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ABSTRACT

Diffusion models, empowered as an input augmentation technique, have demon-
strated promise in domain adaptation. However, to effectively capture shared char-
acteristics between two data densities, such a diffusion model needs to be trained
using both source and target data for its generation. This constraint narrows its ap-
plication to a more demanding yet authentic scenario where source data remains
inaccessible during target adaptation, i.e., source-free domain adaptation (SFDA).
In the absence of source data during adaptation, which hinders the analytical quan-
tification of domain shift, can we employ the pre-trained source representation to
formulate a diffusion model for facilitating the unsupervised clustering in target
adaptation? To answer this question, we introduce a novel method, discriminative
neighborhood diffusion (DND). DND transforms the pre-trained source represen-
tation into a target-to-source diffusion model by parameterizing the prior densities
of the diffusion process, leveraging the smoothness indicated by latent k-nearest
neighbors (k-NNs). The samples generated from the diffusion model are then
used as positive keys for contrastive clustering during adaptation. This process
effectively introduces a form of supervision into unsupervised clustering by in-
corporating the latent geometries from both the source and target domains’ latent
k-NNs. By evaluating DND against various SFDA methods on multiple bench-
mark datasets, we demonstrate the discriminative potential of diffusion models in
the absence of source data. Moreover, the effectiveness of DND is demonstrated
as it successfully solves SFDA problems, achieving state-of-the-art performance.

1 INTRODUCTION

How can we generate informative features when we have limited annotated data points? This chal-
lenge intersects the fields of semi-supervised learning (SSL) and domain adaptation (DA). SSL relies
on the smoothness assumption, which posits that neighboring data points are likely to share similar
labels, thus facilitating the propagation of knowledge from labeled to nearby unlabeled points (Iscen
et al., 2019). In contrast, DA focuses on counteracting the decline in model performance due to shifts
in data distributions, by learning shared representations from diverse data distributions (Ben-David
et al., 2006), and is known to enhance the generalizability of models (Radford et al., 2018). In this
study, drawing inspiration from SSL and DA, we employ a generative model, specifically a diffusion
model, to address source-free domain adaptation (SFDA) problems. SFDA primarily involves adapt-
ing models to new target domains without using source data during target adaptation. Our method
centers on the SSL principle of latent geometry, discerned through the k-nearest neighbors (k-NNs)
in latent space, which explicitly guides the knowledge transfer for SFDA. To implement this, we
use generative models to transform target latent features, imparting them with source-specific traits,
under the guidance of latent geometry in the absence of source data.

In brief, we aim to explore how generative models can acquire and utilize their discriminative po-
tential by leveraging the concept of smoothness. Our research investigates how a generative model,
with a prior distribution parameterized by the latent geometry of a specific (source) data density,
can disperse the ground truth knowledge of its data points within their respective neighborhoods in
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latent space during training. Subsequently, this model can retrieve this knowledge near data points
that exhibit similar latent geometry within a new, similar (target) data density. This strategy enables
the seamless use of the pre-trained source classifier in the target domain. It eliminates the need for
both access to source data and updates to the classifier’s model parameters during target adaptation.
Our diffusion model stands apart from typical generative models, which aim to generate new data
points. Instead, we employ this model as a domain shift corrector. Its purpose is to refine the fea-
tures of the unlabeled target domain using knowledge learned from the labeled source domain, all
without needing to access source data. More importantly, the smoothness in latent geometry guar-
antees that there is a match between the transformed target features and the source-specific ground
truth knowledge retrieved from our diffusion model. This approach successfully addresses the most
challenging aspect of SFDA, which is to explicitly transfer knowledge without access to source data.

We name this method discriminative neighborhood diffusion (DND). DND employs diffusion mod-
els, not for the purpose of image generation, but to refine feature spaces and guide clustering in
SFDA. In general, diffusion models operate on thermodynamic principles, simplifying and recon-
structing data densities in a manner similar to substance dispersion (Sohl-Dickstein et al., 2015).
This similarity emphasizes the need for properly setting the prior in the diffusion process. Crucially,
our approach involves aptly determining the Gaussian prior’s mean and variance within diffusion.
Our diffusion process, by tuning parameters in accordance with latent geometry during both source
pre-training and target adaptation phases, refines target features to match source-specific charac-
teristics. These characteristics relate to specific source ground truths and adapt to changing data
densities, effectively addressing domain shifts.

Our approach, depicted in Figure 1, is contextualized within SFDA: Source Pre-training: We start
by training a classifier on a labeled source dataset to create a feature space and decision boundary.
Concurrently, we train a diffusion model to generate features beyond the query data point’s encoded
space, focusing on its neighborhood. This process ensures that the features generated closely match
the query’s ground truth. The diffusion model is specifically trained to produce features that stay
close to the ground truth class yet away from the decision boundary, as shown in Figure 1. Target
Adaptation: During this phase, we keep the diffusion model and classifier parameters fixed, but
update the encoder. The aim is to extract the source ground truth from each target query’s diffu-
sion profile and realign the target features to the nearby source decision boundary. This phase is
essential for successful unsupervised clustering, as it utilizes explicit guidance from supervised pre-
training. It effectively transforms target features to resemble those of the source, thereby steering
them towards the proximate source decision boundary. Our contributions are threefold:

• We introduce a diffusion model with a discriminative focus for SFDA, validated by experiments
on classification benchmarks to assess domain shift (see Appendices).

• We incorporate latent geometry, derived from k-NNs, into our model. This integration facilitates
the storage and retrieval of ground truth knowledge across various data distributions, ensuring the
correspondence between the encoded target features and the source knowledge retrieved.

• Our method demonstrates superior performance in SFDA, showcasing its ability to transfer
knowledge without source data.

2 RELATED WORK

Contrastive Source-Free Domain Adaptation SFDA is a transfer learning task of adapting a
model trained on one labeled data domain to perform well on another unlabeled domain with dif-
ferent data densities. Compared with other DA settings, this adaptation lacks access to source data,
adding complexity to domain shift estimation (Liang et al., 2020). Contrastive learning, a powerful
SSL technique, enhances model robustness by pre-training on unsupervised clustering in the latent
space (Chen et al., 2020). In SFDA, the tasks in both domains are identical, with the same number
of classes, which allows us to formulate the contrastive objective in the output probability space, fa-
cilitating direct clustering of samples based on their task-specific classes. The superior performance
of contrastive SFDA (Yang et al., 2022; Zhang et al., 2022), as demonstrated in comparison to other
methods, strongly motivates us to explore the discriminative essence of diffusion generative models.
Several compelling reasons support our choice to build our research upon contrastive SFDA:

• Assessing the discriminativeness of diffusion-generated features. Transferring knowledge
from labeled to unlabeled data helps assess the discriminative quality of the generated features.
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Figure 1: Motivation. We simplify the problem into binary classification, where squares and dia-
monds belong to class 0, and triangles and inverted triangles belong to class 1. Squares and triangles
originate from source domain, while diamonds and inverted triangles are from target domain. The
diffusion profile size is determined by on the mean and variance of the query’s k-NN features.

• Separate supervised source and unsupervised target training. The training is split into source
pre-training and unsupervised target adaptation, helping us capture the level of supervision from
the generated features by evaluating the performance in classifying unlabeled target samples.

