

000
 001
 002
 003
 004
 005
 006
 007
 008 WHERE IN THE WORLD? A VISION-LANGUAGE
 009 BENCHMARK FOR PROBING MODEL GEOLOCATION
 010 SKILLS ACROSS SCALES

011 **Anonymous authors**

012 Paper under double-blind review

013 **ABSTRACT**

014 Vision-language models (VLMs) have advanced rapidly, yet their capacity for
 015 image-grounded geolocation in open-world conditions, a task that is challeng-
 016 ing and of demand in real life, has not been comprehensively evaluated. We
 017 present `WhereBench`, a comprehensive benchmark for VLM image geoloca-
 018 tion that evaluates visual recognition, step-by-step reasoning, and evidence use.
 019 `WhereBench` comprises 810 globally distributed images across two complemen-
 020 tary geolocation scales: `WhereCountry` (*i.e.*, 500 multiple-choice question-
 021 answering, with country-level answer and panoramas) and `WhereStreet` (*i.e.*,
 022 310 fine-grained street-level identification tasks requiring multi-step reasoning
 023 with optional web search). For evaluation, we adopt the final-prediction metrics:
 024 location accuracies within k km ($Acc@k$) for coordinates and hierarchical path
 025 scores for textual localization. Beyond this, we propose to explicitly score inter-
 026 mediate reasoning chains using human-verified key visual clues and a Shapley-
 027 reweighted thinking score that attributes credit by each clue's marginal contribu-
 028 tion. We benchmark 12 state-of-the-art VLMs with web searching tools on our
 029 `WhereBench` and report different types of final answer accuracies as well as the
 030 calibrated model thinking scores. We reveal that web search and reasoning do not
 031 guarantee improved performance when visual clues are limited, achieving only an
 032 overall 56.3% with the best SOTA model. These findings highlight not only the
 033 promise but also the persistent challenges of models to mitigate bias and achieve
 034 robust, fine-grained localization.

035 **1 INTRODUCTION**

036 Vision-language models (VLMs) have advanced multimodal perception and decision making, en-
 037 abling AI systems to reason over images and, when necessary, invoke external tools such as image
 038 editing or web search to tackle tasks with deeper understanding and stronger capabilities (Qi et al.,
 039 2024; Zheng et al., 2025; OpenAI, 2025b;a; Team et al., 2025). Image geolocation serves as a nat-
 040 ural testbed for vision-grounded reasoning and tool using: given an image, the goal is to infer its
 041 location or coordinates. This capability matters in practice, such as search and rescue (Kim et al.,
 042 2021), urban planning (Glistrup et al., 2022), or environmental monitoring (Lotfian and Ingensand,
 043 2021). Meanwhile, this paradigm is different from conventional VLM benchmarks that put their
 044 primary focus on model capacities for difficult question-answering. However, there remains a lack
 045 of a fair and comprehensive benchmark that evaluates not only final localization accuracy but also
 046 the faithfulness of the underlying reasoning process.

047 Solving image geolocation tasks requires careful analysis of visual cues (*e.g.*, signs, architecture,
 048 vegetation), retrieval of corroborating evidence, and synthesis into a final prediction. Recent VLM
 049 evaluations predominantly target general multimodal capabilities (Cheng et al., 2025; Lin et al.,
 050 2025; Lee et al., 2024; Li et al., 2024a), focusing on perception, reasoning, and safety, while ne-
 051 glecting other dimensions such as localization from limited information. The localization task is
 052 inherently difficult even for human because it requires either extensive knowledge covering the im-
 053 age content or strong tool-use abilities (Wazzan et al., 2024) to search for external knowledge from
 054 visual cues. While there are previous works evaluating localization settings (Vo et al., 2017; Clark
 055 et al., 2023; Huang et al., 2025), they are conducted under isolated settings where external tools and

Figure 1: Illustration of a complete search and reasoning process for a WhereBench sample.

internet access are unavailable. Besides, they primarily report distance-threshold accuracy (Acc@X km), emphasizing outcome metrics over faithful, step-level reasoning, and rarely include human-verified annotations of the decision process.

To this end, we introduce WhereBench, a benchmark for web-assisted geolocation that challenges models to localize using vision-grounded reasoning and web-search tools across two scales of locations. Specifically, WhereBench comprises two complementary tasks: (1) WhereCountry, a country-level localization task with 500 curated panorama images; and (2) WhereStreet, a harder subtask with 310 manually verified images (188 from Bilibili¹, 122 from YouTube²) that asks models to identify street-level locations with reasoning and web searching. An illustration is shown in Figure 1, and a global geographic data distribution is visualized in Figure 2a.

For evaluation, WhereBench goes beyond outcome-only metrics. We assess both coordinate predictions and hierarchical textual localizations and explicitly consider the quality of model reasoning. Using human-annotated visual cues for answering these questions, we compute calibrated correlations between a model's reasoning traces and the final answer, where higher correlation indicates more faithful model reasoning. We also explore the use of leveraging web search for both subtasks in WhereBench. Overall, our WhereBench offers a fine-grained measurement of model reasoning fidelity and evidence use that complements the final answer metrics, yielding a clearer picture of how models think, leverage external evidence, and conclude to final answers.

We evaluate 12 leading VLMs with or without web search on our two subtasks and draw several insights from their results. Across the benchmark, we find that **closed-source models dominate**: Gemini-2.5-Pro achieves the best overall accuracy at 56.32%, while the strongest open-weight model, GLM-4.5V, lags behind at 34.71%, with most others near chance (18.50%). Drilling down by subcategory, we observe that, contrary to expectations, **neither deeper reasoning nor web search consistently improves performance on WhereCountry**: for instance, GPT-5 (high reasoning) drops by up to 2.5%, and GPT-4o loses 13.2% with web search. In contrast, **web access helps in WhereStreet**, where richer visual clues are available, yielding an average 6.5% relative boost. Together, these results highlight the challenges current VLMs face in geolocation and point to the need for more specialized capabilities beyond generic reasoning or web access.

¹<https://www.bilibili.com/>

²<https://www.youtube.com/>

108 Table 1: Comparison of geolocation benchmarks and their properties.
109

Benchmark	# Test Images	Locatability	Image Sources	Human Verified	Reasoning Process	Metrics	Web Tool Use
IM2GPS	237	✗	Flickr	✗	✗	Acc@k	✗
YFCC4k	4,000	✗	YFCC100M	✗	✗	Acc@k	✗
LLMGeo	1,000	✗	GSV	✗	✗	Acc@k	✗
GeolocationHub	20,000	✗	GSV	✗	✗	Acc@k, GeoScore	✗
Fairlocator	1,200	✗	GSV	✗	✗	City-level accuracy	✗
GPTGeoChat	1,000	✗	Shutterstock	✓	✗	Acc@k	✗
GeoChain	2,088	✓	Mapillary	✗	✓	Acc@k, Pass score	✗
WhereBench	810	✓	GSV+private	✓	✓	Acc@k, thinking score hierarchical match	✓

120 2 RELATED WORK
121122 2.1 VISION LANGUAGE MODELS AND AI AGENT
123

124 Vision-language models have evolved rapidly across three main paradigms: non-reasoning VLMs,
125 reasoning-enhanced VLMs, and agentic VLMs. Non-reasoning VLMs form the foundation of multi-
126 modal AI, spanning both closed-source and open-source variants. Leading closed-source mod-
127 els (OpenAI, 2023; Reid et al., 2024; Hurst and many others, 2024) demonstrate strong visual un-
128 derstanding and language generation capabilities through direct inference without explicit reasoning
129 steps. The open-source ecosystem (Liu et al., 2023; Wang et al., 2024a; Chen et al., 2023; Yao et al.,
130 2025; Lu et al., 2024; Chen et al., 2024) provide accessible alternatives that often match or exceed
131 closed-source performance on specific benchmarks. Reasoning-enhanced VLMs represent the next
132 evolution, incorporating systematic multi-step reasoning capabilities. While closed-source reasoning
133 models (OpenAI, 2025b;a; Anthropic, 2025) engage in extended deliberation before producing
134 responses, the open-source community has developed corresponding reasoning models (Shen et al.,
135 2025; Team et al., 2025; Deng et al., 2025; Xu et al., 2024; Huang et al., 2024; Chen et al., 2025)
136 that employ chain-of-thought reasoning and self-reflection mechanisms to enhance complex visual
137 reasoning tasks. Agentic VLMs extend beyond reasoning to incorporate tool use and environmental
138 interaction capabilities. These models integrate with external APIs and interactive environments to
139 solve complex real-world tasks like user interface understanding (You et al., 2024), web naviga-
140 tion (He et al., 2024) and reasoning tasks (Hu et al., 2024), and embodied AI tasks (Yang et al.,
141 2024b; Zhang et al., 2024). While recent work has explored VLM geolocation capabilities (Mendes
142 et al., 2024; Wang et al., 2024b), systematic evaluation of web-assisted geolocation remains un-
143 derexplored. These developments collectively establish VLMs as versatile AI systems capable of
144 sophisticated multimodal understanding and interaction.

