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Abstract

We present new insights and a novel paradigm (StEik) for learning implicit neural
representations (INR) of shapes. In particular, we shed light on the popular eikonal
loss used for imposing a signed distance function constraint in INR. We show
analytically that as the representation power of the network increases, the optimiza-
tion approaches a partial differential equation (PDE) in the continuum limit that is
unstable. We show that this instability can manifest in existing network optimiza-
tion, leading to irregularities in the reconstructed surface and/or convergence to
sub-optimal local minima, and thus fails to capture fine geometric and topological
structure. We show analytically how other terms added to the loss, currently used in
the literature for other purposes, can actually eliminate these instabilities. However,
such terms can over-regularize the surface, preventing the representation of fine
shape detail. Based on a similar PDE theory for the continuum limit, we introduce
a new regularization term that still counteracts the eikonal instability but without
over-regularizing. Furthermore, since stability is now guaranteed in the continuum
limit, this stabilization also allows for considering new network structures that
are able to represent finer shape detail. We introduce such a structure based on
quadratic layers. Experiments on multiple benchmark data sets show that our new
regularization and network are able to capture more precise shape details and more
accurate topology than existing state-of-the-art.1

1 Introduction

Implicit neural representations (INR) [1]–[17], which are neural network representations for implicit
representations of signals (e.g., shape, images), have recently become a powerful tool for modeling
shape in learning based frameworks for surface reconstruction tasks [1]–[3], [10]–[17] in computer
vision and graphics. INRs typically represent a shape as the zero level set of its corresponding signed
distance function (SDF), which is represented with a neural network (e.g., a multi-layer perceptron
- MLP). To learn an INR, one minimizes a loss consisting of a data fidelity term (e.g., fidelity to
known points on the surface, i.e., a point cloud, for the point cloud to surface reconstruction task
[1]–[3], [10]–[17]) and regularization terms. A regularization term used is the eikonal loss [11],
which constrains the neural representation to be an SDF. While existing methods have shown the
ability to recover complex scenes and objects, in many cases as datasets become more complex, finer
scale geometric and topological structures may not always be recovered.

In this paper, we show that the continuum limit of the optimization of neural SDFs as the network
representation power increases (to recover finer scale shape features) can be unstable due to the
eikonal loss. This limits recovery of fine shape details and/or can lead to convergence to sub-optimal
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local minima resulting in gross errors. We provide a theoretical framework based on geometric
PDEs and PDE stability analysis [18]–[21], which has recently been proven to be a powerful tool
for analyzing deep learning optimization [22]–[24], to study the optimization of the eikonal loss.
Within this framework, we show how other terms (such as the normal constraint [10] and divergence
loss [14]) in state-of-the-art proposed for various end goals can also have a stabilizing effect, giving
new justification for such terms. However, we show (both in theory and empirically) that such
terms, which we show are penalties on surface area and mean curvature, can over-regularize the
resulting surface, thus failing to capture fine details of the shape (e.g., thin structures). Based on
geometric PDEs, we show how to construct a regularization term that stabilizes the PDE, but does
not over-smooth the surface.

Furthermore, stabilizing the eikonal loss optimization with our new regularization enables the use of
new neural networks with higher representation power that can capture finer scale details of shape,
without suffering from the destabilizing effects of the continuum PDE. We demonstrate this point by
proposing a new network structure for neural SDFs, based on quadratic layers [25]–[31], which have
thus far been applied mainly to classification tasks. Unlike compositions of linear layers that preserve
linearity, compositions of quadratic functions are not quadratic, but can be a higher-order polynomial.
Thus, we can represent shape with finer piece-wise Taylor approximations, resulting in finer shape
representation with fewer network parameters than state-of-the-art [14].

