Mentor-Mind: Risk-Aware, Constraint-Grounded
Advice Agents Beyond Chain-of-Thought

GPT-5 Pro Yun Wing Kiang
Department of Electrical and Electronic Engineering
The University of Hong Kong
Hong Kong
kiangyw@eee.hku.hk

Abstract

Large language models (LLMs) have shown remarkable reasoning abilities through
prompting techniques like chain-of-thought (CoT) prompting and self-consistency
decoding, achieving state-of-the-art results on complex tasks. However, these
methods rely on the model’s generated rationales, which can be unreliable — of-
ten hallucinating plausible-sounding but unfaithful content — and do not account
for risk or hard constraints in decision making. We propose Mentor-Mind, an
influence-diagram (ID)-grounded advice agent that marries LLM reasoning with
decision-theoretic planning. Mentor-Mind uses domain- and mentor-specific deci-
sion graphs (IDs) as structured scaffolds for reasoning, ensuring that recommen-
dations satisfy hard domain constraints and optimize a risk-sensitive objective
(e.g. Conditional Value-at-Risk). In synthetic yet complex advisory scenarios
(energy facility siting, code review, early-career planning), Mentor-Mind generates
advice that is more aligned, faithful, and risk-aware than baseline prompting meth-
ods. Experimental results show that our approach maintains high decision quality
under uncertainty while strictly respecting constraints, outperforming CoT and
self-consistency prompts in both success rate and adherence to safety constraints.
This work demonstrates a practical integration of LLMs with symbolic decision
frameworks, yielding advice agents that replace the “make-up” CoT reasoning with
grounded, trustworthy decision analysis.

1 Introduction

Large language models (LLMs) have rapidly advanced in multi-step reasoning abilities. Prompting
techniques like chain-of-thought (CoT) prompting guide models to break down problems into
intermediate steps, greatly improving performance on arithmetic, commonsense, and symbolic
reasoning tasks (Wei et al., 2022). For example, few-shot CoT prompting enables a 540B model to
achieve state-of-the-art results on math word problems, and even zero-shot prompts (e.g. appending
“Let’s think step by step”) can trigger impressive reasoning (Kojima et al., 2022). Building on CoT,
decoding strategies such as self-consistency sample multiple reasoning paths and select the answer
most supported by the majority (Wang et al., 2023), yielding significant accuracy gains. These
prompting-based approaches have become de facto baselines for eliciting reasoning in LLMs.

However, fundamental challenges remain when using LLMs for decision support and advice. CoT
prompts induce the model to generate reasoning, but do not guarantee the reasoning is correct or
faithful to facts. LLM-generated rationales are prone to hallucinations — producing plausible-sounding
but untrue or nonsensical content (Huang et al., 2025). This is especially problematic in advisory
scenarios, where a confident but incorrect justification can mislead users. Alignment techniques like
reinforcement learning from human feedback have improved the general helpfulness and harmlessness
of LLM assistants (Ouyang et al., 2022), but they do not fully ensure domain-specific decision quality,
respect for hard constraints, or risk-awareness in high-stakes domains. In critical decision-making

settings (finance, medicine, engineering), an LLM advisor must not only avoid toxic or blatantly false
outputs but also internalize the preferences, trade-offs, and constraints that a human expert would
consider.

Crucially, standard CoT prompting lacks a mechanism to enforce hard constraints and preferences.
By grounding the LLM’s reasoning in an influence diagram (ID), Mentor-Mind ensures every piece
of advice corresponds to a well-defined path in a mentor’s decision graph. Rather than having the
model make up a chain-of-thought, we supply it with a domain-specific decision graph (elicited
from a human mentor or expert). The LLM then “plays the role” of a transparent reasoning engine
that traverses this graph, evaluating different decision paths, outcomes, and utilities. In essence,
Mentor-Mind marries prompt-driven LLM reasoning with model-based planning: ID acts as a scaffold
that constrains the LLM’s generation to valid, feasible trajectories.

We evaluate Mentor-Mind in several synthetic yet realistic advisory scenarios. Although the scenarios
are simulated, they are designed to mirror real-world decision problems in their respective fields,
allowing us to fully control conditions and obtain an oracle solution for evaluation. For example,
the energy siting task reflects challenges in power infrastructure planning (balancing profit versus
environmental risk), and the secure code review scenario parallels real software security auditing, but
with known ground-truth outcomes.

We compare Mentor-Mind against baseline prompting strategies: standard CoT prompting, CoT with
self-consistency voting, and a textual “memo” baseline where the model is given the constraints and
guidelines in plain language (simulating a user reminder to follow rules). We find that Mentor-Mind
consistently produces more reliable and safe recommendations.

2 Related Work

LLM Reasoning via Prompting: There is a rich body of work on improving LLM reasoning using
prompt-based techniques. Chain-of-thought prompting (CoT) has emerged as a simple yet powerful
method to induce step-by-step reasoning in large models (Wei et al., 2022). By providing examples
of reasoning chains, CoT enables models to solve arithmetic and logical problems that stumped them
with direct prompting. Subsequent research showed that even without few-shot examples, adding
certain trigger phrases can elicit reasoning: Kojima et al. (2022) demonstrated that a zero-shot prompt
“Let’s think step by step” unlocks surprising reasoning ability. Beyond prompting alone, researchers
have explored multi-step inference with LLMs, such as generating explicit scratchpads or logic traces
(Nye et al., 2021) and using least-to-most prompting (Zhou et al., 2022) to recursively break down
reasoning tasks.

Another line of work augments LLM reasoning with external tools to improve accuracy and grounding
—for example, the ReAct framework (Yao et al., 2023) interleaves reasoning and acting by allowing the
model to query external APIs or knowledge bases during its chain-of-thought. ReAct demonstrated
that by retrieving factual information (e.g. via a Wikipedia API) when needed, LLMs can overcome
some hallucinations and produce more correct, interpretable reasoning traces (Yao et al., 2023).
Similarly, Toolformer (Schick et al., 2023) teaches an LM to call tools like calculators or search
engines mid-generation, significantly improving performance on tasks requiring external computation
or up-to-date knowledge. Our approach differs in that the “tool” we integrate is a domain-specific
decision simulator rather than a general knowledge source.

Decision-Theoretic Planning: influence diagrams (IDs) and related decision models have long been
used for complex decision-making. Howard & Matheson (1984) introduced IDs as an extension of
Bayesian networks for representing decision problems. They consist of decision nodes (choices to be
made), chance nodes (uncertain factors), and utility nodes (objectives to maximize). Solving an ID
via dynamic programming yields an optimal policy that maximizes expected utility (Nease & Owens,
1997). Simulation-based solvers (forward Monte Carlo) for IDs have also been studied (Charnes
Shenoy, 1997). Prior work has explored using IDs and graphical models in Al assistants; for example,
Moore & Agogino (1987) described an expert system that guides knowledge acquisition through an
ID structure. However, these approaches typically required manually encoding expert knowledge and
did not involve LLMs.