145 2.2 GEOLOCATION DATASETS AND BENCHMARKS

146 Research on image geolocation began with retrieval-based approaches such as IM2GPS (Hays
147 and Efros, 2008), later reframing the task as classification over geocells with PlaNet (Weyand
148 et al., 2016). Subsequent work revisited retrieval and hybrid strategies, providing stronger base-
149 lines and standardized splits like Im2GPS3k (Vo et al., 2017), while large-scale corpora such as
150 YFCC100M (Thomee et al., 2016) and Google landmark datasets (Weyand et al., 2020) enabled
151 training at global scale. Challenge series like MediaEval Placing (Choi et al., 2014) and geographi-
152 cally balanced sets such as GWS15k (Clark et al., 2023) further shaped evaluation protocols. Parallel
153 to these efforts, new datasets explicitly emulate human gameplay, such as PIGEON’s GeoGuesser-
154 derived benchmark (Haas et al., 2024), enriching the evaluation of multi-view and panorama-based
155 reasoning. With the rise of LLMs and VLMs, researchers have begun probing their geospatial
156 knowledge (Roberts et al., 2023; Bhandari et al., 2023). Recent studies such as **GeoReasoner** (Li
157 et al., 2024c) and **GAEA** (Campos et al., 2025) constructed large street-view based datasets for
158 pretraining, while benchmarks such as **GPTGeoChat** (Mendes et al., 2024), **GeoChain** (Yerramilli
159 et al., 2025), and **FairLocator** (Huang et al., 2025) reveal both strong geolocation capabilities and
160 risks of privacy leakage and bias. Complementing previous works, our work proposes a multi-scale
161 geolocation benchmark with verified human-written key clues and reasoning process assessment to
probe the ability of VLMs to identify locations.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

(a) All locations in WhereBench shown on a global map.

(b) Continental distribution for WhereStreet.

(c) Answer types (localization levels) for WhereStreet task.

180 Figure 2: Statistics of WhereBench, which reflects global coverage of geolocations (2a and 2b) at
181 different localization levels (2c).
182

183
184 Table 1 shows a detailed comparison between existing geolocation benchmarks and WhereBench.
185 Unlike most benchmarks which only adopt outcome-based metrics, WhereBench weight models'
186 intermediate thinking ability and reflects it onto the final results, reducing answer-only restrictions
187 while preserving global coverage. Moreover, WhereBench has a finer answer granularity, with
188 both text and coordinate outputs that resemble how humans solve geolocation tasks.

3 WHEREBENCH

192 Our WhereBench consists of two tasks: 500 WhereCountry examples for coarse-grained
193 recognition-driven country identification and 310 WhereStreet instances for fine-grained
194 evidence-driven localization. To ensure fairness and robustness, we design the benchmark to achieve
195 global coverage and balance across regions, as demonstrated in Figure 2a, showing all image coor-
196 dinates in the world map. We will first dive into details about each data split, then the metrics
197 employed for both *final answer* and *model thinking* evaluations.
198

3.1 WHERECOUNTRY

201 The WhereCountry task comprises multiple-choice question answering (MCQA) examples
202 paired with one image, where each option corresponds to a country. Specifically for each sam-
203 ple, we provide a 360° panoramic image, a question asking “*Which country was this taken in?*”,
204 and four candidate countries with one correct answer. To increase the sample difficulty, we select
205 incorrect country options from geographically adjacent countries to the target one from United
206 Nations geoscheme³. Alternatively, when there are fewer than three geographically adjacent countries,
207 we select countries that are culturally related to the target one defined in United Nations Regional
208 Groups⁴. We start with the annotated GeoComp (Song et al., 2025) dataset and randomly sampled
209 8,041 images. To keep samples challenging, we utilize open-weight models to filter out simple cases,
210 such as Street View image with national flags and unique characters in storefronts/ads, or images
211 with limited informative clues, resulting in 680 high-quality samples. Detailed data filter process
212 is in Appendix C. We then validate each sample’s gameplay metadata in GeoComp to ensure each
213 sample was attempted with a valid score by a real player. We rank samples by score and select the
214 top 500 images for WhereCountry.
215

³https://en.wikipedia.org/wiki/United_Nations_geoscheme

⁴https://en.wikipedia.org/wiki/United_Nations_Regional_Groups

216 3.2 WHERESTREET
 217

218 Beyond the coarse-grained country-level setting in WhereCountry, WhereStreet introduces
 219 a more challenging, fine-grained localization regime. Samples in WhereStreet contain more
 220 detailed visual cues that may help models pinpoint the exact location. We elaborate on the multi-
 221 scale localization levels and key clue annotation process for reasoning evaluation.

222 **Multi-scale Localization.** There are two answer types in WhereStreet: coordinate-
 223 based and text-based. Each text-based answer is classified into one of the six an-
 224 swer types: $AnswerType = [\text{street}, \text{town/subdistrict}, \text{city}, \text{county/district},$
 225 $\text{province/state}, \text{country}]$. Figure 2b summarizes continental coverage statistics, and we
 226 show each percentage of answer type for WhereStreet task in Figure 2c. Most WhereStreet
 227 items target precise localization (coordinates, street, or town), with smaller fractions at city/county
 228 and higher administrative levels.

229 **Key Clue Annotation for Reasoning Process Evaluation** We meticulously collect 503 publicly
 230 available English- and Chinese-language videos that document full step-by-step geolocation reason-
 231 ing process. We transcribe these videos with Gemini-2.5-pro (Comanici et al., 2025) and extract
 232 candidate key clues from the transcription (see prompts in Appendix A)). We define valid key clues
 233 strictly as visual features observable in the image (e.g., road markings, signage language, pole
 234 types), stripping downstream inferences so that the same feature can support different chains of
 235 reasoning. We then recruit 7 PhD student volunteers with proficient English and Chinese levels to
 236 inspect each key clue. Volunteers are required to verify text-based answers by administrative gran-
 237 ularity as defined by $AnswerType$, and re-annotate the answer as coordinate when text alone is
 238 insufficient or ambiguous (see details in Appendix C). The inspection process yields 310 samples
 239 with 861 verified key clues, which are utilized to evaluate model thinking processes. Auxiliary
 240 “hint” information is recorded as separate metadata to contextualize difficulty without leaking an-
 241 swers when it is mentioned in the video and used as a supporting message to help narrow the final
 242 results (e.g., “this image was taken at 5:30 pm” or “this image was taken on my way to school”).

243 3.3 METRICS

244 **MCQA and Hierarchical Final Answer Evaluations.** We report different metrics for the two
 245 subsets. For WhereCountry paired with country-level MCQA, we use standard multiple-choice
 246 accuracy as the metric. For WhereStreet with precise coordinate, we follow previous studies (Vo
 247 et al., 2017; Weyand et al., 2016) and compute distance-based accuracy at multiple thresholds (e.g.,
 248 1 to 200 km). As for WhereStreet questions with street-level answers, we evaluate model pre-
 249 dictions using a novel hierarchical path score, which reflects the granularity of correctly identified
 250 geographic attributes. Each predicted location is decomposed into a hierarchical sequence of levels:
 251 Country \rightarrow Province/State \rightarrow City \rightarrow County \rightarrow Town/Subdistrict \rightarrow Street. Starting from the root
 252 (country), the model receives one point for each consecutive level that matches the ground truth.