• Contrastive clustering. The accuracy of the clusters formed via contrastive learning largely
depends on the positive keys, allowing us to assess the discriminative essence of diffusion models.

Diffusion models Diffusion generative models (DGMs) are categorized into stochastic and deter-
ministic types based on noise injection into stochastic differential equations (SDEs) and their use
of ordinary differential equations (ODEs) to nullify this noise. The standard approach to formulate
DGMs involves representing each diffusion step as the solution to an SDE (Ho et al., 2020). This
SDE accounts for random fluctuations due to Brownian motion, while drifts in the SDE indicate the
deterministic paths of the diffusion process, modeled using ODEs (for further details on formulating
the diffusion step using SDE, please refer to Appendix B). We aim to demonstrate the potential of
diffusion models in enhancing discriminative processes rather than performance improvement. To
simplify, we avoid complex covariance matrix estimation related to Brownian motion (Song et al.,
2021) and adopt a deterministic diffusion model with basic sampling strategies (Heitz et al., 2023).
In our work, each diffusion step is solely represented by the deterministic path of a noisy sample
projected onto the data density.

Domain adaptation using diffusion models Recently, DGMs have gained attention as an input
augmentation technique in the domain adaptation community. For instance, a text-to-image diffusion
model was used to synthesize the target domain with source labels, showcasing the effectiveness of
diffusion models in one-shot unsupervised DA (Benigmim et al., 2023). This text-guided domain
adaptation technique has also proven effective in transferring knowledge from 3D generative models
(Kim & Chun, 2023). Moreover, DGMs learned from multiple source domains have been used to
condition approximate inference on the target domain (Graikos et al., 2022). However, existing
research has focused on augmenting training data using DGMs without considering incorporating
tasks that are inherently discriminative. Furthermore, none of the existing studies has demonstrated
the effectiveness of DGMs in transferring knowledge for SFDA.

Source-free domain adaptation using generative models In the absence of source data during
target adaptation, using generative models to generate source-like images or feature prototypes is
a typical strategy for SFDA. CPGA (Qiu et al., 2021) generates class-specific avatar feature proto-
types via contrastive learning, aligning pseudo-labeled target features for domain adaptation without
source data. 3C-GAN (Li et al., 2020) combines a discriminator, generator for target-style samples,
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and a pre-trained predictor to enhance target domain accuracy, but requires careful regularization
to balance classification and image generation training objectives. Differently, our method employs
neighborhood-informed diffusion models to transform target features into source-like ones, serving
as a domain shift corrector. This approach, using the diffusion model’s prior density for feature
transformation, represents a significant departure from conventional domain adaptation strategies.

3 METHOD

3.1 PRELIMINARY

Notations We denote a set of data points from the source domain as S = {(xs,i,ys,i)}Ni=1 where
xs,i represents i-th source input, and ys,i denotes its corresponding ground truth. Also, a set of
data points drawn from the target domain is denoted as T = {xt,i}Mi=1 with xt,i denoting i-th target
input. Here, no access to target labels yt is available during adaptation. A classification model f ,
which predicts the ground truth for both data domains, consists of an encoder G and a classifier F
i.e. f = F ◦ G. The deterministic paths of the diffusion model D are also parameterized using
neural nets.

G operates by converting input data into their latent features (i.e., encoded features). F converts the
encoded or generated features (from D) into probability vectors, with each dimension corresponding
to a one-hot encoding of a class. Meanwhile, D employs prior samples, matching the dimensionality
of encoded features, to generate discriminative features that extend beyond the encoded space.

Neighborhood definition The neighborhood of a query data is defined by its k-NNs in the en-
coded space, where we measure similarity within a feature bank that includes features encoded from
all training data. To elaborate, we use the feature bank established in the source domain as an ex-
ample: BS := {Gs(x

s,j) | xs,j ∈ S}Nj=1, where Gs is the encoder optimized using source samples.
Similar to (Huang et al., 2019), given a query’s feature vector zs,i = Gs(x

s,i), we employ the cosine
similarity to determine its k-NNs within BS:

d(zs,i,Bj
S) :=

zs,i · Bj
S

||zs,i|| · ||Bj
S||

, (1)

where Bj
S denotes the j-th element of BS that corresponds to an input data xs,j . We use differ-

ent notations for the query’s encoded features zs,i and the features Bj
S stored in the feature bank

due to potential differences before updating the feature bank with the current encoder parameters.
Therefore, the neighborhood comprising k-NNs of the query zs,i is defined as:

Nk(z
s,i) := argminmax(K)≤N,|K|=k

∑
j∈K

d(zs,i,Bj
S), (2)

where K is a set that includes the indices of all k-NNs in BS.

Diffusion model formulation To transition from a stable density sample z0 to a complex density
sample z1, we use the deterministic diffusion model known as Iterative α-(De)blending (IADB)
(Heitz et al., 2023). This model, inspired by blending and deblending operations in image editing,
transforms (z0, z1) into zα using a blending coefficient α, and vice versa. Although the posterior
densities from deblending, (ẑ0, ẑ1), may differ from the initial densities (p0 × p1), the law of total
probability allows us to revert these posterior densities to the initial ones by summing over zα
sampled from pα. Essentially, the stochastic mapping between two latent densities, pα1 and pα2 ,
can be simplified into two stages: α1-deblending and α2-blending, as expressed in Equation 3:

zα1
→ (z0, z1) → zα2

, (3)

where zα1
∼ pα1

and zα2
∼ pα2

. This sampling is applied iteratively with blending parameters
αt = t/T , where t = 0, 1, ..., T , to facilitate the transformation of z0 ∼ p0 into z1 ∼ p1 (refer to
Algorithm 1). To ensure stability in this process, the expected values of posterior samples are calcu-
lated, thereby making it deterministic. A neural network is used to estimate the average difference
between the posterior samples ẑ1 and ẑ0 at each αt. The training of D is to align this estimated
average difference with that of the initial densities (as detailed in Algorithm 2).

4



Under review as a conference paper at ICLR 2024

Algorithm 1: Sampling from Diffusion Models

1 Input: samples from initial densities (z0, z1) ∼ (p0 × p1), time steps T , and αt =
t
T ;

2 for t = 0, 1, ..., T − 1 do
3 zαt+1

= zαt
+ (αt+1 − αt)D(zαt

, αt) ;
4 end
5 Output: posterior sample ẑ1 = zαT

≈ z1.

Algorithm 2: Training Diffusion Models
1 Input: samples from initial densities (z0, z1) ∼ (p0 × p1), blending parameters

α ∼Uniform[0, 1], and parameters ϕ for D;
2 for t = 0, 1, ..., T do
3 zαt

= (1− αt)z0 + αtz1 ;
4 update ϕ to minimize Ldif = Eαt,zαt

[||Dϕ(zαt
, αt)− E(z0,z1)|(zαt ,αt)[z1 − z0]||2];

5 sample ẑ1 using Algorithm 1 and update ϕ to minimize Lce =
1
N

∑N
i=1 1[Fs(ẑ1) ̸= ys,i];

6 end
7 Output: updated diffusion model parameters ϕ.

