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ABSTRACT

Vision–language models (VLMs) have advanced rapidly, yet their capacity for
image-grounded geolocation in open-world conditions, a task that is challeng-
ing and of demand in real life, has not been comprehensively evaluated. We
present WhereBench, a comprehensive benchmark for VLM image geoloca-
tion that evaluates visual recognition, step-by-step reasoning, and evidence use.
WhereBench comprises 810 globally distributed images across two complemen-
tary geolocation scales: WhereCountry (i.e. , 500 multiple-choice question-
answering, with country-level answer and panoramas) and WhereStreet (i.e. ,
310 fine-grained street-level identification tasks requiring multi-step reasoning
with optional web search). For evaluation, we adopt the final-prediction metrics:
location accuracies within k km (Acc@k) for coordinates and hierarchical path
scores for textual localization. Beyond this, we propose to explicitly score inter-
mediate reasoning chains using human-verified key visual clues and a Shapley-
reweighted thinking score that attributes credit by each clue’s marginal contribu-
tion. We benchmark 12 state-of-the-art VLMs with web searching tools on our
WhereBench and report different types of final answer accuracies as well as the
calibrated model thinking scores. We reveal that web search and reasoning do
not guarantee improved performance when visual clues are limited, and models
exhibit regional biases, achieving up to 42.7% higher scores in certain areas than
others. These findings highlight not only the promise but also the persistent chal-
lenges of models to mitigate bias and achieve robust, fine-grained localization.

1 INTRODUCTION

Vision–language models (VLMs) have advanced multimodal perception and decision making, en-
abling AI systems to reason over images and, when necessary, invoke external tools such as image
editing or web search to tackle tasks with deeper understanding and stronger capabilities (Qi et al.,
2024; Zheng et al., 2025; OpenAI, 2025b;a; Team et al., 2025). Image geolocation serves as a nat-
ural testbed for vision-grounded reasoning and tool using: given an image, the goal is to infer its
location or coordinates. This capability matters in practice, such as search and rescue (Kim et al.,
2021), urban planning (Glistrup et al., 2022), or environmental monitoring (Lotfian and Ingensand,
2021). Meanwhile, this paradigm is different from conventional VLM benchmarks that put their
primary focus on model capacities for difficult question-answering. However, there remains a lack
of a fair and comprehensive benchmark that evaluates not only final localization accuracy but also
the faithfulness of the underlying reasoning process.

Solving image geolocation tasks requires careful analysis of visual cues (e.g. , signs, architecture,
vegetation), retrieval of corroborating evidence, and synthesis into a final prediction. Recent VLM
evaluations predominantly target general multimodal capabilities (Cheng et al., 2025; Lin et al.,
2025; Lee et al., 2024; Li et al., 2024a), focusing on perception, reasoning, and safety, while ne-
glecting other dimensions such as localization from limited information. The localization task is
inherently difficult even for human because it requires either extensive knowledge covering the im-
age content or strong tool-use abilities (Wazzan et al., 2024) to search for external knowledge from
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User Input: A little memento of the 
everyday route to school.

Grount Truth: Jl. Danau Poso 
No.39, Sanur Kauh, Denpasar 

Selatan, Kota Denpasar, Bali 80228 
(-8.7056371,115.2515956)

License Plate: The black-and-white 
plate “DK 1206 OE” similar to 
Indonesia’s license plate.  

<think>

Similar to Indonesia’s national flag. ‘DK’ denote the area of registration, Bali

Web results

‘PADI’ represents Professional 
Association of Diving Instructors.
From web search results,  “route to 
school’ implies route to diving school. 

:

:
Bali is a popular tourist 
attraction and many people 
learn scuba diving there in 
Denpasar.

Diverse vehicle types, route to school, 
PADI sign, and web search results 
indicate a large city, such as Denpasar.

Long shadow indicate morning or dusk, 
and “to school” has a higher chance in 
morning. The road runs east–west, and 
the photographer is facing west.

:
Seach PADI in Bali and verify all possibile 
east-west road.

</think>
<answer> Coordinate: (-8.7056,115.2516) </answer>

:

Option 1:

Final Correct Street View

Wrong:
Four-lane 
two-way road

Option 2:

Partially 
correct

Road is east-west, and two-lane road with road shoulder match.

Figure 1: Illustration of a complete search and reasoning process for a WhereBench sample.

visual cues. While there are previous works evaluating localization settings (Vo et al., 2017; Clark
et al., 2023; Huang et al., 2025), they are conducted under isolated settings where external tools and
internet access are unavailable. Besides, they primarily report distance-threshold accuracy (Acc@X
km), emphasizing outcome metrics over faithful, step-level reasoning, and rarely include human-
verified annotations of the decision process.

To this end, we introduce WhereBench, a benchmark for web-assisted geolocation that challenges
models to localize using vision-grounded reasoning and web-search tools across two scales of lo-
cations. Specifically, WhereBench comprises two complementary tasks: (1) WhereCountry, a
country-level localization task with 500 curated panorama images; and (2) WhereStreet, a harder
subtask with 310 manually verified images (188 from Bilibili1, 122 from YouTube2) that asks mod-
els to identify street-level locations with reasoning and web searching. An illustration is shown in
Figure 1, and a global geographic data distribution is visualized in Figure 2a.

For evaluation, WhereBench goes beyond outcome-only metrics. We assess both coordinate pre-
dictions and hierarchical textual localizations and explicitly consider the quality of model reasoning.
Using human-annotated visual cues for answering these questions, we compute calibrated correla-
tions between a model’s reasoning traces and the final answer, where higher correlation indicates
more faithful model reasoning. We also explore the use of leveraging web search for both subtasks
in WhereBench. Overall, our WhereBench offers a fine-grained measurement of model reason-
ing fidelity and evidence use that complements the final answer metrics, yielding a clearer picture
of how models think, leverage external evidence, and conclude to final answers.

We evaluate 12 leading VLMs with or without web search on our two subtasks and draw several
insights from their results. We find that closed-source models dominate: Gemini-2.5-Pro achieves
the best overall accuracy at 68.4%, while the strongest open-weight model, GLM-4.5V, lags behind
at 43.8%, with most others near chance (19.6%). Contrary to expectations, neither deeper rea-
soning nor web search consistently improves performance on WhereCountry: for instance,
GPT-5 (high reasoning) drops by up to 2.5%, and GPT-4o loses 13.2% with web search. In contrast,
web access helps in WhereStreet, where richer visual clues are available, yielding an average
6.5% relative boost. Finally, we observe pronounced regional bias, with models performing 42.7%
better on YouTube (European/American regions) than on Bilibili (Chinese regions). Together, these

1https://www.bilibili.com/
2https://www.youtube.com/

2
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results highlight the challenges current VLMs face in geolocation and point to the need for more
specialized capabilities beyond generic reasoning or web access.

2 RELATED WORK

2.1 VISION LANGUAGE MODELS AND AI AGENT

Vision-language models have evolved rapidly across three main paradigms: non-reasoning VLMs,
reasoning-enhanced VLMs, and agentic VLMs. Non-reasoning VLMs form the foundation of mul-
timodal AI, spanning both closed-source and open-source variants. Leading closed-source mod-
els (OpenAI, 2023; Reid et al., 2024; Hurst and many others, 2024) demonstrate strong visual un-
derstanding and language generation capabilities through direct inference without explicit reasoning
steps. The open-source ecosystem (Liu et al., 2023; Wang et al., 2024a; Chen et al., 2023; Yao et al.,
2025; Lu et al., 2024; Chen et al., 2024) provide accessible alternatives that often match or exceed
closed-source performance on specific benchmarks. Reasoning-enhanced VLMs represent the next
evolution, incorporating systematic multi-step reasoning capabilities. While closed-source reason-
ing models (OpenAI, 2025b;a; Anthropic, 2025) engage in extended deliberation before producing
responses, the open-source community has developed corresponding reasoning models (Shen et al.,
2025; Team et al., 2025; Deng et al., 2025; Xu et al., 2024; Huang et al., 2024; Chen et al., 2025)
that employ chain-of-thought reasoning and self-reflection mechanisms to enhance complex visual
reasoning tasks. Agentic VLMs extend beyond reasoning to incorporate tool use and environmental
interaction capabilities. These models integrate with external APIs and interactive environments to
solve complex real-world tasks like user interface understanding (You et al., 2024), web naviga-
tion (He et al., 2024) and reasoning tasks (Hu et al., 2024), and embodied AI tasks (Yang et al.,
2024b; Zhang et al., 2024). While recent work has explored VLM geolocation capabilities (Mendes
et al., 2024; Wang et al., 2024b), systematic evaluation of web-assisted geolocation remains un-
derexplored. These developments collectively establish VLMs as versatile AI systems capable of
sophisticated multimodal understanding and interaction.