253 Formally, let $\mathbf{y} = (y_1, \dots, y_k)$ be the ground-truth locations and $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_k)$ the predicted
 254 locations. Then, the hierarchical path score is defined as:

$$HPS(\hat{\mathbf{y}}, \mathbf{y}) = \max\{j \mid \hat{y}_i = y_i \ \forall i \leq j\}, \quad (1)$$

255 which counts the length of the longest correct prefix between the prediction and the ground truth
 256 along the location hierarchy. For example, suppose the ground truth is {A street, B county, C city, D
 257 province, China}, and the prediction is {E street, F county, C city, D province, China}. The answer
 258 type is street, and the hint is “The image is taken in China”. The base is China and the target is street.
 259 Because the hint specifies China, the base is adjusted to province. From street to province, there are
 260 five hierarchical levels ($k = 5$). The prediction matches at the city level but is incorrect at the street
 261 and county levels, $c = 2$. Thus, the final score is 0.4.

262 **Overall Performance Accuracy (%).** To combine both splits into a holistic benchmark, we com-
 263 pute the overall performance as the weighted-average of three components—WHERECOUNTRY (coun-
 264 try accuracy), WHERESTREET (text answer score), and WHERESTREET (coordinate accuracy at
 265 Acc@1 km), where weights are proportional to their respective item counts:

$$266 \text{Overall} = \frac{N_C p_C + \sum_{s \in \{\text{bili, yt}\}} n_T^{(s)} s_T^{(s)} + \sum_{s \in \{\text{bili, yt}\}} n_D^{(s)} a_{1\text{km}}^{(s)}}{N_C + \sum_{s \in \{\text{bili, yt}\}} n_T^{(s)} + \sum_{s \in \{\text{bili, yt}\}} n_D^{(s)}}. \quad (2)$$

270 Here, $N_C = 500$ is the number of WHERECOUNTRY (country) items; $p_C \in [0, 1]$ is the corresponding
 271 accuracy. For each source split $s \in \{\text{bili}, \text{yt}\}$, $n_T^{(s)}$ is the number of WHERESTREET text-based
 272 items with mean answer score $s_T^{(s)} \in [0, 1]$, and $n_D^{(s)}$ is the number of WHERESTREET coordinate-
 273 based items with Acc@1 km $a_{1\text{km}}^{(s)} \in [0, 1]$.
 274

275 **Thinking Score Evaluation.** Beyond evaluating only the final answers, we propose a novel metric
 276 to probe the internal thinking patterns, capturing a deeper sense of the model’s internal behaviors.
 277 For each instance we annotate a set of K key clues $\mathcal{C} = \{c_1, \dots, c_K\}$. Given a model’s reasoning
 278 trace R , we evaluate, for each clue c_i , whether it is used to narrow candidates or support the conclu-
 279 sion. Let $s_i \in \{0, 1\}$ indicate the decision (1 = used, 0 = not used). The vanilla thinking score is the
 280 fraction of clues that are used:
 281

$$\text{Thinking-Score}_{\text{vanilla}} = \frac{1}{K} \sum_{i=1}^K s_i. \quad (3)$$

282 To make the thinking score more robust and better reflect true reasoning ability, we reweight key
 283 clues by their marginal contribution to narrowing the candidate location, as certain clues contribute
 284 more to identifying the location than others. In detail, we estimate clue importance using Shapley
 285 values (Rozemberczki et al., 2022), so that the reasoning score is tied more closely to how much
 286 each clue actually helps in reducing uncertainty. Formally, let C denote the set of key clues for an
 287 instance. Define a value function $v : 2^C \rightarrow [0, 1]$, where for any subset $S \subseteq C$, $v(S)$ is the expected
 288 answer quality if the model only has access to clues in S . Then for each clue $i \in C$, the Shapley
 289 weight w_i is defined by:
 290

$$w_i = \sum_{S \subseteq C \setminus \{i\}} \frac{|S|! (|C| - |S| - 1)!}{|C|!} (v(S \cup \{i\}) - v(S)), \quad \sum_{i \in C} w_i = v(C). \quad (4)$$

291 We implement $v(S)$ by enumerating all $2^{|C|}$ subsets S , prompting the judge (Gemini-2.5-Pro) to
 292 assign the achievable answer quality using only clues in S . From those values, we compute the full
 293 Shapley vector $\{w_i\}$ and compute the reweighted thinking score as
 294

$$\text{Thinking-Score}_{\text{reweighted}} = \sum_{i \in C} w_i \cdot s_i \quad (5)$$

295 where $s_i \in \{0, 1\}$ is the binary credit for clue i , indicating that the model correctly identified clue i in
 296 its reasoning. Note that the Shapley weights are computed once per sample under a fixed judge and
 297 prompt and then reused for all evaluated models, ensuring an efficient and reproducible Thinking-
 298 Score across evaluations. In Section 4.3, we showcase that the reweighted Thinking-Score has an
 299 average 0.03 higher correlation than the vanilla version with the final answer, which justifies its use.
 300

301 4 EXPERIMENT

302 We first present detailed descriptions of our experimental settings, followed by an overview of
 303 model performance on WhereBench. Then, to probe different model capabilities across geolo-
 304 cation scales and tasks, we examine the separate splits of the dataset in depth.
 305

306 **Experimental Setup.** We evaluate diverse open-weight and closed-source models which are cate-
 307 gorized as follows: (i) **Open-weight VLMs.** Baseline VLM models such as Qwen-2.5-7B (Yang et al.,
 308 2024a). (ii) **Open-weight VLMs with built-in tool use.** Recent open-weight models expose native
 309 tool abilities (e.g., zoom/resize). We include GLM-4.5V (Team et al., 2025), DeepEyes-7B (Zheng
 310 et al., 2025), and Skywork-R1V3 (Shen et al., 2025). (iii) **Closed-source VLMs.** We evaluate
 311 Claude4-Opus (Anthropic, 2025) and Claude4-Sonnet (Anthropic, 2025) as strong closed baselines.
 312 (iv) **Closed-source VLMs with web search.** Many VLMs support web-enabled retrieval. We
 313 evaluate both reasoning-enabled and standard variants, including Gemini-2.5-pro (Comanici et al.,
 314 2025), Gemini-2.5-flash (Comanici et al., 2025), GPT4o (Hurst and many others, 2024), o3 (OpenAI,
 315 2025b), o4-mini (OpenAI, 2025b), and GPT5 (OpenAI, 2025a). We also report results with
 316 web search disabled for each model.
 317

318 Our evaluation is guided by two prevailing hypotheses regarding VLM scaling. The reasoning hy-
 319 pothesis: that increasing reasoning depth allows models to better synthesize conflicting visual clues,
 320

Figure 3: Overall performance combining both the `WhereCountry` and `WhereStreet` results.

leading to higher geolocation accuracy. The retrieval hypothesis: that access to external knowledge via web search improves performance by allowing models to verify visual landmarks. We follow all official or recommended inference settings for each VLM and use the native web APIs for internet access. Textual evaluation for `WhereStreet` follows an LLM-as-a-Judge protocol with Gemini-2.5-pro with an average Kappa agreement with human judges exceeding 0.75 (Appendix B). The complete prompts for querying VLMs and evaluations are in Appendix A.

Overall performance. Figure 3 ranks VLMs by the micro-averaged accuracy across `WhereBench`. We can conclude several ideas from the figure: 1. Closed-source models lead the performance, *Gemini-2.5-pro* attains the highest overall score, with its web-enabled variant close behind; reasoning-focused baselines (*o3* (high) and *GPT5* (high)) form the next tier with narrow gaps. 2. Claude models underperform relative to other closed models, while the top open-weight VLMs, such as *GLM-4.5V*, are competitive with several lightweight closed-source baselines, indicating a narrow but existing gap between closed and open-weight models. 3. Counterintuitively, applying web search does not always ensure a superior performance; it varies depending on indicative visual clues, as further analyzed in Sec 4.2.

