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ABSTRACT

Video Question Answering (VideoQA) has made significant strides by leverag-
ing multimodal learning to align visual and textual modalities. However, current
benchmarks overwhelmingly focus on questions answerable through explicit visual
content - actions, objects, and events directly observable within individual frames
or short clips. In contrast, creative and cinematic videos - such as movies, TV
shows, and narrative-driven content - employ storytelling techniques that delib-
erately omit certain depictions, requiring viewers to infer motives, relationships
across discontinuous frames with disjoint visual contexts. Humans naturally excel
at such implicit reasoning, seamlessly integrating information across time and
context to construct coherent narratives. Yet current benchmarks fail to capture this
essential dimension of human-like understanding. To bridge this gap, we present
ImplicitQA, a novel benchmark specifically designed to test VideoQA models
on human-like implicit reasoning. ImplicitQA comprises 1K meticulously
annotated QA pairs drawn from 1K high-quality creative video clips covering 15
genres across 7 decades of content. Questions are systematically categorized into
nine key reasoning dimensions: lateral and vertical spatial reasoning, depth and
proximity, viewpoint and visibility, motion and trajectory, causal and motivational
reasoning, social interactions, physical context, and inferred counting. These anno-
tations are deliberately challenging, crafted by authors, validated through multiple
annotators, and benchmarked against human performance to ensure high quality.
Our extensive evaluations on 11 leading VideoQA models reveals consistent and
significant performance degradation, underscoring their reliance on surface-level
visual cues and highlighting the difficulty of implicit reasoning. Even the best
model substantially underperforms human baselines with only 64% accuracy, and
no open-source model exceeds 50% accuracy. Performance variations across mod-
els further illustrate the complexity and diversity of the challenges presented by
ImplicitQA. Our analysis highlights the unique challenges of implicit reason-
ing, including limited gains from scaling frames or parameters. By releasing both
the dataset and data collection framework, ImplicitQA establishes a rigorous,
diverse, and reproducible testbed for advancing VideoQA.

1 INTRODUCTION

Video Question Answering (VideoQA) sits at the intersection of computer vision and natural language
processing, aiming to answer natural language questions based on visual content in videos. Recent
progress in VideoQA Ren et al. (2023); Zhang et al. (2024a); Maaz et al. (2024); Wang et al. (2024b);
Li et al. (2024a;b); Zhang et al. (2024b); Wang et al. (2024a); Bai et al. (2025); Yuan et al. (2025) has
been fueled by multimodal learning techniques that integrate visual and textual modalities, enabling
impressive performance on datasets where questions are grounded in explicit visual content. These
benchmarks Xu et al. (2016); Yu et al. (2019); Xiao et al. (2021); Lei et al. (2018); Li et al. (2023); Cai
et al. (2024); Fu et al. (2024); Rawal et al. (2024); Liu et al. (2024) typically emphasize recognizing
objects, identifying actions, and understanding events that are directly observable within individual
frames or short clips. However, cinematic and narrative-driven videos - such as movies frequently
employ storytelling devices that challenge this paradigm. Rather than explicitly showing every key
detail, such videos rely on indirect cues, subtle scene transitions, and off-screen implications to
advance the plot or convey meaning. For example, a character’s motive might be implied through a
prior conversation but never visually depicted, or a causal event might occur off-screen, requiring
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What toy is in the corner of the room opposite the 
wizard alarm clock ? 

A: Teddy Bear    C: Dinosaurs  
B: Fire Truck    D: Freight Train

🦎

Wizard

Bed
Window

Dinosaurs

Freight 
Train

B: Fire Truck

Implicit Spatial Model of 
the world is necessary to 

answer this question

🌋LLaVA-OneVision

C: Dinosaurs

C: Dinosaurs

C: Dinosaurs

D: Freight Train

GPT O3 
(reasoning)

GPT 4.1

Inferred 
Layout

In what direction were the black bullets heading 
relative to the man in the red hat?
A: Towards him   C: To his right  
B: Away from him D: To his left

B: Away from him

Inferring relative motion  
is necessary to answer 

this question

Princess
Peach

 

Mario

🌋LLaVA-OneVision

D: To his left

A: Towards Him

A: Towards Him

A: Towards Him

GPT O3 
(reasoning)

GPT 4.1

Inferred
relative 
motion

��Fire 
Truck

Bullet

At the beginning of the clip, four animals are holding the ropes of 
the bridge. What is the third animal that leaves to help the tiger? 

A: Heron    C: Snake  
B: Monkey   D: Mantis

B: Monkey 🌋LLaVA-OneVision

C: Snake

C: Snake

D: Mantis

C: Snake

GPT O3 
(reasoning)

GPT 4.1

1- Heron 2- Snake

3- Monkey

(a) Lateral Spatial Reasoning

(b) Motion and Trajectory Dynamics

(c) Inferred Counting

Figure 1: ImplicitQA examples, each targeting a distinct implicit-reasoning dimension. (a)
Lateral spatial reasoning-identifying the toy opposite the wizard clock by mentally mapping objects
across the scene. (b) Motion and trajectory dynamics-inferring that black bullets move away from
Mario by integrating actions and character positions. (c) Inferred counting-determining which
animal is the third to leave a bridge by tracking sequential departures that are never fully visible
onscreen. Models that excel at explicit perception often fail on these tasks, highlighting the need for
benchmarks that probe deeper narrative understanding.

viewers to infer its effects from subsequent scenes. Humans are remarkably skilled at making such
implicit inferences, seamlessly connecting context, prior knowledge, and temporal cues to reconstruct
missing narrative elements. This ability forms a cornerstone of real-world video understanding.
However, current VideoQA benchmarks largely overlook this aspect of human-like reasoning. They
reward models that excel at surface-level perception but do not challenge systems to infer beyond what
is visually present. As a result, today’s state-of-the-art models may perform well on existing datasets
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Table 1: Comparison of ImplicitQA with existing VideoQA datasets. ImplicitQA uniquely
focuses on implicit reasoning with visual content, annotated end-to-end by domain experts.

Dataset Tested-Abilities Vision Video Source Annotations Question
Direct Implicit Only ? Humans Automated Filtering

Cinepile Rawal et al. (2024) ✓ ✗ ✗ Movie Clips ✗ QA (Templates + LLM) LLM
TVQA Lei et al. (2018) ✓ ✗ ✗ TV Show Clips QA (Templates) - -
VideoMME Fu et al. (2024) ✓ ✗ ✗ Diverse Experts - LLM
MVBench Li et al. (2023) ✓ ✗ ✓ Prior Datasets Prior Datasets Wrong Options -
TemporalBench Cai et al. (2024) ✓ ✗ ✓ Prior Datasets Captions Pairing LLM
TempCompass Liu et al. (2024) ✓ ✗ ✓ Stock + Transforms Class Labels QA (Templates + LLM) -
Open-EQA Majumdar et al. (2024) ✓ ✗ ✓ Indoor Egocentric tours Human - -
VSI-Bench Yang et al. (2025) ✓ ▲! ✓ Indoor Egocentric tours QA (Templates) QA (Templates) Human

ImplicitQA ✗ ✓ ✓ Movie Clips Experts (Video selection + QA + Filtering)

while failing to grasp deeper, implicit reasoning. Consider the example depicted in Figure 1(b),
where the question posed is: "In what direction were the black bullets heading relative to the man in
the red hat?" with answer choices: {’A’: ’Towards him’, ’B’: ’Away from him’, ’C’: ’To his right’,
’D’: ’To his left’}. The correct answer is "B" (Away from him), as the scene implicitly shows the
princess Peach running towards Mario while black bullets are fired towards her, thus moving away
from Mario. However, existing VideoQA models consistently answer incorrectly, choosing "Towards
him," failing to grasp the information across frames. Even the O3 model incorrectly selects "To his
left," highlighting the widespread difficulty in capturing implicit narrative dynamics.

To address this critical gap, we introduce ImplicitQA, a benchmark designed to probe the limits
of implicit reasoning in VideoQA. We collect 1K carefully curated question-answer pairs from 1K
diverse video clips sourced from movies. Unlike traditional benchmarks, ImplicitQA focuses
exclusively on questions that cannot be answered through direct observation of frames alone. Instead,
they require reasoning about unstated character motives, social interactions, physical context, and
other narrative nuances that are implied but not explicitly depicted.

Our dataset is organized into 9 core reasoning categories: (1) Lateral Spatial Reasoning, (2) Vertical
Spatial Reasoning, (3) Relative Depth and Proximity, (4) Motion and Trajectory Dynamics, (5)
Viewpoint and Visibility, (6) Motivational Reasoning, (7) Social Interaction and Relationships,
(8) Physical and Environmental Context, and (9) Inferred Counting. We have annotated the data
ourselves, thus ensuring that the questions are both challenging and aligned with the nuanced
reasoning capabilities we aim to benchmark. Further, we re-verify the annotations amongst ourselves,
this curation process also minimizes the ambiguity and guarantees that each question tests meaningful
aspects of implicit understanding.

We evaluate on prominent VideoQA models on ImplicitQA and observe significant performance
drops compared to standard benchmarks. This finding underscores the current limitations of VideoQA
systems, which remain heavily reliant on explicit visual cues. Notably, we find that reasoning-oriented
models outperform non-reasoning models: for example, GPT-o3OpenAI (2024b) achieves a 9.8%
higher accuracy than GPT-4.1OpenAI (2024a). This gap illustrates the necessity of deeper reasoning
capabilities to tackle the challenges posed by ImplicitQA, further validating our focus.