2.2 GEOLOCATION DATASETS AND BENCHMARKS

Research on image geolocation began with retrieval-based approaches such as IM2GPS (Hays
and Efros, 2008), later reframing the task as classification over geocells with PlaNet (Weyand
et al., 2016). Subsequent work revisited retrieval and hybrid strategies, providing stronger base-
lines and standardized splits like Im2GPS3k (Vo et al., 2017), while large-scale corpora such as
YFCC100M (Thomee and et al., 2016) and Google landmark datasets (Weyand et al., 2020) enabled
training at global scale. Challenge series like MediaEval Placing (Choi et al., 2014) and geographi-
cally balanced sets such as GWS15k (Clark et al., 2023) further shaped evaluation protocols. Parallel
to these efforts, new datasets explicitly emulate human gameplay, such as PIGEON’s GeoGuessr-
derived benchmark (Haas et al., 2024), enriching the evaluation of multi-view and panorama-based
reasoning. With the rise of LLMs and VLMs, researchers have begun probing their geospatial
knowledge (Roberts et al., 2023; Bhandari et al., 2023). Benchmarks such as GPTGeoChat (Mendes
et al., 2024) and FairLocator (Huang et al., 2025) reveal both strong geolocation capabilities and
risks of privacy leakage and bias. Complementing previous works, our work proposes a mulit-scale
geolocation benchmark with verified human-written key clues and reasoning process assessment to
probe the ability of VLMs to identify locations.

3 WHEREBENCH

Our WhereBench consists of two tasks: 500 WhereCountry examples for coarse-grained
recognition-driven country identification and 310 WhereStreet instances for fine-grained
evidence-driven localization. To ensure fairness and robustness, we ensure global coverage and
balance across regions, as demonstrated in Figure 2a, showing all image coordinates in the world
map. We will first dive into details about each data split, then the metrics employed for both final
answer and model thinking evaluations.

3
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(a) All locations in WhereBench shown on a global map.

58.7%
17.4%

15.5%

Island/Ocean
15.5%
North America
5.5%
South America
1.3%
Africa
1.0%
Europe
17.4%

Asia
58.7%

(b) Continental distribution for
WhereStreet.

46.1%

32.6%

10.6%

Country
3.2%
County
6.1%
City
10.6%
Town
1.0%
Street
32.6%

Coordinates
46.1%

(c) Answer types (localization levels) for
WhereStreet task.

Figure 2: Statistics of WhereBench, which reflects global coverage of geolocations (2a and 2b) at
different localization levels (2c).

3.1 WHERECOUNTRY

The WhereCountry task is comprised of multiple-choice question answering (MCQA) exam-
ples paired with one image, with each option representing a country. Specifically for each sample,
we provide a 360° panoramic image, a question asking “Which country was this taken in?”, and
four candidate countries with one correct answer. To increase the sample difficulty, we select in-
correct country options from geographically adjacent countries to the target one from United Na-
tions geoscheme3. Alternatively, when there are fewer than three geographically adjacent countries,
we select countries that are culturally related to the target one defined in United Nations Regional
Groups 4. We start with the annotated GeoComp (Song et al., 2025) dataset and randomly sampled
8,041 images. To keep samples challenging, we utilize open-weight models to filter out simple cases,
such as Street View image with national flags and unique characters in storefronts/ads, or images
with limited informative clues, resulting in 680 high-quality samples. Detailed data filter process
is in Appendix C. We then validate each sample’s gameplay metadata in GeoComp to ensure each
sample was attempted with a valid score by a real player. We rank samples by score and select the
top 500 images for WhereCountry.

3.2 WHERESTREET

Beyond the coarse-grained country-level setting in WhereCountry, WhereStreet introduces
a more challenging, fine-grained localization regime. Samples in WhereStreet contain more
detailed visual cues that may help models pinpoint the exact location. We elaborate on the multi-
scale localization levels and key clue annotation process for reasoning evaluation.

Multi-scale Localization There are two answer types in WhereStreet: coordinate-
based and text-based. Each text-based answer is classified into one of the six an-
swer types: AnswerType = [street, town/subdistrict, city, county/district,
province/state, country ]. Figure 2b summarizes continental coverage statistics, and we
show each percentage of answer type for WhereStreet task in Figure 2c. Most WhereStreet
items target precise localization (coordinates, street, or town), with smaller fractions at city/county
and higher administrative levels.

3https://en.wikipedia.org/wiki/United_Nations_geoscheme
4https://en.wikipedia.org/wiki/United_Nations_Regional_Groups
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Key Clue Annotation for Reasoning Process Evaluation We meticulously collect 503 publicly
available English- and Chinese-language videos that document full step-by-step geolocation reason-
ing process. We transcribe these videos with Gemini-2.5-pro (Comanici et al., 2025) and extract
candidate key clues from the transcription (see prompts in Appendix A)). We define valid key clues
strictly as visual features observable in the image (e.g. , road markings, signage language, pole
types), stripping downstream inferences so that the same feature can support different chains of
reasoning. We then recruit 7 PhD student volunteers with proficient English and Chinese levels to
inspect each key clue. Volunteers are also required to verify text-based answers by administrative
granularity as defined by AnswerType, and re-annotate the answer as coordinate when text alone
is insufficient or ambiguous (see details in Appendix C. The inspection process yields 310 samples
with 861 verified key clues, which are utilized to evaluate model thinking processes. Auxiliary
“hint” information is recorded as separate metadata to contextualize difficulty without leaking an-
swers when it is mentioned in the video and used as a supporting message to help narrow the final
results (e.g. , “this image was taken at 5:30 pm” or “this image was taken on my way to school”).

3.3 METRICS

MCQA and Hierarchical Final Answer Evaluations. We report different metrics for the two
subsets. For WhereCountry paired with country-level MCQA, we use standard multiple-choice
accuracy as the metric. For WhereStreet with precise coordinate, we follow previous studies (Vo
et al., 2017; Weyand et al., 2016) and compute distance-based accuracy at multiple thresholds (e.g.,
1 to 200 km). As for WhereStreet questions with street-level answers, we evaluate model pre-
dictions using a novel hierarchical path score, which reflects the granularity of correctly identified
geographic attributes. Each predicted location is decomposed into a hierarchical sequence of levels:
Country → Province/State → City → County → Town/Subdistrict → Street. Starting from the root
(country), the model receives one point for each consecutive level that matches the ground truth.

Formally, let y = (y1, . . . , yk) be the ground-truth locations and ŷ = (ŷ1, . . . , ŷk) the predicted
locations. Then, the hierarchical path score id defined as:

HPS(ŷ,y) = max
{
j
∣∣ ŷi = yi ∀ i ≤ j

}
, (1)

which counts the length of the longest correct prefix between the prediction and the ground truth
along the location hierarchy. For example, with the input ground truth is {A street, B county, C city,
D province, China}, prediction is {E street, F county, C city, D province, China}, answer type is
street, and hint is "The image is taken in China". The base is China and the target is street. Due
to the hint mentions China, the base will then be province. From street to province, there are five
levels, k = 5. The prediction matches at city level, but wrong at street and county level, c = 2.
Thus, the final score is 0.4.

Thinking Score Evaluation. Beyond evaluating only the final answers, we propose a novel metric
to probe the internal thinking patterns, capturing a deeper sense of the model’s internal behaviors.
For each instance we annotate a set of K key clues C = {c1, . . . , cK}. Given a model’s reasoning
trace R, we evaluate, for each clue ci, whether it is used to narrow candidates or support the conclu-
sion. Let si ∈ {0, 1} indicate the decision (1 = used, 0 = not used). The vanilla thinking score is the
fraction of clues that are used:

Thinking-Scorevanilla =
1

K

K∑
i=1

si . (2)

To make the thinking score more robust and better reflect true reasoning ability, we reweight key
clues by their marginal contribution to narrowing the candidate location, as certain clues contribute
more to identifying the location than others. In detail, we estimate clue importance using Shapley
values (Rozemberczki et al., 2022), so that the reasoning score is tied more closely to how much
each clue actually helps in reducing uncertainty. Formally, let C denote the set of key clues for an
instance. Define a value function v : 2C → [0, 1], where for any subset S ⊆ C, v(S) is the expected
answer quality if the model only has access to clues in S. Then for each clue i ∈ C, the Shapley
weight wi is defined by:

wi =
∑

S⊆C\{i}

|S|! (|C| − |S| − 1)!

|C|!
(
v(S ∪ {i})− v(S)

)
,

∑
i∈C

wi = v(C) . (3)
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We implement v(S) by enumerating all 2|C| subsets S, prompting the judge (Gemini-2.5-Pro) to
assign the achievable answer quality using only clues in S. From those values, we compute the full
Shapley vector {wi} and compute the reweighted thinking score as

Thinking-Scorereweighted =
∑
i∈C

wi · si (4)

where si ∈ {0, 1} is the binary credit for clue i, indicating that the model correctly identified clue i
in its reasoning. In the later Section 4.3, we showcase that the reweighted Thinking-Scores has an
average 0.03 higher correlation than the vanilla version with the final answer, which justifies its use.