Notably, compared with performance reported under more constrained geolocation setups such as geocell classification against a fixed database or geographically limited city-level answer (Huang et al., 2025; Li et al., 2025; Vo et al., 2017), VLMs generally attain lower absolute scores on `WhereBench`. This gap underscores that `WhereBench` imposes different—and harder—requirements: broader geographic coverage, cross-source variability, and mixed evaluation targets, where search and long-form reasoning are not guaranteed advantages but must be *selective* and *precise*. We further provide ablations regarding tool using, reasoning effort, input visual clues in the following sections.

4.1 WHERECOUNTRY

Figure 4 summarizes models’ country-level accuracies on `WHERECOUNTRY`, from which we obtain two insights below.

Closed models dominate, the best open model narrows but does not close the gap. Without web access, *Gemini-2.5-pro* attains the highest accuracy at 68.4%, followed by *o3* with a high reasoning effort. Among open-weight models, *GLM-4.5V* is strongest at 43.8%, whereas the remaining open-weight baselines perform around chance with an average accuracy of only 19.57%, underscoring a persistent capacity gap on geolocation tasks to proprietary models.

Figure 4: **Main results on WhereCountry ranked by accuracy.** Closed-source models lead by a large margin. Neither web search nor deeper reasoning consistently improves performance.

Table 2: Results on WhereStreet sourced from Bilibili and YouTube, with models as columns and different metrics as rows. Darker green indicates better results within each row.

Models	Gemini-2.5 pro		Gemini-2.5 flash		o3 (high)		o4-mini (high)		GPT5 (high)		GPT4-o		Claude4 Sonnet		Claude4 Opus		Skywork R1V3		GLM 4.5V		
	Web	✗	✓	✗	✓	✗	✓	✗	✓	✗	✓	✗	✓	✗	✓	✗	✓	✗	✓	✗	✓
<i>Bilibili</i>																					
Acc@1km	2.13	6.38	0.00	2.13	2.13	2.13	2.13	2.33	4.26	2.17	0.00	0.00	2.22	2.17	0.00	2.13	0.00	2.13	0.00	2.13	
Acc@5km	23.40	17.02	10.64	14.89	17.02	21.28	10.64	13.95	19.15	21.74	10.87	8.51	6.67	8.70	2.13	8.51	2.13	8.51	2.13	8.51	
Acc@20km	40.43	34.04	29.79	25.53	34.04	34.04	21.28	25.58	34.04	30.43	26.09	29.79	22.22	21.74	17.02	23.40	17.02	23.40	17.02	23.40	
Acc@200km	53.19	55.32	55.32	48.94	48.94	51.06	44.68	44.19	48.94	58.70	52.17	55.32	44.44	47.83	53.19	51.06	53.19	51.06	53.19	51.06	
Thinking Score	0.436	0.483	0.351	0.272	0.425	0.414	0.401	0.340	0.249	0.275	0.273	0.204	0.149	0.232	0.192	0.268	0.192	0.268	0.192	0.268	
<i>YouTube</i>																					
Acc@1km	58.06	65.63	46.88	57.29	54.74	55.21	27.08	52.69	50.53	63.54	46.32	47.37	29.35	39.33	7.29	18.95	7.29	18.95	7.29	18.95	
Acc@5km	73.12	73.96	63.54	68.75	70.53	66.67	44.79	56.99	68.42	72.92	64.21	63.16	43.48	49.44	15.63	36.84	15.63	36.84	15.63	36.84	
Acc@20km	77.42	80.21	72.92	70.83	73.68	71.88	55.21	63.44	72.63	76.04	72.63	70.53	52.17	56.18	21.88	53.68	21.88	53.68	21.88	53.68	
Acc@200km	86.02	85.42	86.46	81.25	84.21	73.96	68.75	70.97	81.05	81.25	82.11	81.05	68.48	70.79	43.75	70.53	43.75	70.53	43.75	70.53	
Thinking Score	0.814	0.803	0.684	0.665	0.686	0.789	0.652	0.572	0.521	0.354	0.630	0.492	0.491	0.540	0.495	0.609	0.495	0.609	0.495	0.609	

Additional effort on reasoning or web search does NOT guarantee improved performance. To examine the impact of advanced model reasoning abilities on WhereCountry, we conduct controlled experiments that vary reasoning depth and web search usage.

- Increasing reasoning from medium to high yields only marginal gains: OpenAI systems achieve an average -1.03% decrease with web search, and the strong reasoning model o3 (high) improves by just 1.3%. Similarly, o4-mini (high, search) shows no improvement, while GPT-5 (high) drops by 1.47% and 2.51% with and without search, respectively. **These results suggest that WhereCountry is perception-centric, where additional reasoning efforts can not lead to higher accuracy without precise perception.**
- Web search, while offering external and real-time information, surprisingly provides *little to no benefit* with an average of 1.72% drop. In fact, GPT-4o suffers a substantial 13.2% drop when web search is enabled. **These drops reflect both a text-only bottleneck in query formulation and potential limitations of search engines for geolocation. WhereBench thus exposes a system-level failure to turn internet access into geolocation gains, motivating tighter integration between visual understanding and web tools.**

Together, these findings demonstrate that neither deeper reasoning nor web search consistently improves performance on WhereCountry. Instead, they underscore the challenging nature of the benchmark and the need for better visual-search integration to support localization with limited visual clues. A detailed case study is provided in Section 4.4.

432 Table 3: Answer and thinking scores on WhereStreet sourced from Bilibili and Youtube, with
 433 models as columns and different metrics as rows.

435 Models	Gemini-2.5 pro		Gemini-2.5 flash		o3 (high)		o4-mini (high)		GPT5 (high)		GPT4-o		Claude4 Sonnet		Claude4 Opus		Skywork R1V3		GLM 4.5V	
436 Web	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	\checkmark	\times	
<i>Bilibili</i>																				
438 Answer Score (%)	26.1	26.8	15.3	20.1	23.9	22.0	16.5	20.8	23.6	28.1	23.2	19.2	12.7	10.6	13.4	19.6				
439 Thinking Score	0.520	0.459	0.418	0.370	0.481	0.548	0.382	0.347	0.375	0.310	0.325	0.232	0.210	0.223	0.197	0.317				
<i>YouTube</i>																				
441 Answer Score (%)	79.6	84.7	61.6	72.4	79.7	90.1	61.2	67.4	78.9	75.6	71.9	71.0	38.3	50.8	33.2	56.8				
442 Thinking Score	0.762	0.742	0.636	0.644	0.646	0.675	0.644	0.606	0.499	0.315	0.685	0.509	0.468	0.522	0.511	0.663				
443 Models	o3			o4-mini			GPT5													
445 Reasoning	Low	Med.	High	Low	Med.	High	Low	Med.	High											
<i>Bilibili</i>																				
447 Answer (%)	23.5	26.8	22.0	15.2	19.8	20.8	25.4	26.5	28.1											
448 Thinking	0.46	0.50	0.55	0.38	0.38	0.35	0.09	0.23	0.31											
<i>YouTube</i>																				
450 Answer (%)	77.2	79.7	90.1	63.6	72.9	67.4	81.9	83.1	75.6											
451 Thinking	0.70	0.59	0.68	0.74	0.63	0.61	0.18	0.22	0.32											

452 (a) Ablation on reasoning effort with web search on
 453 WhereStreet.

454 (b) Effect of number of human-annotated key clues as
 455 extra context.

456 Figure 5: Ablations on reasoning effort (left) and number of human-annotated key clues (right) on
 457 WhereStreet.

4.2 WHERESTREET

458 The main results for WhereStreet are shown in Table 2 for coordinate-based answers and Table 3
 459 for questions paired with street-level text answers. We partition the data by source (Bilibili: 188
 460 samples; YouTube: 122 samples). Overall, for coordinates, Gemini-2.5-Pro with web achieves the
 461 highest Acc@1km: 6.4% (Bilibili) and 65.6% (YouTube). For text, GPT5 (high reasoning, web)
 462 yields the best Bilibili answer score (0.28), while o3 (high reasoning, web) leads on YouTube (0.90).
 463 We provide complete results in Appendix D and detailed case studies in Appendix E.2.