In summary, ImplicitQA raises a new research challenge: to build models capable of deep
temporal reasoning and implicit inference across frames - moving VideoQA closer to true human-like
video understanding. Our contributions are listed below:

• We introduce ImplicitQA, the first benchmark designed to test implicit reasoning in VideoQA,
focusing on questions that require inference beyond direct visual observations.

• We manually curate a high-quality dataset of 1k QA pairs across 1k diverse video clips, with
annotation conducted by experts in computer vision to ensure rigor and relevance.

• We define a taxonomy of 9 categories, covering lateral spatial reasoning, depth and proximity,
social dynamics, and more, to facilitate targeted analysis and benchmarking.

• We benchmark SoTA VideoLLMs on ImplicitQA and reveal significant performance degrada-
tion, highlighting the gap between current capabilities and true narrative understanding.

2 RELATED BENCHMARKS

We compare our proposed dataset against some recent VideoQA benchmarks, which we broadly
categorize into Vision-only benchmarks, and Vision and speech benchmarks, which require integration
of information from othe modalities like speech.
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2.1 VISION ONLY BENCHMARKS

MVBench Li et al. (2023): MVBench aggregates roughly 4,000 human- or automatically–derived
multiple-choice questions drawn from 11 public age datasets, pairing each 5–35 s clip with four
or five answer options. A “static-to-dynamic” pipeline converts image-based tasks into temporally
grounded ones, ensuring coverage of both short-term motions and longer-horizon causal phenomena.

TempCompass Liu et al. (2024): TempCompass focuses on pure temporal manipulation by algo-
rithmically editing 410 royalty-free clips (≤30 s) into pairs/triplets that differ only in one temporal
property (e.g., playback reversal, reordered events, speed changes). GPT-3.5 then generates 7,540
diverse tasks (multiple-choice, yes/no, caption matching, constrained captioning).

TemporalBench Cai et al. (2024): TemporalBench curates 2,032 silent clips (<20 s) from seven
public corpora, enriches each with a dense human-written caption plus up to 15 machine-crafted
counterfactual captions, and forms 9,867 contrastive pairs targeting fine-grained temporal distinctions
(action order, frequency, direction, effector).

Open-EQA Majumdar et al. (2024) and VSIBench Yang et al. (2025): Both of these datasets are
based one pre-existing 3d scans of indoor environments taken from an egocentric POV. As a result the
videos in these datasets carry a dense view of the environment, which needs to be stitched together to
answer questions. Due to the dense nature of the sampling, these videos primarily require limited
implicit spatial reasoning (indicated by ▲! symbol). VSI-Bench spans configuration, measurement,
and spatiotemporal tasks (e.g., room size, appearance order); OpenEQA covers seven categories
(object/attribute/state recognition, localization, spatial and functional reasoning, world knowledge).

ImplicitQA is designed to go beyond existing video benchmarks: Firstly, Implicit, multi-frame
inference. Questions demand reasoning about off-screen events, unstated motives, or causal chains
spanning multiple clips, no single-frame cues suffice. Secondly, we utilize expert manual curation.
Unlike MVBench’s mixed annotations, TempCompass’s algorithmic edits, or TemporalBench’s
counterfactual pipeline, our 1K questions from 1k clips are manually authored and rigorously cross-
verified by computer-vision experts, ensuring each item truly probes implicit visual reasoning.

2.2 VISION AND SPEECH FUSION BENCHMARKS

VideoMME Fu et al. (2024) VideoMME comprises 900 expert-annotated YouTube videos (short
<2 min, medium 4–15 min, long 30–60 min) with frames, raw audio, and automatically extracted
subtitles. Human annotators author balanced multiple-choice questions across diverse domains, and a
“text-only” filter removes any item solvable without visual or acoustic cues.

TVQA Lei et al. (2018) TVQA provides ∼ 22 K clips (60–90 s) from six U.S. TV series, each paired
with dialogue subtitles and precise timestamps. Its compositional “WH-word ... when/before/after ...”
templates force joint vision–language reasoning and moment localization, but the narrow domain and
reliance on spoken dialogue limit purely visual inference.

CinePile Rawal et al. (2024) CinePile curates ∼ 9K movie snippets (∼ 160 s) from MovieClips,
augmented with professional audio descriptions and subtitles. An LLM-driven pipeline yields 304 K
multiple-choice QAs, filtered adversarially for shortcut resistance.

ImplicitQA departs from these benchmarks in three key ways: Firstly, implicit multi-frame inference:
every question demands reasoning about off-screen events, unstated motives, or causal chains not
solvable by a single frame or subtitle snippet. Secondly, Visual-only focus: We strip away subtitles
and audio tracks entirely, models must extract and integrate visual cues across frames without any
textual crutch. Finally, expert manual curation: Unlike datasets that rely on automated pipelines or
narrow scripted dialogue, our 1K questions across 1K clips are manually authored and cross-verified
by computer-vision experts, ensuring each item truly probes implicit visual reasoning.

3 DATASET CURATION

A critical component of constructing the ImplicitQA benchmark was the creation of high-quality,
challenging question-answer pairs that test implicit reasoning over video content. To this end, we
developed a custom annotation tool specifically designed to streamline and standardize the data
collection process for implicit reasoning in videos.
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Download Video
yt-dlp

Selected 
Videos

Expert 
Annotator 

Pool

Non-Expert
 Annotator Pool

Temporal 
Segment Labeling

Question & 
Answer

Incorrect Options

FrameQuiz
Annotation Tool

ImplicitQA
Dataset

GPT 4.1

Question 
Answering

Category 
Re-Labeling

ImplicitEval
Annotation Tool

Lateral

Counting

Social

... Category 
Labels

Human 
Baseline 

Score

Initial 
Category 
Labels

Videos
 QA Pairs 

Videos

Expert
 Annotator

Figure 2: ImplicitQA Curation Pipeline. We begin by selecting creative video clips and download
them. An expert-annotator pool then uses our FrameQuiz Annotation Tool to (1) mark temporal
segments, (2) add a multiple-choice question and its correct answer for the segment, and (3) craft
plausible distractor options. These annotated clips form the raw ImplicitQA Dataset. Next, a
non-expert annotator pool employs the ImplicitEval Annotation Tool to answer each question, yielding
a human baseline accuracy score. We run GPT-4.1OpenAI (2024a) on the dataset to automatically
assign initial category tags, which are then relabeled by the expert annotators.
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Figure 3: Visualization of ImplicitQA statistics.
3.1 ANNOTATION TOOL AND DATA COLLECTION

Our custom-built annotation interface was designed to provide an intuitive and efficient workflow.
The tool allowed annotators to: Watch a video clip directly within the interface, select start and end
timestamps marking the temporal window relevant to the annotated question. Write the question and
corresponding answer choices, explicitly tying them to the selected video segment. This structured
approach ensured that each question was clearly linked to a specific portion of the video, even if the
reasoning required drawing upon broader context across multiple scenes. The tool was optimized for
fast navigation, enabling annotators to pause, rewind, or step through clips frame-by-frame to closely
examine nuanced visual cues. Please refer to Supplementary Section 4 for interface figure.

To ensure annotation quality and reliability, we implemented a save-and-replay feature within the
tool, enabling annotators to revisit their annotated segments, replay the selected video portion, and
iteratively refine or validate their annotations before final submission. We also verify the annotations
amongst ourselves. This process ensured that questions accurately aligned with the video context and
targeted implicit rather than explicit reasoning. We ourselves have annotated questions with the intent
to probe deeper inferential reasoning rather than relying solely on directly observable content. Thus
the author annotation process contributed to both the conceptual depth and technical relevance of the
dataset. For video selection, we curated a diverse set of 1K creative videos, comprising movies of
varied genres and mediums (3D animated and live-action) known for employing narrative techniques
such as implied causality, off-screen action, symbolic representation, and indirect storytelling. We
prioritized scenes that challenge viewers to make inferences beyond directly visible actions or objects,
focusing on content where critical narrative elements are omitted, subtle, or distributed across frames.
Statistical characteristics of our collected dataset can be seen in Figure 3.

Table 2: Mean Pairwise Similarity
for Question Embeddings.
(lower = more diverse)

Benchmark MPS (↓)

MVBench 0.293
TempCompass 0.228
Cinepile 0.216
Movie-QA 0.191

Implicit-QA 0.161

Question Diversity. To measure question diversity quantita-
tively, we compute mean pairwise cosine similarity of sentence
embeddings between our questions. This metric for text diver-
sity has previously been used in the literature Tevet & Berant
(2021). We utilize the all-MiniLM-L6-v2 model from the
Sentence Transformers library to compute text embeddings.
The results of this analysis are provided in the Table 2. Lower
mean similarity between questions indicates higher diversity,
as can be seen our questions have higher diversity compared
to prior works. We further provide dataset diversity in terms of
genre, movie release timeline, media type in Section C.
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3.2 DATASET CATEGORIZATION

To ensure comprehensive coverage of the diverse reasoning abilities required for implicit video
understanding, we organized the dataset into nine distinct reasoning categories,
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Figure 4: Question durations for each category.

each targeting a specific type of implicit
inference. Below, we formally define each
category of implicit reasoning. We present
qualitative examples in Figure 1, 6 to high-
light the implicit nature of questions. We
also show differences in temporal length
between categories in Figure 4, with count-
ing and vertical spatial reasoning videos
being the longest.

