+αLCASCLe with label smoothing and the adapted SoftCLIP objective, respectively, while
keeping the rest of EMBridge unchanged. Further discussion of soft contrastive learning is provided

8
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Table 3: Ablation of EMBridge: individual component impact and soft contrastive objectives.
Ablated Variants LP in-dist. LP unseen ZS in-dist. ZS unseen

EMBridge w/o Q-Former 0.793 0.538 0.763 0.494
EMBridge w/o MPRL 0.783 0.494 0.764 0.516
EMBridge w/o CASCLe 0.784 0.485 0.764 0.509

Soft Contrastive Objective
Label Smoothing (Fini et al., 2023) 0.777 0.489 0.759 0.511
SoftCLIP (Gao et al., 2023) 0.788 0.490 0.760 0.510
CASCLe 0.785 0.505 0.777 0.528

in Section 5. In Table 3, CASCLe outperforms both alternatives in ZS, which highlights the advan-
tage of modeling community structure over simple soft labels or instance-level similarities.

Data Efficiency. We investigate how the scale of paired pre-training data influences downstream
performance. Since collecting paired EMG–pose data is costly and time-consuming, it is essential
to evaluate the data efficiency of EMBridge. We uniformly downsample sessions within each ges-
ture class to simulate limited pre-training data. We vary the proportion of paired pre-training data
from 0.2 to 1.0 (full dataset) and report ZS performance on both in-dist. and unseen gestures in Fig-
ure 3(c). Remarkably, even when trained with only 40% of the paired data, EMBridge’s zero-shot
classification still surpasses the LP performance of unimodal baselines trained on the full dataset.

Sensitivity to Hyper-parameters. We analyze how ZS and LP performance of EMBridge is in-
fluenced by different hyper-parameter choices. Specifically, we vary one hyper-parameter at a time
while keeping all others fixed to their optimal settings. Results are summarized in Figure 4. The
choice of τs and the number of top-kc clusters (used in CASCLe; see Eq. 3) jointly determines the
quality of the resulting soft targets. A smaller τs produces a sharper probability distribution, and as
τs → 0, CASCLe degenerates to the Supervised Contrastive Loss (Khosla et al., 2021) by assigning
a hard label of 1 to multiple positives. In contrast, a moderate τs assigns reasonable weights to off-
diagonal soft positives, balancing contributions without allowing them to dominate or amplifying
small differences. Increasing the number of top-k clusters (k = 10, 20) degrades both LP and ZS
performance (Figure 4b), confirming that including distant neighbors introduces noise when con-
structing soft targets. EMBridge is robust to variations in λ and mask ratio r in the masked pose
reconstruction task, as well as loss weight α. We also find that using 16 queries yields the best
results. 8 queries may be insufficient to capture the full range of information, while 32 queries can
lead to overfitting. We also evaluate alternative similarity metrics for CASCLe. By default, cosine
similarity is used to compute both the pose–cluster and pose–pose similarity matrices. Using L1 and
L2 distances yields weaker results. This aligns with prior contrastive learning literature, where co-
sine similarity is commonly preferred for representation alignment (Radford et al., 2021; Chen et al.,
2020). In Figure 4 (f), we observe that using more nearest neighbors improves ZS performance.

(a). Temperature τs
(b). Top-  clusters value of  kc kc (c). Mask ratio  in MPRLr (d). Weight  of MPRLλ

(e). Weight  of CASCLeα (f). Number of queries (f). Similarity metric in CASCLe (f). Value of  nearest neighbors in ZSk

Figure 4: Sensitivity to hyper-parameters. Dashed lines indicate the values used in the best setup.
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5 DISCUSSION AND CONCLUSION

Related Work on Soft Contrastive Learning. Traditional contrastive learning methods (van den
Oord et al., 2019; Chen et al., 2020; Radford et al., 2021) use one-hot targets, where only the exact
matching pair is treated as positive and all others as negatives. However, when multiple positives or
highly similar instances exist, this introduces false negatives. Recent work addresses this by incor-
porating soft targets. Fini et al. (2023) employs label smoothing to generate soft targets. SoftCLIP
(Gao et al., 2023) derives them from intra-modal similarity using fine-grained image features, while
X-CLR (Sobal et al., 2024) builds a sample similarity graph and replaces binary labels with simi-
larity scores. SoftCLT (Lee et al., 2024b) softens targets based on temporal proximity, and Huang
et al. (2024) aligns cross-modal and uni-modal representations using teacher-derived similarity sig-
nals. CASCLe differs by constructing soft targets from community-level structural similarities in
the embedding space, rather than relying solely on instance-level relations.