3.2 DISCRIMINATIVE NEIGHBORHOOD DIFFUSION

In this section, we present our method discriminative neighborhood diffusion (DND), designed to
tackle the SFDA problem, which operates in two phases: source pre-training and target adaptation.
Notably, we highlight how DND explicitly transfers knowledge, distinguishing it from existing
methods that do so implicitly.

3.2.1 SOURCE PRE-TRAINING

Source representation learning The goal of this stage is to train the classification model fs us-
ing source data and their labels, with the training objective to minimize the source classification
error: ϵS(fs) = 1

N

∑N
i=1 1[fs(x

s,i) ̸= ys,i]. We use the cross-entropy loss for optimizing the
model parameters. This stage ensures that, as the training objective converges, the model’s output
probabilities closely match their corresponding ground truth.

Diffusion model learning The pre-trained source encoder Gs and classifier F are then used to
generate samples for the initial densities (z0, z1) ∼ (p0 × p1) for training the diffusion model, as
outlined in Algorithm 2. To prevent confusion, we use the notation (zs0, z

s
1) ∼ (ps0 × ps1) to denote

the initial densities in this stage, where ps0 is a Gaussian density parameterized by the latent k-NNs
of zs. To be specific, we calculate the mean and variance of ps0 as follows: µs

0 = 1
k

∑k
j=1 N

j
k(z

s)

and σs
0
2 = 1

k

∑k
j=1(N

j
k(z

s) − µs
0)

2, which leads to ps0 ∼ N (µs
0, σ

s
0
2). Moreover, zs ∼ ps1 is the

encoded feature density whose samples should be correctly classified to align with the source ground
truth, hence the use of F .

During this stage, the parameters of both Gs and F remain fixed, with only the parameters of D
being updated. As illustrated in Figure 2, in each iteration, a mini-batch of xs is fed into Gs, which
transforms them into the corresponding zs. These features can be correctly classified into ys by F .
Subsequently, zs are used to identify their latent k-NNs for the parameterization of the prior density
ps0. As training progresses, D should become capable of estimating the average difference between
the random samples zs0 and the discriminative features zs used for classification. As a result, the
ground truth information of zs gradually spreads, within the latent feature space, to its neighbors.

3.2.2 TARGET ADAPTATION

During target adaptation, the goal is to develop a target classification model ft that can minimize the
generalization error in the target domain: ϵT(ft) = 1

M

∑M
i=1 1[ft(x

t,i) ̸= yt,i] without relying on
any yt. In this stage, we solely update Gt while keeping the parameters of both F and D fixed. This
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Figure 2: Framework overview. During training, the diffusion model gradually spreads ground
truth knowledge within the neighborhoods of each source data point. Subsequently, during sampling,
this knowledge is retrieved from the neighborhoods of target queries. The key for such knowledge
storage and retrieval is the parameterization of the prior densities in the diffusion process.

ensures that the decision boundaries established on the source domain are maintained, facilitating
the gradual alignment of target features with the support of source ground truth.

The adaptation involves conducting contrastive clustering guided by positive keys generated from
the pre-trained diffusion model. To elaborate, the generation of these positive keys follows the
sampling procedure outlined in Algorithm 1. We use the notation (pt0 × pt1) to represent the initial
densities in this stage. The prior pt0 is parameterized by the latent k-NNs of a target query zt.
This generation involves a diffusion process zt0 → ... → zαt → ... → zt1. With fixed D, zt1
should correspond to a specific source neighborhood ground truth while reflecting the target-specific
latent geometry determined by its k-NNs. Appendix C provides the probabilistic formulation of our
diffusion model, along with a graphical model that helps in understanding how the diffusion model
stores and retrieves source ground truth throughout the sampling and training processes.

Moreover, to mitigate errors caused by excessive source-related information in the positive key fea-
tures generated by D due to domain shifts, we propose a feature aggregation technique called source-
informed latent geometry aggregation (SiLGA). This technique combines diffusion-generated fea-
tures with features from the query’s k-NNs for positive key generation. It is inspired by recent
research on the impact of latent k-NNs on contrastive clustering (Yang et al., 2023). While previous
work aligns query predictions with those of its latent k-NNs to adjust decision boundaries, SiLGA
directly incorporates this latent geometry through feature-level aggregation. For a given target query
feature zt,i with index i, we compute its positive key features zipos as follows:

zipos :=
(zt,i1 + Nk(z

t,i))

k + 1
, (4)

where zt,i1 denotes the features generated from D corresponding to the query features zt,i.

3.3 ENHANCING CONTRASTIVE CLUSTERING WITH NEIGHBORHOOD DIFFUSION

In the context of SFDA, the contrastive loss can be formulated in the output probability space (di-
verging from SSL that operates in the latent space) (Yang et al., 2022; Zhang et al., 2022), due to the
fact that the classification task is consistent across the two domains. To maintain brevity and clarity,
we use a standard InfoNCE loss (Oord et al., 2018; Chen et al., 2020; He et al., 2020), although var-
ious contrastive loss designs exist in contrastive SFDA methods (Yang et al., 2023) for performance
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enhancement, and formulate it as follows for each target mini-batch of size m:

Lcls = −
m∑
i=1

log
exp(

σ[F (zt,i)]⊤σ[F (zi
pos)]

τ )∑
j ̸=i exp(

σ[F (zt,i)]⊤σ[F (zt,j)]
τ )

, (5)

where τ denotes the temperature for contrastive logits. We refrain from adding extra techniques like
momentum update (He et al., 2020), despite their potential performance benefits, as our focus is to
develop a discriminative diffusion model to provide supervision for contrastive clustering.

Intuitively, optimizing a contrastive loss aligns the model’s predictions with the clusters represented
by the positive keys. Meanwhile, there is a repulsive effect that pushes query predictions away
from other samples in the same mini-batch. This interaction affects the generalization error ϵT(ft),
which hinges on how informative these positive keys are regarding the target ground truth. Hence,
contrastive clustering in SFDA evaluates how effectively the diffusion process transfers ground truth
knowledge between data domains through source storage and target retrieval.

4 EXPERIMENTS

We start by evaluating DND’s performance in SFDA (Section 4.1) and subsequently conduct an
ablation study to analyze the importance of specific components of our method (Section 4.2).

4.1 SOURCE-FREE DOMAIN ADAPTATION

In this section, we evaluate DND’s performance on SFDA, specifically its ability to transfer knowl-
edge from the source to the target domain, referred to as retrieval. We assess this retrieval capability
on the premise that DND can effectively store the source ground truth within its samples’ neigh-
borhoods. We evaluate the storage ability both on the SFDA benchmarks’ source domains (see
Appendix D) and on the benchmarks for supervised classification (see Appendix E). Consequently,
The accuracy in the target domain serves as an indicator of how well the source knowledge aligns
with the target ground truth.

Datasets We conducted our experiments on three widely recognized SFDA benchmarks:
• Office-31 (Saenko et al., 2010) is a small-scale dataset that consists of 4,652 images spanning 31

object classes collected from three data domains: Amazon (A), Webcam (W), and DSLR (D).
• Office-Home (Venkateswara et al., 2017) is a medium-sized dataset containing 15,500 images of

65 classes across four domains: Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw).
• VisDA-C 2017 (Peng et al., 2017) is a large-scale dataset, used for the 2017 ICCV visual domain

adaptation challenge, comprising 280,000 images across 12 classes. The source domain includes
synthetic images generated via 3D model rendering, while the target consists of real images.