Lateral Spatial Reasoning Questions in
this category test the ability to infer spatial relationships, positions, or arrangements of objects and
characters along lateral orientations. They require viewers to implicitly track or reason about relative
positions without explicit directional guidance.

Relative Depth and
Proximity

26.6%

Vertical Spatial
Reasoning

22.0%

Lateral Spatial
Reasoning

16.1%

Motion and
Trajectory Dynamics

9.1%

Causal and
Motivational
Reasoning8.2%

Inferred Counting

5.8%

Physical and
Environmental
Context

5.3%

Viewpoint and
Visibility

4.1%

Social Interaction
and Relationships

2.9%

Category Distribution

Figure 5: Distribution across categories

Vertical Spatial Reasoning This category assesses
the viewer’s capacity to implicitly reason about spa-
tial relationships, positions, or arrangements of ob-
jects and characters along a vertical axis (above-
below orientation). Questions often involve interpret-
ing hierarchical arrangements or vertical positioning
that aren’t explicitly depicted.
Relative Depth and Proximity These evaluate the
ability to infer relative distances, depth perception,
and proximity between characters or objects within
the scene. They require implicit judgments about
which objects or characters are closer or further from
the viewer or each other, without explicit depth cues.

Viewpoint and Visibility Questions in this category
require inferring what is observable from a particular vantage point, whether it be a character’s per-
spective or camera angle. They must reason about line-of-sight, occlusions, and spatial orientations.
Motion and Trajectory Dynamics Questions in this category assess the ability to implicitly track
motion, movement directions, and trajectories of characters or objects across discontinuous frames.
These movement patterns might be implied and not fully observable in a single scene.
Motivational Reasoning Questions in this category require viewers to infer character motives, or
likely future events based on incomplete or indirect visual information. These questions emphasize
unstated cause-effect chains within the story.
Inferred Counting This category involves implicit counting or enumeration tasks that require
aggregating scattered visual evidence across multiple frames or scenes. Such questions demand
sustained attention and integration of visual clues over time to infer quantitative details.
Physical and Environmental Context Questions in this category probe reasoning about physical
elements of the environment, as well as environmental dynamics that may be implied through narrative
or partial visual cues but not overtly shown.
Social Interaction and Relationships This category captures reasoning about social dynamics, inter-
actions, and relationships between characters that are inferred through subtle or indirect cues. These
questions require understanding of unspoken social behaviors or contextual relational information.

4 BENCHMARKING

Our evaluation of 30 VideoQA model configurations across different scales and temporal contexts
on the ImplicitQA benchmark reveals several critical insights. Detailed table is presented in
Section B. We evaluate a broad range of open-source and proprietary multimodal models on the
ImplicitQA benchmark, focusing on their ability to perform implicit reasoning over videos. The
evaluation includes multiple model families, scales, and video context lengths. We include the
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Three animals in boxes hit the ship's railing. Then, a final box causes 
the railing to snap. Which animal was in the last box?

A: Giraffe      B: Hippopotamus 
B: Zebra        D: Lion

B: Hippopotamus 🌋LLaVA-OneVision

D: Lion

D: Lion

D: Lion

D: Lion

GPT O3 
(reasoning)

GPT 4.1

In which direction is the shark swimming relative to 
the jellyfish? 

A: Diagonal   C: Away  
B: Towards    D: Perpendicular

B: Towards

Inferring relative motion  
is necessary to answer 

this question

🌋LLaVA-OneVision

Jellyfish

Shark
Hostage 

Yellow-Blue
 Fish

B: Towards

B: Towards

C: Away

B: Towards

GPT O3 
(reasoning)

GPT 4.1

Inferred 
motion

Who is the child in black?

A: The child of the man in black
B: Some random child unrelated to the other characters  

C: The younger version of the man in black
D: The brother of the girl in the pink hat

C: The younger version of the man in black

Understanding the dynamics of social 
interaction and relationships  is 

necessary to answer this question

🌋LLaVA-OneVision

C: Younger Version

C: Younger Version

C: Younger Version

C: Younger Version

GPT O3 
(reasoning)

GPT 4.1

Undamaged 
railing

Damaged 
railing

Animal
Name

(a) Physical and Environmental Context

(b) Motion and Trajectory Dynamics

(c) Social Interaction and Relationships

Figure 6: More Qualitative ImplicitQA examples, targeting distinct implicit-reasoning dimension.

following models in our evaluation: (1) Open-source models: LLaVA-NeXT-Video Zhang et al.
(2024a), LLaVA-OneVision Li et al. (2024a), LLaVA-Video Zhang et al. (2024b), Qwen2 VL Wang
et al. (2024a), Qwen2.5 VL Bai et al. (2025), InternVL3 Zhu et al. (2025), Gemma 3 Team et al.
(2025), (2) Closed-source models: GPT-4.1 OpenAI (2024a)-full, mini, and nano variants, and
the reasoning based GPT-O3 OpenAI (2024b) model, Gemini 2.5 Flash Comanici et al. (2025),
Claude 4 sonnet Anthropic. We analyze the performance of these models via category-wise accuracy,
and overall average accuracy. We also report the macro-average accuracy, which is the average of
category-wise accuracies giving equal weight to each category. Additionally, we explore the impact of
integrating an explicit reasoning prompt with GPT models. Please refer to the Section B for detailed
scores at model scale and number of frames.
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Table 3: Results on ImplicitQAwith 16 input frames. Best and second best results are highlighted.

Model

Lateral
Spatial

Reasoning

Vertical
Spatial

Reasoning

Relative
Depth and
Proximity

Viewpoint
and

Visibility

Motion
& Traj.

Dynamics

Causal &
Motivational
Reasoning

Inferred
Counting

Physical
& Env.
Context

Social
Interaction &

Relations Avg.
Macro
Avg.

Human Baseline 85.4 79.1 80.4 90.0 91.9 94.4 65.9 83.3 100.0 83.0 85.6

Open-Weight Models (7B-Scale)

LLaVA-Next-Video 36.0 29.6 30.1 48.8 36.3 39.0 30.2 35.7 51.7 33.9 37.5
LLaVA-OneVision 37.3 46.8 35.0 56.1 57.1 57.3 23.3 50.0 55.2 43.4 46.4
LLaVA-Video 36.0 44.0 31.6 56.1 60.4 62.2 14.0 50.0 62.1 42.1 46.3
Gemma 3 48.5 38.9 32.3 68.3 39.6 59.8 25.6 57.1 58.6 42.1 47.6
InternVL 3 34.8 39.4 37.2 56.1 51.7 64.6 34.9 57.1 75.9 43.3 50.2
Qwen2-VL 39.8 46.8 40.6 51.2 52.7 58.5 16.3 35.7 72.4 44.9 46.0
Qwen2.5-VL 41.6 47.2 32.7 61.0 50.5 51.2 25.6 42.9 62.1 42.8 46.1

Proprietary Models

Gemini 2.5 Flash 41.6 57.7 32.0 45 60.4 71.3 42.5 69.2 81.5 49.6 55.7
Claude 4 Sonnet 39.1 44.9 37.9 43.9 52.8 74.4 23.3 64.3 72.4 45.4 50.3
GPT 4.1 42.9 53.2 51.1 48.8 59.3 82.9 41.9 71.4 75.9 54.3 58.6
GPT O3 50.3 72.2 55.3 78.0 71.4 85.4 39.5 78.6 86.2 64.1 68.6

2b 7b 3b 7b 32b Nano Mini Full
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(b) Category-wise performance vs Model Scale

Figure 7: Impact of Model Scale.
Human Baseline Non-expert annotators benchmarked themselves against the ImplicitQA dataset
using our Implicit-Eval tool. The annotators took around 1 minute per question on average,
and achieved an overall score of 83%, with macro average of 85.6%. The best models lag behind
human baseline the most in lateral spatial reasoning, relative depth and motion dynamics.

Overall Performance Table 3 highlights that the reasoning based GPT O3 outperformed all other
models significantly, achieving an overall accuracy of 64.1% and a macro average of 68.6%. GPT
4.1 also exhibited robust performance, reaching overall accuracy of 54.3% followed by Gemini 2.5
Flash and Claude 4 sonnet. Open-source models generally performed worse than proprietary models.
Early-generation of VideoLLMs like LLaVA-NeXT-Video perform especially poorly, achieving
an overall score of 33.9%, indicating limited ability to reason beyond surface-level cues. Current
generation open source VideoLLMs perform similarly on the Macro-Average metric (all within a
range of 46.0 to 50.2), however they display variation across categories; Qwen, Gemma, Internvl
models excel at spatial reasoning and viewpoint questions, while LLaVA-OneVision based models
(LLaVA-Video is finetuned from LLaVA-OneVision) succeed at Motion, Motivational Reasoning.

Implicit reasoning remains an unsolved challenge even for leading VideoQA models. More frames or
larger models alone are insufficient, we need architectural innovations or novel training paradigms.
Despite being state-of-the-art in traditional VideoQA, no open-source model crosses 50% on
ImplicitQA, reflecting the dataset’s challenge and the limitations of current architectures in
handling implicit, unstated, or cross-frame reasoning.