Our contributions are: 1. We provide a theoretical framework, based on geometric PDEs, to study
the optimization of neural SDFs. In particular, we use PDEs to analyze the eikonal loss, and show it
can be unstable. This theory sheds light on the design of neural SDFs and serves as a framework to
design new methods. 2. We use this framework to analyze existing terms proposed in the literature,
and show how some can provide a stabilizing effect, even though they were motivated for other end
goals. This provides new theoretical justification for these methods while also providing a rigorous
analysis of their limitations. 3. We use geometric PDEs to propose a new loss regularization, i.e.,
second order derivative in the normal direction, that avoids over-regularization while stabilizing the
eikonal loss. 4. We propose the use of quadratic layers for neural SDFs, which provide an arbitrary
order piece-wise polynomial approximation of the shape. This provides a finer shape representation
than existing art, without being subject to the instabilities of the eikonal loss. 5. We provide an
extensive benchmark comparison to state of the art on three datasets: the Surface Reconstruction
Benchmark [32], ShapeNet [33], and large scene reconstruction [12]. We demonstrate that our method
consistently improves state-of-the-art, especially on challenging geometries and topologies.

We call our method StEik for stabilizing the eikonal equation. Note that while we benchmark our
methods on the task of surface recovery from point cloud data, our theory/methods can be applied to
other problems that aim to recover neural SDFs.

2 Related Work

Shape implicit neural representations (INRs): Traditional approaches for representing 3D shapes
such as meshes pose difficulties in integrating them with deep learning methods. Deep learning ap-
proaches operating directly on traditional representations have limited quality and flexibility. Recently,
neural networks have been proposed to represent shapes and scenes using signed distance functions
(SDF) [1], [10]–[16] or an occupancy functions [2], [3], [17]. They have proven more convenient and
accurate than traditional representations within deep learning-based solutions. DeepSDF [13] was
the first to introduce the use of SDFs in INRs, and was used to represent a collection of shapes. It
regresses on ground truth SDFs. In many applications, such SDF ground truth is difficult to obtain.
Thus, some methods learn INRs directly from raw data, e.g., point clouds (from range scanners) or
2D images (e.g., [3], [16]) in multi-view reconstruction applications.

SAL [1] aims to recover SDFs from point clouds. SALD [10] further improves SAL by incorporating
surface normal data. IGR [11] proposes a loss function based on the eikonal equation, which helps
regularize the learned function towards an SDF. FFN [17] and SIREN [12] introduce high frequencies
into their architecture to avoid bias towards low-frequency solutions in different ways. FFN uses a
ReLU MLP that is paired with a Fourier feature layer. SIREN uses the sine activation. Recently,
DIGS[14] improves the performance of SIREN on shape representation tasks by proposing a soft
constraint on the divergence of the gradient field and proposing a new initialization method. DiGS
is motivated by avoiding the use of normal data, which is not available for many applications.

2



Approaches above recovering SDFs use the eikonal constraint in training, which we show limits to an
unstable PDE, causing artifacts that limit recovery of fine details or convergence to sub-optimal local
minima. We provide a theoretical framework to understand this instability and explain how some
existing approaches can unknowingly mitigate this instability, however, producing an undesirable
over-regularizing effect. Our framework enables us to design a new regularizer that stabilizes the
eikonal term while recovering finer geometric details (without over-regularizing).

Quadratic Deep Neural Networks: Our new regularization enables us to use new neural networks
for SDFs to represent finer shape details without suffering from destabilizing effects of the eikonal
term that become more prominent in higher capacity networks. We use quadratic layers in INRs,
which is novel, to illustrate this point. Quadratic Deep Neural Networks (QDNNs), proposed back in
1990s [25], [26], have been recently used to enhance the learning capability of Deep Neural Networks
(DNNs) [27]–[31]. Rather than linear functions used in conventional linear layers, a quadratic
function is used. Since compositions of quadratic functions can be higher-order polynomials, such
QDNNs can represent piece-wise polynomial functions. Thus, QDNNs have better model efficiency
because they can approximate polynomial decision boundaries using smaller network depth/width.
However, the improvement is limited when it is applied to Convolution Neural Networks (CNN)
[34]–[39]. In contrast, we demonstrate that using quadratic neurons in MLPs for representing shapes
as implicit functions is highly effective.