4 EXPERIMENT

Experimental Setup. We evaluate diverse open-weight and closed-source models which are cate-
gorized as follows:

• Open-weight VLM: Baseline VLM model such as Qwen-2.5-7B (Yang et al., 2024a).

• Open-weight VLMs with built-in tool use: Recent open-weight models expose native tool
abilities (e.g., zoom/resize) without external function call. We include GLM-4.5V (Team et al.,
2025), DeepEyes-7B (Zheng et al., 2025), and Skywork-R1V3 (Shen et al., 2025).

• Closed-source VLMs: We evaluate Claude4-Opus (Anthropic, 2025) and Claude4-Sonnet (An-
thropic, 2025) as strong closed baselines.

• Closed-source VLMs with web search: Many VLMs support web-enabled retrieval. We
evalute both reasoning-enabled and standard variants, including Gemini-2.5-pro (Comanici
et al., 2025), Gemini-2.5-flash (Comanici et al., 2025), GPT4o (Hurst and many others, 2024),
o3 (OpenAI, 2025b), o4-mini (OpenAI, 2025b), and GPT5 (OpenAI, 2025a). We also report
results with web disabled for each model.

We follow all official or recommended inference settings for each VLM and use the native web
APIs for internet access. Textual evaluation for WhereStreet follows an LLM-as-a-Judge pro-
tocol with Gemini-2.5-pro with an average Kappa agreement with human judges exceeding 0.75
(Appendix B). The complete prompts for querying VLMs and evaluations are in Appendix A.

4.1 WHERECOUNTRY

Figure 3 summarizes models’ country–level accuracies on WHERECOUNTRY, from which we obtain
two insights below.

Closed models dominate, the best open model narrows but does not close the gap. Without web
access, Gemini-2.5-pro attains the highest accuracy at 68.4%, followed by o3 with a high reasoning
effort. Among open-weight models, GLM-4.5V is strongest at 43.8%, whereas the remaining open-
weight baselines perform around chance with an average accuracy of only 19.57%, underscoring a
persistent capacity gap on geolocation tasks to proprietary models.

Additional effort on reasoning or web search does NOT guarantee improved performance.
To examine the impact of advanced model abilities on WhereCountry, we conduct controlled
experiments that vary reasoning depth and web search usage. Increasing reasoning from medium
to high yields only marginal gains: OpenAI systems achieve an average −1.03% gain with web
search, and the strong reasoning model o3 (high) improves by just 1.3%. Similarly, o4-mini (high,
search) shows no improvement, while GPT-5 (high) drops by 1.47% and 2.51% with and without
search, respectively. These results suggest that WhereCountry is less reasoning-intensive, where
additional “thinking” does not necessarily translate into higher accuracy.

Web search, while offering external and real-time information, surprisingly provides little to no
benefit with an average of 1.72% drop. In fact, GPT-4o suffers a substantial 13.2% drop when
web search is enabled. We attribute this to the nature of WhereCountry, whose images often
contain limited visual details sufficient only for country-level recognition (Section 3.2), leaving
little information that is useful to retrieve from the web or to reason over. Together, these findings
demonstrate that neither deeper reasoning nor web search consistently improves performance on

6
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Figure 3: Main results on WhereCountry ranked by accuracy. Closed-source models lead by
a large margin. Neither web search nor deeper reasoning consistently improves performance.

Table 1: Results on WhereStreet sourced from Bilibili and Youtube, with models as columns
and different metrics as rows. Darker green indicates better results within each row.

Models Gemini-2.5
pro

Gemini-2.5
flash o3 (high) o4-mini (high) GPT5 (high) GPT4-o Claude4

Sonnet
Claude4

Opus
Skywork

R1V3
GLM
4.5V

Web ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Bilibili

Acc@1km 2.13 6.38 0.00 2.13 2.13 2.13 2.13 2.33 4.26 2.17 0.00 0.00 2.22 2.17 0.00 2.13
Acc@5km 23.40 17.02 10.64 14.89 17.02 21.28 10.64 13.95 19.15 21.74 10.87 8.51 6.67 8.70 2.13 8.51
Acc@20km 40.43 34.04 29.79 25.53 34.04 34.04 21.28 25.58 34.04 30.43 26.09 29.79 22.22 21.74 17.02 23.40
Acc@200km 53.19 55.32 55.32 48.94 48.94 51.06 44.68 44.19 48.94 58.70 52.17 55.32 44.44 47.83 53.19 51.06

Thinking Score 0.436 0.483 0.351 0.272 0.425 0.414 0.401 0.340 0.249 0.275 0.273 0.204 0.149 0.232 0.192 0.268

YouTube

Acc@1km 58.06 65.63 46.88 57.29 54.74 55.21 27.08 52.69 50.53 63.54 46.32 47.37 29.35 39.33 7.29 18.95
Acc@5km 73.12 73.96 63.54 68.75 70.53 66.67 44.79 56.99 68.42 72.92 64.21 63.16 43.48 49.44 15.63 36.84
Acc@20km 77.42 80.21 72.92 70.83 73.68 71.88 55.21 63.44 72.63 76.04 72.63 70.53 52.17 56.18 21.88 53.68
Acc@200km 86.02 85.42 86.46 81.25 84.21 73.96 68.75 70.97 81.05 81.25 82.11 81.05 68.48 70.79 43.75 70.53

Thinking Score 0.814 0.803 0.684 0.665 0.686 0.789 0.652 0.572 0.521 0.354 0.630 0.492 0.491 0.540 0.495 0.609

WhereCountry. Instead, they underscore the challenging nature of the benchmark and the need
for more specialized tools to support localization with limited visual clues. A detailed case study is
provided in Sec 4.4.

4.2 WHERESTREET

The main results for WhereStreet are shown in Table 1 for coordinate-based answers and Table 2
for questions paired with street-level text answers. We partition the data by source (Bilibili: 188
samples; YouTube: 122 samples). Overall, for coordinates, Gemini-2.5-pro with web achieves the
highest Acc@1km: 6.4% (Bilibili) and 65.6% (YouTube). For text, GPT5 (high reasoning, web)
yields the best Bilibili answer score (0.28), while o3 (high reasoning, web) leads on YouTube (0.90).
We provide complete results in Appendix D and detailed case studies in Appendix E.2.

Web search helps when facing more detailed visual clues. In Table 2, web access improves
the ability of models to identify street-level locations given the image, where the image generally
contains more fine-grained visual details that enable audience to infer street-level answer. This is
evidenced by an averaged relative boosts of both 6.5% on two data sources (e.g. , 21.4 vs. 22.8 on
Bilibili and 72.2 vs. 76.9 on YouTube). Moreover, GPT5 gains substantially with web access on the
Bilibili data source — moving from below Gemini-2.5-Pro in the no-web condition to among the
top models with web enabled (e.g. , GPT5: 28.1 vs. Gemini-2.5-pro: 26.8).

WhereStreet with more visual details requires certain level of reasoning. Table 3 reports
results for o3, o4-mini, and GPT-5 across three reasoning effort levels with web search enabled.
These models show consistent gains when moving from low to medium effort—an average relative

7
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Table 2: Answer and thinking scores on WhereStreet sourced from Bilibili and Youtube, with
models as columns and different metrics as rows.

Models Gemini-2.5
pro

Gemini-2.5
flash o3 (high) o4-mini (high) GPT5 (high) GPT4-o Claude4

Sonnet
Claude4

Opus
Skywork

R1V3
GLM
4.5V

Web ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Bilibili

Answer Score (%) 26.1 26.8 15.3 20.1 23.9 22.0 16.5 20.8 23.6 28.1 23.2 19.2 12.7 10.6 13.4 19.6
Thinking Score 0.520 0.459 0.418 0.370 0.481 0.548 0.382 0.347 0.375 0.310 0.325 0.232 0.210 0.223 0.197 0.317

YouTube

Answer Score (%) 79.6 84.7 61.6 72.4 79.7 90.1 61.2 67.4 78.9 75.6 71.9 71.0 38.3 50.8 33.2 56.8
Thinking Score 0.762 0.742 0.636 0.644 0.646 0.675 0.644 0.606 0.499 0.315 0.685 0.509 0.468 0.522 0.511 0.663

Table 3: Ablation on reasoning effort with web search on WhereStreet.

