
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BUT IS IT VALID? ENFORCING STRUCTURAL CON-
STRAINTS ON GRAPH GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of graph generation using deep learning has received substantial
attention in the recent years. When using graph generative models, one often
faces the issue that the generated graphs do not respect hard constraints of the
empirical distribution. A common challenge is to guarantee even basic structural
properties of the generated graphs, such as connectedness or planarity. In this work,
we propose ValiGraph, a graph generative method based on denoising diffusion,
which guarantees the generation of graphs respecting a large family of structural
properties. In addition we quantify the ability of the models in capturing topological
information, we propose the use of extended persistent homology in the evaluation
procedure. We show that ValiGraph is superior in capturing the distribution of
graph structural features on several datasets.

1 INTRODUCTION

Tree Not Tree

C
o

n
n

ec
te

d
N

o
t

C
o

n
n

ec
te

d

Figure 1: Examples of graphs with dif-
ferent structural properties invariant to
edge-deletion (tree), and invariant to
edge-addition (being connected). As op-
posed to previous methods ValiGraphis
able to enforce both of these properties
in the generated graphs.

We propose ValiGraph, a one-shot graph generative
model which is guaranteed to generate valid graphs that
respect the hard structural constraints of the empirical dis-
tribution as long as these constraints can be expressed in
terms of edge-addition and edge-deletion invariant prop-
erties. We show that enforcing such constraints greatly
improves the model’s ability to preserve graph topological
properties of the distribution in question.

Respecting hards structural constraints is relevant both
in theory and practice: In theory, preserving the support
of the distribution is an attractive basic property for a
generative model. In practice, graph validity often depends
on preserving graph topology: Graph skeletons extracted
from 2d biological images (Schaadt et al., 2020) or public
transport networks (Háznagy et al., 2015) have to be planar,
and social networks might show constrains on the nodes’
degree. Examples are personal social networks which
are often studied as ego-centered network (Hogan et al.,
2023; Brea Perry & Small, 2023) or patients and healthcare
workers interaction, whose degree might be limited to
avoid too many contacts (Jang et al., 2019; Adhikari et al.,
2019).

Roughly speaking graph generative models can be divided into autoregressive and one-shot graph
generative models, where one shot models generate all the graph’s edges at once. As autoregressive
models can check topological properties – e.g. being connected, planar, containing cycles – at each
iterative sampling step, they are more capable at generating sampled graphs that satisfy the topological
support of the empirical distribution. One-shot graph generative models typically do not have these
properties by design, but comes with other advantages such as no need to impose an explicit node
ordering, and it remains an open problem to ensure that the generated graphs are valid and respect the
properties of the true graph distribution.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Discrete denoising diffusion has proved very effective as State-of-the-art one-shot graph generative
models (Vignac et al., 2022; Madeira et al., 2024). These models typically augments each diffusion
denoising step with topological information during training to increase the expressive power of the
models, but this does not guarantee that topological properties of the graph distribution are maintained.
Even a basic topological property such as connectedness is not guaranteed when sampling new graphs
(see the illustration in Figure 1). This raises the question of how an inductive bias enforcing the
topological constraints can be imposed on a one-shot graph generative model.

To validate generative models, two sets of metrics are commonly used: the validity, uniqueness and
novelty (VUN) metrics on the generated dataset, and the metrics recently proposed by You et al.
(2018) between the empirical and generated distributions. As Vignac et al. (2022), we evaluate the
maximum mean discrepancy (MMD) between the distributions of edge degree, cluster coefficient, and
the number of orbits with 4 nodes. Existing models can, however, perform well on these metrics even
if the generated graphs contain a high percentage of graphs that do not respect the hard constraints
of the empirical distribution. To bridge this gap it is thus crucial to identify additional topological
features of graphs for the evaluation of graph generative models. Our contribution:

• Documenting that existing one-shot graph generative models struggle to capture topological
properties of graph distributions, along with an illustration of the downstream issues that
arise from this shortcoming.

• Proposing ValiGraph, building on a noise model which preserves graph structural properties
that are invariant under edge-addition and edge-deletion. This enables us to enforce hard
structural constraints on the generated graphs, thereby improving the model’s ability to
preserve the topological properties of graph distributions.

• Proposing evaluation metrics based on extended persistent homology that capture the
extent to which the topological properties of graph distributions are preserved.

2 BACKGROUND

Generative models based on denoising diffusion are extremely effective for image generation, but can
be used more widely: Discrete diffusion models are treated comprehensibly by Austin et al. (2021),
whose modeling framework has been used in several state-of-the-art graph generative models (Jo
et al., 2022; Vignac et al., 2022; Madeira et al., 2024).

Discrete Denoising Diffusion: We formulate the noise process using a Markov chain defined in a
discrete state space. When modeling labeled graphs, the state space describe the nodes and edges
labels. Let z = [z1, ..., zK], where zk ∈ {0, 1} and

∑K
k=1 zk = 1 be the one-hot encoding of label k

out of total K labels. If zk = 1, we say that z is in state k. The forward diffusion process can now
be formulated by defining transition matrices Q1,Q2, ...,QT for each time-step t ∈ 1, ..., T , where
[Qt]ij is the probability of transitioning from state i to state j. Thus, the forward process is:

q(zt|zt−1) = zt−1Qt (1)

q(zt|z) = zQ̄t, (2)

where Q̄t = Q1Q2, ...,Qt. Following standard Markov process terminology, we call a state k
transient if

∑∞
t=1 P (ztk = 1|z0k = 1) < ∞, that is, there is a non-zero probability of never returning

to the state. The state is called recurrent if
∑T

t=1 P (zk = 1|z0k = 1) → ∞ when T → ∞,
that is, zt has state k occur infinitely often. Lastly, an absorbing state refers to a state where
P (zt+1

k = 1|ztk = 1) = 1. While technically an absorbing state is also a recurrent state, we only use
the term to refer to states that are recurrent, but not absorbing unless otherwise mentioned.

Using absorbing states to enforce structural information with a discrete model has been used for
text (Devlin et al., 2018) and image generation (Austin et al., 2021) as well as graph generation.
In the latter works, each state is chosen to correspond to a specific discrete label: the node- and
edge-type. Picking one of these types to correspond to an absorbing state (e.g. the no-edge-state
as in ConStruct (Madeira et al., 2024)), has the consequence that a trivial point-mass prior must be
picked. This is a considerable limitation of the model. Here, we demonstrate how carefully designed
transition matrices enable us to consider non-trivial prior distributions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Edges

Non-Edges

Auxilitary state

Figure 2

Graph Representation: We consider a graph with cat-
egorical attributes on nodes and edges and create one-hot
encoding xi = [x1, ..., xdx

] and êi,j = [e1, ..., ede
] of the dx

node types and de edge types respectively. As we use dense
matrices, the absence of an edge in a graph is always desig-
nated with its own type. For ease of notation, we assume that,
given an edge ê, we have e1 = 1 if and only if the edge is a
non-edge (i.e., absent). In addition to the de edge states in-
duced by the encoding of the edge-type we add an additional
K auxiliary states which serve as either absorbing or recur-
rent states. To formalize the assignment of states to edges,
we define a map h : ê 7→ e = [e1, ..., ede

, ede+1, ..., ede+K],
where ede+k = 0 for k ∈ {1, ...,K}. These nodes and edges representations are then organized
in tensors X ∈ {0, 1}n×dx and E ∈ {0, 1}n×n×(de+K), where X[i] = xi and E[i, j] = ei,j for
i, j ∈ {1, ..., n} with n number of nodes. A graph G ∈ G is finally represented by the pair of
tensors G = (X,E) ∈ G, where G denotes the space of all graphs. An illustration of the described
mapping of the edges in the case of a binary graph can be found in Figure 2. We can also con-
struct mappings in the opposite direction as follows. That is given an edge e, we let π+ define
the map that sends an edge with one-hot encoded attributes to the corresponding binary edge, i.e.
π+ : e 7→ [e1 +

∑de+K
i=de+1 ei,

∑de

i=2 ei], and π− : e 7→ [e1,
∑de+K

i=2 ei].