3 Theory and Analysis of the Stability of Neural SDF Optimization

In this section, we present geometric PDEs as a framework for analyzing the continuum limit of
neural SDF optimization, show the instability in the eikonal loss, and show how existing neural SDF
approaches can mitigate the instability. This serves as a framework for our new methods in Section 4.
To analyze stability of the optimization/PDE, we use spectral methods from numerical PDEs and
Von Neumann analysis. Our exposition is self-contained, however, for a more detailed introduction,
see Ch. 4 of [40] and Ch. 4.3 of [41], and for a tutorial on stability analysis in the context of deep
networks, see [24].

3.1 PDE as the Continuum Limit of Neural SDF Optimization

Let u : Ω ⊂ Rn → R be the function that is evolving in the continuum (e.g., level set representation;
the hyper-surface of interest is the zero level set, i.e., {x ∈ Ω : u(x) = 0}). This is the continuum
limit of the typical neural SDF evolutions. Suppose the loss of interest (defined on u) is L. Then the
gradient descent is given by the PDE:

∂u

∂t
= −∇L(u), (1)

where t is the artificial parameter of the evolution (the continuum equivalent of the iteration index),
∇L satisfies the relation δL · δu = ⟨δu,∇L(u)⟩L2 , and the latter expression is the L2 inner product
between the gradient and the (infinite dimensional) perturbation of u, δu. Note that while we analyze
stability of gradient descent, our analysis also applies to second order optimizers (e.g., Nesterov
momentum) as such optimizers do not change stability properties [18], [24]. Suppose now that u is
parameterized by θ, denoted uθ, as in neural SDFs. We compute the projected gradient descent of the
loss with respect to the parameters θ. Note that if we wish to perturb u according to a perturbation
δθ, then δu = ∂u

∂θ · δθ. Therefore,

δL · δθ =

∫
Ω

∇L(u)(x)
∂u

∂θ
(x) · δθ dx =

∫
Ω

∇L(u)(x)
∂u

∂θ
(x) dx · δθ.

Thus, the projected gradient descent in parameter-space is

dθ

dt
= −

∫
Ω

∇L(u)(x)
∂u

∂θ
(x) dx. (2)

The corresponding PDE evolution of the neural representation (in function space) is

∂u

∂t
=

∂u

∂θ

dθ

dt
= −

∑
i

∂u

∂θi

〈
∇L(u),

∂u

∂θi

〉
L2

, (3)
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where B =
{

∂u
∂θi

}
i

is a basis for the sub-space of the tangent space of function representations that
is spanned by the parameterization of the network (e.g., neural SDF). The evolution above is simply a
projection of the continuum gradient of the loss onto the basis of the tangent space formed by the
neural representation.

Note that as the neural network representation gains more representational power (more capacity to
represent finer scale and more divers shapes), the basis B approaches spanning the entire tangent
space of functions, i.e., in Rn, and hence the projected PDE approaches the full PDE (1). Therefore,
analyzing the unconstrained PDE (1) gives insight into the neural representation. In the next sub-
sections, we will focus on the notion of stability of the PDEs, which impacts the accuracy of the
neural representation.

3.2 PDE Stability Analysis: Theoretical Framework for Analysis of Neural SDF Optimization

Current approaches for learning a neural signed distance function minimize a loss that consists of a
data fidelity term and regularization. Regularization aims to keep the representation close to a signed
distance function, and can also include terms that regularize the underlying shape (e.g., to keep the
shape smooth). In this sub-section, we will focus on the eikonal loss that is part of the regularization.
A necessary condition for a signed distance function is that it satisfies the eikonal PDE and thus the
eikonal loss penalizes deviation from that constraint:

|∇u(x)| = 1, x ∈ Ω, =⇒ Leik(u) =
1

2

∫
Ω

||∇u(x)| − 1|p dx, (4)

where p = 1 or p = 2 for a L1 or L2 loss, respectively and ∇u is the spatial gradient.