Models o3 o4-mini GPT5

Reasoning Low Medium High Low Medium High Low Medium High

Bilibili

Answer Score (%) 23.5 26.8 22.0 15.2 19.8 20.8 25.4 26.5 28.1
Thinking Score 0.461 0.496 0.548 0.381 0.376 0.347 0.092 0.232 0.310

YouTube

Answer Score (%) 77.2 79.7 90.1 63.6 72.9 67.4 81.9 83.1 75.6
Thinking Score 0.704 0.585 0.675 0.737 0.625 0.606 0.179 0.223 0.315

improvement of 14.0% on Bilibili and 5.9% on YouTube (e.g. , 21.4 vs. 24.4 on Bilibili and 74.2
vs. . 78.6 on YouTube). However, increasing the effort further brings no additional benefit (i.e. ,
medium 51.5 vs. high 50.7 on average across both sources and all models). This suggests that while
a moderate level of reasoning is helpful for interpreting the richer visual details in WhereStreet,
excessive reasoning offers decreased returns. In other words, reasoning aids comprehension but
is not the ultimate solution for fine-grained geolocation, where precise recognition and grounding
remain the primary challenges. We present complete results in Appendix D, where coordinate-based
scenarios also shows a similar trend.

Current VLMs are more adapted to some regions than others. From both Table 2 and Table 3,
it is clear that models achieve higher scores on the YouTube source than on Bilibili, with an average
42.7% higher score (web search disabled). The average answer and thinking score for the YouTube
source is 67.1% and 0.595, 47.0% and 0.238 higher than Bilibili respectively. Such performance
gap can be attributed to the region bias from different models, since samples from YouTube focus
on European and American countries, while Bilibili instances put their primary attention to Chinese
areas. Our benchmark captures this regional sensitivity in settings that require geolocation over
different regions, suggesting that gains from web access are likely mediated by model bias over
some cultures and regions.

4.3 ABLATION STUDY

To justify the use of the proposed reweighted Thinking-Score and human-annotated key clues, we
conduct ablation studies on WhereStreet and give the following findings.

Model thinking scores indicate the answer quality and reweighting tightens it. To prove the
effectiveness of the proposed thinking evaluation, we compute Pearson correlations between answer
score and (i) the raw thinking score and (ii) the reweighted thinking score (Sec. 3.3); results appear
in Table 4. Reweighting strengthens the correlation with an average 13.70% higher, aligning with
our goal of assessing process quality rather than only final correctness. Qualitative analysis shows
that models frequently ground several cues correctly yet miss a decisive clue, yielding incorrect
predictions. We specifically examined GPT-5 to understand its low correlation and found that its
outputs are high-level summaries rather than complete reasoning traces, consistent with GPT-5’s
limited disclosure of detailed thinking steps for intellectual-property and safety reasons.
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Table 4: Pearson correlations across models between answer and (i) reweighted thinking score (Our
metric) and (ii) thinking score.

Gemini-2.5-pro Gemini-2.5-flash o3 (high) o4-mini (high) GPT5 (high) GPT4-o Claude4-Sonnet Claude4-Opus

Reweighted Pearson 0.248 0.227 0.221 0.229 0.133 0.389 0.305 0.345
w/o reweight 0.236 (-0.012) 0.182 (-0.045) 0.143 (-0.078) 0.251 (+0.022) 0.078 (-0.055) 0.323 (-0.066) 0.336 (+0.031) 0.336 (-0.009)

Gemini-2.5-pro
(search)

Gemini-2.5-flash
(search)

o3
(high, search)

o4-mini
(high, search)

GPT5
(high, search)

GPT4-o
(search) Skywork-R1V3 GLM-4.5V

Reweighted Pearson 0.246 0.209 0.219 0.289 0.118 0.316 0.208 0.283
w/o reweight 0.176 (-0.070) 0.149 (-0.060) 0.165 (-0.054) 0.275 (-0.014) 0.055 (-0.063) 0.281 (-0.035) 0.203 (-0.005) 0.314 (+0.031)
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Figure 4: Effect of number of human-annotated
key clues as extra context.

Human-verified clues are accurate, provid-
ing more clues as input generally yields
higher scores. To validate the utility of our
annotated key clues, we designed an exper-
iment to randomly select 1, 2, or 3 clues
from the annotated key clues list and prepend
them as context with the question and evaluate
whether models can gain extra score. We eval-
uate textual-based samples on GPT4o, o4-mini,
GPT5, and Gemini-2.5-Flash without web ac-
cess, and the results are shown in Figure 4. The
answer score increases with more clues. We at-
tribute the answer score fluctuation to the differ-
ence in each clue’s true value and GPT4o’s performance drop to the base model’s limited capability.

4.4 CASE STUDY

We provide a few typical VLM failure reasons: (1) Failure to utilize visual clues for narrowing down
exact locations. In Appendix E.1, GPT-4o with web search overlooked tree types and fencing style
in the background, concluding on a wrong final answer. Whereas without web searching let GPT-4o
capture the details, leading to the correct answer. (2) Overthinking. Appendix E.2 shows an example
that models could overthink and contradict to themselves. GLM-4.5-V successfully inferred the
territory and coastline structure, but rejected its correct assumption with a self-contradictory reason.
This might be due to lengthy thinking process containing unnecessary aha moments (Guo et al.,
2025), making models stuck in hesitancy. (3) Incomplete searching. Appendix E.2 shows another
example of Gemini-2.5-pro with web search. Gemini-2.5-pro correctly identified the key visual
elements and projected reasonable assumptions. Yet, constrained by current tool-use capabilities
(e.g. suboptimal search queries, limited search iterations, or restricted retrieval context length), the
answering process was terminated early and the model failed to locate the final coordinates.

5 CONCLUSION

We introduced WhereBench, a standardized benchmark for web-assisted image geolocation that
evaluates both end performance and vision-grounded reasoning. Designed for balance, verifia-
bility, and global coverage, WhereBench unifies two complementary tasks: WhereCountry
(recognition-centric) and WhereStreet (analysis-and-evidence) to deliver multi-granularity,
multi-level assessment. Beyond coordinate accuracy and hierarchical textual localization, we con-
tribute a process-aware protocol: an LLM-as-a-Judge rubric that verifies whether key visual clues are
actually used, together with a Shapley-reweighted thinking score that attributes credit by marginal
contribution. Extensive experiments reveals that strong closed models excel on WhereCountry
without retrieval, while search aids WhereStreet with model- and distribution-dependent gains.
Overall, WhereBench is challenging, and state-of-the-art VLMs remain below human-level preci-
sion in fine-grained localization. We aim for WhereBench to serve as a clear target with standard-
ized protocols that facilitates fair comparison, drive sustained progress, and clarify how VLMs and
agents reason with images and leverage web evidence.
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ETHICS STATEMENT

WhereBench is developed to probe the geolocation capabilities of vision–language models and
not to facilitate privacy invasion or surveillance. Nonetheless, image geolocation poses clear privacy
and misuse risks (e.g. , stalking, targeted harassment, illicit tracking, or other abusive surveillance).
To mitigate these risks during dataset curation we only collected publicly available items that (i)
contain an explicit final location reveal, (ii) are non-synthetic, and (iii) do not contain personally
identifying information; items failing these criteria were excluded. For each retained sample we
extract a single canonical frame and explicitly remove EXIF and auxiliary metadata; candidate visual
clues were restricted to verifiable visual features (e.g., road markings, signage styles, vegetation)
and screened by trained annotators (see Appendix B). Our intent in releasing WhereBench is to
support research-focused evaluation of model capabilities rather than to enable applied geolocation
systems. According to this intent, any public release will include clear usage terms and guidance that
discourage malicious applications (e.g. , recommending access only to vetted researchers, providing
redacted versions where appropriate, and documenting responsible use). Finally, we emphasize
directions for future work to reduce risk: developing model refusal policies and classifier guidance
that teach models when to decline fine-grained location requests, and adding audit trails for retrieval-
enabled evaluations so that downstream misuse is harder to automate.

REPRODUCIBILITY STATEMENT

We provide detailed dataset construction steps (Appendix C), prompt templates and evaluation pro-
tocols (Appendix A), and full experimental results and ablations (Appendix D and E). All model
settings are specified in Section 4. Supplementary materials include the WhereBench image list,
key-clue annotations, evaluation scripts, and cached web queries. Together, these resources ensure
that construction of WhereBench and its findings can be reliably reproduced.

REFERENCES

Anthropic. System card: Claude opus 4 & claude sonnet 4, May 2025. URL https://www.
anthropic.com/claude-4-system-card. Model/system card for the Claude 4 series.

Prabin Bhandari, Antonios Anastasopoulos, and Dieter Pfoser. Are large language models geospa-
tially knowledgeable? Proceedings of the ACM / arXiv preprint, 2023. URL https:
//dl.acm.org/doi/10.1145/3589132.3625625.

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhi-
hong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. Allava: Harnessing gpt4v-synthesized
data for lite vision-language models. arXiv preprint arXiv:2402.11684, 2024.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language models,
2025. URL https://arxiv.org/abs/2504.11468.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks, 2023.

Xianfu Cheng, Wei Zhang, Shiwei Zhang, Jian Yang, Xiangyuan Guan, Xianjie Wu, Xiang Li,
Ge Zhang, Jiaheng Liu, Yuying Mai, et al. Simplevqa: Multimodal factuality evaluation for
multimodal large language models. arXiv preprint arXiv:2502.13059, 2025.