3 METHOD

We propose ValiGraph, a generalization of Madeira et al. (2024), to a graph generative model which
guarantees that generated graphs have specific properties invariant to edge-deletion and edge-addition.
Mathematically we formalize the notion of a property as an indicator function ρ : G → {0, 1} on the
space of graphs.

Definition 3.1. Let ρ : G → {0, 1} be a property. If for all graphs G ∈ G we have that ρ(G′) = ρ(G)
for all G′ ∈ G where G′ ⊆ G =⇒ ρ(G′) then the property is invariant under edge deletion. Vice
versa if ρ(G) = ρ(G′) for all G′ ∈ G where G ⊆ G′ the property is invariant under edge addition.

Given properties ρ1, ..., ρs, we can also compose a new property ρ =
∏s

1=i ρi. Abstract absorbing or
recurrent states used in all the noise models can be interpreted as applying an edge-deletion and an
edge-addition process in parallel. Letting G ⊆ G′ for G,G′ ∈ G denote that G is a subgraph of G′

we consider a sequence of graphs G0, G1, ..., GT sampled using a noise process outlined in Section
2. This induces an edge-deletion process π+(G

0) ⊇ π+(G
1) ⊇ ... ⊇ π+(G

T) because edges have
zero probability of returning from an auxiliary state to an edge state. Vice versa, we recover an
edge-addition process by noting that π−(G

0) ⊆ π−(G
1) ⊆ ... ⊆ π−(G

T). These two sequences of
sampled graphs contain information about the edge-deletion invariant, and edge addition invariant
properties respectively. Designing the noise model in this way has the remarkable consequence, that,
during inference, we can guarantee any graph property which can be composed by both edge-deletion
and edge-addition invariant properties. In Figure 3, we illustrate this process. Here, green edges
indicate the edges that are present in the graph and the blue edges indicate the edges of the graph
complement, i.e. edges which are not present in the original graph. At each timestep, there is a
chance of either edges- or non-edges transitioning to an absorbing state indicated by a gray edge. We
see, that eventually all edges have transitioned to the absorbing state. Likewise we see, that we can
recover an edge-deletion process by considering the green edges at each step of the noise process,
and an edge-addition process, by considering the graph complement of all blue edges at each step.

Forward process: As is common for discrete graph noise models, we apply noise independently to
each node and edge, which for a graph G = (X,E) reduces to sampling from the distributions:

q(Gt|Gt−1) =
∏
i

q(xt
i|xt−1

i) ·
∏
ij

q(etij |et−1
ij) (3)

q(Gt|G) =
∏
i

q(xt
i|xi) ·

∏
ij

q(etij |eij), (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Edge Deletion

Edge Addition

G0 Gt-1 Gt GT

... ...

......

... ...

Figure 3: Illustration of what a noise process with a single absorbing state could look like when
applied to a graph with four nodes, and three edges (green), and three non-edges (blue). The first
row shows the noise process. The second and third rows show the corresponding edge-deletion and
edge-addition processes.

where the node-wise noise process is defined by q(xt
i|x

t−1
i) = xt−1

i Qt
x and q(xt

i|xi) = xiQ̄
t
x for

transition matrices Qt
x and Q̄t

x = Q1
x...Q

t
x. Analogously to the node-wise process, the edge-wise

process is given by q(etij |e
t−1
ij) and q(etij |eij).

As we focus on creating a generative model which respects structural properties, we use the noise
model of Vignac et al. (2022) on the nodes. The sequence of node-transition matrices is then:

Qt
x = αt

xI+ (1− αt
x)1dx

px, (5)
where I is a dx×dx identity matrix and px[i] refers to the marginal probability of type i in the training
set. Additionally, αt

x ∈ [0, 1] is a noise schedule indexed over t ∈ N0, with α0
x = 1 satisfying αt

x → 0
when t → ∞. In this work, the cosine noise schedule is used for node attributes. The advantage
of formulating the transition matrix in this form, is that we can compute Q̄t

x = ᾱt
xI+ (1− ᾱt

x)Px,
where ᾱt

x =
∏t

i=0 α
i
x whenever P2

x = Px and Px is a stochastic matrix. We seek to write the edge
transition matrices on this form. For the convenience of the reader, a proof is found in Appendix A.

Defining suitable transition matrices: In ConStruct, the noise process is an absorbing Markov
chain, where the no-edge state is considered to be absorbing. In practice, this formulation yields an
edge-deletion process. Some graph properties, e.g., planarity, do not change under edge deletion, and
thus, this noise process has the advantage of preserving such properties of the input graphs. This
admits a trivial limit distribution: the distribution of graphs with no edges.

We generalize this approach by formulating a noise model that preserves properties invariant to both
edge-deletion and edge-addition, thus enforcing a common edge-addition invariant property like
connectedness, while also preserving edge-deletion invariant properties (e.g., maximum possible node
degree or planarity). Instead of considering an absorbing state Markov process, we add a number of
additional place-holder states, which serve as either absorbing or recurrent states. As we investigate
graph topology, we are mainly interested in binary graphs, but the approach equally applies to graphs
with edge-attributes. The noise process for edge-attributes is defined on a form similar to Qt

x as:
Qt

e = αt
eI+ (1− αt

e)Pe, (6)
where I is a (de +K) × (de +K) identity matrix, and αt

e denotes the noise schedule. We define
αt
e as the mutual information noise schedule(Austin et al., 2021; Sohl-Dickstein et al., 2015) (see

Appendix B). Finally, we define:

Pe =

[
0 T
0 S

]
, (7)

where S is a K ×K stochastic matrix with absorbing (recurrent) states, and where T is a de ×K
stochastic matrix defined such that the entry i, j of (1−αt

e)T denotes the probability of transitioning
to the absorbing (recurrent) state j from state i. This formulation is advantageous as it offers great
flexibility in the choice of S, thus admitting non-trivial limit distributions and more complex priors,
as opposed to the conventional approaches using only a single absorbing state. Below, we account for
the noise models considered in this article and validate that they indeed have the desired properties.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Single-state Absorbing Noise Model: Letting S be a 1 × 1 identity matrix, and T be a de × 1
matrix of ones results in a noise model with a single absorbing state. This noise model extends the
absorbing noise model used in ConStruct to edge-addition invariant properties. The fact that P is
idempotent is trivial in this case and consequently Q̄t can be computed in closed form as outlined
above. We also see that eQ̄t → ePe when t → ∞. However, for all e we see that eP is just the
one-hot encoding of the absorbing state, and as such the limit distribution does not depend on the
input. We refer to this model as SAS-ValiGraph.