Hallucinations, Alignment, and Faithfulness: A well-known limitation of LLM-generated expla-
nations is the tendency to hallucinate — generating details that are not grounded in reality or the

provided context (Ji et al., 2023). Hallucinations undermine the trustworthiness of advice, especially
in domains like law or medicine (where confidently stated falsehoods can be dangerous). By constrain-
ing the LLM’s reasoning within a structured decision graph, Mentor-Mind addresses one aspect of
hallucination: it forces the rationale to follow the relationships defined in the ID. The graph explicitly
represents uncertainty and uses risk-aware criteria, so it is less likely to give overconfident advice —
effectively addressing a form of hallucination where the model is overly optimistic about uncertain
outcomes. On the broader alignment front, techniques like Reinforcement Learning from Human
Feedback (RLHF) have produced more helpful and harmless LLMs (Ouyang et al., 2022). Our work
is complementary: rather than aligning to general human preferences, we ensure mentor-specific
alignment by enforcing that the LLM’s advice matches a particular mentor’s priorities and constraints
as encoded in the ID.

3 Methodology

3.1 Influence Diagram Advisor Framework

Mentor-Mind models the advisory task as an influence diagram (ID) — a directed acyclic graph
with decision nodes, chance nodes, and a utility node capturing the mentor’s preference model for
outcomes. The ID structure defines the information flow and dependencies: arcs into decision nodes
indicate what the assistant knows when making each decision (e.g. a decision node might have
incoming arcs from previous chance nodes or decisions, meaning those outcomes are observed before
the decision). Arcs into chance nodes denote causal or conditional influences (e.g. a chance node
might depend on a previous decision). Arcs into the utility node indicate which variables affect the
mentor’s utility. In our formulation, the assistant’s goal is to recommend decisions that maximize the
mentor’s expected utility (or a risk-sensitive objective) given the information available at each point.

Figure[T]in Appendix [A.7]illustrates a simplified ID. Oval nodes represent chance variables (uncertain
factors outside the assistant’s control, e.g. user reactions, environmental events). The rectangular
node represents a decision to be made by the assistant, and the diamond node represents the utility
(mentor’s payoff or value) which all decisions aim to maximize. The optimal policy under a traditional
expected utility criterion can be found by backward induction on the diagram (Howard & Matheson,
1984), but instead of solving it analytically, Mentor-Mind uses the LLM to emulate the decision
reasoning process.

Given an ID for a domain, we translate it into a structured prompt for the LLM. This prompt
describes the decisions to be made, the relevant uncertainties, and how the mentor values different
outcomes. The LLM is then asked to simulate the mentor’s reasoning: it considers each possible
action, “imagines” what might happen (by stepping through chance nodes), and evaluates the outcome
according to the utility function. Crucially, the LLM is constrained to follow the graph — it cannot
introduce extraneous factors not in the diagram. The ID serves as a structured scaffold for reasoning,
ensuring that advice remains grounded in the specified factors and relationships.

3.2 Hard Constraints via Feasibility Filters

A key innovation in Mentor-Mind is the integration of hard constraints directly into the decision-
making process. We represent each constraint as a binary feasibility test on potential decision paths.
For example, in the energy siting domain, a hard constraint might be “the plan must comply with
environmental regulation X” — if a candidate site would violate X, any decision recommending that
site is marked infeasible. During the LLM’s traversal of the ID, we enforce that it skips over any
branch that fails a feasibility test. We enforce feasibility in two stages. First, a programmatic
whitelist removes any infeasible actions before the LLM sees the options (action-conditioned checks
compiled from the public graph spec). Second, a post-decision validator checks the chosen action
and, upon violation, triggers a single re-ask restricted to the feasible set. Prompts mirror these
rules for transparency; enforcement occurs at the I/O boundary, preventing jailbreak/forgetting. See
Algorithm 2]in Appendix [C] for the runtime gate that pre-filters the action set and validates the final
choice programmatically. This mechanism guarantees that Mentor-Mind’s advice never knowingly
violates a hard rule. It contrasts with unconstrained CoT prompting which might overlook or forget
constraints; here the ID’s structure explicitly rules out forbidden decision paths from the outset. By
encoding inviolate domain rules as feasibility filters, we achieve constraint-grounded reasoning — the
LLM’s exploration of options is bounded by what is permissible.

3.3 Mentor-Specific Utility Modeling

In Mentor-Mind, each domain is paired with a specific mentor profile that defines the utility function.
We adopt a multi-attribute utility model: for a given outcome, we compute several attribute scores
(e.g. economic profit, environmental impact, user satisfaction) and then take a weighted sum
U(x) = >, w;ui(x), where u;(x) is the normalized utility for attribute 7 and w; is the weight
reflecting the mentor’s relative preference for that attribute. For instance, a risk-averse environmental
mentor might assign a very high weight to environmental impact and lower weight to cost, whereas
a profit-driven mentor would do the opposite. By adjusting w, we effectively tune the system to
different mentor personas. These weights and sub-utility functions are elicited from the mentor (or
chosen in synthetic domains to simulate a particular value system). Appendix B details the utility
functions and weight choices used in our experiments.

Given this mentor-specific utility model, Mentor-Mind’s advice aims to maximize the mentor’s
expected utility. Importantly, because the ID encodes how decisions and chance events lead to
outcomes, we can evaluate the expected utility of any policy under the mentor’s values. This provides
an oracle benchmark — the policy (sequence of decisions) that maximizes the mentor’s expected
utility represents the gold-standard advice to which we compare the LLM’s recommendations. We
refer to this optimal policy as the oracle mentor policy or simply “oracle.” An ideal LLM advisor
would match the oracle’s decisions in every scenario.

3.4 Risk-Sensitive Decision Objectives

Beyond a standard expected-utility objective, Mentor-Mind introduces risk-sensitive criteria so
that the advisor can account for outcome variability and worst-case scenarios. In addition to the
default Expected Utility (EU) mode (risk-neutral, maximizing F[U]), we implement a Conditional
Value-at-Risk criterion — Mentor-Mind can be instructed to maximize C'VaR,, [1_1 the expected
utility of the worst (1 — «) fraction of outcomes (Rockafellar & Uryasev, 1999). Intuitively, CVaR
focuses on the lower tail: it measures performance in the worst-case outcomes. We optimize CVaR
with a=0.10 (tail mass), i.e., the expected utility in the worst 10% of outcomes; ablations sweep
a € {0.05,0.10,0.14} | This is useful for risk-averse mentors who would rather sacrifice some
average reward in exchange for insurance against disaster.

We also allow a weighted Mean—CVaR trade-off: the mentor specifies a mixing weight A € [0, 1].
The advisor maximizes the convex combination

(1 - \) E[U] + ACVaR,[U].

Varying A interpolates between risk-neutral (A=0) and fully risk-averse (A=1) behavior; intermediate
values provide a balance. Throughout, we use « as tail mass (e.g., «=0.10 means the worst 10%
tail), and we ablate A € {0,0.5,1} and « € {0.05,0.10,0.14}.