J. Choi, C. Hauff, O. Van de Laere, and B. Thomee. The placing task: A large-scale geo-estimation
challenge for social-media videos and images. In MediaEval Workshop Proceedings, 2014. URL
https://dl.acm.org/doi/10.1145/2661118.2661125.

Brandon Clark, Alec Kerrigan, Parth Parag Kulkarni, and et al. Where we are and what we’re
looking at: Query based worldwide image geo-localization using hierarchies and scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2023. URL https://openaccess.thecvf.com/content/CVPR2023/papers/

10

https://www.anthropic.com/claude-4-system-card
https://www.anthropic.com/claude-4-system-card
https://dl.acm.org/doi/10.1145/3589132.3625625
https://dl.acm.org/doi/10.1145/3589132.3625625
https://arxiv.org/abs/2504.11468
https://dl.acm.org/doi/10.1145/2661118.2661125
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_
2023_paper.pdf.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Yi He Deng, Wenshan Wu, Wenqi Zhang, Yaowei Wang, Richeng Jin, Qingsong Wen, and Roger
Zimmermann. Openvlthinker: Complex vision-language reasoning via iterative sft-rl cycles,
2025.

Mathias Glistrup, Stevan Rudinac, and Björn Þór Jónsson. Urban image geo-localization using
open data on public spaces. In Proceedings of the 19th International Conference on Content-
Based Multimedia Indexing, CBMI ’22, page 50–56, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450397209. doi: 10.1145/3549555.3549589. URL https:
//doi.org/10.1145/3549555.3549589.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Lukas Haas, Michal Skreta, Silas Alberti, and Chelsea Finn. Pigeon: Predicting image ge-
olocations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. URL https://openaccess.thecvf.com/content/
CVPR2024/papers/Haas_PIGEON_Predicting_Image_Geolocations_CVPR_
2024_paper.pdf.

James Hays and Alexei A. Efros. Im2gps: Estimating geographic information from a single image.
Technical report, Carnegie Mellon University, 2008. URL https://graphics.cs.cmu.
edu/projects/im2gps/im2gps.pdf.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
2024.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith,
and Ranjay Krishna. Visualsketchpad: Sketching as a visual chain of thought for multimodal
language models, 2024.

Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, and Jieyu Zhao. Vlms
as geoguessr masters: Exceptional performance, hidden biases, and privacy risks. arXiv preprint
arXiv:2502.11163, 2025.

Yujin Huang, Haozhe Chen, Wanrong Zhu, Yountae Jung, Yan Wang, William Yang Wang, and
Xin Eric Wang. Vl-rethinker: Incentivizing self-reflection of vision-language models with rein-
forcement learning, 2024.

Aaron Hurst and many others. Gpt-4o system card. arXiv preprint, arXiv:2410.21276, 2024. URL
https://arxiv.org/abs/2410.21276. OpenAI, system card for the multimodal model
GPT-4o.

Kyounggon Kim, Ibrahim Adam, Abdulrahman Alqunaibit, Nayef Shabel, and Faisal Fehaid. Web
application based image geolocation analysis to detect human trafficking. Journal of Information
Security and Cybercrimes Research, 4:69–77, 12 2021. doi: 10.26735/XZBI5196.

Tony Lee, Haoqin Tu, Chi H Wong, Wenhao Zheng, Yiyang Zhou, Yifan Mai, Josselin S Roberts,
Michihiro Yasunaga, Huaxiu Yao, Cihang Xie, et al. Vhelm: A holistic evaluation of vision lan-
guage models. Advances in Neural Information Processing Systems, 37:140632–140666, 2024.

Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran
Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating vision-
language models on natural adversarial samples. Advances in Neural Information Processing
Systems, 37:17044–17068, 2024a.

11

https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf
https://doi.org/10.1145/3549555.3549589
https://doi.org/10.1145/3549555.3549589
https://openaccess.thecvf.com/content/CVPR2024/papers/Haas_PIGEON_Predicting_Image_Geolocations_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Haas_PIGEON_Predicting_Image_Geolocations_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Haas_PIGEON_Predicting_Image_Geolocations_CVPR_2024_paper.pdf
https://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
https://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
https://arxiv.org/abs/2410.21276


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024b.

Minzhi Lin, Tianchi Xie, Mengchen Liu, Yilin Ye, Changjian Chen, and Shixia Liu. In-
fochartqa: A benchmark for multimodal question answering on infographic charts. arXiv preprint
arXiv:2505.19028, 2025.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023.

Maryam Lotfian and Jens Ingensand. Using geo geo-tagged flickr images to explore the correlation
between land cover classes and the location of bird observations. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2021:189–194, 06
2021. doi: 10.5194/isprs-archives-XLIII-B4-2021-189-2021.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Yaofeng Sun, et al. Deepseek-vl: Towards real-world vision-language understanding,
2024.

Ethan Mendes, Yang Chen, James Hays, Sauvik Das, Wei Xu, and Alan Ritter. Granular privacy
control for geolocation with vision language models. arXiv preprint arXiv:2407.04952, 2024.

OpenAI. Gpt-4v(ision) system card, 2023. URL https://openai.com/research/
gpt-4v-system-card.

OpenAI. Gpt-5 system card, 2025a. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

OpenAI. Openai o3 and o4-mini system card, Apr 2025b. URL https:
//cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf. System card.

Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li,
Yuxiao Dong, et al. Cogcom: A visual language model with chain-of-manipulations reasoning.
arXiv preprint arXiv:2402.04236, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5:
Unlocking multimodal understanding across millions of tokens of context, 2024.

Jonathan Roberts, Timo Lüddecke, Sowmen Das, Kai Han, and Samuel Albanie. Gpt4geo: How
a language model sees the world’s geography. arXiv preprint arXiv:2306.00020, 2023. URL
https://arxiv.org/abs/2306.00020.

Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian Nils-
son, and Rik Sarkar. The shapley value in machine learning. In The 31st International Joint
Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence,
pages 5572–5579. International Joint Conferences on Artificial Intelligence Organization, 2022.

Wei Shen, Jiangbo Pei, Yi Peng, Xuchen Song, Yang Liu, Jian Peng, Haofeng Sun, Yunzhuo
Hao, Peiyu Wang, Jianhao Zhang, et al. Skywork-r1v3 technical report. arXiv preprint
arXiv:2507.06167, 2025.

Zirui Song, Jingpu Yang, Yuan Huang, Jonathan Tonglet, Zeyu Zhang, Tao Cheng, Meng Fang,
Iryna Gurevych, and Xiuying Chen. Geolocation with real human gameplay data: A large-
scale dataset and human-like reasoning framework, 2025. URL https://arxiv.org/abs/
2502.13759.

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali

12

https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2306.00020
https://arxiv.org/abs/2502.13759
https://arxiv.org/abs/2502.13759


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025. URL https://arxiv.org/abs/2507.01006.

Bart Thomee and et al. Yfcc100m: The new data in multimedia research. Communications of the
ACM, 2016. URL https://arxiv.org/abs/1503.01817.

Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps in the deep learning era. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017. URL
https://arxiv.org/abs/1705.04838.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2.5-vl: Enhancing vision-language model’s perception of
the world at any resolution, 2024a.

Zhiqiang Wang, Dejia Xu, Rana Muhammad Shahroz Khan, Yanbin Lin, Zhiwen Fan, and Xingquan
Zhu. Llmgeo: Benchmarking large language models on image geolocation in-the-wild, 2024b.

Albatool Wazzan, Stephen MacNeil, and Richard Souvenir. Comparing traditional and llm-based
search for image geolocation. In Proceedings of the 2024 Conference on Human Information
Interaction and Retrieval, pages 291–302, 2024.

Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet – photo geolocation with convolutional
neural networks. arXiv preprint arXiv:1602.05314, 2016. URL https://arxiv.org/abs/
1602.05314.

Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2 –
a large-scale benchmark for instance-level recognition and retrieval. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. URL
https://arxiv.org/abs/2004.01804.

Guowei Xu, Peng Jin, Li Hao, Jianhao Zhang, Zike Wang, Liqiang Nie, and Hang Xu. Llava-o1:
Let vision language models reason step-by-step, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. CoRR, 2024a.

Lianyu Yang et al. Embodied multi-modal agent trained by an llm from a parallel universe. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024b.

Yuxin Yao, Xinyu Huang, Aojun Zhou, Jingjing Chen, Gaowen Liu, Tingkai Liu, Xiao Han, Junyang
Lin, Chang Zhou, and Hongxia Yang. Efficient gpt-4v level multimodal large language model for
deployment on edge devices. Nature Communications, 16(1):476, 2025.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms, 2024.

Yichen Zhang et al. Multi-modal agent tuning: Building a vlm-driven agent for efficient tool usage,
2024.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing" thinking with images" via reinforcement learning. arXiv
preprint arXiv:2505.14362, 2025.