Multi-state Absorbing Noise Model: Letting S be a de × de identity matrix and T = 1pe results
in an absorbing state model with de absorbing states. Here, we have let the transition probability to
each recurrent state to be proportional to the empirical marginal probability of the specific edge type.
Again, it follows that P is idempotent, by exploiting the fact that the identity matrix is idempotent
and that T2 = 1pe1pe = T, since pe1 = 1 by construction. Here, the limit distribution is eP = pe

for all one-hot-encoded edges e. We refer to this model as MAS-ValiGraph.

Recurrent State Noise Model: Letting S = T = 1pe produces a recurrent state noise model with
de recurrent states. As in the multi-state absorbing noise model, we let the transition probability
to each recurrent state be proportional to the empirical marginal probability of the specific edge
type. However, we also enable transitions between the recurrent states. Pe is in this case shown to
be idempotent analogously to the Multi-state Absorbing Noise model by exploiting that T = S =
1pe1pe. Again, we have the limit distribution ePe = pe. We refer to this model as RS-ValiGraph.

Sampling Using the Reverse Process: The sampling of new graphs is iteratively done by using
pθ(G

t−1 | Gt) parametrized using a graph neural network. The exact construction of this process
can be found in Appendix C. Remember that the forward model as applying an edge-deletion process
by moving edges from an edge-state to an absorbing state, and an edge-addition process by moving
edges from the no-edge state to the absorbing state. The reverse process should be interpreted in a
similar light: An edge-addition process moving edges from the absorbing state to an edge-state, and
an edge-deletion process (or edge-blocking process), where edges are moved from an absorbing state
to the no-edge state.

When sampling graphs from pθ(G
t−1 | Gt) we importantly are not guaranteed that the desired

properties are respected at each step. To ensure that this is the case we only move edges from
the absorbing state to an edge/no-edge state, if we do not violate the edge-deletion invariant and
edge-addition invariant properties respectively. This operation can be thought of as a projection
onto the set of valid graphs (Madeira et al., 2024), and ensures that graphs have the correct structure
during the intermediate steps. If an edge in an absorbing state cannot transition into an edge-state
without violating structural constraints, it must be added to the no-edge state, and vice versa. As
a consequence of this, it is theoretically possible for an edge in an absorbing state to be unable
to transition to an edge- or no-edge state without violating structural constraints. We refer to this
phenomenon as the graph generation procedure not converging: the process will not produce a graph.
This can occur when the imposed constraints are severe, e.g. enforcing a graph being connected and
disconnected will naturally not yield any graphs.

This validity check can be very computationally expensive. However, as the model only move edges
from the absorbing state to an edge/non-edge state, we know that the graph at Gt−1 respects the
structural constraints a priori. Verifying that the structural property in question is not violated can
often be done at a lower computational cost.

4 EVALUATION: CAPTURING TOPOLOGICAL INFORMATION

Enforcing that the generated graphs lie within the support of the empirical distribution graph distribu-
tion can be done based on their structural properties, but is not alone sufficient for ensuring a good
generative model. We therefore need to define appropriate metrics for evaluating the quality of a
graph generative model.

Conventional Evaluation of Structural Properties: Often the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) computed using relevant graph features is used for evaluating the
quality of the generative model. This approach was first used by (You et al., 2018) specifically using

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the degree distribution, the clustering coefficient distribution, and average orbit counter, that is, how
many times orbits which have exactly 4 nodes occur, as the graph statistics of interest. These statistics,
occasionally supplemented by the eigenvalues of the normalized graph Laplacian (Liao et al., 2019),
have become the de facto standard statistics to be used for computing the MMD for graph generative
models (Eijkelboom et al., 2024; Vignac et al., 2022; Madeira et al., 2024; Martinkus et al., 2022;
Diamant et al., 2023; Jo et al., 2022). However, it is not clear if they are sufficient, if the goal is to
quantify higher order topological information. For example, a large linear graph and a large circular
graph have very similar degree distributions, clustering coefficients and orbit counts, but they are
very different topologically.

Evaluation Using Extended Persistence Diagrams: We propose to supplement the conventional
metrics with the the computation of MMD based on extended persistence diagrams to better quantify
the ability of the models to capture topological information. Computations are based on the Gudhi
library1.

First, note that extended persistence diagrams are normally extracted from simplicial complexes.
However, a graph can be represented as a 1-dimensional simplicial complex consisting of zero-
simplices (the nodes), and one-simplices (the edges). Secondly, in order to compute extended
persistence, one needs to define a filtration of the complex, that is, a sequence of nested simplicial
complexes, whose final complex is the input simplicial complex itself. We do this by defining a
real-valued function on the graph nodes f : V → R, and then considering a sequence of growing
subgraphs, where each subgraph Gα contains only those vertices whose function values are less than
an increasing threshold α:

Gα1
⊆ Gα2

⊆ · · · ⊆ Gαn
,

where α1 ≤ α2 ≤ · · · ≤ αn, and where Gα := {Vα, Eα}, with Vα := {v ∈ V : f(v) ≤ α},
Eα := {(v, v′) ∈ E : v, v′ ∈ Vα}. These subgraphs can be interpreted as the so-called sub-level sets
of the function f , and can be used to compute ordinary persistence diagrams by tracking the threshold
values of appearance and disappearance of topological features (connected components, branches,
loops) in the sequence. In this work, we use the first eigenfunction of the graph Laplacian as the
function f . This corresponds to a standard choice in topological data analysis applied to graphs, as
the graph Laplacian is known to be related to the topological descriptors of a graph, e.g. the graph’s
homology groups. To construct an extended persistence diagram (Cohen-Steiner et al., 2009), we
supplement the ordinary sequence of sub-level graphs with the sequence of super-level graphs. One
advantage of extending the filtration is that disappearance times can be defined for graph loops and
connected components by tracking the super-level graphs for which the features appear again, and
using the corresponding α values as the disappearance times. See Appendix D for details on the
construction of extended persistence diagrams.

Interpretation of Persistence Diagrams When interpreting ordinary persistence diagrams, one
challenge is that topological features can remain undetected, or depicted with infinite lifetimes, or per-
sistence (i.e. the difference between disappearance and appearance times is infinite). This is addressed
by using extended persistence diagrams. Depending on whether the appearance and disappearance
times come from the sub- or the super-level graph sequence, extended persistence diagrams can have
four types, each of which tracks the appearance/disappearance of specific topological features with
respect to the filtration. Ord0 tracks branches pointing downwards based on the sub-level graphs.
Rel1 tracks branches pointing upwards based on the super-level graphs. Ext+0 tracks connected
components from the sub-level and super-level graphs. Ext−1 tracks loops based on the sub-level and
super-level graphs.