Model Capacity vs. Implicit Reasoning GPT models notably benefitted from larger scales, with GPT
4.1 OpenAI (2024a) demonstrating substantial accuracy improvements, indicating more parameters
facilitate effective implicit reasoning. Among open-source models, larger scales like Qwen2.5-VL Bai
et al. (2025)-32b consistently outperformed smaller variants (7b, 3b) by a small margin.

Category-wise Analysis The performance across distinct implicit reasoning categories reveals
varying levels of difficulty as shown in Figure 7 (b),Figure 8.
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(a) Vertical Spatial Reasoning: Among open-weight models, LLaVA-OV Li et al. (2024a) performed
best with 50.46% accuracy. In proprietary, GPT O3 excelled with a superior accuracy of 72.2%.

(b) Relative Depth and Proximity: GPT-based models demonstrated notable dominance in this
category , particularly GPT O3 (55.3%), followed by GPT 4.1 OpenAI (2024a) (51.1%). Among
open-weight models, Qwen2-VL achieved a commendable 40.6%, but lagged proprietary models.

(c) Motivational Reasoning: This was particularly challenging for all models except GPT variants.
GPT O3 notably outperformed all others, achieving 85.4%, significantly ahead of the next best GPT
4.1 at 82.9%. Open-weight models achieved considerably lower performance.

(d) Inferred Counting: This category presented substantial difficulty across models, with GPT
variants outperforming others yet still indicating room for improvement (maximum of 41.9% for GPT
models). Open-weight models generally struggled more, highlighting a significant performance gap.

The experimental results underscore the inherent complexity and nuanced challenges associated with
implicit reasoning in videos. They emphasize the clear advantage of proprietary GPT models, notably
GPT O3, in handling complex implicit video reasoning tasks, attributed to their larger scale and
deeper contextual understanding. Open-source models like Qwen2.5-VL, while competitive in certain
categories, still show substantial room for improvement.
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Figure 8: Effect of Reasoning Prompt

Impact of Reasoning Prompt on
GPT Models We introduced a
structured reasoning prompt specif-
ically emphasizing spatial relation-
ships and narrative summarization be-
fore answering questions. GPT 4.1-
Mini OpenAI (2024a), with the added
reasoning prompt, showed enhanced
accuracy across multiple categories
compared to the standard GPT 4.1-
Mini. Specifically, improvements
were evident in vertical spatial reasoning (from 37.96% to 48.61%), viewpoint and visibility (from
39.02% to 56.1%), and motion and trajectory dynamics (from 41.76% to 54.95%) as shown in
Figure 8. This clearly indicates that structured prompting focused on spatial and narrative reasoning
significantly enhances model performance. Please refer to Section D for detailed reasoning prompt.
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Qwen2.5-VL Frames Scaling
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Figure 9: Effect of Frame Scaling

Effect of Number of Frames: Going from 8 to 16 frames
improves performance modestly. From 16 frames to 32
frames, accuracy saturates or slightly improves, but not
significantly. For Qwen2.5 VL model it improves 2%.

Uneven performance across reasoning categories Models
perform relatively better on Social Interaction and Moti-
vational Reasoning, possibly reflecting pretraining biases
towards human-centric scenarios. Categories involving
numerical inference (Inferred Counting) and nuanced spa-
tial reasoning (Relative Depth and Proximity) consistently
show lower accuracy, highlighting a need for improvement.

5 CONCLUSION

We introduce ImplicitQA, a novel benchmark for evalu-
ating implicit reasoning in videos. Prior datasets largely target explicit visual understanding, leaving
a gap in reasoning over narrative, cinematic content where answers often depend on inferred mo-
tivations and relationships. Across extensive experiments with contemporary models, we find that
state-of-the-art systems struggle on implicit reasoning: scaling model size and extending temporal
context offer only modest gains. Weaknesses are especially pronounced for categories requiring
nuanced numerical inference, fine-grained spatial reasoning, and integration of long-term narrative
context. ImplicitQA provides a rigorous evaluation protocol and baseline analyses to catalyze
research that moves VideoQA beyond surface-level recognition toward deeper, human-like narrative
understanding.
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REPRODUCIBILITY STATEMENT

Fully anonymized source code is provided in the supplementary material. We also include the
ImplicitQA benchmark, with data curation process described in detail in Section 3. Code for all
model evaluations is provided, and the evaluation protocols are detailed in Section 4, A ensuring that
results can be easily reproduced. Upon acceptance, we will release the dataset, evaluation scripts, and
annotation tools.
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We organize the appendix as follows:

• Section A: Data, Tool and Licenses
• Section B: Detailed results across various model settings
• Section C: Detailed ImplicitQA Statistics

Genre, Media Type, Movie Release Timeline and Difficulty
• Section D: Impact of Reasoning Prompt
• Section E: Experiment Statistical Significance
• Section F: Human Baseline
• Section G: FrameQuiz Annotation Tool Interface Overview
• Section H: Qualitative Results on ImplicitQA

A DATA, TOOL AND LICENSES

We plan to publicly release the benchmark, annotation tool, evaluation scripts and evaluation tool
with Apache 2.0 license upon acceptance. The employed multi-modal LMMs are released under
Apache 2.0 license. We ran all our evaluations on NVIDIA A6000 48GB GPUs, and will release the
eval scripts for reproducibility.

B DETAILED RESULTS

We present detailed results for varying model scales, temporal context across different models in
Table 4. The best-performing open-source models were variants of the Qwen2.5 VLWang et al.
(2024a) family at 32B scale. Model scale had a noticeable but diminishing effect: Within Qwen2.5 VL,
increasing model size from 3B to 32B parameters provided modest performance gains (approximately
+2% accuracy improvement). Smaller models, such as LLaVA-OneVision, struggled significantly
in challenging reasoning categories irrespective of scale. Distinct performance variations across
reasoning categories emerged. Social Interaction was relatively easier, with accuracy up to 79.31%
(qwen2.5 VL).

Analysis on increasing frame count generally improves model performance for certain architectures,
but this improvement plateaus or slightly degrades beyond a threshold. For instance, LLaVA-NeXT-
VideoZhang et al. (2024a) exhibited a peak performance at 16 frames (33.9%) with a marginal
decrease at 32 frames (32.56%). Similarly, LLaVA-OneVisionLi et al. (2024a) performed slightly
better at 32 frames (43.16%) compared to 16 frames (43.4%), indicating negligible performance
gains. For Qwen2.5-VLBai et al. (2025) 32B model, increasing frames from 4 to 32 resulted in
accuracy improvements, particularly evident in the inferred counting & social interaction categories,
achieving substantial accuracy improvements from 27.91% to 41.86% and from 62.07% to 79.31%,
respectively. This suggests deeper frame context substantially aids in specific implicit reasoning
tasks.

C IMPLICITQA DETAILED STATISTICS

This section provides additional statistics for ImplicitQA benchmark, highlighting the dataset’s
diversity across multiple dimensions, including

• Genre
• Media type
• Movie Release Timeline
• Difficulty based on hard-ness score
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Table 4: Detailed Results on ImplicitQA for all implicit reasoning categories on various Vide-
oLMMs in multiple settings.

Model Scale #Frames

Lateral
Spatial

Reasoning

Vertical
Spatial

Reasoning

Relative
Depth and
Proximity

Viewpoint
and

Visibility

Motion
& Traj.

Dynamics
Motivational
Reasoning

Inferred
Counting

Physical
& Env.
Context

Social
Interaction &

Relations Avg.
Macro
Avg.

LLaVA-NeXT-Video Zhang et al. (2024a)
7b 8 34.78 31.48 28.95 43.90 37.36 40.24 23.26 42.86 55.17 33.72 37.56
7b 16 36.00 29.60 30.10 48.80 36.30 39.00 30.20 35.70 51.70 33.90 37.50
7b 32 34.78 29.63 30.08 39.02 36.26 36.59 27.91 35.71 37.93 32.56 34.21

LLaVA-OneVision Li et al. (2024a) 7b 16 37.30 46.80 35.00 56.10 57.10 57.30 23.30 50.00 55.20 43.40 46.40
7b 32 35.40 50.46 33.08 53.66 56.04 56.10 18.60 50.00 65.52 43.16 46.54

LLaVA-Video Zhang et al. (2024b)
7b 8 31.68 41.20 29.32 48.78 57.14 57.32 13.95 50.00 62.07 39.02 43.50
7b 16 36.00 44.00 31.60 56.10 60.40 62.20 14.00 50.00 62.10 42.10 46.30
7b 32 36.02 47.22 32.71 51.22 58.24 63.41 16.28 57.14 68.97 43.27 47.91

Qwen2.5-VL Bai et al. (2025)

3b 16 39.75 43.98 33.83 63.41 52.75 56.10 20.93 57.14 65.52 42.95 48.16
7b 1 34.78 38.43 34.21 51.22 46.15 43.90 18.60 57.14 51.72 38.18 41.80
7b 2 40.99 37.96 36.84 56.10 42.86 47.56 18.60 64.29 51.72 40.19 44.10
7b 4 40.37 39.35 37.22 56.10 48.35 52.44 23.26 42.86 48.28 41.25 43.14
7b 8 42.24 46.30 36.09 53.66 50.55 51.22 25.58 57.14 58.62 43.48 46.82
7b 16 41.60 47.20 32.70 61.00 50.50 51.20 25.60 42.90 62.10 42.80 46.10
7b 32 40.99 49.07 35.71 53.66 53.85 58.54 25.58 42.86 75.86 45.07 48.46
32b 4 39.75 44.91 39.10 48.78 41.76 57.32 27.91 57.14 62.07 43.27 46.53
32b 8 38.51 45.83 40.98 56.10 47.25 59.76 23.26 50.00 62.07 44.54 47.08
32b 16 38.51 48.15 37.59 51.22 49.45 62.20 32.56 50.00 62.07 44.75 47.97
32b 32 39.75 45.83 35.71 43.90 49.45 64.63 41.86 57.14 79.31 44.86 50.84