Experiment setup To ensure replicability, we maintain uniform network architecture and training
techniques across all datasets, including ResNet-101 for the encoder G, a conditional UNet for the
diffusion model D, and a two-layer linear classifier F . For contrastive clustering, we employ the
InfoNCE loss from SimCLR with a logit temperature (τ ) set to 0.13 for all datasets. We use an SGD
optimizer with a momentum of 0.9 and a mini-batch size of 128, along with a learning rate of 3e−3

for all datasets. Regarding the number of k-NNs, we use three parameters: kdifs for diffusion model
pre-training, kdift for diffusion model sampling during target adaptation, and kt for aggregation with
the diffusion-generated features to incorporate target-specific latent geometry. We consistently use
16 diffusion steps for training and sampling in the diffusion model across all experiments, with kdifs ,
kdift , and kt typically set to 15, 15, and 6, respectively.

Results The results for Office-31, Office-Home, and VisDA-C 2017 can be found in Tables 1, 2,
and 3, respectively. ResNet-101 denotes the performance of applying a source pre-trained model
directly to the target dataset without any adaptation. Notably, our DND outperforms existing SFDA
methods, achieving SOTA results across all three benchmark datasets.

t-SNE visualization on target feature space Figure 3 shows t-SNE visualizations (Van der
Maaten & Hinton, 2008) of the target domain’s latent feature space after adaptation with the VisDA-
C 2017 dataset. We compare scenarios with and without DND-generated features guiding con-
trastive clustering. Different colors indicate class labels for each target sample. Without DND
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Table 1: Comparison of the SFDA methods on Office-31 (ResNet-50).

Method A )D A )W D )W D )A W )D W )A Avg.

ResNet-50 (He et al., 2016) 68.9 68.4 96.7 62.5 99.3 60.7 76.1
SHOT (Liang et al., 2020) 94.0 90.1 98.4 74.7 99.9 74.3 88.6
3C-GAN (Li et al., 2020) 92.7 93.7 98.5 75.3 99.8 77.8 89.6
NRC (Yang et al., 2021a) 96.0 90.8 99.0 75.3 100.0 75.0 89.4
HCL (Huang et al., 2021) 94.7 92.5 98.2 75.9 100.0 77.7 89.8

NRC++ (Yang et al., 2023) 95.9 91.2 99.1 75.5 100.0 75.0 89.5
DND (Ours) 96.7 94.6 98.6 76.1 100.0 77.4 90.6

Table 2: Comparison of the SFDA methods on Office-Home (ResNet-50).

Method
Ar → Cl → Pr → Rw →

Avg.
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
SHOT (Liang et al., 2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

G-SFDA (Yang et al., 2021b) 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC (Yang et al., 2021a) 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
AaD (Yang et al., 2022) 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
DaC (Zhang et al., 2022) 59.5 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8

NRC++ (Yang et al., 2023) 57.8 80.4 81.6 69.0 80.3 79.5 65.6 57.0 83.2 72.3 59.6 85.7 72.5
DND (Ours) 60.1 79.6 82.5 69.1 80.8 80.6 67.9 57.8 83.6 73.5 59.3 86.3 73.4

Table 3: Comparison of the SFDA methods on VisDA-C 2017 (ResNet-101).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-101 (He et al., 2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
SHOT (Liang et al., 2020) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
HCL (Huang et al., 2021) 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5

G-SFDA (Yang et al., 2021b) 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC (Yang et al., 2021a) 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
DaC (Zhang et al., 2022) 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3

NRC++ (Yang et al., 2023) 96.8 91.9 88.2 82.8 97.1 96.2 90.0 81.1 95.2 93.8 91.1 49.6 87.8
DND (Ours) 98.4 92.1 86.0 83.6 98.1 96.5 93.5 82.9 97.0 95.2 92.6 54.6 89.2

guidance, the classification model struggles to adapt, leading to significant overlaps among samples
from different classes, as shown on the left side of the figure.

In contrast, integrating DND-generated positive keys significantly enhances discriminative cluster-
ing accuracy during target adaptation. DND updates the encoder parameters in a way that positions
target features inside decision boundaries derived from the source, which results in well-separated
clusters. As shown on the right side of the figure, these discriminative clusters align closely with the
ground truth labels of target samples, providing robust support for our claim.

This qualitative result serves as a clear demonstration of the effectiveness of our DND in transferring
knowledge in the absence of the source data during target adaptation.

4.2 ABLATION ANALYSIS OF METHOD COMPONENTS

In the ablation study, we deconstruct our method to understand the roles and impacts of its two
core components: the stochastic prior samples and the SiLGA technique used in the positive key
generation. We maintain consistency in our experiments by using the VisDA-2017 dataset.

4.2.1 PRIOR DENSITY PARAMETERIZATION

Unlike generative models transforming noise densities into meaningful ones, our approach features
a more deterministic prior density. While introducing randomness via a Gaussian distribution may
bring uncertainty to discriminative feature generation, as mentioned earlier, this randomness can
potentially enhance the process by expanding the feature space beyond the encoded space. To in-
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(a) Target feature space without DND. (b) Target feature space with DND.

Figure 3: (Best viewed in color.) The t-SNE visualization of the latent features obtained from the
encoded space of the target domain after adaptation has converged, using the VisDA-C 2017 dataset.
Each of the 12 distinct colors corresponds to one of the 12 classes.

vestigate this, we conducted an ablation study where we directly employed the mean of a query’s
latent k-NNs as z0 for the diffusion process, instead of randomly sampling from a distribution. This
setup is labeled as Ours (without Gaussian Prior) in Table 7. The results suggest that incorporating
randomness via sampling from the prior is significant for diffusion models, irrespective of their gen-
erative or discriminative use. For certain scenarios, like W → A, the diffusion-generated features
could not operate without such stochastic sampling.

4.2.2 FEATURE AGGREGATION FOR POSITIVE KEY GENERATION

To evaluate the effectiveness of our feature aggregation technique SiLGA, in generating positive
keys, we conduct ablation experiments. The results are presented in Table 4, highlighting the im-
portance of incorporating target k-NNs’ latent geometry for contrastive clustering. Note that in the
table, we have also included a baseline that uses only k-NN features for generating positive keys.

Table 4: Experiments to evaluate the contributions of individual DND modules on VisDA-C 2017.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-101 (He et al., 2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
K-NN only 97.5 91.1 88.6 74.6 97.4 96.2 90.8 81.6 92.6 92.8 91.5 49.9 87.1

DND (without Gaussian Prior) 97.4 92.4 89.6 78.2 97.7 95.8 89.8 85.4 94.9 93.2 90.4 49.6 87.9
DND (without SiLGA) 97.5 92.7 89.2 78.7 97.1 95.2 86.6 85.4 93.8 92.7 92.3 50.9 87.7

DND (Ours) 98.4 92.1 86.0 83.6 98.1 96.5 93.5 82.9 97.0 95.2 92.6 54.6 89.2

5 CONCLUSION

In summary, we delved into the discriminative essence of diffusion generative models, leveraging
their potential to solve SFDA problems, supported by the smoothness of latent k-NNs. A significant
breakthrough in our research was the ability to parameterize prior densities within the diffusion pro-
cess using the latent geometry informed by k-NNs. This advancement allowed us not only to detect
domain shifts but also to quantify them explicitly, presenting a robust solution to a foundational is-
sue in SFDA. Through extensive experiments covering both supervised classification and SFDA, we
demonstrated the distinct advantages of our DND approach. The incorporation of latent geometry,
both in prior density parameterization for diffusion models and feature aggregation for contrastive
clustering, has set a new benchmark in SFDA performance.