Through persistent homology we thus obtain a method for quantifying the presence of branches – a
feature which is hard to otherwise formalize. Also, instead of for instance merely counting loops and
connected components, we gather information, not only about the presence of such features, but also
on how "large" they are under the filtration.

Choosing a Suitable Kernel Using extended persistence diagrams for MMD computation requires
the choice of a suitable kernel defined on persistence diagrams. Our kernel of choice is the sliced

1https://gudhi.inria.fr/python/latest/

6

https://gudhi.inria.fr/python/latest/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Empirical Digress Construct SAS-ValiGraph RS-ValiGraphMAS-ValiGraph

Figure 4: Graphs sampled from models trained on the Community dataset. We clearly see, how
ValiGraph ensures the generation of connected graphs as opposed to ConStruct. Digressexhibits a
similar ability to respect the structural constraint on this dataset.

Wasserstein kernel (Carrière et al., 2017), which is known to be theoretically both stable and discrimi-
native. Using the fact that the sliced Wasserstein distance (Bonneel et al., 2015) is a valid distance
between probability measures, we know from Berg et al. (1984), that a kernel can be defined as:

kSW(D1, D2) := exp

(
−SW(D1, D2)

σ

)
, (8)

where D1 and D2 are persistence diagrams (seen as probability measures), and SW(D1, D2) refers
to the sliced Wasserstein distance between these diagrams. This kernel is the Sliced Wasserstein
Kernel, with bandwidth σ as hyperparameter. A too large bandwidth can result in a too smooth kernel
(large off-diagonal elements), and a too small bandwidth can result in a noise kernel (low off-diagonal
elements). Hence, we set the bandwidth to be the median of the Sliced Wasserstein distances between
all pairs of persistence diagrams extracted from the training dataset, see Appendix E.2 for details.

5 EXPERIMENTS

We evaluate the proposed ValiGraph with three different noise models: Single Absorbing State
(SAS-ValiGraph), Multiple Absorbing States (MAS-ValiGraph), and Multiple Recurrent States (RS-
ValiGraph). All the models are designed using the same Graph Transformer backbone (Dwivedi
& Bresson, 2021). See Appendix C.1 for implementation and training details. We also implement
versions of Digress (Vignac et al., 2022), and ConStruct (Madeira et al., 2024) following the authors’
instructions, as they are comparable state-of-the art models for graph generation using discrete
diffusion.

Datasets To showcase ValiGraph, we consider three synthetic datasets with clear structural prop-
erties: connectedness, planarity, and tree structure. Community (You et al., 2018) refers to a small
dataset of graphs drawn from a stochastic block model. All graphs of this dataset are connected, a
structural criterion which we require to be respected for this dataset. Planar (Martinkus et al., 2022) is
a synthetic dataset of planar and connected graphs, and finally Lobster (Liao et al., 2019) is a dataset
of tree graphs, where each node is at most 2 hops away from a backbone. A valid lobster-graph has
to be a tree (connected and with no cycles), and to reduce to linear when stripped of all nodes that are
two hops away from leaf nodes. We provide statistics about the datasets in Appendix F.

Enforcing Structural Constraints with ValiGraph: We first validate ValiGraph’s ability to
generate structurally valid graphs, see Table 1. For each dataset, we evaluate the proportion of the
generated graphs which respect the relevant structural constraints for each dataset. If all constraints
are respected for a graph, the graph is considered valid. If it is different from all other generated
graphs up to isomorphism, it is unique, and if the generated graph is different from all graphs
in the training dataset up to isomorphism, then we consider it novel. Graphs respecting all these
properties being valid, unique, and novel (VUN) are also displayed. We find that variations of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results on Validity, Uniqueness, Novelty (VUN). We see, that ValiGraph consistently
produces graphs with high validity while still having a varied output.

Connected ↑ Planar ↑ Tree ↑ Lobster ↑ Valid ↑ Unique ↑ Novel ↑ VUN ↑
Community Digress 0.98 - - - 0.98 0.18 0.10 0.09

ConStruct 0.60 - - - 0.60 0.97 1.00 0.60
SAS-ValiGraph 1.00 - - - 1.00 0.85 0.96 0.83
MAS-ValiGraph 1.00 - - - 1.00 0.75 0.85 0.72
RS-ValiGraph 1.00 - - - 1.00 0.89 0.93 0.88

Planar Digress 1.00 0.44 - - 0.44 1.00 1.00 0.44
ConStruct 1.00 1.00 - - 1.00 1.00 1.00 1.00

SAS-ValiGraph 1.00 1.00 - - 1.00 1.00 1.00 1.00
MAS-ValiGraph 1.00 1.00 - - 1.00 1.00 1.00 1.00
RS-ValiGraph 1.00 1.00 - - 1.00 1.00 1.00 1.00

Lobster Digress 0.92 1.00 0.84 0.67 0.67 1.00 0.98 0.65
ConStruct 0.90 1.00 1.00 0.90 0.90 1.00 0.97 0.87

SAS-ValiGraph 1.00 1.00 1.00 0.97 0.97 1.00 0.98 0.96
MAS-ValiGraph 1.00 1.00 1.00 0.99 0.99 1.00 0.96 0.95
RS-ValiGraph 1.00 1.00 1.00 0.97 0.97 0.98 0.97 0.93

Table 2: MMD2 based on various extracted graph features. We see, that ValiGraph even with the
imposed constraints is able to fit the graph distributions well.

Spectral ↓ Degree distribution ↓ Orbit count ↓ Clustering coefficient ↓ Ord0 ↓ Rel1 ↓ Ext+0 ↓ Ext−1 ↓ Mean MMD2

Community Digress 0.045 0.042 0.077 0.174 0.176 0.153 0.113 0.109 0.138
ConStruct 0.130 0.042 0.110 0.246 0.239 0.111 0.436 0.208 0.248

SAS-ValiGraph 0.086 0.013 0.065 0.251 0.216 0.091 0.180 0.188 0.169
MAS-ValiGraph 0.091 0.032 0.121 0.226 0.262 0.067 0.110 0.173 0.153
RS-ValiGraph 0.121 0.013 0.066 0.239 0.196 0.123 0.186 0.217 0.180

Planar Digress 0.010 0.002 0.024 0.126 0.071 0.048 0.048 0.042 0.052
ConStruct 0.016 0.002 0.086 0.093 0.027 0.030 0.023 0.065 0.036

SAS-ValiGraph 0.022 0.010 0.031 0.229 0.109 0.119 0.039 0.065 0.083
MAS-ValiGraph 0.016 0.012 0.026 0.246 0.097 0.101 0.089 0.061 0.087
RS-ValiGraph 0.020 0.012 0.020 0.248 0.149 0.103 0.038 0.058 0.087

Lobster Digress 0.003 0.001 0.017 0.000 0.024 0.015 0.026 0.026 0.023
ConStruct 0.004 0.001 0.006 0.000 0.020 0.021 0.029 0.000 0.017

SAS-ValiGraph 0.003 0.001 0.011 0.000 0.023 0.019 0.020 0.000 0.016
MAS-ValiGraph 0.004 0.001 0.014 0.000 0.028 0.015 0.014 0.000 0.014
RS-ValiGraph 0.005 0.001 0.017 0.000 0.032 0.014 0.011 0.000 0.014

ValiGraph outperform, or perform on par with, other models in terms of VUN on all datasets. As
expected, ConStruct preserves properties invariant to edge deletion (planarity and alicyclic); however,
it fails to preserve the edge-addition invariant property of connectedness on Community and Lobster.
ConStruct can be modified to preserve properties invariant to edge addition, by modeling the graph
complement of a dataset or by considering a noise model invariant to edge addition. However, in
doing so it would no longer guarantee properties which are invariant to edge deletion.