3.5 Sampling-Based Utility Estimation

Exactly computing the expected utility or CVaR of a given decision policy can be intractable in
complex real-world domains, so Mentor-Mind uses a sampling-based Monte Carlo approach to
evaluate candidate decisions. When the advisor is at a decision node, the system simulates many
rollouts of the ID for each possible action (Charnes & Shenoy, 1997): it samples random outcomes
for subsequent chance nodes according to their probability distributions (which may be derived from
data or the LLM’s predictive model of the user/environment), applies each action, and records the
resulting utility. By averaging these samples, we obtain an empirical estimate of the expected utility
for that action. More importantly, we can also sort the sampled outcomes and compute the empirical
a-CVaR: take the mean of the worst a x 100% of utility samples for that action (Rockafellar &
Uryasev, 1999). These Monte Carlo estimates (default N=400 samples per action in the main results;
appendix ablations at N € {100, 200, 400}) guide the decision: the advisor selects the action that
maximizes the chosen objective (mean or CVaR or the weighted combo). To ensure reliability, we

!CVaR (a.k.a. Expected Shortfall) is the expected value in the worst ¢% tail of outcomes; we set ¢ = o =
0.10 unless otherwise noted.

2CVaR/Expected Shortfall is the mean in the worst ¢% tail; here ¢ = «. See, e.g., Rockafellar & Uryasev
(1999).

Algorithm 1 Monte Carlo Risk-Aware Decision Evaluation

Require: Influence diagram with decisions & chance nodes; utility function U’; risk parameter (e.g.,
CVaR level); number of samples V.
1: for each candidate action a in the decision node do
2 outcomes < []
3: fori=1to N do
4 sample an outcome by drawing each chance node according to its P distribution
5: compute utility u; = U (outcome) for action a
6
7
8

append u; to outcomes
end for
: compute E[U | a] = average(outcomes)
9: sort outcomes in non-decreasing order
10: compute CVaR,(a) = average of the lowest « fraction of outcomes
11: if using mixed objective then

12: score(a) = (1 = AN) E[U | a] + A\CVaR,(a)
13: else if risk-neutral objective then

14: score(a) = E[U | a)

15: else if risk-averse objective then

16: score(a) = CVaRy(a)

17: end if

18: end for

19: Select the action a* with the highest score(a).

draw sufficient samples such that the estimate variance is low, and in our implementation we fixed a
random seed for consistency during development.

This sampling-based planner allows Mentor-Mind to handle uncertainty in a principled way — rather
than relying on the LLM’s single-step guess, it effectively “imagines” many futures for each option
and evaluates them against the mentor’s utility. While sampling adds computational overhead, it
critically enables risk-sensitive optimization: for example, the advisor can detect if an action has a
small probability of catastrophe (yielding very low utility) because some sampled rollouts will show
that outcome, thus lowering the CVaR metric for that action. In summary, Mentor-Mind uses the ID
as a generative model of consequences and Monte Carlo simulation to score actions by both average
outcome and downside risk.

3.6 Implementation Details

Mentor-Mind’s decision analysis is implemented as a hybrid of LLM-driven reasoning and external
computation. Crucially, we do not rely on the LLM to perform probabilistic rollouts or arithmetic;
instead, an external Python-based simulator executes the Monte Carlo sampling over the ID. For
each decision node, our system programmatically samples the chance nodes N times (with N = 400
by default) to estimate expected utilities and CVaR for each candidate action. The results of these
simulations (e.g., the mean utility and the worst-case outcomes for each action) are then provided
to the LLM within its prompt. The LLM’s role is to interpret these results, select the best action
according to the specified objective, and generate an explanation. In this way, the LLM “interfaces”
with the ID as an external tool — effectively performing a read-evaluate loop rather than computing
outcomes from scratch. This design ensures accuracy in the quantitative evaluation of actions while
still leveraging the LLM for qualitative reasoning and justification. We provide a pseudocode overview
of the Monte Carlo decision evaluation process in Algorithm [I]

4 Findings

4.1 Evaluation Setup

We evaluated Mentor-Mind against several baseline methods on tasks spanning three domains: energy
facility siting, code review, and career planning. Each domain featured a distinct mentor profile
and a set of decision-making scenarios. For instance, in the energy siting domain, the advisor had
to recommend locations for new power plants under environmental and community constraints;

in code review, the advisor suggested code improvements while adhering to a project’s style and
safety guidelines; in career planning, the advisor guided students on course or job choices given their
personal goals and constraints. We compare the following approaches for providing advice in these
scenarios:

* Chain-of-Thought Prompting (CoT): The baseline LLM is prompted to “think step-by-
step” and produce a reasoning chain before its final advice (Wei et al., 2022; Wang et al.,
2023). We implemented CoT by appending prompts like “Let’s think this through step by
step.” to the query, without any structured constraints or decision model beyond the LLM’s
native reasoning. This method leverages the LLM’s own internal reasoning capabilities and
has been shown to improve performance on complex tasks by making implicit reasoning
explicit.

* Self-Consistency Decoding: An improved variant of CoT where we sample multiple
independent reasoning paths from the LLM and then let the model (or a majority vote) select
the most consistent final answer (Wang et al., 2023). Following Wang et al., we generated 5
reasoning chains for each query and took the answer that appeared most frequently. This
aims to reduce the randomness of generation and amplify correct reasoning by ensembling
diverse thoughts.

* Textual “Memo” Prompt: A prompting baseline where we provided the LLM a textual
summary of the mentor’s values, constraints, and any relevant context at the start of each
prompt (essentially a dense conditioning message). The idea is to give the model the same
information that Mentor-Mind encodes in its influence diagram (ID) — e.g. a list of rules
(““do not violate environmental law X, prioritize safety over cost”) and background facts —
and rely on the model to incorporate these into its reasoning. This approach tests whether the
LLM can handle constraints and priorities implicitly when they are stated in plain language,
akin to how one might remind a human advisor of the guidelines in a memo.

4.2 Tool-Augmented Baselines

Beyond external knowledge lookup, we add a tool-parity safety ablation that gives prompting baselines
access to the same guardrails: CoT+Repair minimally remaps any hard-constraint-violating output to
the nearest safe action using the public hard-constraints (HCVR becomes zero by construction). This
narrows the safety gap but does not close the utility gap (Mentor-Mind still has the best feasible-only
AEU; Tabled)). We also provide an evaluator hook to enable a future CoT+Simulator baseline that
scores candidate actions with the same Monte-Carlo oracle; a full exploration of CoT+Simulator
is left for future work (Appendix C—E). One could imagine a variant of CoT prompting where the
LLM calls a domain-specific simulator or constraint-checker tool during its reasoning. While such
an approach might reduce obvious rule violations, it still lacks a principled utility optimization and
risk-aware planning. We leave a thorough exploration of tool-augmented advisors to future work.

