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Abstract: We present a framework for posing multiphysics as a single, unified
optimization problem for downstream robotics simulation. Specifically, we ap-
ply our framework to the fluid-robot interaction setting, where the governing cou-
pled manipulator and incompressible Navier-Stokes equations are derived together
from a single Lagrangian using the principal of least action. We then employ dis-
crete variational mechanics to derive a stable, implicit time-integration scheme
for jointly simulating both the fluid and robot dynamics, which are tightly cou-
pled by a constraint that enforces the no-slip boundary condition at the fluid-robot
interface. We demonstrate our approach’s physical accuracy on a novel swimming
robot in simulation and validate results on real-world hardware, showcasing our
framework’s sim-to-real capability. In future work, we hope to extend our unified
framework to pose other multiphysics settings commonly found in robotics, such
as the manipulation of deformable objects.
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1 Introduction

In recent years, there has been considerable interest in designing robot control policies in mul-
tiphysics settings such as deformable-object manipulation [1, 2, 3], fluid transport [4, 5], and
locomotion [6, 7, 8]. However, real-world data collection and training in such complex en-
vironments presents a major challenge. As a result, multiphysics-simulation platforms [9, 10]
have seen growing interest and ongoing development, with many robotics applications still lack-
ing viable physics engines. One such application is bio-inspired locomotion for aquatic vehi-
cles [11, 12, 13, 14, 15, 16, 17], where current robotics simulators are unable to simulate complex
boundary conditions (e.g., free stream) and become intractable when the fluid must be modeled as
a continuum. In addition, coupling the partial differential equations governing the fluids with the
ordinary differential equations of rigid-body dynamics can be conceptually difficult.

Therefore, we propose a unified framework for jointly deriving and simulating fluid-robot multi-
physics. Specifically, we formulate the combined Lagrangian using the principle of least action
to model the multiphysics as a single continuous-time optimization problem. We apply this to the
fluid-robot interaction setting, for which we derive the coupled incompressible Navier-Stokes and
manipulator equations governing the fluid and robot dynamics, respectively, as depicted in Figure 1.
We show that the multiphysics coupling stems from a constraint that enforces the no-slip boundary
condition at the fluid-robot interface. We then employ discrete variational mechanics [18] to dis-
cretize the unified action directly, which results in an implicit time-integration scheme that naturally
simulates the robot and fluid dynamics in a stable, coupled manner. We showcase our approach’s
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Figure 1: An overview of our multiphysics model, in which the unified Lagrangian governing the
coupled fluid-robot dynamics is formulated using the principle of least action. Rather than the indi-
vidual differential equations, the combined action is discretized directly to achieve tightly-coupled
simulation.

ability to model an actuated robotic system, specifically a novel squid-inspired robot. We validate
our simulation results on real-world hardware, showcasing the sim-to-real capabilities of our frame-
work. In summary, our contributions are:

• A unified representation for strongly-coupled fluid-robot multiphysics via the principle of
least action.

• An extension of variational integration for simulating multiphysics in the full state space of
a robot.

• Demonstration of our approach in simulation with hardware validation on a bioinspired
swimming robot.

The remainder of this paper is organized as follows: In Section 2, we describe our proposed approach
for posing and simulating strongly-coupled multiphysics for the fluid-robot setting. In Section 3, we
showcase the sim-to-real-transfer capabilities of our framework on a novel, squid-like swimming
robot. In Section 4 we provide final concluding remarks and discuss future work.

2 METHODOLOGY

2.1 Fluid-Robot Multiphysics as Optimization

Existing simulators [9, 10] typically integrate over the individual differential equations before cou-
pling the physics via explicit forces. As shown in Figure 1, we propose the least-action principle
as an alternative, unified perspective of multiphysics from which the differential equations are de-
rived. We refer the reader to comprehensive existing literature on variational principles for more
details [18, 19, 20].