Digress ensures a very high validity when modeling the Community dataset which is consitent with
the samples shown in 4. However, inspecting values for uniqueness and novelty, we see that the
performance is caused by only generating a few graphs mostly from the training dataset, suggesting
that the model does not generalize well in this specific case. This also explains On the Planar we see
very poor performance in terms of generating planar graphs, highlighting the strong need to impose
hard constraints as an inductive bias on the reverse process.

All versions of ValiGraph outperform the baseline methods in term of VUN on all datasets. Not one
noise model outperforms on all datasets though, and choosing a suitable one may depend on the
task at hand. Notably, even though ValiGraph enables us to enforce the generation of valid graphs
throughout the reverse process, it does not generate all valid Lobster graphs. This is due to the fact,
that there may be situations, where an edge, due to harsh property constraints, cannot transition from
an absorbing state to an edge state or a non-edge state, and as a consequence the reverse process does
not converge.

Fitting the graph distributions: A guarantee that the generated graphs are indeed valid is
not sufficient for model evaluation, as a model which guarantees generation of valid graphs can
achieve high uniqueness and novelty even if it does not fit the data distribution well. Thus, we also
evaluate models’ ability to fit the graph distribution using MMD based on conventional graph features
(spectrum, degree distribution, orbit count, and clustering coefficient) as well as the MMD based on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

PLANARCOMMUNITY

5.2 5.4 5.6 5.8
Degree

0.44 0.46 0.48 0.50 0.52
Clustering

Empirical
RS-ValiGraph
MAS-ValiGraph
SAS-ValiGraph
ConStruct
Digress

3.0 4.0 5.0 6.0
Degree

0.3 0.5 0.7
Clustering

Figure 5: Kernel density plots of average node degree distribution, and average clustering coefficient.

persistence diagrams illustrating the models’ ability to capture the topological features of the graphs
in the empirical graph distribution. The MMD2 is calculated between features extracted from a set of
generated graphs, and graphs from the test set. The results can be found in Table 2.

For the Community dataset we see, that Digress performs very well on all metrics. However, as
Digress fails to generate many novel and unique molecules the good performance is to be expected.
Most notably we see, that the proposed ValiGraph outperforms ConStruct on all metrics. Here in
particular the MMD related to Ext0+, which relates to connected components, is reflects the inability
to consistently generate connected graphs. When the conventional metrics are observed for all models
fitted on the Lobster dataset, one could get the impression that the fitted models perform very similarly.
However, again by Ext+0 quantifies the inability of Digress and ConStruct to consistently produce
connected graphs, and Ext−1 reflects that Digress occasionally produces graphs containing cycles.
Notably, on this dataset with very strict structural constraints ValiGraph consistently outperform the
baseline methods on all metrics.

Disappointingly ConStruct performs better than ValiGraph in terms of fitting the data distribution on
the Planar dataset. When also remembering that both methods produce all valid graphs, there should
logically be a preference for ConStruct on this dataset. It seems, that as the Planar consists of very
dense graphs there is no need for explicitly enforcing connectedness. The lower performance may
also be caused by the fact that since ValiGraph blocks edges from being added not enough edges are
added in the end. This explanation is consistent with 5 we see that ValiGraph generates graphs with
lower average node degree than found empirically.

6 LIMITATIONS

There is a possibility that during generation not all edges are removed from the absorbing states, as
it may be impossible for it to transition into the edge-state or the no-edge state without violating
structural constraints. For some pairs of properties, for instance connectedness and tree-likeness, this
is not a problem, as it is always possible to connect two tree graphs thus making a new tree, however,
enforcing connectedness and disconnectedness simultaneously is obviously infeasible. The practical
implications of this limitation has to be evaluated based on the application at hand.

7 CONCLUSION

In this paper we propose a recurrent state noise model, the use of which in discrete graph diffusion
facilitates the construction of a model that is able to enforce hard structural constraints on the
generated graphs, both invariant to edge-addition and edge deletion while still admitting a non-trivial
limit distribution. We find empirically that the model does indeed manage to preserve these properties
while still performing on par with comparable baseline models. Lastly, we suggest using the the
Sliced Wasserstein kernel to compute maximum mean discrepancy based on extended persistence
diagrams for evaluation the ability of graph generative models to capture information about graph
topology, and demonstrate that conventional evaluation metrics do not necessarily capture this same
information.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bijaya Adhikari, Bryan Lewis, Anil Vullikanti, José Mauricio Jiménez, and B Aditya Prakash. Fast
and near-optimal monitoring for healthcare acquired infection outbreaks. PLoS computational
biology, 15(9):e1007284, 2019.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Neural Inf Process Syst, 7 July 2021.

C. Berg, J. Christensen, and P. Ressel. Harmonic Analysis on Semigroups: Theory of Positive Definite
and Related Functions. Springer, 1984.

N. Bonneel, J. Rabin, G. Peyré, and H. Pfister. Sliced and Radon Wasserstein Barycenters of
Measures . Journal Mathematical Imaging Vision, 51(1):22–45, 2015.

Adam Roth Brea Perry and Mario Small. Personal networks and egocentric analysis. The Sage
Handbook of Social Network Analysis, pp. 439, 2023.

Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein Kernel for Persistence
Diagrams. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning (ICML 2017), volume 70, pp. 664–673. PMLR, 2017. ISSN:
2640-3498.

Mathieu Carrière, F Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Y Umeda. PersLay: A
neural network layer for persistence diagrams and new graph topological signatures. AISTATS, pp.
2786–2796, 20 April 2019.

David Cohen-Steiner, Herbert Edelsbrunner, and John L. Harer. Extending Persistence Using Poincaré
and Lefschetz Duality. Foundations of Computational Mathematics (FoCM), 9(1):79–103, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv [cs.CL], 10 October 2018.

Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, Proceedings of Machine
Learning Research, pp. 7939–7959. PMLR, 2023.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Floor Eijkelboom, Grigory Bartosh, Christian A Naesseth, Max Welling, and Jan-Willem van de
Meent. Variational flow matching for graph generation. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 6 November 2024.