Reproducibility Statement In Section 3, we outline the detailed workflow of our proposed
method, supported by a comprehensive explanation of preliminaries and notations in Section 3.1.
For a more in-depth understanding of our implementation, we present a probabilistic formulation
with detailed graphical models in Appendix C. To ensure reproducibility, we ran experiments with
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5 different random seeds, and their results are included in Appendix F. In the experiment setup
of both Section 4.1 and Appendix E, we provide implementation details, including the model, op-
timizer, training iterations, and all hyperparameters used in our method. Additionally, we offer
detailed descriptions of the datasets employed in our experiments. For transparency, anonymous
code submissions are provided in the supplementary material. All experiments are conducted on
public benchmark datasets, and the GitHub repository containing code scripts for our experiments
will be made public upon paper acceptance.
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A LATENT GEOMETRY INFORMED BY k-NNS

To clarify the intuition behind our method, we frame the SFDA problem within the context of SSL.
Here, the challenge arises from the fact that the labeled data is inaccessible while adapting the model
to unlabeled data. In this scenario, we can extend the smoothness assumption, which is based on
the concepts of manifolds and low-density assumptions (Chapelle & Zien, 2005), often employed to
address the SSL problem. This assumption implies that similar points are likely to belong to the same
cluster. This notion becomes evident when we consider the k-Nearest Neighbor (k-NN) classifier,
which measures the similarity between samples, whether in the input space (Bezdek et al., 1986)
or the latent space (Papernot & McDaniel, 2018) in the context of deep learning. In cases where
similarities are evaluated in the latent space (i.e., latent k-NNs), uncertainties or noise can emerge
due to variations in the encoding or decoding processes. This situation highlights the significance
of the prediction smoothness of latent k-NNs, which can potentially uncover the ground truth of
neighboring samples. Expanding upon this insight, we propose extending the concept of latent k-
NNs and suggest employing it as a guiding principle for the diffusion generative process, which
allows us to effectively parameterize its prior densities, enabling the generation of discriminative
features for unsupervised clustering. This is, in fact, where the diffusion model takes center stage,
generating unseen samples (the samples conform to the underlying data distribution but are absent
from the empirical dataset) based on their neighboring data points. Through a stepwise diffusion
of ground truth from a labeled sample to its neighbors, the diffusion model effectively revitalizes
unseen samples in a specific cluster. This diffusion process seamlessly aligns and, more importantly,
harmonizes with the k-NN’s smoothness assumption. In our work, the diffusion model and latent
k-NNs collaborate to mitigate cluster noise that may arise during encoding and decoding, or even
from the data distribution itself (e.g., domain shifts).

B FORMULATING DIFFUSION STEPS WITH STOCHASTIC DIFFERENTIAL
EQUATIONS

Brownian motion describes the random fluctuations in the movement of particles within a medium. It
is a continuous-time stochastic process that can be viewed as a continuous-time version of a random
walk. In the standard Brownian motion, the increments over time follow a normal distribution with a
mean of zero and a variance proportional to the time increment. To further describe how the process
evolves over time in the absence of random fluctuations, the concept of drifts is introduced. These
drifts represent deterministic components modeled using an ordinary differential equation (ODE).
When combined with Brownian motions, they enable us to formulate an SDE capable of modeling
a wide range of stochastic processes that exhibit both deterministic and random behaviors. Thus, a
diffusion step can be modeled as the solution to an SDE:

dz̃t = g(z̃t, t)dt+ σt(z̃t)dWt, (6)

where dWt represents the increment of a standard Brownian motion at time t. z̃t stands for the
transition state at time t. if we define the time interval as t ∈ [0, 1], then z̃0 ∈ Rd corresponds to a
sample from the prior density, and z̃1 ∈ Rd denotes a sample from the target density, e.g., z̃1 = x
when the target is a data density. The drift term g(·, t): Rd → Rd can be parameterized by a neural
network (Ho et al., 2020; Luo & Hu, 2021; Wu et al., 2022). The function σt(·) : Rd → Rd×d

is responsible for calculating the covariance matrix of z̃t. There are various methods to estimate
this covariance matrix, including computing distribution scores (Song et al., 2020) or modeling the
conditional distribution of the transition kernel p(z̃t|z̃0) (Song et al., 2021).

C DIFFUSION OF GROUND TRUTH WITHIN NEIGHBORHOOD

In this section, we delve into the mechanics of the proposed DND, with a focus on how it diffuses
the ground truth knowledge of source samples within their respective neighborhoods during source
pre-training and subsequently retrieves this knowledge from target neighborhoods by sampling from
the diffusion model during adaptation. As mentioned earlier, the key to knowledge transfer during
adaptation without using any source samples is the parameterization of Gaussian priors for both
training and sampling from the diffusion model, guiding the diffusion process and enhancing its
discriminative essence.
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For the sake of clarity, we explain the diffusion generative process in the context of classification
tasks like SFDA using probabilistic terms. In Figure 4, we denote an encoding process responsible
for transforming input data into their latent features, which follows a distribution pθ(z|x). Moreover,
we have a classification process that assigns ground truth labels to the latent features and follows
pπ(y|z). In our settings, instead of directly sampling features from the encoded space for classi-
fication, we sample features from the diffusion model in the phases after the source representation
pre-training. Therefore, during the phases involving the diffusion process, the classification process
follows pπ(y|z1).

N (M)

Figure 4: The directed graphical model illustrates the diffusion process for storing and retrieving
ground truth within sample neighborhoods. Solid lines represent the direct causal relationships
between variables, which include the encoder pθ(z|x), the diffusion generative model qϕ(z1|z0, z),
and the classifier pπ(y|z1). The dashed lines represent the stochastic sampling process from a
Gaussian prior z0 ∼ qk(z0|B). The Gaussian prior is defined over the query’s k-NN neighborhood.

To parameterize the Gaussian prior, which affects the entire diffusion process like a medium influ-
ences the thermodynamics of diffusing substances, we estimate its mean and variance based on the
mean and variance of the latent features of the query’s k-NNs. These neighbors are found within the
feature bank B. The latent geometry, determined by these k-NNs, serves as the “medium” through
which the diffusion process spreads ground truth knowledge around the query sample. Thus, the
prior of our diffusion process follows the distribution qk(z0|B), where z0 ∼ N (µk, σk

2), and the
diffusion process follows qϕ(z1|z0, z), where z is the encoded features from pθ(z|x).
During the source pre-training phase, we define the initial densities (zs0, z

s) ∼ (qk(z
s
0|BS) ×

pθ(z
s|xs)), where zs0 ∼ N (µs

k, σ
s
k
2) and zs ∼ pθ(z

s|xs). During this phase, the training objective
is to optimize the diffusion model parameters ϕ so that it can accurately estimate the expected diver-
gence between qk(z

s
0|BS) and pθ(z

s|xs). The diffusion process progressively transforms the latent
densities (qk(zs0|BS)× qϕ(z

s
α|zs0, zs)) into the posteriors of the initial densities, which are denoted

as (qk(zs0|BS)× pθ(z
s|xs)), with the understanding that zs0 is a random variable. Consequently, we

can sample zs1 from the density qϕ(z
s
1|zs0, zs) where zs1 ≈ zs. Note that, the prior density qk(z

s
0|BS)

is influenced by the latent geometry determined by the query’s k-NNs. This step-by-step density
transformation can be understood as the gradual diffusion (or storage) of ground truth knowledge
within this neighborhood.