The motivation of asymmetric setup is to use pose representations as fixed anchors to guide the
learning of EMG representations. Training both encoders simultaneously could lead to suboptimal
representations, as the pose representations are altered to be closer to the noisier EMG represen-
tations. Additionally, this asymmetric setup enhances extendability. Future work can pre-train the
pose encoder on large-scale and unpaired pose data using MAE. This allows us to effectively learn
EMG representations by aligning with frozen pose embeddings, even when paired data is limited.
Leveraging abundant unpaired data reduces reliance on paired samples and improves data efficiency.

By leveraging pose as a rich supervisory signal, EMBridge learns pose-informed EMG embed-
dings that capture structural and semantic relationships and are discriminative in the latent space.
Across in-distribution and unseen gesture classification tasks, EMBridge demonstrated strong per-
formance gains, particularly in zero-shot setting. Overall, EMBridge provides an effective approach
to zero-shot gesture classification on wearable EMG signals, and can serve as a foundation for future
exploration of cross-modal representation learning on EMG and other bio-signals.

6 LIMITATIONS AND FUTURE WORK

While EMBridge significantly enhances zero-shot gesture classification on wearable EMG signals,
we acknowledge limitations and room for future explorations. Our framework currently relies on
paired EMG-pose data for cross-modal alignment. Although emg2pose and NinaPro are large-scale
datasets, high-quality paired datasets remain scarce in the broader bio-signal community. Training
on a single dataset could potentially limit the pose encoder’s capacity. A promising direction for fu-
ture work is to leverage large-scale, publicly available unpaired pose data for unimodal pre-training.
This would yield more robust pose representations, providing stronger supervision for EMG repre-
sentation learning while significantly reducing the reliance on paired samples. EMBridge can further
demonstrate its effectiveness in cross-modal learning with limited paired data. Furthermore, the pro-
posed framework can potentially be extended to other modalities such as RGB-EMG or Video-EMG
in future work, which can be done by incorporating a pre-trained vision encoder.

Another interesting direction for future work is to explore probabilistic modeling when constructing
pose communities. Specifically, a Gaussian Mixture Model could be used to assign each pose em-
bedding a soft probability distribution over multiple clusters or communities. Structural similarity
between poses could then be computed based on the similarity between these membership distri-
butions (e.g., using KL divergence), enabling a smoother and more continuous modeling of pose
neighborhood structure. This may better capture complex pose dynamics.

7 REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available. Details of the model architecture, training
objectives, and implementation details are provided in Section 2 and Appendix A.6, including all
key hyper-parameters and model configurations to ensure reproducibility.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist with language polishing, including grammar checking and word choice
refinement. All research ideas, experiment design, analyses, and essential contributions were con-
ducted by the authors.

A.2 DETAILS OF EMG2POSE DATASET

A.2.1 DATA COLLECTION PROTOCOL

Data collection was divided into four distinct sessions, involving multiple device don-doff cycles
(avg. 3.9) to account for sensor placement shifts. In each session, participants performed two repeti-
tions of prompted stages (gesture categories), with each stage lasting 45 to 60 seconds. Annotations
are available at this recording level, which we utilized as the gesture class labels. Each stage con-
tains either a mix of discrete gestures or freeform unprompted movements. To ensure a broad range
of postures, participants were explicitly instructed to move their hand from right-to-left and up-and-
down while performing specific gestures.

A.2.2 DETAILS OF GESTURES

In-distribution (4 classes). 80 sessions per-class. class 0: Thumb swipes whole hand; class 1:
Hand claw, grasp, and flicks. class 2: ThumbsUpDown, ThumbRotations; class 3: FingerPinches,
SingleFinger, PinchesMultiple;

Unseen (4 classes). class 0: HookEmHorns, OK, and Scissors (80 sessions); class 1: Shaka
and Vulcan peace (80 sessions); class 2: Counting up/down face side away (80 sessions); class 3:
Counting up/down with finger wiggling and spreading (40 sessions).

Held-out Gestures for Evaluation
Four held-out gestures that are UNSEEN during CLIP training

Gesture 1: Shaka +VulcanPeace Gesture 2: Hook + OK Gesture 3: Counting Up + Down

Gesture 4: Counting Up + Down 
with Finger Wiggling

Figure 5: Example visualizations of gestures used in gesture classification tasks.

A.3 VISUALIZATION OF REPRESENTATIONS.

We visualize EMG embeddings before and after applying EMBridge using t-SNE (Van der Maaten
& Hinton, 2008), and compare them with anchor pose embeddings from the pre-trained Pose-MAE.
Points are colored by gesture classes. Before EMBridge, EMG embeddings (pre-trained with MAE),
show mixed distributions across classes. After EMBridge, the EMG embeddings become more
structured and separable across classes. As we observe in the pose space, some overlap between
classes remains, which reflects micro-gestures within 2-second windows that share semantic simi-
larity across gesture categories. This highlights both the improved alignment achieved by EMBridge
and the intrinsic difficulty of gesture classification on this dataset.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Anchor Pose EmbeddingsBefore EMBridge After EMBridge

Figure 6: t-SNE visualization of embeddings from in-dist. gestures, colored by gesture class labels.