Qwen2-VL Wang et al. (2024a)

2b 16 34.78 43.98 47.37 60.98 39.56 43.90 16.28 57.14 51.72 42.84 43.97
7b 1 38.51 39.35 36.84 53.66 42.86 48.78 13.95 42.86 55.17 39.66 41.33
7b 2 36.65 40.28 40.60 46.34 50.55 50.00 20.93 42.86 58.62 41.57 42.98
7b 4 39.13 45.83 39.47 46.34 49.45 51.22 20.93 50.00 58.62 43.05 44.56
7b 8 37.27 47.69 40.98 53.66 48.35 54.88 16.28 50.00 65.52 44.11 46.07
7b 16 39.80 46.80 40.60 51.20 52.70 58.50 16.30 35.70 72.40 44.90 46.00
7b 32 40.37 49.07 40.98 48.78 48.35 60.98 16.28 35.71 62.07 44.96 44.73

Proprietary Models

GPT 4.1 OpenAI (2024a)
Full 16 42.90 53.20 51.10 48.80 59.30 82.90 41.90 71.40 75.90 54.30 58.60
Mini 16 44.10 37.96 29.32 39.02 41.76 60.98 32.56 78.57 68.97 40.30 48.14
Nano 16 35.40 32.87 28.95 58.54 37.36 36.59 18.60 42.86 55.17 34.25 38.48

GPT O3 OpenAI (2024b) Full 16 50.30 72.20 55.30 78.00 71.40 85.40 39.50 78.60 86.20 64.10 68.60

C.1 GENRES

To further characterize the content diversity in ImplicitQA, we manually annotate both the primary
and secondary genres of each video. We assign these genre annotations by considering genres listed
on dedicated pages for each movie on publicly available sources such as IMDb1 and Wikipedia2.

We assign each video a primary genre, which represents a movie’s core theme and structure; and a
secondary genre which reflects additional aspects of a movie. We observe that these primary and
secondary genres come from a total of 15 different genres which are listed(in alphabetical order) as
follows:

• Action
• Adventure
• Black comedy
• Comedy
• Crime
• Drama
• Fantasy
• Horror
• Mystery
• Psychological horror/thriller
• Romance
• Sci-fi
• Socio-political
• Thriller
• Western

Figure 10 shows the primary and secondary genre distribution of our dataset. We observe that
the dataset includes a wide range of genres, with Comedy, Action, and Adventure being the most
prominent primary, while Comedy, Adventure and Fantasy being the top 3 secondary. This broad

1https://www.imdb.com/
2https://www.wikipedia.org/
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Figure 10: Visualization of ImplicitQA video statistics across primary and secondary genres
for the top seven most frequent categories. A large proportion of animation videos fall under the
Comedy genre, contributing to the higher number of samples annotated as Comedy in both primary
and secondary genre distributions.
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Figure 11: Model accuracy across primary video genres in the ImplicitQA dataset. Performance
varies significantly by genre, with O3 model consistently leading across genres except Romance.

genre coverage ensures the benchmark captures diverse narrative structures, thematic elements, and
stylistic conventions - essential for evaluating implicit reasoning across contexts. To investigate
how genre influences model performance, we show accuracy across primary genre categories in
ImplicitQA. As shown in Figure 11, genre plays a substantial role in performance variation.
Overall models perform best on Action, Comedy, and Romance. In contrast, performance drops
for genres like Drama and Fantasy. Notably, the O3 model outperforms all others across every
genre except Romance, suggesting its stronger ability to generalize across narrative structures. The
variation across genres also underscores the importance of content diversity in benchmark design, as
genre-specific reasoning challenges reveal gaps in current video LMMs capabilities.
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Figure 13: Model accuracy across media types (Animation vs. Live-action). Performance is
consistently higher on live-action videos, with the largest gains observed in higher-capacity models
such as GPT-4.1 and O3.

C.2 MEDIA TYPE

Animation
58.3%

Live-action 41.7%

Figure 12: Distribution of Media Type in
ImplicitQA.

We further categorize the videos into Live-
Action and Animation to highlight the diversity
in visual domains present in ImplicitQA. As
shown in Figure 12, the dataset maintains a bal-
anced composition across both categories, with
58.3% of the videos being animated and 41.7%
live-action. This mix ensures exposure to varied
stylistic, motion, and rendering characteristics
that challenges LMMs.

To further understand model generalization
across different visual domains, we show perfor-
mance on animation and live-action videos. As
shown in Figure 13, all models demonstrate stronger performance on live-action content. The gap is
especially more for larger models like GPT-4.1 and O3, which outperform others by a substantial
margin. These results indicate that models may rely more effectively on grounded visual signals
and realistic spatial cues present in live-action videos, whereas stylized representations in animation
pose additional challenges for implicit reasoning. This highlights the need for further adaptation for
animation-rich inputs.

C.3 MOVIE RELEASE TIMELINE

We annotate the release year for each video and present the distribution by decade in Figure 14.
The ImplicitQA dataset spans a broad temporal range, covering films from the 1960s to current
decade. A film’s release period is often indicative of its visual and narrative style - including factors
such as picture quality, cinematographic techniques, editing conventions, character costumes, and
action design. This temporal diversity in ImplicitQA enhances its realism and ensures broader
generalization by exposing models to varied cinematic styles and storytelling conventions across eras.
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Figure 14: Distribution of videos in ImplicitQA by release year. The dataset spans over 7 decades,
capturing a wide range of visual styles, production techniques, and narrative conventions across
different time periods.

C.4 DIFFICULTY

To better understand model behavior under varying levels of difficulty, we propose a hardness-
based partitioning of the ImplicitQA dataset. Each question is assigned a hardness score
derived from model performance: questions answered incorrectly by all models contribute
more to the score, while those answered correctly by all models contribute none. Specif-
ically, the hardness score is computed by summing each incorrect model’s average accu-
racy. This metric reflects how broadly difficult a question is across model architectures.

0 50 100 150 200 250 300
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Easy Medium Hard

Figure 15: Density distribution of questions in
ImplicitQA based on hardness scores. Ques-
tions are categorized into three difficulty levels
- Easy (0–120), Medium (120–225), and Hard
(225+) - based on model performance scores. The
distribution is approximately uniform, ensuring a
balanced evaluation across varying difficulty lev-
els.

As shown in Figure 15, the distribution of hard-
ness scores is approximately uniform across the
three difficulty categories - Easy, Medium, and
Hard - with roughly equal numbers of questions
in each group. This balanced partitioning al-
lows for a fair evaluation of model performance
across difficulty levels.

Figure 16 shows model accuracy broken down
by these categories. While all models perform
well on Easy questions, accuracy drops substan-
tially for Medium and Hard examples. GPT-4.1
and GPT-O3 demonstrate better generalization
across difficulty levels, whereas other models
perform near or below random chance on the
hardest questions. These findings reveal a steep
difficulty gradient and highlight the value of
hardness-aware analysis for assessing reason-
ing robustness. To contextualize model perfor-
mance, we compare GPT-O3’s accuracy against
human performance. As shown in Figure 17,
GPT-O3 performs comparably to humans on
Easy questions and shows only a modest drop
on Medium questions. However, the gap be-
comes pronounced on Hard examples: while human accuracy remains relatively high, GPT-O3’s
performance declines sharply, approaching random chance. It is important to note that the human base-
line reflects responses from non-expert participants, while ground truth annotations in ImplicitQA
were created by expert annotators with domain familiarity. The relatively strong performance of
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Figure 16: Model accuracy across difficulty categories. While all models perform strongly on Easy
questions, performance drops significantly on Medium and Hard examples.
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Figure 17: Accuracy comparison between GPT-O3 and non-expert human annotator across difficulty
categories. While both perform well on Easy and Medium questions, human accuracy remains robust
on Hard questions, whereas GPT-O3 performance drops significantly. Ground truth annotations were
provided by expert annotators, underscoring the reasoning gap between models and even non-expert
humans on complex questions.

non-experts highlights the accessibility of implicit reasoning for humans, even without expertize,
while also emphasizing the performance ceiling that current models have yet to reach.

C.5 QUESTION WORD DISTRIBUTION

In Figure 18 we present the word count distribution for questions in ImplicitQA.
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Figure 18: ImplicitQA Question word counts

D IMPACT OF REASONING PROMPT

The reasoning prompt used to evaluate the impact of structured reasoning on GPT models is illustrated
in Figure 19. This prompt is specifically designed to guide the model in analyzing video content
for inferred reasoning across the various categories defined in ImplicitQA. It breaks down the
task into sequential steps-analyzing the video, summarizing key spatial relationships, highlighting
important elements, answering the multiple choice question, and providing additional insights-thereby
encouraging systematic focus on implicit reasoning.

The output format enforces a structured response, including a concise summary, bullet-pointed key
themes and spatial cues, the selected answer, and contextual reasoning. This structured approach
is intended to enhance the model’s ability to infer unstated relationships and improve its overall
accuracy.