During the target adaptation phase, our goal is to retrieve the source ground truth from the target
neighborhood. This retrieval process facilitates the update of the encoder parameters θ during target
adaptation. It allows us to make use of the source decision boundaries for classifying unlabeled
target samples by integrating the target-specific latent geometry. This latent geometry is determined
by the latent k-NNs of target queries within the target domain. Thus, the prior for sampling from
the diffusion model during target adaptation should follow the distribution qk(z

t
0|BT), where zt0 ∼

N (µt
k, σ

t
k
2
) where µt

k and σt
k
2 denote the mean and variance of the latent k-NNs of the target

query. As we take more diffusion steps, the sampling process from the diffusion model progressively
transforms zt0 into zt1, which approximates a specific zs which shares latent geometry similarities
with the current zt.
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Therefore, our diffusion process across the two data domains can be seen as a stochastic mapping
from zt to zs. This process involves multiple α-deblending and α-blending steps, which can be
described as follows:

(zt0, z
t
1) → zα0

→ · · · → zαt
· ·· → zαT

→ (zs0, z
s
1). (7)

As the sampling process progresses, the features zαt
generated by D from zt0 become increasingly

discriminative as they approach a specific zs. With enough diffusion steps, zt1 ∼ qϕ(z
t
1|zt0, zt) is

expected to exhibit similar characteristics to zs ∼ pθ(z
s|xs). In other words, zt1 ≈ zs, where the

discriminative quality of zs is ensured by optimization related to the classification objective in the
source domain.

D EVALUATING DND-GENERATED FEATURES ON THE SOURCE TEST SETS

To illustrate how well our DND stores source ground truth within the vicinity of a source sample,
we utilize features obtained from our pre-trained diffusion model, as outlined in Algorithm 1, for
generating classification logits during testing on the source domain. This allows us to evaluate the
DND’s capacity for storing the source ground truth by assessing its classification performance on
the source test set, which consists of samples that were not seen during the training.

During the testing phase, we employ ResNet-101 to establish the encoded space and the feature bank
for neighborhood search. The latent k-NNs of a source query are identified based on the encoded
features stored in the feature bank. We parameterize the prior density of our DND diffusion pro-
cess by utilizing the mean and variance of these latent k-NNs within a Gaussian distribution. By
leveraging the pre-trained UNet to estimate the average deviation between the prior density and the
density of encoded features, we generate discriminative features through the sampling process of
our DND. These features are then employed by the classifier to generate classification logits during
testing. These experiments serve to demonstrate the ground truth storage capabilities of our DND
within the diffusion process, forming the foundation for evaluating retrieval during target adapta-
tion. Moreover, the results underscore the aptitude of DND for assessing domain shift even in the
absence of source data. The results are reported in Table 5. Surprisingly, the utilization of features
sampled from the diffusion process yields better results than the standard testing approach, which
motivates us to conduct the follow-up experiments on standard supervised classification benchmarks
(Appendix E).

Table 5: Classification accuracy in percentage (%) of using different features for the source domain
testing. ResNet-101 features indicate the logits for testing are generated from the features sampled
from the original encoded space of ResNet. The results derived from DND features are highlighted.

Method
Office-31 Office-Home

VisDA-C 2017
A D W Ar Cl Pr Rw

ResNet-101 features 91.5 100.0 98.7 81.5 81.5 93.9 85.1 99.6
DND features 96.9 100.0 100.0 96.9 90.6 100.0 96.9 100.0

E DIFFUSION PROCESS AS LATENT AUGMENTATION DURING TESTING

This section evaluates the effectiveness of utilizing diffusion-generated features as a form of latent
augmentation during the test phase of supervised classification. Instead of using samples from
the encoded space, we employ features generated by the diffusion model to construct classification
logits during the test phase.

Experimental setup During the training of the classification model, we followed the standard
settings employed for evaluating the benchmark datasets for supervised classification. To be specific,
we utilized the SGD optimizer with a weight decay of 0.0005 and a momentum of 0.9. Our training
employed a mini-batch size of 128, and each model underwent 200 epochs of training. For learning
rate scheduling, we started with an initial rate of 0.1 and applied the cosine annealing schedule
(Loshchilov & Hutter, 2017). Regarding the training of the diffusion model, we maintained the
same setup as used in the SFDA experiments, without making any changes to the hyperparameters.
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Datasets To evaluate the effectiveness of testing a classification model using diffusion-generated
features, we employ three supervised classification benchmarks.

• CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) share 60,000 32×32 color images, with
50,000 for training and 10,000 for testing. In CIFAR-10, there are 10 classes, each with 6,000
images. CIFAR-100 arranges them into 100 classes, with each class comprising 600 images.

• ImageNet (Russakovsky et al., 2015), employed in ILSVRC 2012, comprises approximately 1.2
million images spanning 1,000 object categories.

Results Table 6 shows test set classification accuracy in percentage. Our use of small-sized net-
works is for demonstration, not to achieve state-of-the-art (SOTA) results in supervised classifica-
tion benchmarks. These findings emphasize that our DND effectively stores ground truth knowledge
within the query sample’s neighborhood. Features sampled from DND are not only discriminative
but also more informative than those from the encoded space. This improvement may be attributed
to the parameterization of the prior densities using latent geometry, enabling our DND to generate
distinctive features beyond the encoder’s capabilities. In essence, during the test phase of super-
vised classification tasks, the diffusion model, trained with fixed classification model parameters,
serves as latent-space data augmentation without needing modifications to the classification model
parameters.

Table 6: Top-1 test error in percentage (%) on CIFAR-10, CIFAR-100 and ImageNet.

Method CIFAR-10 CIFAR-100 ImageNet
ResNet-18 7.07 22.74 31.46

ResNet-18 + DND 6.52 ± 0.1 22.01 ± 0.2 31.06 ± 0.2
ResNet-50 6.35 22.23 24.68

ResNet-50 + DND 5.92 ± 0.2 21.95 ± 0.3 24.30 ± 0.3
VGG-16 7.36 28.82 25.82

VGG-16 + DND 6.42 ± 0.1 26.58 ± 0.3 25.02 ± 0.3

F ROBUSTNESS TO THE SEED FOR INITIALIZATION

To evaluate the stability of our DND model concerning the influence of randomly initialized model
parameters during training, we conducted experiments on the Office-Home dataset using 5 differ-
ent initialization seeds. To compare the consistency with other SFDA methods, we replicated the
experiments for these methods using the same 5 seeds. To visually capture the variance of the re-
sults repeated on different parameter initialization (i.e., different seeds), we present a bar chart with
error bars in Figure 5, allowing us to visualize the robustness of various SFDA methods across dif-
ferent random seeds. This analysis provides insights into how reliably each method performs in
different initialization scenarios. The results indicate that our DND model, benefiting from the ex-
plicit source-informed guidance in contrastive clustering, exhibits greater stability against random
initialization compared to other SFDA methods.