464 **Web search helps when facing more detailed visual clues.** In Table 3, web access improves
 465 the ability of models to identify street-level locations given the image, where the image generally
 466 contains more fine-grained visual details that enable audience to infer street-level answer. This is
 467 evidenced by an averaged relative boosts of both 6.5% on two data sources (e.g., 21.4 vs. 22.8 on
 468 Bilibili and 72.2 vs. 76.9 on YouTube). Moreover, GPT5 gains substantially with web access on the
 469 Bilibili data source — moving from below Gemini-2.5-Pro in the no-web condition to among the
 470 top models with web enabled (e.g., GPT5: 28.1 vs. Gemini-2.5-pro: 26.8).

471 **WhereStreet with more visual details requires certain level of reasoning.** Figure 5a reports
 472 results for o3, o4-mini, and GPT-5 across three reasoning effort levels with web search enabled.
 473 These models show consistent gains when moving from low to medium effort—an average relative
 474 improvement of 14.0% on Bilibili and 5.9% on YouTube (e.g., 21.4 vs. 24.4 on Bilibili and 74.2
 475 vs. 78.6 on YouTube). However, increasing the effort further brings no additional benefit (i.e.,
 476 medium 51.5 vs. high 50.7 on average across both sources and all models). This suggests that while
 477 a moderate level of reasoning is helpful for interpreting the richer visual details in WhereStreet,
 478 excessive reasoning offers decreased returns. In other words, reasoning aids comprehension but
 479 is not the ultimate solution for fine-grained geolocation, where precise recognition and grounding
 480 remain the primary challenges. We present complete results in Appendix D, where coordinate-based
 481 scenarios also shows a similar trend.

4.3 ABLATION STUDY

482 To justify the use of the proposed reweighted Thinking-Score and human-annotated key clues, we
 483 conduct ablation studies on WhereStreet and give the following findings.

486 Table 4: Pearson correlations across models between answer and (i) reweighted thinking score (Our
 487 metric) and (ii) thinking score.

	Gemini-2.5-pro	Gemini-2.5-flash	o3 (high)	o4-mini (high)	GPT5 (high)	GPT4-o	Claude4-Sonnet	Claude4-Opus
Reweighted Pearson	0.248	0.227	0.221	0.229	0.133	0.389	0.305	0.345
w/o reweight	0.236 (-0.012)	0.182 (-0.045)	0.143 (-0.078)	0.251 (+0.022)	0.078 (-0.055)	0.323 (-0.066)	0.336 (+0.031)	0.336 (-0.009)
	Gemini-2.5-pro (search)	Gemini-2.5-flash (search)	o3 (high, search)	o4-mini (high, search)	GPT5 (high, search)	GPT4-o (search)	Skywork-R1V3	GLM-4.5V
Reweighted Pearson	0.246	0.209	0.219	0.289	0.118	0.316	0.208	0.283
w/o reweight	0.176 (-0.070)	0.149 (-0.060)	0.165 (-0.054)	0.275 (-0.014)	0.055 (-0.063)	0.281 (-0.035)	0.203 (-0.005)	0.314 (+0.031)

496 **Model thinking scores indicate the answer quality and reweighting tightens it.** To prove the
 497 effectiveness of the proposed thinking evaluation, we compute Pearson correlations between answer
 498 score and (i) the raw thinking score and (ii) the *reweighted* thinking score (Sec. 3.3); results appear
 499 in Table 4. Reweighting strengthens the correlation with an average 13.70% higher, aligning with
 500 our goal of assessing process quality rather than only final correctness. Qualitative analysis shows
 501 that models frequently ground several cues correctly yet miss a decisive clue, yielding incorrect
 502 predictions. We specifically examined GPT-5 to understand its low correlation and found that its
 503 outputs are high-level summaries rather than complete reasoning traces, consistent with GPT-5’s
 504 limited disclosure of detailed thinking steps for intellectual-property and safety reasons.

505 **Human-verified clues are accurate, providing more clues as input generally yields higher
 506 scores.** To validate the utility of our annotated key clues, we designed an experiment to randomly
 507 select 1, 2, or 3 clues from the annotated key clues list and prepend them as context with the question
 508 and evaluate whether models can gain extra score. We evaluate textual-based samples on GPT4o,
 509 o4-mini, GPT5, and Gemini-2.5-Flash without web access, and the results are shown in Figure 5b.
 510 The answer score increases with more clues. We attribute the answer score fluctuation to the difference
 511 in each clue’s true value and GPT4o’s performance drop to the base model’s limited capability.

512 4.4 CASE STUDY

513 We provide a few typical VLM failure reasons: (1) Failure to utilize visual clues for narrowing down
 514 exact locations. In Appendix E.1, GPT-4o with web search overlooked tree types and fencing style
 515 in the background, concluding on a wrong final answer. Whereas without web searching let GPT-4o
 516 capture the details, leading to the correct answer. (2) Overthinking. Appendix E.2 shows an example
 517 that models could overthink and contradict to themselves. GLM-4.5-V successfully inferred the
 518 territory and coastline structure, but rejected its correct assumption with a self-contradictory reason.
 519 This might be due to lengthy thinking process containing unnecessary aha moments (Guo et al.,
 520 2025), making models stuck in hesitancy. (3) Incomplete searching. Appendix E.2 shows another
 521 example of Gemini-2.5-pro with web search. Gemini-2.5-pro correctly identified the key visual
 522 elements and projected reasonable assumptions. Yet, constrained by current tool-use capabilities
 523 (e.g. suboptimal search queries, limited search iterations, or restricted retrieval context length), the
 524 answering process was terminated early and the model failed to locate the final coordinates. Beyond
 525 these qualitative instances, we conduct a systematic quantitative error analysis in Appendix D.

526 5 CONCLUSION

527 We introduce WhereBench, a standardized benchmark for image geolocation across both country
 528 and street scale. Designed for balance, verifiability, and global coverage, WhereBench unifies
 529 two complementary tasks: WhereCountry (recognition-centric) and WhereStreet (analysis-
 530 and-evidence) to deliver multi-granularity, multi-level assessment. Beyond coordinate accuracy and
 531 hierarchical textual localization, we contribute a process-aware protocol: an LLM-as-a-Judge rubric
 532 that verifies whether key visual clues are actually used, together with a Shapley-reweighted thinking
 533 score that attributes credit by marginal contribution. Extensive experiments reveals that strong
 534 closed models excel on WhereCountry without retrieval, while search aids WhereStreet with
 535 model- and distribution-dependent gains. Overall, WhereBench is challenging, and state-of-the-art
 536 VLMs remain below human-level precision in fine-grained localization. We aim for WhereBench
 537 to serve as a clear target with standardized protocols that facilitates fair comparison, drive sustained
 538 progress, and clarify how VLMs and agents reason with images and leverage web evidence.

540 ETHICS STATEMENT
541

542 WhereBench is developed to probe the geolocation capabilities of vision–language models and
543 not to facilitate privacy invasion or surveillance. Nonetheless, image geolocation poses clear privacy
544 and misuse risks (e.g., stalking, targeted harassment, illicit tracking, or other abusive surveillance).
545 To mitigate these risks during dataset curation we only collected publicly available items that (i)
546 contain an explicit final location reveal, (ii) are non-synthetic, and (iii) do not contain personally
547 identifying information; items failing these criteria were excluded. For each retained sample we
548 extract a single canonical frame and explicitly remove EXIF and auxiliary metadata; candidate visual
549 clues were restricted to verifiable visual features (e.g., road markings, signage styles, vegetation)
550 and screened by trained annotators (see Appendix B). Our intent in releasing WhereBench is to
551 support research-focused evaluation of model capabilities rather than to enable applied geolocation
552 systems. According to this intent, any public release will include clear usage terms and guidance that
553 discourage malicious applications (e.g., recommending access only to vetted researchers, providing
554 redacted versions where appropriate, and documenting responsible use). Finally, we emphasize
555 directions for future work to reduce risk: developing model refusal policies and classifier guidance
556 that teach models when to decline fine-grained location requests, and adding audit trails for retrieval-
557 enabled evaluations so that downstream misuse is harder to automate.