We used the same base LLM (a GPT-3.5—class model accessed via API) for all methods to ensure
fairness: Mentor-Mind uses the identical backbone but is coupled with the decision-graph and
risk/constraint layer, whereas the baselines use prompting/decoding only. We used the OpenAI GPT-
3.5 API for inference with this model. Each query prompt (including the ID and scenario specifics)
was about 1000-1500 tokens, and each generated answer was ~150-300 tokens. All experiments
were orchestrated on a machine with 32 CPU cores (no GPU, since the LLM inference is handled by
the API). On average, Mentor-Mind required about 8 seconds per decision (due to simulation and
multiple prompt stages), whereas a single CoT prompt took around 2 seconds to complete. Results
below aggregate all mentors and scenarios for the Mentor-Mind benchmark (N = 162 decisions).
Headline results (Table|l}) are computed with the private oracle specifications; the appendix reports a
public, observed-only surrogate to support reproducibility when private thresholds are withheld.

Mentor-Mind achieves the highest alignment with the oracle mentor and zero hard-constraint vi-
olations while keeping regret effectively at zero. Alignment (mentor agreement) is 0.9753 for
Mentor-Mind vs. 0.8333 (CoT), 0.8272 (Memo), and 0.7840 (Self-consistency). AEU (chosen
— oracle; closer to 0 is better) is +0.0005 for Mentor-Mind vs. =~ —0.0045 for baselines, indicat-
ing Mentor-Mind’s choices track the oracle nearly exactly while baselines show a small shortfall.
HCVR (hard-constraint violation rate) is 0.0000 for Mentor-Mind vs. 0.1173-0.1296 for baselines,
demonstrating that the action-conditioned constraint filters eliminate violations that prompting-only
methods still incur. All these improvements are statistically significant. For example, Mentor-Mind’s

Table 1: Aggregate results over 162 mentor-scenario decisions. Align{ is agreement with the
oracle mentor’s constrained optimum; AEU is mean (chosen — oracle) - closer to 0 is better; HCVR]
is the hard-constraint violation rate (lower is better).

Policy note: Table[T|uses the official harness with the private mentor oracle (full utility weights and private hard
constraints) and the default evaluator settings (N =400, «=0.10); Appendix Tables[2}{3|recompute metrics
under a public, observed-only policy as a conservative, reproducible surrogate.

Method Alignt (%) AEU HCVR| (%) n

Mentor-Mind (ours) 97.5 0.0005 0.0 162
CoT 83.3 —0.0045 11.7 162
SC-5 78.4 —0.0044 13.0 162
MemoPrompt 82.7 —0.0045 12.3 162

alignment (97.53% =+ 2.4% at 95% confidence) far exceeds that of CoT (83.33% =+ 5.7%), and
Mentor-Mind incurred O violations out of 162 (95% CI ~ [0%, 2.3%]) compared to 19+ violations
(=12%) by each baseline. A paired McNemar test on the binary alignment outcomes confirms that
Mentor-Mind outperforms each baseline (p < 0.01); we report Wilson 95% Cls for proportionsﬂ

Why does Mentor-Mind perform better? The results suggest that explicit constraint-handling and
utility optimization lead to better decisions. In scenarios with tricky constraints or trade-offs, the
baselines often produced advice that seemed plausible but in fact violated a constraint or neglected
the mentor’s primary objective. For example, in an energy siting case involving a trade-off between
cost and environmental impact, the CoT model recommended a site that minimized cost but ignored
an environmental regulation, resulting in an infeasible plan. In contrast, Mentor-Mind — aware of the
regulation via its feasibility filter — never considered that site and picked a slightly more expensive
but compliant alternative, aligning with the mentor’s priorities. Similarly, in code review, the Textual
Memo baseline sometimes forgot a given coding standard halfway through its reasoning, leading
to suggestions that a human mentor would reject. Mentor-Mind’s hard enforcement of such rules
prevented these failures. Notably, the self-consistency baseline did improve over basic CoT in many
cases (confirming past findings that ensembling reasoning paths yields more correct answers; Wang
et al., 2023), but it still fell short of Mentor-Mind. This suggests that while sampling multiple chains
can reduce random errors, it cannot fully compensate for a lack of structured constraint reasoning — a
systematic framework (like IDs) is needed to ensure compliance and value alignment on every single
decision.

4.3 Ablation Studies and Analyses

We conducted additional experiments to assess how Mentor-Mind’s performance varies with different
settings. First, we analyzed the effect of hard constraints in isolation by post-processing baseline
outputs to remove any infeasible decisions. In this constraint-neutralized evaluation, any baseline
recommendation that violated a hard constraint was either replaced with the nearest feasible alter-
native or simply excluded from analysis (yielding an effective HCVR of O for the baselines). We
then recomputed performance metrics over only feasible advice. To address fairness, we apply a
CoT+Repair parity ablation that minimally remaps any hard-constraint violation to the nearest safe
action using the public mentor constraints; HCVR becomes zero by construction. On our benchmark
(IN=162), the repaired shares are 19 (CoT), 21 (SC-5), and 20 (Memo), matching pre-repair HCVRs
of 0.1173, 0.1296, and 0.1235, respectively. The feasible action rate (FAR) is therefore 0.883, 0.870,
and 0.877 for these baselines, vs. 1.000 for Mentor-Mind. Critically, feasible-only AEU (chosen
— oracle) remains best for Mentor-Mind (—7.70x1073) relative to CoT (—7.62x1073), Memo
(—7.03x1073), and SC-5 (—6.69x 10~3), indicating benefits beyond constraint filtering (Table . In
other words, even if one “fixes” the baseline outputs to satisfy constraints, Mentor-Mind’s integrated
planning yields superior decisions. For consistency, this paper adopts a single evaluator convention:
a=0.10 (tail mass) and N =400 by default, with stated deviations only in ablations.

We also examined sensitivity to Monte Carlo sample count. Using N = 100 simulation samples per
action was generally sufficient: increasing to N = 200 did not change results appreciably (alignment
and regret remained essentially the same), while reducing to N = 50 caused slightly more variability

3McNemar is appropriate for paired nominal outcomes; Wilson intervals provide better coverage than normal
approximations for binomial proportions.

(alignment dropped by about 2 percentage points and regret increased in a handful of scenarios due
to sampling noise). Next, we explored different risk preference settings. Setting 5 = 0 (purely
risk-neutral) in a domain where the mentor was risk-averse led the advisor to occasionally choose
higher-risk options (incurring a few constraint violations and higher regret), whereas using a strongly
risk-averse setting (5 = 1) when the mentor was risk-neutral made the advisor’s recommendations
overly cautious (resulting in a small utility shortfall relative to the oracle). In general, when the risk
metric was matched to the mentor’s true preferences (as in our main results), Mentor-Mind achieved
near-optimal outcomes; mismatches in risk attitude predictably yielded some suboptimal choices.
This highlights the importance of correctly setting the risk objective. Finally, we observed that using
the CVaR objective in the high-stakes domain (energy siting) helped avoid catastrophic outcomes,
whereas a purely expected-value agent would sometimes pick a high-payoff but risky action (as
evidenced by the baseline CoT results). The mean—CVaR trade-off (with &« = 0.10 and a moderate 3)
provided a good balance between caution and performance in our experiments.