A Gretton, Karsten M Borgwardt, M Rasch, B Scholkopf, and Alex Smola. A kernel two-sample test.
J. Mach. Learn. Res., (25):723–773, 1 March 2012.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.),
Proceedings of the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Andor Háznagy, István Fi, András London, and Tamás Nemeth. Complex network analysis of public
transportation networks: A comprehensive study. In 2015 International Conference on Models
and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 371–378. IEEE, 2015.

Eric Hogan, Sean Forbes, and Carey Andrzejewski. Academic social capital of students from an
alternative school: An ego network perspective. International Studies in Sociology of Education,
32(3):610–630, 2023.

Hankyu Jang, Samuel Justice, Philip M Polgreen, Alberto M Segre, Daniel K Sewell, and Sriram V
Pemmaraju. Evaluating architectural changes to alter pathogen dynamics in a dialysis unit: for the
cdc mind-healthcare group. In Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp. 961–968, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. ICML, pp. 10362–10383, 5 February 2022.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S Zemel. Efficient graph generation with graph recurrent
attention networks. Advances in Neural Information Processing Systems, 2019.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of
structurally constrained graphs. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 6 November 2024.

Karolis Martinkus, Andreas Loukas, Nathanael Perraudin, and R Wattenhofer. SPECTRE : Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. ICML, pp.
15159–15179, 4 April 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, Proceedings of Machine Learning Research, pp. 8162–8171. PMLR, 2021.

Nadine S Schaadt, Ralf Schönmeyer, Germain Forestier, Nicolas Brieu, Peter Braubach, Katharina
Nekolla, Michael Meyer-Hermann, and Friedrich Feuerhake. Graph-based description of tertiary
lymphoid organs at single-cell level. PLoS computational biology, 16(2):e1007385, 2020.

Jascha Narain Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and S Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. ICML, pp. 2256–2265, 11 March
2015.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
DiGress: Discrete denoising diffusion for graph generation. In The Eleventh International Confer-
ence on Learning Representations, 29 September 2022.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and J Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. ICML, pp. 5694–5703, 24 February 2018.

A COMPUTATION OF Q̄t

Let P ∈ Rn×n. P is called idempotent if P = P2. Furthermore we will refer to P as a stochastic
matrix if:

P[i, j] ≥ 0 for all i, j ∈ {1, ..., n} and
n∑

j=1

P[i, j] = 1 for all i ∈ {1, ..., n},

that is, all entries are non-negative, and each row of the matrix sums to 1.

Let P be an idempotent stochastic matrix. Then Qt = αtI+ (1− αt)P, where I denotes an n× n
identity matrix and 0 ≤ αt ≤ 1 for t ∈ N, is also a stochastic matrix, and Q̄t = Q1, ...,Qt can be
written as:

Q̄t = ᾱtI+ (1− ᾱt)P, (9)

where ᾱt =
∏t

k=1 α
k.

First we show that Qt is a stochastic matrix. For all i, j ∈ {1, ..., n} and any αt, we have that
Qt[i, j] = αt + (1− αt)P[i, j] ≥ 0 as all terms are greater than 0.

The second assertion can be proven by induction over t. Now assume t = 1. Then we clearly see that:

Q̄1 = Q1 = α1I+ (1− α1)P = ᾱ1I+ (1− ᾱ1)P (10)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

since α1 = ᾱ1 by definition. For the induction step we pick t ∈ N, and assume that the assertion
holds for this choice of t. Then:

Q̄t+1 = Q̄tQt+1

= (ᾱtI+ (1− ᾱt)P)(αt+1I+ (1− αt+1)P)

= ᾱtαt+1I+ ᾱt(1− αt+1)P+ αt+1(1− ᾱt)P+ (1− ᾱt)(1− αt+1)P2

= ᾱt+1I+ βt+1P,

where we in the last step exploits that P is idempotent, and let:
βt+1 = ᾱt(1− αt+1) + αt+1(1− ᾱt) + (1− αt+1)(1− ᾱt)

= ᾱt(1− αt+1) + (1− ᾱt)

= ᾱt − ᾱt+1 + 1− ᾱt)

= 1− ᾱt+1.

The assertion now follows from the principle of induction.

B NOISE SCHEDULES

To enable efficient computation of transition matrices at training time, while still ensuring low
memory consumption we pre-compute P as well as α1, ..., αT and ᾱ1, ..., ᾱT respectively, and save
these in memory, before training commences. Using this information we can conveniently construct
transition matrices Qt and Q̄t instead of having to pre-compute, and store these in memory. In the
following we will specify the exact formulation of the noise schedules utilized in this paper. The
utilized noise schedules are shown in Figure 6.

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Plot of t

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Plot of t

Cosine Schedule
Mutual Information Schedule

Figure 6: The depiction of αt (left) and ᾱt (right) for the Cosine Noise Schedule, and the Mutual
Information Noise Schedule respectively. Both of them are computed for T = 1000.

B.1 COSINE SCHEDULING

The de facto standard noise-schedule for diffusion models is the popular cosine schedule of Nichol
& Dhariwal (2021). Given a maximum number of diffusion steps T , we define a function f :
{0, ..., T} → R as:

f(t) = cos

(
π

2

(t
T + s)

(1 + s)

)2

, (11)

where s is a small constant to be considered a hyperparameter. We choose s = 0.008 consistent with
(Nichol & Dhariwal, 2021; Madeira et al., 2024; Vignac et al., 2022). Now we define:

ᾱt =
f(t)

f(0)
. (12)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Notice, that ᾱ0 = 1 by construction. By remembering that ᾱt =
∏t

k=0 α
k we can now define αt as:

αt =

{
ᾱt

ᾱt−1 if t = 1, ..., T

ᾱt if t = 0
. (13)

This noise schedule is what is referred to as the Cosine Schedule.

B.2 MUTUAL INFORMATION

The mutual information schedule (Sohl-Dickstein et al., 2015; Austin et al., 2021) can be interpreted
as linearly increasing the probability of being in an absorbing state over time. That is we arrive at
the definition by desiring a noise schedule which erases a constant fraction of our signal each each
diffusion step. That is, given a maximum number of diffusion steps T we aim for:

ᾱt = 1− t

T
, (14)

for t ∈ {0, ..., T}. Again, we have that ᾱ0 = 1 by construction, and we can define αt analogously to
the Cosine Schedule, that is:

αt =

{
ᾱt

ᾱt−1 if t = 1, ..., T

ᾱt if t = 0
. (15)

Here, we see that:
ᾱt

ᾱt−1
=

1− t
T

1− t−1
T

=
T − t

T − t+ 1
= 1− 1

T − t+ 1
(16)

Which is consistent with the definition of Sohl-Dickstein et al. (2015). We refer to this construction
as the Mutual Information noise schedule.

C REVERSE PROCESS

The construction of the reverse process follows the general process of Vignac et al. (2022). We
include information about it here for the sake of completeness.