558 REPRODUCIBILITY STATEMENT
559

560 We provide detailed dataset construction steps (Appendix C), prompt templates and evaluation pro-
561 tocols (Appendix A), and full experimental results and ablations (Appendix D and E). All model
562 settings are specified in Section 4. Supplementary materials include the WhereBench image list,
563 key-clue annotations, evaluation scripts, and cached web queries. Together, these resources ensure
564 that construction of WhereBench and its findings can be reliably reproduced.

566 REFERENCES
567

568 Anthropic. System card: Claude opus 4 & claude sonnet 4, May 2025. URL <https://www.anthropic.com/claude-4-system-card>. Model/system card for the Claude 4 series.

569

570 Prabin Bhandari, Antonios Anastasopoulos, and Dieter Pfoser. Are large language models geospa-
571 tially knowledgeable? *Proceedings of the ACM / arXiv preprint*, 2023. URL <https://dl.acm.org/doi/10.1145/3589132.3625625>.

571

572 Ron Campos, Ashmal Vayani, Parth Parag Kulkarni, Rohit Gupta, Aritra Dutta, and Mubarak Shah.
573 Gaea: A geolocation aware conversational assistant, 2025. URL <https://arxiv.org/abs/2503.16423>.

574

575 Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhi-
576 hong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. Allava: Harnessing gpt4v-synthesized
577 data for lite vision-language models. *arXiv preprint arXiv:2402.11684*, 2024.

578

579 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
580 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models,
581 2025. URL <https://arxiv.org/abs/2504.11468>.

582

583 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
584 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
585 for generic visual-linguistic tasks, 2023.

586

587 Xianfu Cheng, Wei Zhang, Shiwei Zhang, Jian Yang, Xiangyuan Guan, Xianjie Wu, Xiang Li,
588 Ge Zhang, Jiaheng Liu, Yuying Mai, et al. Simplevqa: Multimodal factuality evaluation for
589 multimodal large language models. *arXiv preprint arXiv:2502.13059*, 2025.

590

591 J. Choi, C. Hauff, O. Van de Laere, and B. Thomée. The placing task: A large-scale geo-estimation
592 challenge for social-media videos and images. In *MediaEval Workshop Proceedings*, 2014. URL
593 <https://dl.acm.org/doi/10.1145/2661118.2661125>.

594 Brandon Clark, Alec Kerrigan, Parth Parag Kulkarni, and et al. Where we are and what we're
 595 looking at: Query based worldwide image geo-localization using hierarchies and scenes. In
 596 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 597 2023. URL https://openaccess.thecvf.com/content/CVPR2023/papers/Clark_Where_We_Are_and_What_Were_Looking_At_Query_Based_CVPR_2023_paper.pdf.

600 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 601 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 602 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 603 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

604 Yi He Deng, Wenshan Wu, Wenqi Zhang, Yaowei Wang, Richeng Jin, Qingsong Wen, and Roger
 605 Zimmermann. Openvlthinker: Complex vision-language reasoning via iterative sft-rl cycles,
 606 2025.

607 Mathias Glistrup, Stevan Rudinac, and Björn Pór Jónsson. Urban image geo-localization using
 608 open data on public spaces. In *Proceedings of the 19th International Conference on Content-
 609 Based Multimedia Indexing*, CBMI '22, page 50–56, New York, NY, USA, 2022. Association for
 610 Computing Machinery. ISBN 9781450397209. doi: 10.1145/3549555.3549589. URL <https://doi.org/10.1145/3549555.3549589>.

613 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 614 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 615 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

616 Lukas Haas, Michal Skreta, Silas Alberti, and Chelsea Finn. Pigeon: Predicting image ge-
 617 olocations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 618 Recognition (CVPR)*, 2024. URL https://openaccess.thecvf.com/content/CVPR2024/papers/Haas_PIGEON_Predicting_Image_Geolocations_CVPR_2024_paper.pdf.

622 James Hays and Alexei A. Efros. Im2gps: Estimating geographic information from a single image.
 623 Technical report, Carnegie Mellon University, 2008. URL <https://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf>.

625 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
 626 and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models,
 627 2024.

628 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith,
 629 and Ranjay Krishna. Visualsketchpad: Sketching as a visual chain of thought for multimodal
 630 language models, 2024.

632 Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, and Jieyu Zhao. Vlms
 633 as geoguessr masters: Exceptional performance, hidden biases, and privacy risks. *arXiv preprint
 634 arXiv:2502.11163*, 2025.

635 Yujin Huang, Haozhe Chen, Wanrong Zhu, Yountae Jung, Yan Wang, William Yang Wang, and
 636 Xin Eric Wang. Vl-rethinker: Incentivizing self-reflection of vision-language models with rein-
 637 forcement learning, 2024.

639 Aaron Hurst and many others. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024. URL
 640 <https://arxiv.org/abs/2410.21276>. OpenAI, system card for the multimodal model
 641 GPT-4o.

642 Kyounggon Kim, Ibrahim Adam, Abdulrahman Alqunaibit, Nayef Shabel, and Faisal Fehaid. Web
 643 application based image geolocation analysis to detect human trafficking. *Journal of Information
 644 Security and Cybercrimes Research*, 4:69–77, 12 2021. doi: 10.26735/XZBI5196.

646 Tony Lee, Haoqin Tu, Chi H Wong, Wenhao Zheng, Yiyang Zhou, Yifan Mai, Josselin S Roberts,
 647 Michihiro Yasunaga, Huaxiu Yao, Cihang Xie, et al. Vhelm: A holistic evaluation of vision lan-
 guage models. *Advances in Neural Information Processing Systems*, 37:140632–140666, 2024.

648 Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran
 649 Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating vision-
 650 language models on natural adversarial samples. *Advances in Neural Information Processing
 651 Systems*, 37:17044–17068, 2024a.

652 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 653 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 654 arXiv:2408.03326*, 2024b.

655 Ling Li, Yu Ye, and Wei Zeng. Georeasoner: Geo-localization with reasoning in street views using a
 656 large vision-language model. In *International Conference on Machine Learning (ICML)*, 2024c.

658 Ling Li, Yao Zhou, Yuxuan Liang, Fugee Tsung, and Jiaheng Wei. Recognition through rea-
 659 soning: Reinforcing image geo-localization with large vision-language models. *arXiv preprint
 660 arXiv:2506.14674*, 2025.

661 Minzhi Lin, Tianchi Xie, Mengchen Liu, Yilin Ye, Changjian Chen, and Shixia Liu. In-
 662 fochartqa: A benchmark for multimodal question answering on infographic charts. *arXiv preprint
 663 arXiv:2505.19028*, 2025.

665 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 666 tuning, 2023.

667 Maryam Lotfian and Jens Ingensand. Using geo geo-tagged flickr images to explore the correlation
 668 between land cover classes and the location of bird observations. *The International Archives of the
 669 Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLIII-B4-2021:189–194, 06
 670 2021. doi: 10.5194/isprs-archives-XLIII-B4-2021-189-2021.

671 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 672 Zhuoshu Li, Yaofeng Sun, et al. Deepseek-vl: Towards real-world vision-language understanding,
 673 2024.

675 Ethan Mendes, Yang Chen, James Hays, Sauvik Das, Wei Xu, and Alan Ritter. Granular privacy
 676 control for geolocation with vision language models. *arXiv preprint arXiv:2407.04952*, 2024.

677 OpenAI. Gpt-4v(ision) system card, 2023. URL <https://openai.com/research/gpt-4v-system-card>.

680 OpenAI. Gpt-5 system card, 2025a. URL <https://cdn.openai.com/gpt-5-system-card.pdf>.

682 OpenAI. Openai o3 and o4-mini system card, Apr 2025b. URL <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>. System card.