We claim that the gradient descent PDE for the eikonal loss maybe unstable at some space-time
locations. By stability, we mean that the solution of the PDE converges as t → ∞. By Von Neumann
analysis [40], if the homogeneous component of the linearization is non-zero, and the evolution in the
frequency (Fourier) domain has an unbounded amplifier, the PDE is unstable. We use Von Neumann
analysis to show that the gradient descent PDE of the eikonal loss is unstable. By arguments in the
previous section, this means that as the representation of the power of the neural SDF increases, the
optimization can become unstable. The gradient descent PDE for the Eikonal loss is

∂u

∂t
= ∇ · (κe∇u), κe(x) =

{
sgn[1− |∇u(x)|]/|∇u(x)| p = 1

|∇u|−1 − 1 p = 2
, (5)

where sgn is the sign function. The local linearization of this equation is obtained by treating κe as
constant, which is true locally; this results in the linearization:

∂u

∂t
= κe∆u, (6)

where ∆ denotes Laplacian, and note κe can be positive or negative. When κe < 0, the process
is a backward diffusion, which is ill-posed and therefore fundamentally unstable, regardless of the
numerical implementation scheme to be used. To see this, we may compute the spatial Fourier
transform of the above equation, which yields:

∂û

∂t
(t, ω) = −κe|ω|2û(t, ω) =⇒ û(t, ω) ∝ e−κe|ω|2t, (7)

where ω = (ω1, . . . , ωn) is the frequency variable, and û is the Fourier transform of u. Notice that
when κe < 0, the process diverges and so is unstable. Therefore, the projected gradient descent
PDE of the Eikonal loss when u is represented with a (parametric) neural representation can become
unstable as the representational power of the neural SDF increases (approaching the continuum limit).

One may wonder, if the optimization of the Eikonal loss is unstable, why the network optimization
seems to converge. There may be several reasons for this. Firstly, since κe can be positive or negative
at certain locations, the PDE could go from unstable to stable and even oscillate between these two
states without fully blowing up. However, this can cause irregularities in the evolution and recovered
shape (see Figure 1). Second, due to the finite parameterization of neural representations, networks
with less capacity may project to a flow that annihilates some of the unstable components. Lastly, as
we will see in the next sub-section through analysis, various regularization terms introduced (for other
purposes) can have a stabilizing effect. Nevertheless, these approaches can limit the representational
power of the network to represent fine-scale shape details. Our approaches in the next section, built
upon our theory, stabilize while allowing more complex networks to have finer shape representation.
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Figure 1: Visual demonstration of the eikonal instability in the INR. (a) shows the level set at the
iteration, m, before an instability of the non-regularized SDF optimization. [Top row]: shows the
level set at various subsequent iterations (b)-(d) of the continued non-regularized SDF evolution.
[Bottom row]: shows the level set at various iterations of the SDF evolution when adding our proposed
regularization (directional divergence) after (a).

3.3 PDE Stability Analysis of Existing Neural SDF Representations

We now use our theory to analyze existing methods. In [14], a regularization term is added to the loss
function for training neural SDFs; the loss (called the divergence loss) is as follows:

Ldiv(u) =

∫
Ω\Ω0

|∆u(x)|p dx, (8)

where Ω0 are points on the ground truth surface (e.g., points of a point cloud or the zero level set of
the ground truth). The authors observe empirically that the Laplacian of a SDF is close to zero and
thus this is added as a constraint. Although we show in the next section that this is not always or only
partially true, we will now show that this term has another beneficial property, i.e., that it stabilizes
the instability of the eikonal loss gradient descent. The gradient descent PDE for the sum of the
above divergence loss and the eikonal loss (αeLeik + αdLdiv, where αe, αd > 0 are weights) is

∂u

∂t
= αe∇ · [κe∇u]− αd

{
∆[sgn(∆u)] p = 1

∆[∆u] p = 2
(9)

which is a fourth-order PDE. Note that in implementations, one would have to approximate the sign
function with a differentiable approximation. We will assume sgn(x) = 2σ(x)− 1, where σ is the
sigmoid function, i.e., the key property is that the approximation is positively sloped near the origin,
and close to a constant away from the origin on either side. Note that the stability of the PDE is
typically dominated by the highest-order terms, which in the above case is stable. To see this, we
linearize the first term as done previously (assuming κe is constant, and approximating sign as linear
near the origin and constant elsewhere). In this case,

∆[sgn(∆u)](x) ≈
{
κd∆[∆u](x) ∆u(x) ≈ 0

0 |∆u(x)| ≫ 0
,

where κd > 0 is the slope of the sign approximation at zero. Therefore, in both p = 1 and p = 2, the
linearization of the PDE (near ∆u = 0 for p = 1 and everywhere for p = 2) is given by