We begin by proposing the least-action principle for the combined multiphysics problem between a
rigid (multi)body robot and an incompressible, Newtonian fluid (e.g., water):

minimize
qrk, q

f , vr, vf

∫ tf

t0

Lf (qf , vf ) + Lr(qr, vr) + F (t)T qf dt

subject to c1(v
f ) = q̇f − vf (qf ) = 0 ∀ qf ∈ Ω,

c2(v
f ) = ∇ · vf = 0 ∀ qf ∈ Ω,

c3(v
f ) = vf − vbc = 0 ∀ qf ∈ ∂Ω,

c4(v
r) = q̇r − vr = 0 ∀ qr,

c5(q
r) = 0 ∀ qr,

c6(v
f , vr) = vf − vr = 0. ∀ qf ∈ Γ

(1)
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where Ω,Γ represent the fluid domain and robot geometry respectively with corresponding bound-
aries, ∂Ω, ∂Γ; qr, qf are the configurations of the robot and fluid particle respectively and vr, vf

are the corresponding velocities; F (t) ∈ Rn represents external forces such as damping. c1(vf ) en-
codes the kinematics constraint for the fluid-velocity field (i.e., an array of velocity sensors). c2(vf )
encodes the conservation-of-mass constraint while c3(v

f ) enforces boundary conditions, vbc, along
the fluid-domain boundary (e.g., walls, free-stream velocity, etc.). c4(q

r) encodes the kinematics
constraint of the robot while c5 enforces other robot-configuration constraints, such as joint con-
straints found in manipulator arms. c6(vf , qr, vr) encodes the no-slip constraint, which couples the
robot and fluid physics by preventing the fluid from ”penetrating” the robot boundary.

We first define the fluid and (single) rigid-body Lagrangians:

Lf (qf , vf ) =

∫
Ω

1
2ρ(v

f )T vf − ρgT qf dV, (2)

Lr(qr, vr) = 1
2 (v

r)TMrvr −MrgT qr, (3)

where ρ is the fluid density; M is the mass matrix of the robot body; dV denotes the volume
differential; and g is gravity. In this problem, damping is introduced by the fluid viscosity:

F (t) =

∫
Ω

µ∆vf dV, (4)

where µ is the dynamic viscosity of the fluid.

The first-order necessary (FON) conditions of (1) can be expressed by the variations w.r.t. qr, vr

and qf , vf , which results in the coupled incompressible Navier-Stokes and manipulator equations,
respectively:

ρ(v̇f + (vf · ∇)vf ) = −∇p+ µ∇2vf − ρg − ∂c3
∂vf

T

λ̇3 −
∂c6
∂vf

T

λ̇6, (5)

∇ · vf = 0, (6)

Mv̇r + ρg =
∂c5
∂qr

T

λ5 −
∂c6
∂vr

T

λ̇6. (7)

q̇r = vr, (8)

where p = λ̇2 ∈ Rm is the fluidic pressure, which Lagrange [21] originally realized as the dual
variable that enforces the conservation of mass. In similar fashion, the multiphysics-coupling force
also corresponds to the no-slip-constraint Jacobian and the respective dual variable, λ̇6.

2.2 Coupled Discretization of the Fluid-Robot Multiphysics

Using the unified least-action principle of (1), we develop a variational integrator [18] to simulate
fluid-robot multiphysics. First, we discretize the fluid domain spatially using a second-order finite-
volume method [22], which provides a discrete counterpart to the following continuous operators:

∫
Ω

ρvf dV ⇒ Mfvf ,∫
Ω

(vf · ∇)vf dV ⇒ N(vf ),

∫
Ω

∇p dV ⇒ Gp,∫
Ω

∆vf dV ⇒ Lvf .

Through a slight abuse of notation, we will use qf , vf , and p to refer to their discrete versions
throughout the rest of this section. We may now express the spatially discrete fluid Lagrangian as:

Lf (qf , vf ) = 1
2 (v

f )TMfvf −MfgT qf dV, (9)
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Using a midpoint quadrature rule, we then formulate the following discretized action:

minimize
qrk, q

f
k

2∑
k=1

Lf
d(q

f
k , q

f
k+1) + Lr

d(q
r
k, q

r
k+1) +

h
2
F (tk + h

2
)T (qfk + qfk+1)

subject to c2(v̄
f
k ) = GT v̄fk = 0,

c3(v̄
f
k ) = Bv̄fk − vbc = 0,

c5(q̄
r
k) = 0,

c6(v̄
f
k , v̄

r
k) = 0,

(10)

where q̄k and v̄k are the configurations and velocities defined at the midpoint between tk and tk−1,
Bv̄fk extracts fluid velocities located at the fluid-domain boundary, and c6(v̄

f , v̄r) is expressed using
the immersed boundary method [23, 24]. Ld(qk, qk+1) ∈ R+ is the discrete Lagrangian, which is
expressed as:

Ld(qk, qk+1) = hL( qk+qk+1

2︸ ︷︷ ︸
q̄k+1

, qk+1−qk
h︸ ︷︷ ︸

v̄k+1

). (11)

The external force is additionally modified to account for the convective term, N(vf ):

F (tk + h
2 ) = Lv̄fk+1 +N(v̄fk+1). (12)

Deriving the stationarity conditions for (10) yields the following system of equations corresponding
to the robot dynamics:

q̄rk+1 − h
2
v̄rk+1 = q̄rk + h

2
v̄rk, (13)

Mr v̄rk+1 + h
(
∂c5
∂q̄r

k
+ ∂c5

∂q̄r
k+1

)T
λ5,k

+
(
∂c6
∂vr

k
+ ∂c6

∂vr
k+1

)T
λ6,k = Mr v̄rk − hMrg, (14)

as well as that corresponding to the fluid dynamics:(
Mf − µh

2
L
)
v̄fk+1 −

h
2
N(v̄fk+1)

+Gpk +Bλ3,k + ( ∂c6

∂v
f
k

+ ∂c6

∂v
f
k+1

)Tλ6,k

=
(
Mf + µh

2
L
)
v̄fk + h

2
N(v̄fk )− hMfg. (15)

Finally, the constraints of (10) form the rest of the FON conditions, and the system of equations de-
fined by (13)-(15) can be solved using Newton’s method. Specifically, q̄rk+1, v̄

r
k+1, v̄

f
k+1 and the cor-

responding dual variables can be solved for given q̄rk, v̄
r
k, v̄

f
k . Upon further inspection, we note that

this integration scheme is nearly equivalent to implicit Crank-Nicholson: a stable, energy-preserving
Runge-Kutta method commonly used to integrate partial differential equations.

3 EXPERIMENTAL RESULTS

We validate our framework’s ability to jointly simulate both robot and fluid dynamics. Specifically,
we investigate the trajectory of a squid-like robot performing a hand-designed forward-swimming
gait in an initially-still-water environment. An untethered, self-contained robot was designed and
fabricated as shown in Figure 2a, and the 100 × 100-grid simulation environment is recreated in a
real-world setup as shown in Figure 2b. The controls are defined as the angle between the robot fins
at each timestep, ϕk.

As seen in Figure 3, our multiphysics approach is able to simulate the forward-swimming locomo-
tion behavior, which is consistent with open-loop demonstrations on hardware. Specifically, our
framework achieves an RMSE error of 0.89 cm over the whole trajectory. Meanwhile, Genesis [10],
a state-of-the-art multiphysics simulator for robotics, has difficulty simulating the fluid-robot inter-
action to achieve forward motion, resulting in an RMSE error of 8.86 cm over which our frame-
work improves by nearly 90%. We attribute this to Genesis’s particle-based representation of the
fluid [16, 25].
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Figure 2: Hardware-experiment setup for sim-to-real validation of a squid-like robot swimming in
an initially-still-water environment. A real-world squid-like swimming robot is designed from the
ground up to be untethered with an onboard battery, microcontroller, and radio transreceiver. The
robot’s servo motor drives the fins to the desired angle, ϕ. In this study, a computer sends motor
commands over radio to the robot to execute an undulating, forward-swimming gait. The robot-
configuration trajectory is tracked by a top-down-facing camera via an aruco marker.
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(a) Trajectory visualizations of the robot executing a
forward-swimming gait. The top row shows the real
robot, while the middle row is our method and the
bottom row is a particle-based simulation.
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(b) Time history of the robot position in the corre-
sponding forward-swimming direction.

Figure 3: Sim-to-real validation of a squid-like robot executing an open-loop swimming gait in
initially-still water. Our unified-multiphysics approach (green) is able to model the propulsion re-
sulting from the fluid-robot interaction unlike the particle-based baseline in Genesis (black).

4 CONCLUSION

We have presented a unified framework for deriving and simulating fluid-robot multiphysics as a
single optimization problem. Specifically, we model the unified least-action principle from which
the coupled differential equations are derived. We build upon previous works in variational mechan-
ics to discretize the action directly to simulate the fluid-robot interaction in a stable, tightly-coupled
manner. The result is good agreement with real-world rollouts on a bioinspired robot.

In future work, we aim to address the current limitations of our variational method for downstream
design and trajectory optimization tasks. We also hope to extend our framework to other non-rigid
multiphysics problems commonly seen in robotics, such as deformable-object manipulation, rigid-
soft robots that experience contact, etc.
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