685 Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li,
 686 Yuxiao Dong, et al. Cogcom: A visual language model with chain-of-manipulations reasoning.
 687 *arXiv preprint arXiv:2402.04236*, 2024.

689 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean baptiste
 690 Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5:
 691 Unlocking multimodal understanding across millions of tokens of context, 2024.

692 Jonathan Roberts, Timo Lüdecke, Sowmen Das, Kai Han, and Samuel Albanie. Gpt4geo: How
 693 a language model sees the world’s geography. *arXiv preprint arXiv:2306.00020*, 2023. URL
 694 <https://arxiv.org/abs/2306.00020>.

695 Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian Nils-
 696 son, and Rik Sarkar. The shapley value in machine learning. In *The 31st International Joint
 697 Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence*,
 698 pages 5572–5579. International Joint Conferences on Artificial Intelligence Organization, 2022.

700 Wei Shen, Jiangbo Pei, Yi Peng, Xuchen Song, Yang Liu, Jian Peng, Haofeng Sun, Yunzhuo
 701 Hao, Peiyu Wang, Jianhao Zhang, et al. Skywork-r1v3 technical report. *arXiv preprint
 702 arXiv:2507.06167*, 2025.

702 Zirui Song, Jingpu Yang, Yuan Huang, Jonathan Tonglet, Zeyu Zhang, Tao Cheng, Meng Fang,
 703 Iryna Gurevych, and Xiuying Chen. Geolocation with real human gameplay data: A large-
 704 scale dataset and human-like reasoning framework, 2025. URL <https://arxiv.org/abs/2502.13759>.

705

706 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 707 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
 708 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
 709 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
 710 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
 711 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
 712 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
 713 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
 714 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
 715 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
 716 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
 717 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
 718 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
 719 reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

720

721 Bart Thomee and et al. Yfcc100m: The new data in multimedia research. *Communications of the
 722 ACM*, 2016. URL <https://arxiv.org/abs/1503.01817>.

723

724 Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps in the deep learning era. In
 725 *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2017. URL
<https://arxiv.org/abs/1705.04838>.

726

727 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 728 Jialin Wang, Wenbin Ge, et al. Qwen2.5-vl: Enhancing vision-language model's perception of
 729 the world at any resolution, 2024a.

730

731 Zhiqiang Wang, Dejia Xu, Rana Muhammad Shahroz Khan, Yanbin Lin, Zhiwen Fan, and Xingquan
 732 Zhu. Llmgeo: Benchmarking large language models on image geolocation in-the-wild, 2024b.

733

734 Albatool Wazzan, Stephen MacNeil, and Richard Souvenir. Comparing traditional and llm-based
 735 search for image geolocation. In *Proceedings of the 2024 Conference on Human Information
 736 Interaction and Retrieval*, pages 291–302, 2024.

737

738 Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet – photo geolocation with convolutional
 739 neural networks. *arXiv preprint arXiv:1602.05314*, 2016. URL <https://arxiv.org/abs/1602.05314>.

740

741 Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2 –
 742 a large-scale benchmark for instance-level recognition and retrieval. In *Proceedings of the
 743 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020. URL
<https://arxiv.org/abs/2004.01804>.

744

745 Guowei Xu, Peng Jin, Li Hao, Jianhao Zhang, Zike Wang, Liqiang Nie, and Hang Xu. Llava-o1:
 746 Let vision language models reason step-by-step, 2024.

747

748 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 749 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *CoRR*, 2024a.

750

751 Lianyu Yang et al. Embodied multi-modal agent trained by an llm from a parallel universe. In
 752 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024b.

753

754 Yuxin Yao, Xinyu Huang, Aojun Zhou, Jingjing Chen, Gaowen Liu, Tingkai Liu, Xiao Han, Junyang
 755 Lin, Chang Zhou, and Hongxia Yang. Efficient gpt-4v level multimodal large language model for
 756 deployment on edge devices. *Nature Communications*, 16(1):476, 2025.

757

758 Sahiti Yerramilli, Nilay Pande, Rynaa Grover, and Jayant Sravan Tamarapalli. Geochain: Multi-
 759 modal chain-of-thought for geographic reasoning, 2025. URL [<https://arxiv.org/abs/2506.00785>] (<https://arxiv.org/abs/2506.00785>).

756 Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Sweeny, Jeffrey Nichols, Yinfei
757 Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms, 2024.
758
759 Yichen Zhang et al. Multi-modal agent tuning: Building a vlm-driven agent for efficient tool usage,
760 2024.
761 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
762 Xing Yu. Deepeyes: Incentivizing" thinking with images" via reinforcement learning. *arXiv*
763 *preprint arXiv:2505.14362*, 2025.
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 Appendices

811 A PROMPTS

812
813
814
815 We present the full prompts used for LLM-as-a-Judge. Table 5 shows the prompt for evaluating the
816 answer score when the output is text. Table 6 is the prompt used to check whether key clues appears
817 in the model’s response, resulting in the vanilla thinking score. In Table 7, it is the complete prompt
818 for computing the Shapley value of each clue. Finally, Table 8 shows the prompt used to extract key
819 clues from transcripts produced by Gemini-2.5-pro.

820 B VALIDATING LLM-AS-A-JUDGE SETTING

821
822 We validate the reliability of our LLM-judge (Gemini-2.5-pro) by computing Cohen’s κ against
823 human annotations on held-out subsets on three models: GLM-4.5-V ($n = 47$, $\kappa = 0.74$), o3
824 ($n = 45$, $\kappa = 0.83$), and o4-mini ($n = 59$, $\kappa = 0.70$). These values indicate strong human-model
825 agreement, supporting the use of Gemini-2.5-pro as a reliable judge of model outputs.

826 C DATA CURATION

827 C.1 WHERECOUNTRY

828 After randomly sampled 8,041 images, we utilize Qwen-2.5VL-7B (Wang et al., 2024a) to filter
829 out simple and direct cases such as Street View images with national flags, unique characters or
830 letters in the storefronts/ads, car plates, etc, resulting in 2,359 images. Then, we apply a second
831 filter, LLaVA-OneVision (Li et al., 2024b), to flag residual low-quality cases where images may not
832 contain enough information to pinpoint the exact country, leaving 680 high-quality samples. Failed
833 image samples are shown in Figure 6.

834 C.2 WHERESTREET

835 We curate public social-media channels⁵ that regularly publish image/video geolocation challenges
836 with an explicit final reveal. We apply the following criteria: (i) content is publicly accessible;
837 (ii) each item contains (or links to) a definitive location; (iii) footage appears non-synthetic; (iv) no
838 personally identifying information. Items failing these criteria are excluded. For each selected video,
839 we generate an ASR transcript using Gemini-2.5-pro. Given the raw transcript, Gemini-2.5-pro
840 proposes a set of candidate key clues: short sentences that plausibly reference visual evidence (e.g.,
841 “left-hand traffic,” “blue street name plates,” “Andean highlands vegetation”). 7 trained annotators
842 review each item after watching the original video. Annotators independently write the final answer
843 as revealed by the video. If the final textual answer cannot faithfully represent the final answer,
844 annotators utilize Google Maps to manually cross-check and verify the final location and note the
845 exact coordinate.

846 For every LLM-proposed clue, annotators check against the raw video. We keep cues that can be ver-
847 ified visually (landforms, road markings, language script without specific place names, license-plate
848 format, vegetation, architecture) and remove subjective indications where models might conduct di-
849 verse deductions. Annotators label the finest administrative level that is correctly mentioned by the
850 video. Additionally, any external information that is used by the video but absent from the image is
851 saved for inference. Annotators capture the input image as a single canonical frame from the origi-
852 nal video, excluding any EXIF/auxiliary metadata. **To ensure annotation consistency and quality, we**
853 **employed a hierarchical verification protocol. Ambiguities encountered during the annotate process**
854 **were adjudicated by a lead annotator with extensive experience in geolocation. Following the initial**
855 **annotation, the lead expert then verify ten samples per annotator to spot-check the quality. When a**
856 **single issue was detected, a comprehensive review of that annotator’s entire batch was triggered to**
857 **ensure accuracy.**

858
859
860
861 ⁵<https://space.bilibili.com/1078123935>,<https://space.bilibili.com/1078123935>,
862 https://www.youtube.com/playlist?list=PL_japiE6QKWqMVC3JbyONau_0CZ1DTU5f,<https://www.youtube.com/@GeoPeter>,<https://www.youtube.com/@Nattic>,<https://www.youtube.com/watch?v=r12Q9xH8e7M>

864 Table 5: Prompt for scoring textual geolocation answers via hierarchical matched-prefix credit.
865866 **ROLE**

867 You are a strict geolocation evaluator. Compare a predicted location to a ground-truth location and
868 return *one* accuracy score as a **float** in [0.0, 1.0].