∂u

∂t
= αeκe∆u− αdκd∆[∆u] = αeκe

n∑
j=1

∂2u

∂x2
i

− αdκd

n∑
j,k=1

∂4u

∂x2
j∂x

2
k

. (10)
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Computing the spatial Fourier transform of the above linearized equation yields:

∂û

∂t
(t, ω) = −

[
αeκe|ω|2 + αdκd|ω|4

]
û(t, ω) = A(w)û(t, ω) =⇒ û(t, ω) ∝ eA(ω)t. (11)

Note that in any local approximation of κd with a constant, κd > 0. Thus, regardless of the sign
of κe, so long as αd is chosen large enough, the set in which A(ω) is positive can be minimized,
and so the process is stable. Thus, besides aiming to enforce the empirically observed property that
the Laplacian of the neural SDF is close to zero, that term also adds stability to the neural SDF
optimization, adding a regularizing effect.

In several works, a term is included to penalize the deviation between the normal to the SDF and the
ground truth normal direction to the surface (or point cloud), which provides further constraints on
the recovered SDF. In some problems this ground truth data is available. In addition to serving as an
additional constraint, for particular forms of that constraint [11], we show that term can stabilize the
eikonal term. The normal constraint is given by the loss:

Lnorm.(u) =

∫
Ωo

|∇u(x)−Ngt|p dx, (12)

where Ωo are points on the ground truth surface. The gradient descent of this term is given by

∂u

∂t
= ∇ · [κn(∇u−Ngt)], κn =

{
|∇u−Ngt|−1 p = 1

1 p = 2
, (13)

which includes a forward diffusion, which if the weight on this term is chosen larger than −αeκe,
would stabilize the (unstable) backward diffusion of the eikonal loss.

4 New Shape Regularization and Representation for Finer Neural SDFs

4.1 A New Stabilizing Term Without Over-Regularization

Iter. 0 Iter. 1.5k Iter. 3k

Figure 2: Illustration of the ability of our new reg-
ularization to capture fine-scale details of shape
while still stabilizing the optimization. Without
a penalty on the mean curvature, our directional
divergence term restores the shape more quickly
and captures fine details (bottom). On the other
hand, the full divergence term (top) unnecessarily
penalizes the mean curvature of the level sets, re-
sulting in over-smoothness. Note the dark black
lines represent the zero level set (lighter ones indi-
cate other level sets). Ground truth is a snow-flake
like shape (dotted gray). Note that both divergence
terms avoid instabilities, but our proposed one re-
covers the correct curvatures of the shape.

We introduce a new stabilizing term for eikonal
loss. To motivate our approach, we first shed
some more insight into the divergence loss
(penalty on the Laplacian of u, the SDF repre-
sentation). We first recall a fact from differential
geometry. For a hyper-surface in Rn, the mean
curvature H of the hyper-surface measures the
average turning of the unit normal with respect
to n principal directions of the surface [42]. We
avoid precisely defining the mean curvature due
to the lengthy technical details needed, and refer
the reader to [42]. Of particular interest is ex-
pressing the mean curvature of a surface in terms
of its level set embedding. If u is a level set func-
tion, then the mean curvature of the level sets
can be written as the divergence of the normal
vector field to the level sets [43], i.e.,

H = div
(

∇u

|∇u|

)
. (14)

Note that if u is a signed distance function, it sat-
isfies the eikonal equation and thus the mean cur-
vature is the Laplacian of the SDF, i.e., H = ∆u.
Hence, for arbitrary shapes, the Laplacian of
an SDF is the mean curvature of the level sets,
which is not always close to zero. If we would
like to represent shapes with fine detail and com-
plex curvatures, penalizing the Laplacian of u
in the loss would not necessarily be beneficial,
although the term stabilizes the eikonal loss.
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However, we note that there is a component of the Laplacian of a SDF that is zero. Indeed, if we
compute the gradient of both sides of the eikonal equation (|∇u(x)| = 1), we obtain that