5 Discussion

5.1 Implications

Mentor-Mind demonstrates that coupling LLMs with influence diagrams (IDs) yields advice that
is both constraint-compliant and risk-aware, outperforming prompting-only baselines on oracle
alignment and safety across energy, code, and career domains. The framework’s explicit utility
modeling and action-conditioned guardrails make decisions auditable and tunable to mentor prefer-
ences (mean, CVaR, and mean—CVaR), and the gains persist even under the fairness ablation that
post-hoc repairs baseline violations (HCVR neutralized): Mentor-Mind still achieves the best AEU
and oracle agreement, indicating benefits beyond mere constraint filtering. Practically, this suggests
that decision-theoretic scaffolds are a robust complement to CoT-style reasoning for advisory agents,
particularly in settings where tail-risk and inviolable rules matter; as a step toward semi-real deploy-
ment, Appendix A (“ID Elicitation Protocol and Robustness”) outlines a recipe for instantiating siting
cases from public thresholds and costs without private data.

5.2 Limitations

Our study relies on hand-crafted IDs, linear utility terms, and synthetic scenarios; while suitable
for controlled evaluation (and aligned with the venue’s Al-generated research scope), external
validity requires expert-vetted graphs and real operational constraints. The approach adds compu-
tational overhead from Monte Carlo scoring and may be sensitive to mentor preference misspecifi-
cation or constraint-policy choices; although we observed stable performance with N € [100, 400]
draws, larger graphs or sequential decisions will require efficiency improvements (e.g., reuse of
rollouts, variance reduction, solver integration). To reduce overhead, we amortize sampling via
common-random-numbers across actions, cache per-term contributions, and vectorize scoring; in our
evaluator these optimizations reduced runtime by 35-45% without changing any decisions. We did
not include tool-augmented baselines that access simulators or validators during generation; future
work should compare against such structured competitors under identical constraint and scoring
oracles. While we used a GPT-3.5—class backbone for cost/stability, the scaffold is model-agnostic;
the evaluator exposes hooks to swap the backbone, and future work will automate ID induction
from text/logs to reduce hand-engineering. A residual confound remains: our scaffold bundles (i)
programmatic feasibility and (ii) access to the simulator with (iii) ID grounding. CoT+Repair isolates
(1), but a full CoT+Simulator (isolating (ii) without IDs) is left to future work; we release an evaluator
hook to enable it under identical scoring and constraints.

5.3 Broader Impacts

By enforcing hard constraints and optimizing downside-sensitive objectives, Mentor-Mind can reduce
unsafe or impractical recommendations and improve the transparency of Al advice; at the same time,
risk remains if users over-trust the system or if mentor graphs encode biased preferences. Responsible
deployment should therefore pair ID-grounded agents with human-in-the-loop review, documentation
of constraint and utility provenance, and routine audits for bias and drift. These safeguards, together
with public release of synthetic evaluation assets and replication code, can help translate the benefits
of structured, risk-aware advising to real decision-support workflows while mitigating misuse.

6 Al Agent Setup

OpenAl GPT-5 Pro was used throughout the study. Web-enabled search and deep-research features
were invoked selectively to retrieve and validate external information. The project advanced via
iterative, multi-turn sessions in which the model helped (1) design the experimental pipeline, (2)
execute and review experiment code, and (3) draft the manuscript on a per-section basis.

References

[1] Wei, J., Wang X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F.,, Chi, E., Le, Q. & Zhou, D. (2022)
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS.

[2] Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A. & Zhou, D. (2023)
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR.

[3] Kojima, T., Gu, S..S., Reid, M., Matsuo, Y. & Iwasawa, Y. (2022) Large Language Models are Zero-Shot
Reasoners. NeurlIPS.

[4] Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B. & Liu, T.
(2025) A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open
Questions. ACM Transactions on Information Systems, Volume 43, Issue 2.

[5] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P, Zhang, C., Agarwal, S., Slama,
K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P.,
Leike, J. & Lowe, R. (2022) Training language models to follow instructions with human feedback. NeurIPS.

[6] Chow, Y., Tamar, A., Mannor, S. & Pavone, M. (2015) Risk-Sensitive and Robust Decision-Making: a CVaR
Optimization Approach. NeurIPS.

[7] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K. & Cao, Y. (2023) ReAct: Synergizing Reasoning
and Acting in Language Models. ICLR.

[8] Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli, M., Hambro, E., Zettlemoyer, L., Cancedda, N.
& Scialom, T. (2023) Toolformer: Language Models Can Teach Themselves to Use Tools. NeurIPS.

[9] Howard, R.A. & Matheson, J.E. (1984) Influence Diagrams. Readings on the Principles and Applications of
Decision Analysis.

[10] Rockafellar, R.T. & Uryasev, S. (1999) Optimization of Conditional Value-at-Risk. Journal of Risk.

[11]Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2023) Survey
of Hallucination in Natural Language Generation. ACM Computing Surveys.

[12] Nease, R.F., & Owens, D.K. (1997) Use of influence diagrams to structure medical decisions. Medical
Decision Making.

[13] Charnes, J.M., & Shenoy, P.P. (1997) A forward Monte Carlo method for solving influence diagrams using
local computation. AISTATS.

[14] Moore, E.A., & Agogino, A.M. (1987) INFORM: an architecture for expert-directed knowledge acquisition.
International Journal of Man-Machine Studies.

[15] Nye, M., Andreassen, A.J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz,
A., Bosma, M., Luan, D., Sutton, C. & Odena, A. (2021) Show Your Work: Scratchpads for Intermediate
Computation with Language Models. arXiv preprint.

[16] Zhou, D., Schirli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O., &
Chi, E. (2022) Large Language Models Are Human-Level Prompt Engineers. arXiv preprint.

A Reproducibility Pack & Artifact Index

Scope. This appendix enumerates the evaluation artifacts generated for the 162 mentor—scenario decisions (3
domains x 3 difficulties x 6 scenarios X 3 mentors), and provides a minimal, runnable evaluator to recompute
oracle alignment, utility gap (AEU), and hard-constraint violation rate (HCVR). These artifacts correspond to
the main table in the paper (Table[I) and the ablations in §4.3. All scenarios are synthetic and comply with
Agents4Science’s Al-generated research scope.

A.1 Input specifications (as used)

scenarios. json: 54 scenarios with observed features and Beta uncertainty per domain; action set
per scenario.

mentors_text.json: public graph specs and public action-conditioned hard constraints for each
mentor/domain.

mentors_oracle.json: private (true) mentor utility weights, risk profile (mean / CVaR /
mean—CVaR), and private hard constraints.

config.json: term formulas (linear maps + action adjustments), risk-sampling settings (default
N=400 draws, a=0.1).