G ABLATION ANALYSIS OF METHOD COMPONENTS ON OFFICE-31

To evaluate the robustness of our Discriminative Neighborhood Diffusion (DND) on smaller
datasets, we replicated the ablation studies outlined in Section 4.2 on the Office-31 dataset. The
results, detailed in Table 7, illustrate the impact of each component on the performance within the
smaller-scale Office-31 dataset.

H HYPERPARAMETER SENSITIVITY ANALYSIS

Our DND requires hyperparameter tuning for effective SFDA. Our primary goal is to demonstrate
the discriminative potential of diffusion models, hence our choice of hyperparameters favors a light
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Figure 5: (Best viewed in color.) Bar plots with error bars depicting the classification accuracy,
measured in percentage (%), across 5 different initialization seeds in the experiments conducted on
the Office-Home dataset.

Table 7: Experiments to evaluate the contributions of individual DND modules on Office-31.

Method A )D A )W D )W D )A W )D W )A Avg.

ResNet-101 (He et al., 2016) 70.2 69.8 94.5 52.8 97.4 62.3 74.5
k-NN only 95.0 89.6 98.2 73.4 94.3 75.1 87.6
Ours (without Gaussian Prior) 93.4 84.8 98.6 55.3 98.6 59.8 81.8
Ours (without SiLGA) 93.0 90.6 98.5 72.6 99.3 74.2 88.0
Ours (Full) 96.2 94.5 98.9 76.6 100.0 76.7 90.5

model design over maximizing performance. For ease of hyperparameter selection, we have aligned
the hyperparameters for training the diffusion model during source pre-training with those used for
training the source representation. Furthermore, we have set the number of neighbors for diffusion
prior parameterization during target adaptation to match the number of neighbors for neighborhood
searching. Meanwhile, we maintain a consistent number of diffusion steps for the sampling process
during both source pre-training and target adaptation phases. This approach results in just three
distinct hyperparameters for our DND:
• The number of diffusion steps for sampling from the diffusion models.
• The number of neighbors (ks) for diffusion prior parameterization during source pre-training.
• The number of neighbors (kt) for neighborhood searching in the target adaptation phase.

To evaluate the impact of hyperparameter values on the robustness of our DND, we have conducted
extensive experiments focusing on the three hyperparameters. In each experiment, we controlled
variables as follows: we set ks to 5 while evaluating kt and the diffusion steps; kt was fixed at 5
during the evaluation of ks and the diffusion steps; and the number of diffusion steps was maintained
at 16 when assessing ks and kt. The results shown in Figure 6 illustrate the robustness of our DND,
where our DND outperforms other state-of-the-art SFDA methods across various hyperparameter
settings.

I ADDITIONAL SOURCE-FREE DOMAIN ADAPTATION EXPERIMENTS USING
RESNET-101
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(a) Sensitivity Analysis on k. (b) Sensitivity Analysis on Diffusion Steps.

Figure 6: (Best viewed in color.) Hyperparameter Sensitivity Analysis. The results demonstrate the
robustness of our DND across a range of different hyperparameter settings.

To validate the robustness of our DND across various backbone networks, we have conducted addi-
tional experiments on the Office-31 and Office-Home datasets using the ResNet-101 backbone. The
results, presented in Table 8 for Office-31 and Table 13 for Office-Home, illustrate that our DND
method effectively addresses the problem of SFDA, regardless of the backbone network used. These
findings also confirm that DND consistently surpasses existing SFDA methods in performance, un-
derscoring its adaptability and effectiveness across different network architectures.

Table 8: Comparison of the SFDA methods on Office-31 with ResNet-101.

Method A )D A )W D )W D )A W )D W )A Avg.

ResNet-101 (He et al., 2016) 70.2 69.8 94.5 52.8 97.4 62.3 74.5
SHOT (Liang et al., 2020) 93.4 89.8 97.8 73.9 99.0 74.1 88.0
3C-GAN (Li et al., 2020) 92.0 93.4 98.2 74.8 99.4 76.2 88.5
NRC (Yang et al., 2021a) 93.8 90.8 98.1 74.2 99.6 74.6 88.5
HCL (Huang et al., 2021) 94.2 92.4 98.0 75.1 99.6 76.9 89.4

NRC++ (Yang et al., 2023) 95.1 90.5 98.2 75.3 99.6 74.2 88.8
DND (Ours) 96.2 94.5 98.9 76.6 100.0 76.7 90.5

Table 9: Comparison of the SFDA methods on Office-Home (ResNet-101).

Method
Ar → Cl → Pr → Rw →

Avg.
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-101 (He et al., 2016) 42.6 58.8 60.2 42.6 43.4 48.1 39.2 32.9 64.2 58.5 46.8 60.2 49.8
SHOT (Liang et al., 2020) 58.4 79.6 83.2 70.1 78.2 79.4 68.2 55.4 81.6 72.8 59.2 83.2 72.4

G-SFDA (Yang et al., 2021b) 58.9 79.2 82.4 68.3 77.9 78.6 67.8 55.8 81.4 73.6 58.5 84.4 72.2
NRC (Yang et al., 2021a) 59.4 80.2 82.6 69.2 78.6 77.9 69.2 57.2 81.8 73.6 63.4 84.3 73.1
AaD (Yang et al., 2022) 60.4 80.5 82.4 69.6 79.2 78.4 68.9 58.6 83.1 73.8 63.8 85.2 73.7
DaC (Zhang et al., 2022) 60.2 80.4 83.6 68.2 79.2 80.1 67.8 58.1 81.8 74.5 62.6 85.3 73.5

NRC++ (Yang et al., 2023) 59.7 80.3 82.6 69.5 79.6 77.6 68.5 59.2 82.2 74.2 63.5 84.9 73.5
DND (Ours) 61.5 80.8 83.2 70.3 80.9 80.6 69.7 59.5 82.5 75.6 64.2 86.0 74.6

J ADDTIONAL EXPERIMENTS ON DOMAIN GENERALIZATION
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In adapting our DND to domain generalization, we maintained a consistent approach in the source
pre-training stage as per our SFDA settings. This strategy aligns with the widely acknowledged
source-free domain generalization framework as discussed in (Cho et al., 2023).

Unlike SFDA, where models might train or fine-tune on target domain data, source-free domain
generalization does not involve any training during the testing phase. To adapt our method for this
setting, we employed the SiLGA technique to transform target features. This transformation utilized
DND-generated source-like features and their adjacent k-nearest neighbors (k-NNs) during target

testing, formulated as: ẑt,i := (zt,i
1 +Nk(z

t,i))
k+1 . Here, ẑt,i represents the transformed target features

for classification predictions, zt,i1 denotes the DND-generated features, and Nk(z
t,i)) is the centroid

of the latent k-NNs of the target features. This process facilitates the application of our method as a
data augmentation technique in domain generalization without modifying any model parameters.