Anchor Pose EmbeddingsBefore EMBridge After EMBridge

Figure 7: t-SNE visualization of embeddings from unseen gestures, colored by gesture class labels.

A.4 FEW-SHOT EVALUATION OF EMBRIDGE

We evaluate the few-shot performance of EMBridge by gradually increasing the number of training
samples within each class (n-shot) during linear probing. For each number of shots, we repeat
random sampling five times to obtain a more reliable estimate of performance. We report the average
balanced accuracy, with the standard deviation indicated as a shaded region in Figure 8. With only
50% of the probe-training data (40 shots), EMBridge can achieve performance almost comparable
to that of the full set on unseen gestures and surpasses all baselines trained on the complete dataset.

A.5 VISUALIZATION OF SOFT TARGETS CONSTRUCTED IN CASCLE

We visualize the soft targets to examine how the temperature τs and the number of top-k clusters kc
influence the resulting probability distribution. As shown in Figure 9, a smaller τs produces a sharper
distribution, where probability mass is concentrated on a few dominant samples. This indicates that
the model places high confidence on a small number of nearest pose neighbors, approaching a hard-
label regime. In contrast, a larger τs leads to a smoother distribution with more evenly distributed
weights, reflecting greater uncertainty and incorporating information from a broader set of pose
samples. For the number of clusters kc, larger values expands the set of contributing clusters and
potentially diluting the impact of the most similar samples.

A.6 IMPLEMENTATION DETAILS

We use 2 s windows sampled at 2 kHz for both pose and EMG. EMG is instance-normalized, band-
pass filtered (2–250 Hz), and notch-filtered at 60 Hz. Following (Salter et al., 2024), we apply
channel-rotation augmentation to EMG. Our MAE is a encoder–decoder Transformer model with
4 encoder layers and 2 decoder layers, and the embedding dimension is d=256. We optimize with
AdamW (Loshchilov & Hutter, 2019) (lr 1e−4, weight decay 1e−5) and cosine annealing with
warm restarts (Loshchilov & Hutter, 2017). The masking ratio is 50%. Token length is S=200 for
pose and S=50 for EMG, producing non-overlapping tokens along time. Mask ratio r = 0.5. Each
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Figure 8: Few-shot evaluation of EMBridge. X-axis is the number of training samples within each
class (n-shot) during linear probing. For each number of shots, we repeat random sampling five
times to obtain a more reliable estimate of performance. We report the average balanced accuracy,
with the standard deviation indicated as a shaded region.

τs = 0.1, kc = 5

τs = 0.1, kc = 10

τs = 0.5, kc = 5

τs = 0.5, kc = 10

τs = 0.7, kc = 5

τs = 0.7, kc = 10

Figure 9: Soft targets from a batch of 64 samples for clearer visualization. We vary the value of
temperature τs and the number of top-k clusters kc.
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MAE is trained for 100 epochs. PoseT is a encoder-decoder transformer model that consists of 4
encoder layers and 2 decoder layers, trained using the same losses adopted in Salter et al. (2024).

For CPEP, we attach a 1-layer projection head (hidden size 256) to the EMG encoder and train the
EMG encoder plus projection head while keeping the pose encoder frozen. The contrastive tem-
perature τ is learnable (initialized to 0.02). All output embeddings are ℓ2-normalized. All model
trainings are conducted on 4× NVIDIA V100 GPUs; end-to-end training of each model takes ap-
proximately 5 hours. CPEP, Q-Former, and EMBridge are all trained for 40 epochs. Nc = 138
clusters were computed using K-means from the anchor pose embeddings. The output embedding
size used in linear probing is 256. Batch size is 256 for all models. Increasing batch size (512, 1024)
for CPEP and Q-Former will degrade the performance, but EMBridge’s performance remains robust
as shown in Table 4

Table 4: Impact of batch size on zero-shot classification performance.
Method Batch Size 256 Batch Size 512 Batch Size 1024

CPEP 0.481 0.413 0.316
Q-Former 0.498 0.431 0.328
EMBridge (Ours) 0.528 0.526 0.523

In zero-shot retrieval, we precompute pose embeddings for the entire corpus and, for each EMG
query, retrieve the top-k neighbors by cosine similarity with k=10; the predicted label is the majority
vote of the retrieved labels. For linear probing on emg2pose benchmark models, we replace the final
decoding layer with a randomly initialized linear layer for classification, we average the embeddings
at each timepoint as input to the classification layer.
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