0 = D2u(x) · ∇u(x)

|∇u(x)|
= D2u(x) · ∇u(x), (15)

where D2u(x) indicates the Hessian of the SDF, and the dot indicates matrix-vector multiplication.
Note that the above quantity dotted with ∇u is the second derivative of u in the normal direction
of the level sets, which is a component of the full Laplacian of u. Hence, we introduce a new loss
term as a replacement for the penalty on the full Laplacian, which we refer to as Laplacian normal
regularization or directional divergence:

LL. n.(u) =

∫
Ω

|∇u(x)TD2u(x) · ∇u(x)|dx. (16)

This loss enforces the constraint in SDFs that the second derivative in the normal direction is zero,
without enforcing unwanted smoothness by penalizing the fine detail (points of high mean curvature)
of the level sets. This will lead to a fourth-order (non-linear) PDE for its gradient descent. The
gradient descent PDE includes a term that is −∆[∆u], an isotropic fourth order term, which from
the previous analysis would stabilize the lower order eikonal instability. Although the full flow only
regularizes in the normal direction, over the evolution it regularizes over other directions as the
normal vector changes direction, killing the eikonal instability.

New Training Loss: We combine the new stabilizing term with the loss function used in SIREN [12]
without the normal constraint (for more applicability) to form our proposed training loss:

L = αeLeik + αmLmanifold + αnLnon manifold + αlLL.n.,

Lmanifold =

∫
Ω0

|u(x)|dx, Lnon manifold =

∫
Ω\Ω0

exp (−α|u(x)|) dx, (17)

where α, αe, αn, αm, αl > 0 are hyper-parameters, and Ω0 are known points on the surface of interest
(e.g., point cloud data). Lmanifold penalizes surface points away from the zero level set. Lnon manifold
penalizes points not on the surface of interest from being close to the zero level set. We use p = 1 for
the Eikonal loss, the same as in SIREN [12] and DiGS [14]. For αl we use the annealing strategy as
in DiGS [14]. See supplementary for details.

4.2 A New Representation for Finer Shape Representation in Neural SDFs

We now introduce a new neural network representation for SDFs, motivated by our result that allows
stabilizing the eikonal loss even when the representational power of the network increases. Note in
a ReLu MLP, the network represents a piecewise-linear function. Activations partition the domain
where various linear approximations are used. To capture finer details of shape (without resorting to
heavy linear networks), it is natural to leverage more general Taylor series (quadratic and beyond)
approximations to capture the curvature of the shape. Motivated by this observation, we propose
to use quadratic layers rather than linear layers. Notice that the composition of a quadratic with
a quadratic function is a quartic function, and thus composing quadratic layers many times can
approximate any desired order of a Taylor series, even without the use of activations. We still use
activations, however, to partition the domain into regions where different Taylor approximations
are used. Without stabilizing the eikonal term in the optimization, such finer-scale representations
become unstable; thus, our regularization plays a crucial role. Note quadratic layers have been
proposed for neural networks [30]; however, proposing them for shape representation in neural SDFs
is novel to the best of our knowledge. Note also that SIREN [12] uses a sinusoidal activation to
obtain a representation beyond piecewise linear in ReLu MLPs; in that representation, however, the
activation serves to both partition the domain in pieces, and represent each piece with more complex
(polynomial) functions. Quadratic layers allow more complex (polynomial) functions in the pieces,
without overloading the activation with both partitioning the domain and more complex function
representation.

As in [30], we define a quadratic layer using the following representation:
a(x) = (W1x+ b1) ◦ (W2x+ b2) +W3x

2 + b3, (18)
where Wj ∈ Rm1×m2 , x ∈ Rm2 is the input vector, x2 is the element-wise square, bj ∈ Rm2 are
biases, and ◦ denotes the element-wise product. We replace the linear neurons in the SIREN [12]
network with quadratic neurons to obtain a high-order expression for the signed distance function.
For implementation, we use the combination of three linear layer modules in PyTorch.
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5 Experiments

We now demonstrate the effectiveness of our method on the task of surface reconstruction from point
clouds. For all the experiments in this section, we follow the same mesh generation procedure and
evaluation setting as the state-of-the-art method DiGS [14]. We experiment on three benchmarks:
Surface Reconstruction Benchmark (SRB) [32], ShapeNet [33], and the Scene Reconstruction
Benchmark [12]. We use a network with 5 hidden layers and 128 hidden channel for SRB and
ShapeNet, and we use 8 hidden layers, and 256 channels for scene reconstruction. The number
of training iterations is the same as in DiGS [14], 10k for SRB and ShapeNet, and 100k for scene
reconstruction. We provide all of the training details in the supplementary.