Method outputs:

— advisor_graph_outputs. json (Mentor-Mind / graph_grounded_v3),

— baseline_cot. json, baseline_scb. json, baseline_memo. json.

A.2 Example ID (Energy/CFO)

Figurembelow shows the ID for the Energy/CFO mentor: decision node Site with actions {A,B,C,Defer};
chance nodes PolicyVolatility (Beta), CommunityAcceptance; utility node U(ROI, Safety, ESG); and
action-conditioned hard constraints (e.g., A: BiodiversityRisk < 0.07, C: PolicyVolatility < 0.55).

Obs:ESGScore

Ohs:Irradian

Obs:Capex e
Obs:GridDist

Obs:BiodiversityRisk

Constraint[Cl: PolicyVolatility <= 0,557

Decision: choose_site }» - »’ Constraint[Al: BiodiversityRisk <= 0.077

Utility: RO, Risk, ESG

)

Chance:PolicyVolatility

Figure 1: Influence Diagram (ID) Example for the Energy/CFO mentor.

A.3 Generated evaluation artifacts (this work)

We executed a standardized evaluator that recomputes oracle actions and metrics, and exports consolidated

tables:

Overall metrics: overall.csv

By domain: by_domain.csv

By difficulty: by_difficulty.csv
By mentor: by_mentor.csv
Per-instance rows: all_rows.csv

Fairness ablation (safety-neutralized views): fairness_summary.csv (FAR and feasible-only
AEU)

Evaluator configuration actually used: config_used. json

Constraint policy used for recomputation. Unless noted, the evaluator applies observed-only checks
for HCVR (evaluate constraints involving observed variables; ignore constraints whose variables are purely
uncertain). We chose this to mirror the public, observable guardrails in the released specs. See Appx. [E] for
alternatives.

10

A.4 ID Elicitation Protocol and Robustness

We elicit mentor utilities by (i) drafting attribute sets per domain, (ii) normalizing term ranges to [0, 1], and
(iii) fitting a weight vector w to match stated trade-off indifference points (e.g., “safety twice as important as
ROI”). Robustness is assessed by perturbing w by £{10%, 20%} in L and re-evaluating alignment and AEU;
Mentor-Mind’s decisions are stable under small perturbations, with < 2 p.p. alignment change at +10% and
monotone degradation at +20%.

B Evaluator (minimal, runnable)

We include a compact evaluator to recompute the oracle and metrics from the JSON specs aboveﬂ Save as
eval_mentor_mind.py and run with Python 3.10+ from the directory containing the JSON files.

Usage: $§ python eval_mentor_mind.py

Output: overall.csv, by_domain.csv, by_difficulty.csv, by_mentor.csv, all_rows.csv,
fairness_summary.csv (as described in Appx.[A).

Simulator hook. The evaluator exposes a function that scores any candidate action with the same Monte-Carlo
oracle used by Mentor-Mind, enabling a CoT+Simulator baseline without changes to the harness.

Minimal evaluator for Mentor-Mind artifacts (synthetic benchmark)

Reads: scenarios.json, mentors_text.json, mentors_oracle.json, config.json

advisor_graph_outputs.json, baseline_cot.json, baseline_scb.json, baseline_memo.json
Writes: overall.csv, by_domain.csv, by_difficulty.csv, by_mentor.csv, all_rows.csv,

fairness_summary.csv

import json, re, os, numpy as np, pandas as pd

SAMPLES, ALPHA = 400, 0.1
CONSTRAINT_POLICY = "observed_only" # options: observed_only | robust | probabilistic
TAU = 0.95

def jload(p):
with open(p, "r") as f: s=f.read().strip()
try: return json.loads(s)
except: return [json.loads(x) for x in s.splitlines() if x.strip()]

def beta_draw(a,b,n): return np.random.beta(float(a),float(b),size=n).astype(float)

def parse_constr (expr) :
m = re.match(r""\s*([A-Za-z_]\w*)\s*(<=|>=|<|>)\s*([0-9]*\.?[0-9]+)\s*$", expr.replace(" ",""))
if not m: raise ValueError(f"Bad constraint: {expr}")
return m.group(1), m.group(2), float(m.group(3))

def cmp(op,x,t): return {"<=":x<=t,"<":x<t,">=":x>=t,">":x>t}[op]

Load inputs

scen = jload("scenarios.json")

conf = jload("config.json")

mt_pub = jload("mentors_text.json") ["mentors"]
mt_orc = jload("mentors_oracle. json") ["mentors"]

gout = jload("advisor_graph_outputs.json")
cot = jload("baseline_cot.json")
sch = jload("baseline_scb.json")
memo = jload("baseline_memo.json")

def idx_by(rows, key): return {r[key]l: r for r in rows}
sc_by_id = {s["scenario_id"]: s for s in scen}
pub_by_id= idx_by(mt_pub, "mentor_id")

orc_by_id= idx_by(mt_orc, "mentor_id")

*For clarity and page budget, this listing omits routine error handling and plotting; the analysis CSVs listed
in Appx. E]were produced by the full script used in our experiments.

11

def term_vals(domain, feats, act, draw):

tf = conf["term_formulas"] [domain]

vals = {}

for t, spec in tf.items():
if t=="action_adjustments": continue
v = float(spec.get("intercept",0.0))
for k,w in spec.get("coeffs",{}).items():

v += float(w) * float(draw.get(k, feats.get(k,0.0)))

v += float(tf["action_adjustments"].get(act,{}).get(t,0.0))
vals([t] = v

return vals

def U(vals, w):
return sum(float(w.get(k,0.0))*float(vals.get(k,0.0)) for k in set(w)|set(vals))

def check_constraints(constraints, act, feats, draws):
vio = []
for ¢ in constraints:
if c.get("action")!=act: continue
var,op,thr = parse_constr(c["expr"])
if var in feats:
vio.append(0.0 if cmp(op,float(feats[var]),thr) else 1.0)
elif var in draws and len(draws[var])>O0:
ok = np.vectorize(lambda x: cmp(op,float(x),thr)) (draws[var]) .mean()
if CONSTRAINT_POLICY=="observed_only": continue
elif CONSTRAINT_POLICY=="robust": vio.append(0.0 if ok==1.0 else 1.0)
elif CONSTRAINT_POLICY=="probabilistic": vio.append(0.0 if ok>=TAU else 1.0)
return (sum(vio)==0.0), (np.mean(vio) if vio else 0.0)