C.1 TRAINING REGIME AND ARCHITECTURE

We train a denoising neural network predicting the probabilities of each node- and edge, i.e. p̂G =
(p̂X , p̂E) at time-step zero type given a noisy input. This is done using a standard cross-entropy loss,
i.e.:

L(p̂G, G) = CE(p̂X ,X+ λCE(p̂X ,E)), (17)

where λ is a hyperparameter governing the trade-off between node- and edge-losses. However, as we
do not consider datasets with node-attributes this hyperparameter does not affect the outcomes of the
experiments. Importantly, we need to choose a permutation equivariant architecture to ensure that
this loss is invariant under permutation, which motivates the choice of Graph Neural Network, in
particular a Graph Transformer (Dwivedi & Bresson, 2021). To ensure fair comparison of the models
in question we use the same backbone and hyperparameters as ConStruct(Madeira et al., 2024), with
the one exception, that additional graph features used to augment the noisy graph input to increase
the expressivity of the architecture, is not only computed on the graphs constructed throughout the
edge-addition denoising process, but also on the ones constructed during the edge-deletion denoising
process.

For the implementation of the baseline models i.e. ConStruct and Digress we use the official
implementation provided by the authors with minimal changes applied to adapt these to our specific
setup. The models were then trained using the configuration provided by the authors. Relevant code
will be made available upon publication containing configuration files for each model.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.2 CONSTRUCTION OF THE REVERSE PROCESS

Consistent with the noising process we model the denoising process pθ(G
t−1 | Gt) using the

assumption of independent sampling of nodes and edges as:

pθ(G
t−1 | Gt) =

∏
i∈{1,...,n}

pθ(x
t−1
i | Gt) ·

∏
i,j∈{1,...,n}

pθ(e
t−1
ij | Gt) (18)

Each term can then be computed by marginalizing over the network predictions. That is:

pθ(x
t−1
i | Gt) =

∑
d∈{1,...,dx}

pθ(x
t−1
i | xi[d] = 1, Gt)p̂Xi [d] (19)

where p̂Xi [d] denotes the prediction of the networks predicted probability of node i being of type d,
and where we choose to model pθ(xt−1

i | xi[d] = 1, Gt) as:

pθ(x
t−1
i | xi[d] = 1, Gt) =

{
q(xt−1

i | xi[d] = 1,xt
i) when q(xt

i | xi[d] = 1) > 0

0 otherwise.
(20)

where the posterior q(xt−1
i | xi[d] = 1,xt

i) is given as:

q(xt−1
i | xi[d] = 1,xt

i) =
xt
i(Q

t
x)

⊤ ⊙ xiQ̄
t−1
x

xt
iQ̄

t
xxi

(21)

The terms pθ(et−1
ij | Gt) related to the distribution over edges can be computed in a similar manner.

D CREATING PERSISTENCE DIAGRAMS

Strictly speaking, extended persistence diagrams need simplicial complexes as inputs. However, a
graph can be represented as a 1-dimensional simplicial complex consisting of zero-simplices (the
nodes), and one-simplices (the edges). Moreover, in order to compute extended persistence, one
needs to define a filtration of the complex, that is, a sequence of nested simplicial complexes, whose
final complex is the input simplicial complex itself. In our case, this can be done by defining a
real-valued function on the graph nodes f : V → R, and then considering a sequence of growing
subgraphs, where each subgraph Gα contains only those vertices whose function values are less than
an increasing threshold α:

Gα1
⊆ Gα2

⊆ · · · ⊆ Gαn
,

where α1 ≤ α2 ≤ · · · ≤ αn, and where Gα := {Vα, Eα}, with Vα := {v ∈ V : f(v) ≤ α},
Eα := {(v, v′) ∈ E : v, v′ ∈ Vα}. Note that these subgraphs can be interpreted as the so-called
sub-level sets of the function f . In this article, we use the first eigenfunction of the graph Laplacian as
the function f . This corresponds to a standard choice in topological data analysis applied to graphs,
as graph Laplacians are known to be related to the topological description of the graphs, such as their
homology groups.

After having defined such a sequence, persistence diagrams can be computed by tracking the threshold
values of appearance and disappearance of topological features (connected components, branches,
loops) in the sequence. For instance, branches pointing downwards w.r.t. the filtration values can be
detected as connected components of subgraphs that appear at a threshold αb, and then get merged
at threshold αd ≥ αb. The resulting interval [αb, αd] can be turned into a point in R2. As αb ≤ αd

this point is naturally located above the diagonal, and the collection of such points is the so-called
ordinary persistence diagram. The values αd − αb is often referred to as the lifetime, or persistence,
of the topological feature.

When interpreting ordinary persistence diagrams, one challenge is that some topological features
remain undetected (for instance, branches pointing upwards w.r.t. the filtration values), and some
features are depicted with infinite persistence. For instance graph connected components never ends,
and loops are never filled throughout the sequence of graphs, and as such these will have infinite
persistence. To address this short-coming, we can instead use extended persistence (Cohen-Steiner
et al., 2009), which complements the ordinary sequence of sub-level graphs with the sequence of
super-level graphs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

One advantage of extending the filtration is that disappearance times can be defined for graph loops
and connected components by tracking the super-level graphs for which the features reappear, and
using the corresponding α values as the disappearance times. Moreover, branches pointing upwards,
with respect to the filtration, can be detected in this sequence of super-level graphs, in the exact
same way that downwards branches were in the sub-level graphs. Finally, depending on whether
the appearance and disappearance times come from the sub- or the super-level graph sequence,
extended persistence diagrams can have four types: Ord0 (branches pointing downwards—both
times come from the sub-level graphs), Rel1 (branches pointing upwards—both times come from the
super-level graphs), Ext+0 (connected components—appearance and disappearance times come from
the sub-level and super-level graph sequences, respectively, and the point is above the diagonal), and
Ext−1 (loops—appearance and disappearance times come from the sub-level and super-level graph
sequences, respectively, and the point is below the diagonal). See Figure 7 for an illustration. See
also (Carrière et al., 2019, Section 2.1) for a more complete description of the connections between
extended persistence diagram points, and graph features such as connected components, branches
and loops.

Ord0
Rel1
Ext+0
Ext−1

Ord0
Rel1
Ext+0
Ext−1

Figure 7: Example of extended persistence diagram computed on a graph. The sub-level graphs are
displayed in orange, and the super-level graphs are displayed in dark green.

E EVALUATING GRAPH GENERATIVE MODELS

E.1 THE MAXIMUM MEAN DISCREPANCY

For the evaluation of whether a graph generative model respects the topological properties of the
distribution of graphs which it attempts to model, graph features are typically extracted, and the
distribution of these features are then compared using Maximum Mean Discrepancy (MMD) as
a proxy for comparing the graph distributions. To compute an empirical estimate of the squared
MMD (Gretton et al., 2012) the following estimator is often chosen:

M̃MD
2
(x, y) =

1

n2

n∑
i=1

n∑
j=1

k(xi, xj) +
1

m2

m∑
i=1

m∑
j=1

k(yi, yj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj), (22)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where k : G × G → R is a suitable kernel and n and m denotes the number independent identically
distributed samples from each distribution. This is however, as also stated by Gretton et al. (2012),
a biased estimator of the MMD2. To retrieve an unbiased estimator of the MMD one can exclude
the diagonal kernel elements from the computation, and adjust the average accordingly. That is by
choosing the estimator:

M̂MD
2
=

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(xi, xj)+
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(yi, yj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj) (23)

However, doing this, comes with the caveat, that the MMD estimate can be negative. In this paper

we will follow the literature in the field and use the biased M̃MD
2

of an estimator of the MMD.
Additionally, also following the convention set by the literature in the field, we will refer to this
estimate as MMD even though it is an estimate of the squared MMD.