5.1 Surface Reconstruction Benchmark (SRB)

GT Scans
Method dC dH dC⃗ dH⃗
IGR wo n 1.38 16.33 0.25 2.96
SIREN wo n 0.42 7.67 0.08 1.42
SAL[1] 0.36 7.47 0.13 3.50
IGR+FF[17] 0.96 11.06 0.32 4.75
PHASE+FF[17] 0.22 4.96 0.07 1.56
DiGS[14] 0.19 3.52 0.08 1.47
Our StEik 0.180 2.800 0.096 1.454

Table 1: Quantitative results on the Surface Recon-
struction Benchmark[32] using only point data (no
normals).

SRB consists of 5 noisy range scans and each
contains point cloud and normal data. We com-
pare our method against the current state-of-
the-art methods on this benchmark without us-
ing normal data (as in [14] as normal data may
be difficult to obtain). Results are shown in
Table 1. We report the Chamfer (dC) and
Hausdorff (dH) distances between the recon-
structed meshes and the ground truth meshes.
Furthermore, we report their corresponding one-
sided distances (dC⃗ and dH⃗ ) between the re-
constructed meshes and the input noisy point
cloud, which measures how much the recon-
struction overfits noise in the input. Results
show that StEik is better than SoTA methods on
the ground truth metrics, but can slightly overfit the noisy input due to the fine representation property
of our method. The improvement is not so dramatic compared to DiGS [14] because this SRB is a
relatively easy task without many thin structures and complex structures, and DiGS [14] already has
a good performance. However, we still achieve a better result with 25% fewer parameters than DiGS.

5.2 ShapeNet

We evaluated our method on a preprocessed subset [44], [45] of ShapeNet [33], which consists of
20 shapes in each of 13 categories with only surface point data. Note points are sampled from the
shapes (as in [44]) to simulate point clouds. We compare StEik against the current state-of-the-art
methods on this dataset without using normal data and report the results in Table 2. As criteria for
the benchmark, we consider the Intersection over Union (IoU) and Chamfer Distance between the
reconstructed shapes and the ground truth shapes. The Intersection over Union (IoU) captures the
accuracy of the predicted occupancy function, while the Chamfer Distance captures the accuracy of
the predicted surface. Under both metrics, StEik outperforms all other methods by a large margin.
This demonstrates that StEik is particularly effective for reconstructing thin structures. A visual
example is shown in Figure 3 (see supplementary for more).

squared Chamfer ↓ IoU ↑
Method mean median std mean median std
SIREN wo n 3.08e-4 2.58e-4 3.26e-4 0.3085 0.2952 0.2014
SAL[1] 1.14e-3 2.11e-4 3.63e-3 0.4030 0.3944 0.2722
DiGS[14] 1.32e-4 2.55e-5 4.73e-4 0.9390 0.9764 0.1262

Ablation (of Regularizations & Linear vs Quad Layers)
Lin+LL. n. 1.71e-4 1.23e-5 1.20e-3 0.9586 0.9809 0.0993
Qua+Ldiv 5.45e-5 1.05e-5 3.60e-4 0.9593 0.9852 0.1130
Our StEik (Qua+LL. n.) 6.86e-5 6.33e-6 3.34e-4 0.9671 0.9841 0.0878

Table 2: Quantitative results on the ShapeNet[33] using only point data (no normals).