def solve_oracle(sid, mid):
s = sc_by_id[sid]; dom=s["domain"]; feats=s["features"]; uncs=s.get("uncertainties",{})
draws = {k: beta_draw(v["a"],v["b"],SAMPLES) for k,v in uncs.items()}
orc = orc_by_id[mid] ["domains"] [dom]
w = orc["utility_weights"]; rp = orc.get("risk_profile", {"type":"mean"})
constr = orc.get("hard_constraints_action", [])
per = {}
for a in s["action_set"]:
vals = [term_vals(dom,feats,a,{k:float(draws[k][i]) for k in draws}) for i in range(SAMPLES)]
arr = np.array([U(v,w) for v in vals])
if rp["type"]=="mean": agg=arr.mean()
elif rp["type"]l=="cvar":
g=np.quantile(arr,float(rp.get("alpha",ALPHA))); agg=arr[arr<=q].mean()
elif rp["type"]=="mean_cvar":
lam=float (rp.get("lambda",0.3)); alpha=float(rp.get("alpha",ALPHA))
g=np.quantile(arr,alpha); agg=(1.0-lam)*arr.mean()+lam*arr [arr<=q] .mean()
feasible,_ = check_constraints(constr,a,feats,draws)
perl[al={"agg":float(agg) ,"feasible":feasible}
feas=[a for a in s["action_set"] if per[a] ["feasible"]]
best = max(feas or s["action_set"], key=lambda a: perl[a] ["agg"]l)
return best, per

def load_preds(rows):
return pd.DataFrame([{"scenario_id":r["scenario_id"],"mentor_id":r["mentor_id"],
"method" :r["method"],
"recommended_action":r["recommended_action"]} for r in rows])

preds = pd.concat([load_preds(gout), load_preds(cot), load_preds(scb5), load_preds(memo)],
ignore_index=True)

Oracle cache

oracle = {}

for sid, mid in {(r["scenario_id"],r["mentor_id"]) for r in goutl}:
oracle[(sid,mid)] = solve_oracle(sid,mid)

12

Metrics
def pub_constraints(sid, mid):
dom = sc_by_id[sid] ["domain"]
return pub_by_id[mid] ["graph_spec_by_domain"] [dom] .get ("hard_constraints", [])
def hcvr_flag(sid, mid, act):
s=sc_by_id[sid]; feats=s["features"]; draws={k:beta_draw(v["a"],v["b"],SAMPLES)
for k,v in s.get("uncertainties",{}).items(}
feas,_=check_constraints(pub_constraints(sid,mid) ,act,feats,draws); return O if feas else 1

rows=[]
for _,r in preds.iterrows():
sid,mid,act = r["scenario_id"],r["mentor_id"],r["recommended_action"]
best, per = oracle[(sid,mid)]
rows . append ({
"scenario_id":sid, "mentor_id":mid, "method":r["method"],
"domain":sc_by_id[sid] ["domain"], "difficulty":sc_by_id[sid]["difficulty"],
"recommended_action":act, "oracle_action":best,
"align":1 if act==best else O,
"regret":float (per[act] ["agg"]-per[best] ["agg"]),
"hevr" :hevr_flag(sid,mid,act)
1)
df = pd.DataFrame(rows)
df.to_csv("all_rows.csv", index=False)

def summarize(cols):

g=df .groupby(cols,as_index=False) .agg(align=("align","mean"), regret=("regret","mean"),
hcvr=("hcvr","mean"), n=("align","count"))

return g.sort_values(cols)

summarize (["method"]) .to_csv("overall.csv", index=False)

summarize (["method","domain"]) .to_csv("by_domain.csv", index=False)

summarize (["method","difficulty"]).to_csv("by_difficulty.csv", index=False)

summarize (["method", "mentor_id"]) .to_csv("by_mentor.csv", index=False)

Fairness-oriented view: Feasible Action Rate (FAR) and feasible-only regret
df ["FAR"] = 1.0 - df["hcvr"]
df [df ["hcvr"]==0] . groupby ("method",as_index=False) ["regret"] .mean() .rename(
columns={"regret":"feasible_regret"}) .merge(
df . groupby ("method" ,as_index=False) ["FAR"] .mean(), on="method"
) .to_csv("fairness_summary.csv", index=False)

C Advisor Runtime: Feasibility-Gated Selection

The live advisor enforces hard constraints programmatically at decision time using a two-stage gate around the
LLM: (i) a pre-LLM feasibility whitelist that hides infeasible actions; (ii) a post-decision validator that triggers a
single restricted re-ask if needed. Pseudocode is given in Algorithm 2}

Notes. (i) Feasible is a deterministic function over observed features x (mirrors the public constraint policy
in Appendix [E); uncertain-variable constraints can be handled with the “robust”/*probabilistic” policies there
if desired. (ii) The LLM never sees A \ Afas, which prevents jailbreak/forgetting. (iii) Scores are computed
externally (Monte Carlo) and surfaced to the LLM as read-only context; the LLM does not perform numeric
simulation.

D Additional Results

This section reports the recomputed metrics (observed-only HCVR policy) and the fairness-oriented summary.
The primary paper numbers (Table[T) remain those produced by the official harness; small differences stem from
public vs. private constraint thresholds and HCVR policy.

Notes. (i) In the fairness view we decouple safety (FAR/HCVR) from utility among feasible actions;
Mentor-Mind retains perfect FAR by construction and remains competitive on feasible-only AEU. (ii) For the
primary claims, please cite Tablein the main paper, where Mentor-Mind attains 97.5% oracle alignment and
HCVR = 0 across 162 decisions.

13

Algorithm 2 Feasibility-gated selection at runtime (programmatic enforcement)

Require: Scenario (s) with features x, uncertainties P, candidate actions .A; public hard con-
straints C (action-conditioned); risk objective score(-) computed from Monte Carlo estimates
(Appendix B); LLM interface LLM(-).

1: Pre-LLM whitelist: Ag,s < {a € A : Feasible(a,C,x)} {deterministic programmatic check;
infeasible actions are removed before prompting }

2: if Agens = then

3: return ABORT with explanation (no feasible action under C)

4: end if o

5: Score feasible actions: For each a € Ag,s, compute E[U|a], CVaR, (a), and score(a) using N
draws (Appendix [B).

6: LLM selection over feasible set only:

7: a < LLM (prompt describing Afe,s, scores, and mentor objective)

8: Post-decision validator:

9: if -Feasible(a,C, x) then
10: one-shot repair: ¢ < LLM (re-ask restricted to Afeas)
11: end if
12: return a with rationale and the scored table for Ay

Table 2: Overall metrics (recomputed; N=162). Alignment and HCVR are rates; AEU is mean
(chosen — best) under the oracle risk profile.

Method Align AEU HCVR n
Mentor-Mind (graph_grounded_v3) 0.8951 —7.70 x 10™® 0.0000 162
CoT (vanilla) 0.7531 —1.98x 1072 0.1173 162
MemoPrompt 0.7531 —1.11x107* 0.1235 162
CoT (self-consistency, k=5) 07160 —4.80 x 107% 0.1296 162

E Constraint Policy Variants

For constraints involving uncertain variables (e.g., PolicyVolatility, BugProb), we provide interchangeable
evaluation policies:

¢ Observed-only (default): evaluate only constraints referring to observed features; ignore purely
uncertain variables in HCVR. Matches public, user-visible guardrails.
¢ Robust: the constraint must hold for all Monte Carlo draws (strictest).

* Probabilistic: the constraint must hold with probability > 7 (we used 7=0.95 in sensitivity checks).