E.2 SLICED WASSERSTEIN KERNEL

Using extended persistence diagrams for MMD computation is not a trivial process. As we know, to
compute the MMD estimate, a suitable kernel defined on persistence diagrams has to be chosen. In
this paper we consider the Sliced Wasserstein kernel (Carrière et al., 2017), since it’s metric properties
are known to be equivalent to that of the original distances between persistence diagrams.

Given θ ∈ R2 with ∥θ∥2 = 1, we let L(θ) denote the line {λθ : λ ∈ R}, and let πθ : R2 → L(θ)
be the orthogonal projection onto L(θ). Let D1, D2 be two persistence diagrams, and let µθ

1 :=∑
p∈D1

δπθ(p) and µθ
1∆ :=

∑
p∈D1

δπθ◦π∆(p) be two sums of Dirac measures associated to D1,
and similarly for µθ

2, where π∆ is the orthogonal projection onto the diagonal. Then, the Sliced
Wasserstein distance is defined as:

SW(D1, D2) :=
1

2π

∫
S1
W(µθ

1 + µθ
2∆, µ

θ
2 + µθ

1∆)dθ,

where W stands for the Wasserstein distance between probability measures. Hence, Berg et al. (1984)
allows us to define a valid kernel with:

kSW(D1, D2) := exp

(
−SW(D1, D2)

σ

)
.

Note that the Wasserstein distance can not be used directly in defining a kernel in an analogous way
as the resulting kernel would not in general be positive semidefinite (PSD).

Evaluating the kernel kSW comes with a degree of uncertainty induced by the two chosen hyperpa-
rameters: the bandwidth σ and the number of lines/slices.

If the bandwidth σ is too large will result in a kernel which is too smooth, i.e. all off-diagonal
elements are large, and a bandwidth which is too small will result in a noise kernel, i.e. all off-
diagonal elements are small. Hence, we a reasonable choice is to set the bandwidth to be the median
of the Sliced Wasserstein distances between all pairs of persistence diagrams.

The Sliced Wasserstein distance is defined as an integral over S1. In general this is not tractable, and
instead we compute a Monte-Carlo estimate by sampling of θ over the interval [−π/2, π/2], and
evaluating the integrand with respect to the line L(θ). The number of lines/slices sampled in this
estimate is the second hyper-parameter which must be set. At default this value is set to 10 to speed
up computation, however, we use 100 directions to ensure as accurate a computation as possible
within the computational budget.

F DATASETS

For all experiments we use 80% of the available data as training data, 10% for validation and 10% for
testing. Note, that the train-validation-test split is done at random and do not necessarily correspond
to the ones used by in other papers, which may cause our results to deviate from the ones they report.
However, as the same dataset splits are used for the training of the suggested models and the baseline
models in our setup this is not a pose a problem for the interpretation of our results.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The Lobsteris generated as 500 random lobster graphs using the lobster graph generator used by
Liao et al. (2019) and Madeira et al. (2024). That is random lobster graphs are generated using the
NetworkX library (Hagberg et al., 2008) with the properties:

• Maximum number of nodes: 100.
• Minimum number of nodes: 10.
• Mean number of nodes: 80.
• Probability of adding an edge to the backbone as well as the probability of adding an edge

one level after the backbone: 0.7

The Planar dataset and the Community dataset are obtained from the implementation provided by
Martinkus et al. (2022) to ensure consistency with ConStruct and Digress. The Planar dataset consists
of planar graphs with exactly 64 nodes, and the number of edges pr. graph lying between 173 and
181. The Community dataset suggested by You et al. (2018) consists of 100 graphs drawn from a
stochastic block model with two communities. The graphs have between 12 and 20 nodes each.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G GRAPH SAMPLES

In this section we show samples from the considered modes which – due to space constraints – were
not included in the main paper. in Figure 8 samples from the Lobster dataset are shown, and in Figure
9 samples from the Planar dataset are shown.

Empirical Digress Construct SAS-ValiGraph RS-ValiGraphMAS-ValiGraph

Figure 8: Lobster Graphs

Empirical Digress Construct SAS-ValiGraph RS-ValiGraphMAS-ValiGraph

Figure 9: Planar Graphs

H DIFFUSION

Generative models based on denoising diffusion have proven to be extremely effective for image
generation. This modeling paradigm is not only applicable to images, but can be used widely,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

including for graph generation. A diffusion model consists of two main features: A noise model and
a denoising neural network. For readers familiar with variational autoencoders (VAEs), the noise
model is analogous to an encoder, and the denoising neural network is analogous to a decoder.

The noise model: One main difference between the noise model and the encoder of a VAE is that
it is not learned or estimated. This property is achieved by designing the noise model to have the
following properties:

1. The noise model should have a Markovian structure, that is, q(z1, . . . , zT | z0) =∏T
t=1 q(z

t | zt−1), where z0 = x.
2. Ensure that the noise model admits a limit distribution that does not depend on x. That

is, q(zT | x) converges point-wise to a valid limit distribution p(z), when T → ∞. This is
similar to requiring convergence in distribution. This limit distribution p(z) will be used as
the latent prior. As a consequence of this property, a sample from q(zT | x) can be thought
of as a sample from p(z) when T is chosen sufficiently large.

3. Importantly, we require q(zt | x) to have a closed form solution, in order to ensure that it
can be computed efficiently during training.

Generative model: Letting θ denote the model parameters, the goal of the diffusion model is to
sample from pθ(x, z

1, . . . , zT) = pθ(x | z1)pθ(z1 | z2) · · · · · pθ(zT−1 | zT)p(zT), rather than from
pθ(x, z

T) = pθ(x | zT)p(z), as in the VAE setting. However, to implement this efficiently, we need
to be able to model pθ(zt−1 | zt). In theory, each distribution could be modeled separately; however,
for large T such an approach is not practically feasible. To overcome this, we model pθ(zt−1 | zt) by
marginalizing over the network predictions:

pθ(z
t−1 | zt) =

∫
q(zt−1 | zt, x)pθ(x | zt)dx, (24)

Where pθ(z
t−1 | zt) should be available in closed form. Thanks to this formulation, we only need

one model to estimate pθ(x | z).

19

	Introduction
	Background
	Method
	Evaluation: Capturing Topological Information
	Experiments
	Limitations
	Conclusion
	Computation of t
	Noise Schedules
	Cosine Scheduling
	Mutual Information

	Reverse Process
	Training regime and Architecture
	Construction of the Reverse Process

	Creating Persistence Diagrams
	Evaluating Graph Generative Models
	The Maximum Mean Discrepancy
	Sliced Wasserstein Kernel

	Datasets
	Graph Samples
	Diffusion