As demonstrated in Figure 8 of the main paper, incorporating this reasoning-based prompt yields
significant performance gains, improving the accuracy of GPT-4.1 Full by 3.9% and GPT-4.1 Mini by
4.8%. A detailed breakdown of the results is provided in Table 5. In Figure 20, we present a qualitative
example illustrating the effectiveness of the reasoning prompt. When prompted without reasoning,
GPT-4.1 incorrectly identifies the spatial relationship between characters as perpendicular. With the
structured reasoning prompt, the model successfully breaks down spatial positions, directionality, and
frame context to arrive at the correct answer: They are facing directly toward each other. This example
highlights how the reasoning prompt not only improves accuracy but also fosters interpretability by
making the model’s decision-making process more transparent and spatially grounded.

Table 5: Results with Reasoning Prompt on ImplicitQA for all implicit reasoning categories.

Model Scale

Lateral
Spatial

Reasoning

Vertical
Spatial

Reasoning

Relative
Depth and
Proximity

Viewpoint
and

Visibility

Motion
& Traj.

Dynamics
Motivational
Reasoning

Inferred
Counting

Physical
& Env.
Context

Social
Interaction &

Relations Avg.
Macro
Avg.

GPT 4.1 OpenAI (2024a) Full 42.90 53.20 51.10 48.80 59.30 82.90 41.90 71.40 75.90 54.30 58.60
GPT 4.1-Reasoning OpenAI (2024a) Full 50.90 63.00 51.10 46.30 63.70 79.30 41.90 71.40 86.20 58.20 61.50
GPT 4.1 OpenAI (2024a) Mini 44.10 37.96 29.32 39.02 41.76 60.98 32.56 78.57 68.97 40.30 48.14
GPT 4.1-Reasoning OpenAI (2024a) Mini 36.02 48.61 33.08 56.10 54.95 65.85 39.53 64.29 72.41 45.07 52.32

E EXPERIMENT STATISTICAL SIGNIFICANCE

In Table 6, we report the statistical error margins for the Qwen-2.5 VL model. To assess the variability
of the model’s performance, we conducted five independent runs using the same evaluation setup.
For each of the nine implicit reasoning categories in ImplicitQA as well as the overall accuracy,
we compute the mean and standard deviation.

F HUMAN BASELINE

To establish a reference point for model performance, we evaluated with non-expert human annotator
on the ImplicitQA benchmark using our custom-built Implicit-Eval tool. The annotator was not
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system_prompt = “””
Assist users in understanding and gaining insights from video content, with 
particular emphasis on inferring the relative spatial positioning of various 
characters, objects, etc., and answer related multiple choice questions.

Guide users in digesting and analyzing the content of video material by 
breaking down the key themes, summarizing the narrative or subject matter, 
identifying important elements such as spatial relationships, characters, 
plot points, or pivotal moments, and answering any multiple choice questions 
related to the video.

# Steps

1. Analyze Video Content: Identify main themes, characters, and narrative 
structure with a focus on spatial relationships.
2. Summarize: Write a brief summary of the video's key points and overall 
narrative, emphasizing spatial positioning.
3. Highlight Key Elements: Point out significant moments or elements in the 
video, particularly those that reveal spatial positioning and relationships.
4. Answer Multiple Choice Question: Review the provided multiple choice 
question and select the most accurate answer, considering spatial 
inferences.
5. Provide Insights: Offer any additional insights or context, specifically 
regarding spatial relationships, that could help in comprehending the 
video's content.

# Output Format

Provide a structured text output that includes:
- A brief summary paragraph of the video focusing on spatial positioning.
- Bullet points highlighting key themes, spatial relationships, characters, 
and significant elements.
- The selected answer for the multiple choice question.
- Additional spatial relationship-focused insights as a paragraph.

# Notes

- Ensure summaries are concise but comprehensive, with an emphasis on 
spatial understanding.
- Focus on elements that are crucial to understanding the video's spatial 
intent or message.
- Use clear and precise language to define spatial positioning.

- Make sure the multiple choice answer is clearly indicated and explained 
through spatial reasoning.

“””

Figure 19: Reasoning prompt used to guide GPT models in analyzing video content. The prompt
breaks down the task into structured steps - focusing on spatial relationships, narrative, summarizing
key elements, selecting the correct answer, and providing insights - encouraging systematic reasoning
aligned with ImplicitQA’s implicit question categories.

provided with prior exposure to the dataset or answer keys and completed the evaluation at a natural
pace, averaging approximately one minute per question. The annotator achieved an overall accuracy
of 83.0%, with a macro-average score of 85.6% across reasoning categories. While performance was
consistently strong across most categories, Inferred Counting emerged as the most challenging for the
human. This aligns with the category’s reliance on temporal cues and implicit aggregation of visual
information across multiple scenes, factors that often test not only reasoning but also memory and
attention.
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“Summary: The video clip shows a scene where Po, the panda, is performing a playful gesture with two bowls 
held up like ears. Po is positioned in the foreground, centered in the frame, while Master Shifu stands in the 
background. The second part of the clip shifts to a group scene where the mantis is seated at a table with other 
characters, showing their relative positions and directions they face.

Key Elements and Spatial Relationships:

Po is front and center, creating a playful "ears" effect. Master Shifu is positioned behind Po, slightly to the left.

The mantis is seated on the right side of the table, facing toward the left side of the frame.
Shifu and mantis face each other across the table.
Multiple Choice Question Answer:
The question asks about the relative facing directions of the red panda and mantis.

Option A (perpendicular) is incorrect because they are not at right angles.
Option B (same direction, side by side) is incorrect because they are on opposite sides of the table.
Option C (directly toward each other) is correct since the red panda and mantis face each other across the 
table.
Option D (directly away) is incorrect as they are not facing away from each other.

Selected answer: Option C: They are facing directly toward each other”

At the end of the clip, the camera adopts the point 
of view of a character. Which of the following 

animals is that character? 

A: Tiger    C: Snake  
B: Panda    D: Monkey

B: Panda

🌋LLaVA-OneVision

B: Panda

C: Snake

C: Snake

D: Monkey

GPT O3 
(reasoning)

GPT 4.1

Which car is being driven by the woman in black?

A: Truck   C: White car  
B: Black car D: Police car

🌋LLaVA-OneVision

C: White car

B: Black car

B: Black car

B: Black car

GPT O3 
(reasoning)

GPT 4.1

Where is the wolf located relative to the horse? 

A: Below    C: In front  
B: Behind   D: Above

D: Above

🌋LLaVA-OneVision

B: Behind

D: Above

B: Behind

B: Behind

GPT O3 
(reasoning)

GPT 4.1

Starts 
falling

PoV from 
the air

PoV from 
the ground

All cars 
in view

Woman behind 
black car

Looks to 
the left

White car passes 
black car

C: White car

Horse to the 
left of cat

Wolf looks 
down

Cat looks up, 
talks with wolf

Physical and environmental 
context

Vertical spatial reasoning

Viewpoint and visibility

In which direction is the crocodile running relative 
to the green ducks?

A: Away from them  
B: Perpendicular, left to right  
C: Perpendicular, right to left 
D: Towards them

🌋LLaVA-OneVision A: Away from them

GPT O3 
(reasoning)

GPT 4.1

A: Away from them

Motion and trajectory dynamics

D: Towards them

A: Away from them

C: Perpendicular, 
left to right

In the camera frame of reference, what is the 
location of the poodle relative to the chihuahua? 

A: Left    C: Behind  
B: In front    D: Right

D: Right

Relative depth and proximity

Camera moves left

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1 D: Right

D: Right

C: Behind

A: Left

In which direction are the man in orange and the 
turtle looking relative to each other? 

A: Perpendicular C: Away from each other  
B: Same direction    D: Towards each other

D: Towards each other

Lateral spatial reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

D: Towards each 
other

D: Towards each 
other

D: Towards each 
other

C: Away from each 
other

Where is the redhead boy located relative to the 
man with the long black hair and black clothes? 

A: In front and below C: Behind and below 
B: Behind and above   D: In front and above

A: In front and below

Vertical Spatial Reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

A: In front and 
below

In which direction are the red panda and the mantis 
facing relative to each other?

A: They are facing in perpendicular directions
B: They are facing the same direction
C: They are facing directly toward each other
D: They are facing directly away from each other

GPT 4.1

"A": "They are facing in perpendicular directions"

A: In front and 
below

A: In front and 
below

A: In front and 
below

GPT 4.1
(reasoning)

Figure 20: Qualitative example from ImplicitQA demonstrating how the reasoning prompt
improves GPT-4.1’s performance. Without structured reasoning, the model incorrectly selects Option
A. With the reasoning prompt, the model provides a detailed spatial analysis of character positions
and orientations, ultimately selecting the correct answer, Option C. This showcases the benefit of
guiding the model through spatially grounded reasoning steps.

Table 6: Mean and Standard Deviation Across Categories (in %)

Lateral
Spatial

Reasoning

Vertical
Spatial

Reasoning

Relative
Depth and
Proximity

Viewpoint
and

Visibility

Motion
& Traj.

Dynamics
Motivational
Reasoning

Inferred
Counting

Physical
& Env.
Context

Social
Interaction &

Relations Avg.