13

https://arxiv.org/abs/2507.01006
https://arxiv.org/abs/1503.01817
https://arxiv.org/abs/1705.04838
https://arxiv.org/abs/1602.05314
https://arxiv.org/abs/1602.05314
https://arxiv.org/abs/2004.01804


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendices

A PROMPTS

We present the full prompts used for LLM-as-a-Judge. Table 5 shows the prompt for evaluating the
answer score when the output is text. Table 6 is the prompt used to check whether key clues appears
in the model’s response, resulting in the vanilla thinking score. In Table 7, it is the complete prompt
for computing the Shapley value of each clue. Finally, Table 8 shows the prompt used to extract key
clues from transcripts produced by Gemini-2.5-pro.

B VALIDATING LLM-AS-A-JUDGE SETTING

We validate the reliability of our LLM-judge (Gemini-2.5-pro) by computing Cohen’s κ against
human annotations on held-out subsets on three models: GLM-4.5-V (n = 47, κ = 0.74), o3
(n = 45, κ = 0.83), and o4-mini (n = 59, κ = 0.70). These values indicate strong human-model
agreement, supporting the use of Gemini-2.5-pro as a reliable judge of model outputs.

C DATA CURATION

C.1 WHERECOUNTRY

After randomly sampled 8,041 images, we utilize Qwen-2.5VL-7B (Wang et al., 2024a) to filter
out simple and direct cases such as Street View images with national flags, unique characters or
letters in the storefronts/ads, car plates, etc, resulting in 2,359 images. Then, we apply a second
filter, LLaVA-OneVision (Li et al., 2024b), to flag residual low-quality cases where images may not
contain enough information to pinpoint the exact country, leaving 680 high-quality samples. Failed
image samples are shown in Figure 5.

C.2 WHERESTREET

We curate public social-media channels5 that regularly publish image/video geolocation challenges
with an explicit final reveal. We apply the following criteria: (i) content is publicly accessible; (ii)
each item contains (or links to) a definitive location; (iii) footage appears non-synthetic; (iv) no per-
sonally identifying information. Items failing these criteria are excluded. For each selected video,
we generate an ASR transcript using Gemini-2.5-pro. Given the raw transcript, Gemini-2.5-pro pro-
poses a set of candidate key clues: short sentences that plausibly reference visual evidence (e.g.,
“left-hand traffic,” “blue street name plates,” “Andean highlands vegetation”). 7 trained annotators
review each item after watching the original video. Annotators independently write the final answer
as revealed by the video. If the final textual answer cannot faithfully represent the final answer,
annotators utilize Google Maps to manually cross-check and verify the final location and note the
exact coordinate. For every LLM-proposed clue, annotators check against the raw video. We keep
cues that can be verified visually (landforms, road markings, language script without specific place
names, license-plate format, vegetation, architecture). We remove any indications as models may
conduct diverse deductions. Annotators label the finest administrative level that is correctly men-
tioned by the video. Additionally, any external information that is used by the video but not included
in the image is saved for inference. Annotators capture the input image as a single canonical frame
from the original video, excluding any EXIF/auxiliary metadata of the original image.

5https://space.bilibili.com/1078123935,https://space.bilibili.com/
1078123935,https://www.youtube.com/playlist?list=PL_japiE6QKWqMVC3JbyONau_
0CZlDTU5f,https://www.youtube.com/@GeoPeter,https://www.youtube.com/
@Nattic,https://www.youtube.com/watch?v=rl2Q9xH8e7M
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Table 5: Prompt for scoring textual geolocation answers via hierarchical matched-prefix credit.

ROLE
You are a strict geolocation evaluator. Compare a predicted location to a ground-truth location and
return one accuracy score as a float in [0.0, 1.0].
INPUTS
– Predicted Location: “{predicted}”
– Ground Truth Location: “{ground_truth}”
– Granularity to Judge (answer_type): “{answer_type}” (one of: country | province/state | coun-
ty/district | city | town/subdistrict | street)
– Hint (reference only; do not copy): “{hint}”
RULES
1) Normalize & Parse
– Case/diacritic-insensitive; ignore punctuation/extra whitespace; accept common aliases (e.g.,
“NYC”=“New York City”, “München”=“Munich”).
– Use this ordered hierarchy (down→top): street > town/subdistrict > city > county/district >
province/state > country.
– Map obviously equivalent administrative terms across countries (e.g., borough/parish/district). Do
not invent missing components.
2) Define the SCORING PATH (denominator)
– Let Ltarget be the level named by {answer_type}.
– Determine a base level Lbase:
• If the Hint names a level Lhint that is consistent with the Ground Truth, set Lbase = one level below
Lhint (treat the Hint as free information; exclude it from credit).
• Otherwise (no usable Hint), set Lbase = country.
– The scoring path is the contiguous list of levels from Lbase (inclusive) up to Ltarget (inclusive).
Denominator = k = number of levels in this path (k ≥ 1).
3) Compute Matched Prefix Count (numerator)
– Walk the path from Lbase downward. Count how many consecutive levels match the Ground Truth
before the first mismatch.
– A level “matches” if either:
• The Predicted explicitly names the same unit as the Ground Truth at that level, or
• The Predicted omits that level but correctly names any finer (lower) level under the same Ground
Truth parent (implicit parent credit), with no contradicting tokens.
– If the first level on the path (Lbase) is wrong, matched count = 0.
4) Score
– Score = matched_count/denominator ∈ [0, 1].
– Examples when {answer_type}=street and Hint gives a province (e.g., “Guangdong”):
Correct city→county→town→street: 4/4 = 1.0
Correct city→county→town, wrong/missing street: 3/4 = 0.75
Correct city→county, wrong/missing town: 2/4 = 0.50
Correct city only, wrong/missing county: 1/4 = 0.25
Wrong city: 0/4 = 0.00
5) Anti-Cheating
– If the Predicted string copies the Hint (or is trivially derived from it) without adding any level at or
below {answer_type}, set score to 0.00.
– Exception: If the Hint provides multiple-choice style constraints (e.g., “The image is in one of:
UK/Canada/USA/Mexico.”), do not penalize merely repeating the hinted country.
OUTPUT (strict)
Return only the float (≤3 decimals) inside this tag: <answer>SCORE</answer>
Illustrative Examples
1. GT: Beicheng Street, Zaoyang county, Xiangyang city, Hubei, China.
Pred: Niushou Town, Xiangyang city, Hubei, China.
answer-type: street; hint: China.
Path: street→town/sub→county→city→province (k = 5).
Match: county mismatches, but city matches ⇒ 2.
Score: 2/5 = 0.4.
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Table 6: Prompt used for LLM evaluation of whether a key clue was used in reasoning.

You are an expert evaluator of logical reasoning and evidence utilization.
TASK
Decide whether the Key Clue was actually USED within the Reasoning Process to advance or
support the location inference.
INPUT
Key Clue: “{key_clue}”
Reasoning Process: “{thinking_process}”
DEFINITIONS

• Mentioned: the clue (or a clear synonym) is referenced in the reasoning.
• Used: the reasoning relies on the clue to narrow candidates, eliminate options,

strengthen a hypothesis, or justify the final conclusion.
• Dismissed: the clue is mentioned but explicitly rejected or not carried forward.
• Misused: the clue is cited but interpreted incorrectly.

ALLOWED EVIDENCE
Judge only from the provided Reasoning Process. Do not add facts from outside knowledge or
the image itself. Do not judge whether the final answer is correct—only whether the clue was
used.
DECISION RULES
Answer “Yes” ONLY if all are true:

1. The clue (or a clear synonym/phrase) is mentioned or unmistakably referred to, and

2. The reasoning uses it to narrow, rule out, weigh options, or support the conclusion (an
explicit causal link or justification).

Otherwise answer “No”, including these cases:
• Mentioned as a guess, observation, or side note without narrowing/supporting.
• Mentioned then dismissed or ignored.
• Not mentioned at all (directly or via clear synonym).
• Misunderstood or misused as evidence.
• Ambiguous/uncertain whether it aided reasoning.

OUTPUT INSTRUCTIONS
Return:
<answer>Yes/No</answer>
<explanation>One brief sentence justifying the decision.
</explanation>
CONSTRAINTS

• Base your decision strictly on the Reasoning Process text above.
• If in doubt, answer “No”.
• Keep the explanation to 1–2 sentences.

D COMPLETE RESULTS

Here we present the complete results of WHERESTREET for textual-based answer (Table 10),
coordinate-based (Table 11), and the ablation study results on reasoning effort and web search in
Table 11.
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Table 7: Prompt for computing Shapley values of key clues based on their contribution to final
answer quality.