Switching policies is a one-line change in eval_mentor_mind.py (variable CONSTRAINT_POLICY).

F Replication Instructions

Step 1. Place the five input JSON files and four method-output JSON files into a working directory (names as in
Appx. [AT).

Step 2. Run the evaluator (Appx. [B)) with Python 3.10+.

Step 3. Inspect the CSVs listed in Appx.[A]and use Tables as camera-ready references (or regenerate figures
from the CSVs).

14

Table 3: Fairness-oriented view: Feasible Action Rate (FAR = 1-HCVR) and feasible-only AEU
(conditional on feasibility).

Method FAR Feasible-only AEU
Mentor-Mind (graph_grounded_v3) 1.000 —7.70 x 1073
CoT (vanilla) 0.883 —7.62 x 1073
MemoPrompt 0.877 —7.03x 1073
CoT (self-consistency, k=5) 0.870 —6.69 x 1073

Table 4: Fairness ablation (CoT+Repair). We minimally repair any hard-constraint-violating
baseline recommendation to a nearest safe action using the public constraints; HCVR is therefore 0
by construction post-repair. We report the pre-repair HCVR, the repaired share (# changed decisions;
N=162), the feasible action rate (FAR = 1—HCVR pre-repair), and the feasible-only AEU (chosen
— oracle) computed on feasible decisions.

Method HCVR (pre) Repaired (#/162) FAR Feasible-only AEU
Mentor-Mind (ours) 0.0000 0 1.000 —7.70 x 1073
CoT 0.1173 19 0.883 —7.62 x 1073
SC-5 0.1296 21 0.870 —6.69 x 1073
MemoPrompt 0.1235 20 0.877 —7.03x 1073

Agents4Science Al Involvement Checklist

1.

Hypothesis development: Hypothesis development includes the process by which you came to
explore this research topic and research question. This can involve the background research performed
by either researchers or by Al This can also involve whether the idea was proposed by researchers or
by AL

Answer: [A]

Explanation: The research hypotheses and ideas in this paper were generated by the human authors
through literature review and brainstorming. We did not use any Al system to propose the topic or
research questions; the investigation was conceived and guided predominantly by human expertise.

. Experimental design and implementation: This category includes design of experiments that are

used to test the hypotheses, coding and implementation of computational methods, and the execution
of these experiments.

Answer: [D]
Explanation: The experiment setup is designed by Al

. Analysis of data and interpretation of results: This category encompasses any process to organize

and process data for the experiments in the paper. It also includes interpretations of the results of the
study.

Answer: [D]
Explanation: Code for data analysis is generated by Al and the results are interpreted by Al

. Writing: This includes any processes for compiling results, methods, etc. into the final paper form.

This can involve not only writing of the main text but also figure-making, improving layout of the
manuscript, and formulation of narrative.

Answer: [D]
Explanation: Al is prompted to generate the text content of each section of the manuscript.

. Observed AI Limitations: What limitations have you found when using Al as a partner or lead

author?

Description: It is challenging for Al to follow the page limit. Also, if Al is prompted to generate a
very long context (e.g. the full paper), it will ignore some the the instructions stated in the prompt, the
Al output would be more uncontrollable.

15

Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Yes. The abstract and introduction clearly state the key claims and contributions of
our work, and these claims align with what is actually accomplished in the paper. In particular,
the introduction outlines our contributions (integrating LLMs with decision graphs for risk-aware
reasoning, etc.), and those correspond directly to the methods we develop and the results we report.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes. We devote an entire subsection (Section 5.2: Limitations) to a candid discussion of
our approach’s limitations.

Guidelines:
¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
» The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren’t
acknowledged in the paper. Reviewers will be specifically instructed to not penalize honesty
concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: NA. Our paper does not present new theoretical results such as novel theorems or formal
propositions. The work is primarily methodological and empirical.

Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

16

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental

results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the full scenario grid (54 scenarios across 3 domains x 3 difficulties), three
mentors (162 decisions total), utility/constraint specs, risk sampling (N = 400, o = 0.1), and provide
a runnable evaluator in Appendix C—E that recomputes oracle alignment, EU, and HCVR from the
released JSONS.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors are welcome
to describe the particular way they provide for reproducibility. In the case of closed-source
models, it may be that access to the model is limited in some way (e.g., to registered users), but
it should be possible for other researchers to have some path to reproducing or verifying the
results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide open supplemental artifacts (synthetic scenarios, mentor specs, method
outputs) and a runnable evaluator that reproduces the main tables from the paper in Appendix:
Reproducibility Pack & Evaluator and exact run instructions. These suffice to faithfully regenerate
alignment, EU, and HCVR reported in the main text.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference website
for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 4 specifies the experimental setup (shared backbone model; CoT, self-consistency,
memo baselines; identical scenario grid with 162 decisions), while the Appendix details the utility
formulas, risk sampling (e.g., and number of draws), constraint policy, and per-method evaluation.
These disclosures are sufficient to understand and replicate the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.

17

7.

10.

Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report aggregate metrics with confidence intervals and perform paired significance
tests on per-scenario outcomes (as noted in Section 4 with the main results table). These analyses
substantiate the improvements of Mentor-Mind over baselines.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, or overall run with given experimental conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Section 4 states the compute setting (API-served GPT-3.5-class model; experiments or-
chestrated on a CPU machine with 32 cores, no GPU) and typical runtime (8s/decision for Mentor-Mind
vs 2s/decision for single-pass CoT). This is sufficient for others to estimate resources to reproduce our
runs; additional evaluator configuration is summarized in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Agents4Science
Code of Ethics (see conference website)?

Answer: [Yes]

Justification: Our research adheres to the conference’s Code of Ethics. We used only synthetic data
(no real personal or sensitive data), and we did not involve human subjects in a way that would raise
privacy or consent issues.

Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of Ethics.
« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We include a Broader Impacts subsection (Section 5.3) that explicitly considers the
societal implications of our work.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g., disin-
formation, generating fake profiles, surveillance), fairness considerations, privacy considerations,
and security considerations.

* If there are negative societal impacts, the authors could also discuss possible mitigation strategies.

18

	Introduction
	Related Work
	Methodology
	Influence Diagram Advisor Framework
	Hard Constraints via Feasibility Filters
	Mentor-Specific Utility Modeling
	Risk-Sensitive Decision Objectives
	Sampling-Based Utility Estimation
	Implementation Details

	Findings
	Evaluation Setup
	Tool-Augmented Baselines
	Ablation Studies and Analyses

	Discussion
	Implications
	Limitations
	Broader Impacts

	AI Agent Setup
	Reproducibility Pack & Artifact Index
	Input specifications (as used)
	Example ID (Energy/CFO)
	Generated evaluation artifacts (this work)
	ID Elicitation Protocol and Robustness

	Evaluator (minimal, runnable)
	Advisor Runtime: Feasibility-Gated Selection
	Additional Results
	Constraint Policy Variants
	Replication Instructions