Mean 41.61 47.41 32.71 60.00 50.55 51.71 26.51 42.86 62.07 42.93
Std Dev 0.00 0.25 0.00 1.34 0.00 0.67 1.27 0.00 0.00 0.12

We further analyze the human accuracy across questions grouped by difficulty level using our
hardness-based scoring method. As shown in Figure 17, the non-expert human achieved near-ceiling
performance on Easy questions and maintained strong performance on Medium ones. Remarkably,
even on Hard questions defined by consistent failure across models, the human annotator performed
well above chance, achieving over 70% accuracy. This analysis underscores the significant gap
between human and model capabilities on complex reasoning tasks. Even non-expert humans
demonstrate strong generalization and implicit understanding, particularly in scenes that demand
spatial, temporal, or motivational reasoning, highlighting the limitations of current state-of-the-art
Video LMMs.

These results indicate that, while challenging, the questions are well-defined, solvable, and carefully
validated requiring real reasoning capabilities.
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G ANNOTATION TOOL INTERFACE

As discussed in Section 3.1 in the Main paper, we have designed and built an annotation tool for
intuitive and efficient workflow, which allows annotators to follow a structured approach towards
formulating multiple choice QA pairs for desired video clip segments. The tool is optimized for fast
navigation and efficient verification. Said annotation can be systematically performed by adhering to
the following procedure. We have divided the procedure into 4 intuitive sub-procedures which further
comprise of 3 steps each. We describe these subprocedures below.

1. Video Download: Our tool allows the user to input a video URL and download the associated
video. The user needs to run backend.py, navigate to the web interface using the generated
link, input desired URL and click on the “Download Video" button. The tool downloads the
video and shows it in the embedded display.

2. Clip Segment Selection: The user can put time markers at any desired place using the
provided time bar, and viewing the video in the embedded display. The user can pause,
rewind and analyze the video frame-by-frame to determine the best possible clip segment
suiting to their requirements. Then the user can preview their selected clip segment by
clicking the “Preview Selection" button.

3. QA Annotation: After selecting the desired segment, the user can formulate the appropriate
question and type it in the designated space. The tool has provision to input as many choices
in the designated spaces as needed, using the “Add Answer Choice" button. After finalizing,
the user can click the “Save Annotation button to record their multiple choice QA pair.

4. Verification: The generated QA pair can be viewed in the mini-display at the bottom. Once
the user has recorded all their annotations for the video clip, they can verify said annotations
by clicking on the “View Annotations" Tab at the top of the page. There, they can see all
the videos annotated in that particular session. Clicking on the “View Annotations" button
associated to a video takes the user to the page for that video where all annotations are listed
along with the embedded display which can play the relevant clip. Clicking on a question
displays all details associated with that question including the relevant timestamps ensuring
complete verification.

H QUALITATIVE RESULTS

To illustrate the complexity and diversity of implicit reasoning required in our benchmark, we present
qualitative examples spanning all nine reasoning categories in Figure 22,23,24. For each example,
we show the relevant video frames, question, answer choices, correct answer, and model predictions.
These examples highlight a wide range of reasoning challenges -from spatial positioning and motion
inference to social understanding and inherent explanation. Notably, GPT-O3 demonstrates superior
performance in most cases.

H.1 VIEWPOINT AND VISIBILITY

In the Viewpoint and Visibility example shown in Figure 22, only GPT-O3 correctly infers the adopted
perspective of the panda character, showcasing its ability to track camera shifts and narrative cues.

H.2 PHYSICAL AND ENVIRONMENTAL CONTEXT

In the Physical and Environmental Context scenario as in Figure 22, GPT-O3 again outperforms
others by correctly identifying the white car driven by the woman in black, leveraging spatial cues
across frames.

H.3 VERTICAL SPATIAL REASONING

As shown in Figure 22, all models successfully answer a Vertical Spatial Reasoning question involving
relative positions in a multi-level scene.
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(1) Initial Web Interface (2) Downloading the Video

(3) Video Downloaded Successfully (4) Setting the Start Time

(5) Setting the End Time (6) Previewing Selection

Video Download Clip Segment Selection QA Annotation Verification
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(9) Annotation Saved Successfully (10) Verifying the Clipped Video Segment

(11) Navigating to “View Annotations” Page (12) Verifying the Saved Annotation

(7) Formulating the Question (8) Formulating the Choices, Correct Answer and Saving

Figure 21: Schematic illustration of the annotation workflow using our FrameQuiz tool. The
process is organized into four sub-procedures: Video Download, Clip Segment Selection, QA
Annotation, and Verification. Each sub-procedure contains three steps, resulting in a 12-step pipeline
for generating high-quality multiple-choice QA pairs from video clips. Final annotations are stored
locally following verification.
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H.4 RELATIVE DEPTH AND PROXIMITY

In contrast, more nuanced categories reveal sharper contrasts in performance as shown in Figure 23.
For Relative Depth and Proximity, GPT demonstrates strong spatial inference by accurately localizing
characters and interpreting their orientations.

H.5 LATERAL SPATIAL REASONING

For Lateral Spatial Reasoning as shown in Figure 23, we see that most model get it correct except
GPT-4.1.

H.6 MOTION AND TRAJECTORY DYNAMICS

In the Motion and Trajectory Dynamics example shown in Figure 23, most models correctly track
the direction of movement, though GPT-O3 misjudges the path—suggesting sensitivity to camera
motion.

H.7 SOCIAL INTERACTION AND RELATIONSHIPS

The Social Interaction and Relationships case shown in Figure 24, involving subtle facial cues
and body language, is correctly answered only by GPT-O3 and GPT-4.1, reflecting their advanced
multimodal understanding.

H.8 INFERRED COUNTING

For Inferred Counting shown in Figure 24, models struggle to aggregate information across frames,
with GPT-O3 and Qwen-VL identifying the correct number, while GPT-4.1 undercounts.

H.9 MOTIVATIONAL REASONING

Finally, in the Motivational Reasoning example in Figure 24, GPT-O3 and GPT-4.1 correctly attribute
the escape of the rats to being discovered, while others fail to connect with the relevant event.
These examples collectively highlight the diversity and difficulty of implicit reasoning tasks in
ImplicitQA.
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“Summary: The video clip shows a scene where Po, the panda, is performing a playful gesture with two bowls 
held up like ears. Po is positioned in the foreground, centered in the frame, while Master Shifu stands in the 
background. The second part of the clip shifts to a group scene where the mantis is seated at a table with other 
characters, showing their relative positions and directions they face.

Key Elements and Spatial Relationships:

Po is front and center, creating a playful "ears" effect. Master Shifu is positioned behind Po, slightly to the left.

The mantis is seated on the right side of the table, facing toward the left side of the frame.
Shifu and mantis face each other across the table.
Multiple Choice Question Answer:
The question asks about the relative facing directions of the red panda and mantis.

Option A (perpendicular) is incorrect because they are not at right angles.
Option B (same direction, side by side) is incorrect because they are on opposite sides of the table.
Option C (directly toward each other) is correct since the red panda and mantis face each other across the 
table.
Option D (directly away) is incorrect as they are not facing away from each other.

Selected answer: Option C: They are facing directly toward each other”

At the end of the clip, the camera adopts the point 
of view of a character. Which of the following 

animals is that character? 

A: Tiger    C: Snake  
B: Panda    D: Monkey

B: Panda

🌋LLaVA-OneVision

B: Panda

C: Snake

C: Snake

D: Monkey

GPT O3 
(reasoning)

GPT 4.1

Which car is being driven by the woman in black?

A: Truck   C: White car  
B: Black car D: Police car

🌋LLaVA-OneVision

C: White car

B: Black car

B: Black car

B: Black car

GPT O3 
(reasoning)

GPT 4.1

Where is the wolf located relative to the horse? 

A: Below    C: In front  
B: Behind   D: Above

D: Above

🌋LLaVA-OneVision

B: Behind

D: Above

B: Behind

B: Behind

GPT O3 
(reasoning)

GPT 4.1

Starts 
falling

PoV from 
the air

PoV from 
the ground

All cars 
in view

Woman behind 
black car

Looks to 
the left

White car passes 
black car

C: White car

Horse to the 
left of cat

Wolf looks 
down

Cat looks up, 
talks with wolf

Physical and environmental 
context

Vertical spatial reasoning

Viewpoint and visibility

In which direction is the crocodile running relative 
to the green ducks?

A: Away from them  
B: Perpendicular, left to right  
C: Perpendicular, right to left 
D: Towards them

🌋LLaVA-OneVision A: Away from them

GPT O3 
(reasoning)

GPT 4.1

A: Away from them

Motion and trajectory dynamics

D: Towards them

A: Away from them

C: Perpendicular, 
left to right

In the camera frame of reference, what is the 
location of the poodle relative to the chihuahua? 

A: Left    C: Behind  
B: In front    D: Right

D: Right

Relative depth and proximity

Camera moves left

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1 D: Right

D: Right

C: Behind

A: Left

Where is the redhead boy located relative to the 
man with the long black hair and black clothes? 

A: In front and below C: Behind and below 
B: Behind and above   D: In front and above

A: In front and below

Vertical Spatial Reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

A: In front and 
below

In which direction are the red panda and the mantis 
facing relative to each other?

A: They are facing in perpendicular directions
B: They are facing the same direction
C: They are facing directly toward each other
D: They are facing directly away from each other

GPT 4.1

"A": "They are facing in perpendicular directions"

In which direction are the man in orange and the 
turtle looking relative to each other? 