In our domain generalization experiments, we concentrated on a single hyperparameter, the num-
ber of neighbors (k), to investigate latent geometry and define the Gaussian prior for the diffusion
process, with k set to 5. The effectiveness of our SiLGA method was evaluated on the large-scale
DomainNet dataset, delivering promising results that motivate further exploration of DND in this
context. The results on domain generalization experiments are shown in Table 10. Moving forward,
we plan to delve into more complex aspects of domain generalization, including methods like aver-
aging batch normalization statistics (Lim et al., 2023) and integrating additional regularization and
augmentation techniques.

Table 10: Domain generalization experiments on DomainNet using ResNet-50. The classification
accuracies as percentages, obtained by testing on the target domain, are reported.

Method DomainNet

ZS-CLIP(C) (Radford et al., 2021) 45.6
CAD (Dubois et al., 2021) 45.5

ZS-CLIP(PC) (Radford et al., 2021) 46.3
PromptStyler (Cho et al., 2023) 49.5

DND (Ours) 50.8

K ADDTIONAL EXPERIMENTS ON SINGLE-EPOCH TARGET ADAPTATION

In this section, we investigate the application of our Discriminative Neighborhood Diffusion (DND)
model in the context of single-epoch target adaptation, as discussed in (Gao et al., 2023). We aim to
evaluate the effectiveness of DND in addressing the challenges associated with single-epoch adap-
tation in a single-domain setting.

Our method diverges from the work (Gao et al., 2023), where a diffusion model is used as a genera-
tive tool, projecting target domain data to source domain data during target inference. This method
faces challenges, especially without target labels, as it fails to clearly define the relationship between
generated target data and class decision boundaries. We address this by incorporating latent geome-
try into our diffusion process, which not only provides guidance for establishing this correspondence
but also positions our diffusion model as a domain shift corrector during target adaptation. Unlike
the generative focus in (Gao et al., 2023), our model transforms target features to align with source-
specific characteristics, and we resolve the correspondence issue by parameterizing the diffusion
model’s prior density through neighborhood searching. This innovative approach marks a signifi-
cant shift from conventional practices, contributing uniquely to domain adaptation.

Our experimental setup for single-epoch target adaptation focuses on the target inference stage,
maintaining our standard source pre-training approach as used in SFDA and aligning with the frame-
work in (Gao et al., 2023). In this setup, adaptation occurs in just one epoch using a contrastive
learning objective. The positive key generated by our DND modifies target features to better align
with the source feature space. This adaptation aims to align domain-specific features and correct
domain shifts, as identified by the diffusion model. Key parameters include setting k to 5 for neigh-
borhood searching, a diffusion step count of 16, and using an SGD optimizer with a learning rate of
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5× 10−3 and a batch size of 128. Initially, experiments were conducted on the ImageNet-C dataset
using ResNet-50. The results on the ImageNet-C dataset are provided in Table 11.

Table 11: One-Epoch Target Adaptation Experiments on ImageNet-C with ResNet-50. The classifi-
cation accuracies as percentages, obtained by testing on the target domain, are reported.

Method ImageNet-C

MEMO (Radford et al., 2021) 24.7
DiffPure (Nie et al., 2022) 16.8

DDA (Gao et al., 2023) 29.7
DND (Ours) 32.6

L RUNTIME ANALYSIS IN TARGET ADAPTATION

In our research, we acknowledge the potential for increased time complexity due to the iterative
sampling in our diffusion model. However, our model’s primary function is to transform the target
feature space, not to generate images, which shapes its design towards efficiency. We have delib-
erately limited the number of diffusion steps to 16 in all experiments to optimize efficiency. Addi-
tionally, our diffusion model does not require estimating a covariance matrix for state transitions, a
common step in typical diffusion models, further enhancing efficiency.

In this section, we present a runtime analysis of our DND during target adaptation, comparing it
with other contrastive SFDA methods, specifically NRC++ and DaC. To ensure a comprehensive
analysis, we chose the large-scale VisDA-2017 dataset for our experiments, which were carried out
on a machine equipped with an Nvidia V100 GPU.

Table 12 illustrates that our method and NRC++ have similar one-epoch target adaptation times,
while DaC’s time complexity is significantly higher. This increased complexity in DaC is due to
its adaptive contrastive process and the additional computational requirement to process diverse
data sample groups. DaC also includes a self-training phase with pseudo label generation and re-
training, contributing to its extended adaptation time. Our experiments show that both DND and
NRC++ converge around 10 epochs, while DaC requires about 20 epochs. These findings provide
a detailed perspective on the time efficiency of our method in comparison to others, underlining its
viability in SFDA settings.

Table 12: Runtime analysis in target adaptation for DND using ResNet-101 on VisDA-2017.

Method One Epoch Runtime (s) Time Required for Convergence (s)

DaC (Zhang et al., 2022) 632.8 12,656.3
NRC++ (Yang et al., 2023) 469.2 4,692.8

DND (Ours) 516.3 5,163.1

M ADDTIONAL EXPERIMENTS UNDER PARTIAL-SET DOMAIN ADAPTATION
SETTINGS

In this section, we investigate the capability of our DND in managing domain adaptation scenarios
with class mismatches. We hypothesize that our DND can effectively generate source-like features,
which are informative about specific source ground truths, guided by target-specific latent geom-
etry. Our goal is to determine if our DND can effectively steer the adaptation process to transfer
only the knowledge relevant to the target domain’s classification tasks in partial-set domain adap-
tation (PDA). PDA involves adapting models trained on source domains with a broad class range
to function effectively in target domains with fewer classes. This adaptation process necessitates
the model’s ability to discern and concentrate on classes common to both domains, while excluding
classes unique to the source domain.
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In our approach, DND is used to generate features influenced by the latent geometry of the target
domain. During the adaptation phase, DND produces source-like features that are closely aligned
in the feature space with the latent geometry of the target query samples. This strategy significantly
reduces the risk of generating features corresponding to source-exclusive classes, thus addressing
the issue of class mismatches. We validated this claim with experiments on the Office-Home dataset
under PDA settings. In the PDA setting, we adhere to the approach outlined in (Cao et al., 2018),
selecting the first six classes in alphabetical order as target categories. We then use only the target
samples from these six classes for both target adaptation and testing. To accommodate the discrep-
ancy in class ranges, we modified the classifier used in SFDA as SHOT (Liang et al., 2020). This
modification included adjusting the number of neurons in the final fully-connected layer of the pre-
trained source classifier and updating it during target adaptation. To maintain fair comparisons, we
applied our method utilizing the existing SHOT codebase, ensuring that no hyperparameters were
altered. The results from the Office-Home dataset under PDA settings confirm that our DND can
effectively manage class mismatches during adaptation. These experiments underscore the effec-
tiveness of our approach in retrieving source ground truth based on target latent geometry, thereby
minimizing negative transfer.

Table 13: Comparison of the partial-set domain adaptation methods on Office-Home (ResNet-50).

Method
Ar → Cl → Pr → Rw →

Avg.
Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

ResNet-50 (He et al., 2016) 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3
IWAN (Zhang et al., 2018) 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6

SAN (Cao et al., 2018) 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3
SAFN Xu et al. (2019) 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8

SHOT Liang et al. (2020) 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
DND (Ours) 66.2 86.8 93.2 78.1 77.2 90.2 80.5 66.8 90.4 79.3 67.2 89.4 80.4
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