Ablation Study: Below the middle line in Table 2, we study the effectiveness of each of our novel
contributions (the Laplacian normal regularization and quadratic layers). On 5 out of 6 metrics,
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our normal Laplacian regularization using linear networks outperforms DiGs (which uses linear
networks), showing the utility of the new regularization. On 4 out of 6 metrics, our normal Laplacian
regularization out-performs the standard Laplacian regularization using quadratic networks, again
showing the utility of our new regularization separately. Note that in both cases the metrics where the
normal Laplacian normal performs worse are just slightly worse compared to the amount of increase
in the other metrics. On all 6 metrics, the quadratic network using the same Laplacian regularization
as DiGs out-performs DiGs, showing the utility of quadratic networks alone. Note that each of our
contributions, i.e., Laplacian normal regularization and quadratic layers, separately show increase
performance against DiGs (except one metric in the linear case) even though the hyper-parameters
were not optimized in the approaches compared against DiGS.

Ground Truth DiGS Linear + LL.n. Quadratic + Ldiv Our StEik

Figure 3: Example Visual results on ShapeNet [33]: We manifest the effectiveness of the new regular-
ization and the new representation of Neural SDFs independently. Furthermore, the combination of
two modules demonstrates an extra improvement. See supplement for more visual results.

5.3 Scene Reconstruction

In Figure 4, we show the reconstruction of a room scene point cloud from roughly 10M points and
compare our method with DiGS[14], the current SoTA method without normals. This is the same
scene used in [12] and contains many thin features that are difficult to reconstruct. The surface
produced by DiGS is over-smoothed so that the thin structures like picture frames and sofa legs are
not recovered, while in StEik those fine details are recovered.

DiGS Our StEik

Figure 4: Visual results on the Scene Reconstruction Benchmark using only point data (no normals).

5.4 Timing Performance and Model Size

Method Structure Runtime Parameters
DiGS 5×256 37.86ms 0.26M
Lin+LL.n. 5×256 32.52ms 0.26M
Qua+Ldiv 5×128 50.92ms 0.20M
Our StEik 5×128 42.20ms 0.20M
DiGS 8×512 63.28ms 1.84M
Lin+LL.n. 8×512 50.90ms 1.84M
Qua+Ldiv 8×256 100.27ms 1.39M
Our StEik 8×256 80.62ms 1.39M

Table 3: Network structure, speed, and size com-
parison. 5×256 means 5 layers with 256 neurons.

Table 3 compares the training time of one itera-
tion and the number of parameters of DiGS [14]
and our method. The evaluation is performed on a
single Nvidia Tesla A100 GPU. The setting above
the line is for SRB [32] and ShapeNet [33] ex-
periments. The setting below the line is for the
scene reconstruction experiment [12]. We achieve
better performance than DiGS [14] with only 3/4
the number of parameters. There is an increase in
training time (per iteration) for StEik compared
to DiGS due to the extra computation cost intro-
duced by quadratic neurons. Note that our LL.n

regularization is computationally less expensive
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than Ldiv (proposed in DiGS) as LL.n can be expressed as 1
2∇x [⟨∇u(x),∇u(x)⟩], which can be

computed with a single back-propagation call. In contrast there is no such simpler expression for the
Laplacian.

5.5 Limitations

Due to the lack of efficient implementation of quadratic layers in the deep learning libraries, the
increase in training time is not negligible. Indeed, there is no native Pytorch implementation of a
quadratic layer, and so we currently stack linear layers. As quadratic layers become more frequently
used, we expect that a native Pytorch implementation become available, which would address the
current drawback. In addition, there is still improvement space for reconstruction results, as in some
cases the surface is not perfectly recovered.

6 Conclusion

We showed that stability is an important consideration in the design of neural SDF representations. We
showed that the eikonal loss can result in instabilities that can cause artifacts in both the optimization
and the recovered shape, or even converge to sub-optimal local minima. Our theory allows for
understanding the instability and existing methods for neural SDFs in a common framework. Our
framework enabled the construction of a new regularization term for neural SDFs that stabilizes the
instability while avoiding over-regularization. The regularization enabled us to consider finer shape
representations with neural SDFs that are piecewise polynomial while stabilizing the eikonal term.
Empirical results validated our theoretical findings. This work opens up the possibility of exploring
a broader range of geometric regularizations that naturally arise from PDEs, and the possibility of
exploring new finer-scale network representations.
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