A: Perpendicular C: Away from each other  
B: Same direction    D: Towards each other

D: Towards each other

Lateral spatial reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

D: Towards each 
other

D: Towards each 
other

D: Towards each 
other

C: Away from each 
other

A: In front and 
below

A: In front and 
below

A: In front and 
below

GPT 4.1
(reasoning)

Why are the three old men looking at the operating 
men in such a manner?

A: They do not approve of the operating men
B: They do not care about the situation
C: They completely approve of the operating men
D: They are excited about the operation

A: They do not approve of the operating men

Social Interaction and 
Relationships

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

A: Do not approve

A: Do not approve

C: Completely 
approve

C: Completely 
approve

Positions scalpel Look at old men Shake their head Moves scalpel

1 1
2 3

How many purple balls appear in the clip?

A: 5 C: 4
B: 3    D: 2

B: 3

Inferred Counting 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

C: 3

C: 3

C: 3

D: 2

Why did the rats escape?

A: To avoid mouse traps 
B: They were found by the old lady  
C: They didn't find what they were looking 
D: To avoid being found by the old lady

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

D: To avoid being 
found by the ...

B: They were 
found by the...

D: To avoid being 
found by the ...

B: They were 
found by the...

B: They were found by the old lady

Causal and Motivational 
Reasoning

Figure 22: More Qualitative ImplicitQA examples, targeting distinct implicit-reasoning dimen-
sions.
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At the end of the clip, the camera adopts the point 
of view of a character. Which of the following 

animals is that character? 

A: Tiger    C: Snake  
B: Panda    D: Monkey

B: Panda

🌋LLaVA-OneVision

B: Panda

C: Snake

C: Snake

D: Monkey

GPT O3 
(reasoning)

GPT 4.1

Which car is being driven by the woman in black?

A: Truck   C: White car  
B: Black car D: Police car

🌋LLaVA-OneVision

C: White car

B: Black car

B: Black car

B: Black car

GPT O3 
(reasoning)

GPT 4.1

Where is the wolf located relative to the horse? 

A: Below    C: In front  
B: Behind   D: Above

D: Above

🌋LLaVA-OneVision

B: Behind

D: Above

B: Behind

B: Behind

GPT O3 
(reasoning)

GPT 4.1

Starts 
falling

PoV from 
the air

PoV from 
the ground

All cars 
in view

Woman behind 
black car

Looks to 
the left

White car passes 
black car

C: White car

Horse to the 
left of cat

Wolf looks 
down

Cat looks up, 
talks with wolf

Physical and environmental 
context

Vertical spatial reasoning

Viewpoint and visibility

In which direction is the crocodile running relative 
to the green ducks?

A: Away from them  
B: Perpendicular, left to right  
C: Perpendicular, right to left 
D: Towards them

🌋LLaVA-OneVision A: Away from them

GPT O3 
(reasoning)

GPT 4.1

A: Away from them

Motion and trajectory dynamics

D: Towards them

A: Away from them

C: Perpendicular, 
left to right

In the camera frame of reference, what is the 
location of the poodle relative to the chihuahua? 

A: Left    C: Behind  
B: In front    D: Right

D: Right

Relative depth and proximity

Camera moves left

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1 D: Right

D: Right

C: Behind

A: Left

In which direction are the man in orange and the 
turtle looking relative to each other? 

A: Perpendicular C: Away from each other  
B: Same direction    D: Towards each other

D: Towards each other

Lateral spatial reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

D: Towards each 
other

D: Towards each 
other

D: Towards each 
other

C: Away from each 
other

Figure 23: More Qualitative ImplicitQA examples, targeting distinct implicit-reasoning dimen-
sions.
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“Summary: The video clip shows a scene where Po, the panda, is performing a playful gesture with two bowls 
held up like ears. Po is positioned in the foreground, centered in the frame, while Master Shifu stands in the 
background. The second part of the clip shifts to a group scene where the mantis is seated at a table with other 
characters, showing their relative positions and directions they face.

Key Elements and Spatial Relationships:

Po is front and center, creating a playful "ears" effect. Master Shifu is positioned behind Po, slightly to the left.

The mantis is seated on the right side of the table, facing toward the left side of the frame.
Shifu and mantis face each other across the table.
Multiple Choice Question Answer:
The question asks about the relative facing directions of the red panda and mantis.

Option A (perpendicular) is incorrect because they are not at right angles.
Option B (same direction, side by side) is incorrect because they are on opposite sides of the table.
Option C (directly toward each other) is correct since the red panda and mantis face each other across the 
table.
Option D (directly away) is incorrect as they are not facing away from each other.

Selected answer: Option C: They are facing directly toward each other”

At the end of the clip, the camera adopts the point 
of view of a character. Which of the following 

animals is that character? 

A: Tiger    C: Snake  
B: Panda    D: Monkey

B: Panda

🌋LLaVA-OneVision

B: Panda

C: Snake

C: Snake

D: Monkey

GPT O3 
(reasoning)

GPT 4.1

Which car is being driven by the woman in black?

A: Truck   C: White car  
B: Black car D: Police car

🌋LLaVA-OneVision

C: White car

B: Black car

B: Black car

B: Black car

GPT O3 
(reasoning)

GPT 4.1

Where is the wolf located relative to the horse? 

A: Below    C: In front  
B: Behind   D: Above

D: Above

🌋LLaVA-OneVision

B: Behind

D: Above

B: Behind

B: Behind

GPT O3 
(reasoning)

GPT 4.1

Starts 
falling

PoV from 
the air

PoV from 
the ground

All cars 
in view

Woman behind 
black car

Looks to 
the left

White car passes 
black car

C: White car

Horse to the 
left of cat

Wolf looks 
down

Cat looks up, 
talks with wolf

Physical and environmental 
context

Vertical spatial reasoning

Viewpoint and visibility

In which direction is the crocodile running relative 
to the green ducks?

A: Away from them  
B: Perpendicular, left to right  
C: Perpendicular, right to left 
D: Towards them

🌋LLaVA-OneVision A: Away from them

GPT O3 
(reasoning)

GPT 4.1

A: Away from them

Motion and trajectory dynamics

D: Towards them

A: Away from them

C: Perpendicular, 
left to right

In the camera frame of reference, what is the 
location of the poodle relative to the chihuahua? 

A: Left    C: Behind  
B: In front    D: Right

D: Right

Relative depth and proximity

Camera moves left

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1 D: Right

D: Right

C: Behind

A: Left

Where is the redhead boy located relative to the 
man with the long black hair and black clothes? 

A: In front and below C: Behind and below 
B: Behind and above   D: In front and above

A: In front and below

Vertical Spatial Reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

A: In front and 
below

In which direction are the red panda and the mantis 
facing relative to each other?

A: They are facing in perpendicular directions
B: They are facing the same direction
C: They are facing directly toward each other
D: They are facing directly away from each other

GPT 4.1

"A": "They are facing in perpendicular directions"

In which direction are the man in orange and the 
turtle looking relative to each other? 

A: Perpendicular C: Away from each other  
B: Same direction    D: Towards each other

D: Towards each other

Lateral spatial reasoning 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

D: Towards each 
other

D: Towards each 
other

D: Towards each 
other

C: Away from each 
other

A: In front and 
below

A: In front and 
below

A: In front and 
below

GPT 4.1
(reasoning)

Why are the three old men looking at the operating 
men in such a manner?

A: They do not approve of the operating men
B: They do not care about the situation
C: They completely approve of the operating men
D: They are excited about the operation

A: They do not approve of the operating men

Social Interaction and 
Relationships

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

A: Do not approve

A: Do not approve

C: Completely 
approve

C: Completely 
approve

Positions scalpel Look at old men Shake their head Moves scalpel

1 1
2 3

How many purple balls appear in the clip?

A: 5 C: 4
B: 3    D: 2

B: 3

Inferred Counting 🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

C: 3

C: 3

C: 3

D: 2

Why did the rats escape?

A: To avoid mouse traps 
B: They were found by the old lady  
C: They didn't find what they were looking 
D: To avoid being found by the old lady

🌋LLaVA-OneVision

GPT O3 
(reasoning)

GPT 4.1

D: To avoid being 
found by the ...

B: They were 
found by the...

D: To avoid being 
found by the ...

B: They were 
found by the...

B: They were found by the old lady

Causal and Motivational 
Reasoning

Figure 24: More Qualitative ImplicitQA examples, targeting distinct implicit-reasoning dimen-
sions.

27


	Introduction
	Related Benchmarks
	Vision Only Benchmarks
	Vision and Speech Fusion Benchmarks

	Dataset Curation
	Annotation Tool and Data Collection
	Dataset Categorization

	Benchmarking
	Conclusion
	Data, Tool and Licenses
	Detailed Results
	ImplicitQA Detailed Statistics
	Genres
	Media Type
	Movie Release Timeline
	Difficulty
	Question Word Distribution

	Impact of Reasoning Prompt
	Experiment Statistical Significance
	Human Baseline
	Annotation Tool Interface
	Qualitative Results
	Viewpoint and Visibility
	Physical and Environmental Context
	Vertical Spatial Reasoning
	Relative Depth and Proximity
	Lateral Spatial Reasoning
	Motion and Trajectory Dynamics
	Social Interaction and Relationships
	Inferred Counting
	Motivational Reasoning