System:
You are an expert in calculating Shapley values for feature attribution in machine learning
models. Your task is to analyze reasoning files and calculate Shapley values for key clues
based on their contribution to the final answer quality.
Follow these guidelines: 1. From initial key_clues with index, find out all the combina-
tions. 2. For each combination of the clue, based on the Ground Truth answer and the hint,
determine an anchor of which level of answer a model would finally generate. Answer-
types are: Country | Province or State | county/district | city | town/subdistrict | street. Refer
to the reasoning file to determine the anchor. 3. Finetune the score using the reasoning file
as the gold standard; determine the exact score for each combination. 4. Similar to how the
Shapley value is calculated: calculate the Shapley value for each clue. For the combination
of no clues, the Shapley value is 0. For the combination of all clues, the Shapley value is
1. Each Shapley value is a float between 0 and 1.

User:
Here is the reasoning file content: {reasoning}

The key clues are: {gt_key_clues}. The ground truth answer is: {gt_answer}. The hint is:
{hint}.

Note: Hint is supplemental information to the image; it is not a clue. Return a list of
Shapley values for each clue in this format:
<answer>[shapley_value_1, shapley_value_2, ...]</answer>

Table 8: Prompt for extracting key clues from the input transcript.

Here is the text thinking process of how to deduce the exact location from the input image:
{text_content}
Ignore the caption and watermark. Based on the thinking process and input image, create
a comprehensive list of key steps.
Do not include any clues that are not mentioned in the text description.
Do not repeat clues.
Merge two clues if they are very similar.
Focus on the most important clues that can help deduce the location.
Format your response as a numbered list where each line starts with a number followed
by a period and space (e.g., “1. The first clue.”). Each key clue should be concise and
accurate.

E CASE STUDY

To better understand VLMs performance, we provide a detailed case study for WhereCountry
and WhereStreet.

E.1 WHERECOUNTRY

We present a GPT4o case study in Table 12 where GPT4o utilizes its internal knowledge, leading to
the correct final answer, but a wrong answer when accessing the web.

E.2 WHERESTREET

We present two failure cases for GLM-4.5-V (Table 13) and Gemini-2.5-pro with web (Table 14).
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Figure 5: Failed image samples. They either have direct text to indicate the country or process
relatively limited visual informative clues.

F DECLARATION OF AI TOOL USAGE

During the preparation of this manuscript, we used OpenAI’s GPT-5 model for minor language re-
finement and smoothing of the writing. The AI tool was not used for generating original content,
conducting data analysis, or formulating core scientific ideas. All conceptual development, experi-
mentation, and interpretation were conducted independently without reliance on AI tools.
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Table 9: Geolocation accuracy by model.

Source Model Samples Acc@1km Acc@5km Acc@10km Acc@20km Acc@50km Acc@100km Acc@200km Thinking Score

BILI

gemini-2-5-pro 47 2.13% 23.40% 27.66% 40.43% 46.81% 48.94% 53.19% 0.436
gemini-2-5-pro (search) 47 6.38% 17.02% 23.40% 34.04% 42.55% 44.68% 55.32% 0.483
gemini-2-5-flash 47 0.00% 10.64% 23.40% 29.79% 36.17% 46.81% 55.32% 0.351
gemini-2-5-flash (search) 47 2.13% 14.89% 17.02% 25.53% 36.17% 42.55% 48.94% 0.272
o3 (high) 47 2.13% 17.02% 29.79% 34.04% 36.17% 40.43% 48.94% 0.425
o3 (high, search) 47 2.13% 21.28% 31.91% 34.04% 38.30% 42.55% 51.06% 0.414
o4-mini (high) 47 2.13% 10.64% 17.02% 21.28% 23.40% 31.91% 44.68% 0.401
o4-mini (high, search) 43 2.33% 13.95% 18.60% 25.58% 30.23% 37.21% 44.19% 0.340
gpt5 (high) 47 4.26% 19.15% 23.40% 34.04% 38.30% 40.43% 48.94% 0.249
gpt-5 (high, search) 46 2.17% 21.74% 28.26% 30.43% 36.96% 41.30% 58.70% 0.275
gpt4-o 46 0.00% 10.87% 21.74% 26.09% 28.26% 36.96% 52.17% 0.273
gpt4-o (search) 47 0.00% 8.51% 21.28% 29.79% 40.43% 46.81% 55.32% 0.204
claude4-sonnet 45 2.22% 6.67% 15.56% 22.22% 31.11% 35.56% 44.44% 0.149
claude4-opus 46 2.17% 8.70% 15.22% 21.74% 32.61% 41.30% 47.83% 0.232
skywork-r1v3 47 0.00% 2.13% 6.38% 17.02% 29.79% 38.30% 53.19% 0.192
GLM-4.5V 47 2.13% 8.51% 17.02% 23.40% 29.79% 38.30% 51.06% 0.268

YT

gemini-2-5-pro 93 58.06% 73.12% 77.42% 77.42% 80.65% 83.87% 86.02% 0.814
gemini-2-5-pro (search) 96 65.63% 73.96% 77.08% 80.21% 81.25% 83.33% 85.42% 0.803
gemini-2-5-flash 96 46.88% 63.54% 67.71% 72.92% 77.08% 81.25% 86.46% 0.684
gemini-2-5-flash (search) 96 57.29% 68.75% 70.83% 70.83% 73.96% 76.04% 81.25% 0.665
o3 (high) 95 54.74% 70.53% 72.63% 73.68% 76.84% 76.84% 84.21% 0.686
o3 (high, search) 96 55.21% 66.67% 68.75% 71.88% 71.88% 71.88% 73.96% 0.789
o4-mini (high) 96 27.08% 44.79% 48.96% 55.21% 61.46% 63.54% 68.75% 0.652
o4-mini (high, search) 93 52.69% 56.99% 60.22% 63.44% 65.59% 67.74% 70.97% 0.572
gpt5 (high) 95 50.53% 68.42% 72.63% 72.63% 76.84% 76.84% 81.05% 0.521
gpt-5 (high, search) 96 63.54% 72.92% 76.04% 76.04% 76.04% 76.04% 81.25% 0.354
gpt4-o 95 46.32% 64.21% 68.42% 72.63% 75.79% 75.79% 82.11% 0.630
gpt4-o (search) 95 47.37% 63.16% 68.42% 70.53% 75.79% 76.84% 81.05% 0.492
claude4-sonnet 92 29.35% 43.48% 46.74% 52.17% 54.35% 57.61% 68.48% 0.491
claude4-opus 89 39.33% 49.44% 51.69% 56.18% 61.80% 64.04% 70.79% 0.540
skywork-r1v3 96 7.29% 15.63% 16.67% 21.88% 28.13% 33.33% 43.75% 0.495
GLM-4.5V 95 18.95% 36.84% 42.11% 53.68% 61.05% 67.37% 70.53% 0.609

Table 10: Answer and thinking scores for VLMs on Bilibili and YouTube image source, with and
without web search.

VLMs Gemini-2.5-pro Gemini-2.5-flash o3 (high) o4-mini (high) GPT5 (high) GPT4-o Claude4-Sonnet Claude4-Opus Skywork-R1V3 GLM-4.5V

No Web Web No Web Web No Web Web No Web Web No Web Web No Web Web No Web No Web No Web No Web

Bilibili

Total Samples 141 141 141 141 141 141 141 135 141 141 138 141 141 141 136 140
Answer Score 0.261 0.268 0.153 0.201 0.239 0.220 0.165 0.208 0.236 0.281 0.232 0.192 0.127 0.106 0.134 0.196
Thinking Score 0.520 0.459 0.418 0.370 0.481 0.548 0.382 0.347 0.375 0.310 0.325 0.232 0.210 0.223 0.197 0.317

YouTube

Total Samples 26 26 26 26 26 26 26 26 25 26 26 26 26 26 25 27
Answer Score 0.796 0.847 0.616 0.724 0.797 0.901 0.612 0.674 0.789 0.756 0.719 0.710 0.383 0.508 0.332 0.568
Thinking Score 0.762 0.742 0.636 0.644 0.646 0.675 0.644 0.606 0.499 0.315 0.685 0.509 0.468 0.522 0.511 0.663

Table 11: Ablation on reasoning effort and web search.

o3 o4-mini GPT5

Low Medium High Low Medium High Low Medium High

No Web Web No Web Web No Web Web No Web Web No Web Web No Web Web No Web Web No Web Web No Web Web

Bilibili

Total Samples 139 141 141 141 141 141 140 140 141 141 141 135 141 138 141 141 141 141
Answer Score 0.257 0.235 0.262 0.268 0.239 0.220 0.197 0.152 0.175 0.198 0.165 0.208 0.261 0.254 0.233 0.265 0.236 0.281
Thinking Score 0.496 0.461 0.455 0.496 0.481 0.548 0.414 0.381 0.390 0.376 0.382 0.347 0.304 0.092 0.319 0.232 0.375 0.310

YouTube

Total Samples 26 26 26 26 26 26 25 26 26 26 26 26 26 26 26 26 25 26
Answer Score 0.843 0.772 0.739 0.797 0.797 0.901 0.627 0.636 0.654 0.729 0.612 0.674 0.769 0.819 0.831 0.699 0.789 0.756
Thinking Score 0.763 0.704 0.688 0.585 0.646 0.675 0.736 0.737 0.661 0.625 0.644 0.606 0.334 0.179 0.288 0.223 0.499 0.315
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Table 12: Case Study for WhereCountry: GPT-4o without web access scrutinizes tree types and
fencing style to narrow to Chile.

User
Question: Look at this image and determine which country it was taken in. Think first, then
choose from the following options: [Argentina, Chile, Bolivia, Peru].
Ground Truth Answer: Chile

GPT-4o (no web)
This image showcases a countryside landscape with flat terrain, scattered vegetation, and dusty roads.
The environment is characteristic of regions in South America, but notably it resembles parts of south-
ern Chile. The tree types and fencing style suggest a rural area typical of Chilean farmland rather than
the more elevated terrains of Bolivia, Peru, or northern Argentina. Final answer: Chile

GPT-4o (with web)
The landscape appears to be flat and dry, typical of areas found in Argentina and Chile. The road is un-
paved, and there are open fields and sparse trees, which can be found in the Pampas region of Argentina
or certain areas of Chile. However, without distinctive architectural or signage clues, determining the
exact country can be challenging. The prevalence of this type of landscape in Argentina suggests it
might be from there. Final answer: Argentina
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Table 13: Case Study for WhereStreet with GLM-4.5-V (no web). In the response, the model
has proposed the assumption of the correct final answer, but self-reject it.

System: You are a geolocation analyst. Given an image, a HINT, and an ANSWER_TYPE,
do the following:

1. Extract concrete visual evidence (e.g., signage text/language, road markings,
license-plate style, driving side, architecture, vegetation/biome, terrain, rail features,
utility furniture).

2. Reason via a coarse→fine funnel (country→ region→ city→ street) and commit to
one location at the requested granularity.

If a finer granularity is requested, you must choose a plausible candidate at that level rather
than stopping early. If uncertain, still pick the single best candidate matching the ANSWER-
TYPE. Respond in English. Provide detailed reasoning between the <think> </think>
tags and the final answer between the <answer> </answer> tags.

User
Question: Where was this image taken based on visual clues and the provided hint?
Hint: This image is likely taken in China.
Answer type: City
Ground-truth answer: Dalian City, Liaoning, China.

GLM-4.5-V (no web) Response
<think> Got it, let’s try to figure out the city here. First, the image is taken from an airplane, so we’re
looking at an aerial view. The hint says it’s likely in China. Let’s think about Chinese cities with dis-
tinctive water bodies or coastlines. The image shows a large body of water with a city on the other side.
Maybe a bay or a strait? Wait, the timestamp is 2022.12.06 11:45. Let’s think about Chinese cities that
have such a landscape. Maybe Xiamen? Because Xiamen has a bay with islands, like Gulangyu Is-
land. Or maybe Qingdao? But Xiamen’s geography is more like a bay with a city on the mainland
and islands. Wait, the image shows a large water body with a city spread out. Another possibility is
Dalian, but Dalian’s coastline is different. Wait, maybe it’s Xiamen. Let me check: Xiamen is in Fu-
jian province, and it has Xiamen Bay, with the city on the mainland and islands like Gulangyu. The
aerial view might show that. Since the hint says China, and we need a city, Xiamen is a plausible candi-
date. I think that’s the best guess here.</think> <|begin_of_box|><thinking>
1. Visual Evidence Analysis: The image shows an aerial view from an airplane, with a large body of
water (likely a bay or strait) and a densely populated urban area on the opposite shore. The timestamp
is 2022.12.06 11:45, and the hint indicates the location is likely in China.
2. Coarse→Fine Funnel: - Country: The hint explicitly states l̈ikely taken in China,s̈o we start with
China. - Region/Province: Chinese coastal cities with prominent bays or straits are candidates. Fujian
province has several such cities, including Xiamen, which is known for its bay (Xiamen Bay) and is-
lands (e.g., Gulangyu Island). - City: Xiamen’s geography matches the image: a large water body with
a city spread across the mainland and nearby islands. The aerial view of Xiamen Bay, with the urban
area and water features, aligns with the visual evidence.
3. Conclusion: Based on the coastal geography, urban layout, and hint, Xiamen is the most plausible
city. </thinking> Final answer: Xiamen
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Table 14: Case Study for WhereStreet with Gemini-2.5-pro (web).

System: You are a geolocation analyst. Given an image, a HINT, and an ANSWER_TYPE, do
the following:

1. Extract concrete visual evidence (e.g., signage text/language, road markings, license-
plate style, driving side, architecture, vegetation/biome, terrain, rail features, utility
furniture).

2. Reason via a coarse→fine funnel (country→ region→ city→ street) and commit to
one location at the requested granularity.

3. Use Google Search tool if needed.
If a finer granularity is requested, you must choose a plausible candidate at that level rather than
stopping early. If uncertain, still pick the single best candidate matching the ANSWER-TYPE.
Respond in English. Provide detailed reasoning between the <think> </think> tags and the
final answer between the <answer> </answer> tags.

User
Question: Where was this image taken based on visual clues and the provided hint?
Hint: The photograph was taken in the mid-1950s in Northern Europe or south of the UK.
Answer type: Latitude & Longitude
Ground-truth answer: 50.7999, -0.5425
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Table 14: Case Study for WhereStreet with Gemini-2.5-pro (web) (continued).

Gemini-2.5-pro (web) Response
1. Initial Analysis of Visual Evidence:

• The image provided is a black-and-white photograph depicting a person sitting on a
deckchair on a wide sandy beach.

• The background shows many other people on the beach, also using deckchairs.
• A prominent feature in the background is a long, continuous seawall or promenade with a

simple railing. Behind the promenade, some buildings are faintly visible.
• The overall atmosphere, clothing, and the presence of deckchairs suggest a popular seaside

resort.
• The sand appears dark and possibly wet, indicating it might be low tide on a tidal flat beach.

2. Deconstruction of the HINT:
• The HINT states the photo was taken in the mid-1950s. This aligns with the style of the

photograph and the clothing.
• The location is given as Northern Europe or south of the UK. This narrows the search area to

the coastlines of the North Sea and the English Channel. Countries to consider include the
UK (south coast), France (north coast), Belgium, the Netherlands, and possibly Germany
or Denmark.

3. Coarse-to-Fine Geolocation Strategy:
• Country Level: The combination of a very wide, flat, sandy beach and a long, man-made

seawall/promenade (dijk or esplanade) is highly characteristic of the Belgian and Dutch
coasts. While southern UK and northern France have promenades, the continuous, uniform
nature seen here is particularly emblematic of the Belgian coastline, which is almost entirely
lined with such a structure to protect the low-lying land.

• City/Region Level: I will focus on major seaside resorts along the Belgian and Dutch
coasts from the 1950s. Key candidates include Ostend (Oostende), Blankenberge, and
Knokke in Belgium, and Scheveningen or Zandvoort in the Netherlands. The structure
in the photo appears to be a concrete wall with a simple metal railing. I will use search
queries to find historical photos of these locations to compare the promenades.

• Street/Specific Location Level: By comparing the promenade’s architecture and any vis-
ible background buildings, I will attempt to pinpoint a specific city and then a segment of
the beach.

4. Execution of Search and Verification:
• I will perform Google searches using terms like “Ostend beach 1950s”, “Blankenberge

Zeedijk 1950s”, “Scheveningen pier 1950s”, and “Belgian coast promenade vintage photo”.

• Numerous historical photos of the beach at Ostend, Belgium, show a scene identical in
character to the provided image: a vast expanse of sand, crowds with deckchairs, and the
long Albert I-Promenade in the background. The style of the simple railing seen in the
image is consistent with historical photos of the Ostend seawall from that period.

• Reverse image searches and further specific searches for “Oostende strand 1955” confirm
that this photograph is widely identified as being taken on the beach at Ostend, Belgium.

• To find the coordinates, I need to identify a plausible spot on this long beach. The beach
at Ostend is called the “Groot Strand.” It stretches along the Albert I-Promenade. A very
central and popular spot for beachgoers would be in front of the main landmark, the Casino
Kursaal. The faint outlines of buildings in the background are consistent with the general
appearance of the hotel and apartment facades along this promenade.

• Therefore, I will select a point on the sand of the Groot Strand, facing the Casino Kursaal, as
the most probable location for this photograph. The coordinates of the Casino Kursaal are
approximately 51.2320◦ N, 2.9115◦ E. The photo would have been taken from the beach,
looking towards the casino.
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Table 14: Case Study for WhereStreet with Gemini-2.5-pro (web) (continued).

Gemini-2.5-pro (web) Response
1. Final Coordinate Selection:

• A point on the beach, a reasonable distance from the promenade, looking towards the center
of Ostend’s seafront, provides the best estimate. I will select coordinates on the sand di-
rectly offshore from the Casino Kursaal. This leads to approximately 51.2325◦ N, 2.9108◦

E.

Final answer: 51.2325° N, 2.9108° E
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