869 **INPUTS**

- 870 – Predicted Location: “{predicted}”
- 871 – Ground Truth Location: “{ground_truth}”
- 872 – Granularity to Judge (answer_type): “{answer_type}” (one of: country | province/state | coun-
873 ty/district | city | town/subdistrict | street)
- 874 – Hint (reference only; do not copy): “{hint}”

874 **RULES**875 *1) Normalize & Parse*

- 876 – Case/diacritic-insensitive; ignore punctuation/extra whitespace; accept common aliases (e.g.,
877 “NYC”=“New York City”, “München”=“Munich”).
- 878 – Use this ordered hierarchy (down→top): **street** > **town/subdistrict** > **city** > **county/district** >
province/state > **country**.

879 – Map obviously equivalent administrative terms across countries (e.g., borough/parish/district). Do
880 not invent missing components.

881 *2) Define the SCORING PATH (denominator)*

- 882 – Let L_{target} be the level named by {answer_type}.
- 883 – Determine a base level L_{base} :
 - 884 • If the Hint names a level L_{hint} that is *consistent with* the Ground Truth, set $L_{\text{base}} = \text{one level below}$
 L_{hint} (treat the Hint as free information; exclude it from credit).
 - 885 • Otherwise (no usable Hint), set $L_{\text{base}} = \text{country}$.
- 886 – The scoring path is the contiguous list of levels from L_{base} (inclusive) up to L_{target} (inclusive).
Denominator = $k = \text{number of levels in this path } (k \geq 1)$.

887 *3) Compute Matched Prefix Count (numerator)*

- 888 – Walk the path from L_{base} downward. Count how many consecutive levels match the Ground Truth
before the first mismatch.
- 889 – A level “matches” if either:
 - 890 • The Predicted explicitly names the same unit as the Ground Truth at that level, *or*
 - 891 • The Predicted *omits* that level but correctly names any *finer (lower)* level under the same Ground
892 Truth parent (implicit parent credit), with no contradicting tokens.
- 893 – If the first level on the path (L_{base}) is wrong, matched count = 0.

894 *4) Score*

- 895 – Score = matched_count/denominator $\in [0, 1]$.
- 896 – Examples when {answer_type}=street and Hint gives a province (e.g., “Guangdong”):
Correct city→county→town→street: 4/4 = **1.0**
- 897 – Correct city→county→town, wrong/missing street: 3/4 = **0.75**
- 898 – Correct city→county, wrong/missing town: 2/4 = **0.50**
- 899 – Correct city only, wrong/missing county: 1/4 = **0.25**
- 900 – Wrong city: 0/4 = **0.00**

901 *5) Anti-Cheating*

- 902 – If the Predicted string copies the Hint (or is trivially derived from it) *without adding any level at or*
below {answer_type}, set score to **0.00**.
- 903 – **Exception:** If the Hint provides multiple-choice style constraints (e.g., “The image is in one of:
904 UK/Canada/USA/Mexico.”), do not penalize merely repeating the hinted country.

905 **OUTPUT (strict)**

906 Return only the float (≤ 3 decimals) inside this tag: <answer>SCORE</answer>

907 **Illustrative Examples**

908 1. GT: Beicheng Street, Zaoyang county, Xiangyang city, Hubei, China.

909 Pred: Niushou Town, Xiangyang city, Hubei, China.

910 answer-type: street; hint: China.

911 Path: street→town/sub→county→city→province ($k = 5$).

912 Match: county mismatches, but city matches $\Rightarrow 2$.

913 Score: 2/5 = 0.4.

914

915

916

917

918 Table 6: Prompt used for LLM evaluation of whether a key clue was used in reasoning.
919
920921 You are an expert evaluator of logical reasoning and evidence utilization.
922923 **TASK**
924 Decide whether the Key Clue was actually USED within the Reasoning Process to advance or
925 support the location inference.
926927 **INPUT**928 Key Clue: “{key_clue}”
929 Reasoning Process: “{thinking_process}”
930931 **DEFINITIONS**
932933

- **Mentioned:** the clue (or a clear synonym) is referenced in the reasoning.
- **Used:** the reasoning relies on the clue to narrow candidates, eliminate options, strengthen a hypothesis, or justify the final conclusion.
- **Dismissed:** the clue is mentioned but explicitly rejected or not carried forward.
- **Misused:** the clue is cited but interpreted incorrectly.

934935 **ALLOWED EVIDENCE**
936937 Judge *only* from the provided Reasoning Process. Do *not* add facts from outside knowledge or
938 the image itself. Do *not* judge whether the final answer is correct—only whether the clue was
939 used.
940941 **DECISION RULES**
942943 Answer “Yes” *ONLY* if *all* are true:
944945

1. The clue (or a clear synonym/phrase) is mentioned or unmistakably referred to, *and*
2. The reasoning uses it to narrow, rule out, weigh options, or support the conclusion (an explicit causal link or justification).

946947 Otherwise answer “No”, including these cases:
948949

- Mentioned as a guess, observation, or side note without narrowing/supporting.
- Mentioned then dismissed or ignored.
- Not mentioned at all (directly or via clear synonym).
- Misunderstood or misused as evidence.
- Ambiguous/uncertain whether it aided reasoning.

950951 **OUTPUT INSTRUCTIONS**
952953 Return:
954 <answer>Yes/No</answer>
955 <explanation>One brief sentence justifying the decision.
956 </explanation>
957958 **CONSTRAINTS**
959960

- Base your decision strictly on the Reasoning Process text above.
- If in doubt, answer “No”.
- Keep the explanation to 1–2 sentences.

961962

D MORE RESULTS

963964 Here we present the complete results of WHERESTREET for textual-based answer (Table 10),
965 coordinate-based (Table 11), and the ablation study results on reasoning effort and web search in
966 Table 11.
967968 **Error Analysis** To provide a quantitative understanding of model limitations, we developed a
969 taxonomy of three primary error types. We utilized an LLM to evaluate the reasoning traces of
970 incorrect responses and classify them based on the following criteria. Note that these categories are
971 not mutually exclusive. Thus, the summation of these error types could exceed 100%.

972 Table 7: Prompt for computing Shapley values of key clues based on their contribution to final
 973 answer quality.

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

System:

You are an expert in calculating Shapley values for feature attribution in machine learning models. Your task is to analyze reasoning files and calculate Shapley values for key clues based on their contribution to the final answer quality. Follow these guidelines: 1. From initial key_clues with index, find out all the combinations. 2. For each combination of the clue, based on the Ground Truth answer and the hint, determine an anchor of which level of answer a model would finally generate. Answer-types are: Country | Province or State | county/district | city | town/subdistrict | street. Refer to the reasoning file to determine the anchor. 3. Finetune the score using the reasoning file as the gold standard; determine the exact score for each combination. 4. Similar to how the Shapley value is calculated: calculate the Shapley value for each clue. For the combination of no clues, the Shapley value is 0. For the combination of all clues, the Shapley value is 1. Each Shapley value is a float between 0 and 1.

User:

Here is the reasoning file content: {reasoning}

The key clues are: {gt_key_clues}. The ground truth answer is: {gt_answer}. The hint is: {hint}.

Note: Hint is supplemental information to the image; it is not a clue. Return a list of Shapley values for each clue in this format:

<answer>[shapley_value_1, shapley_value_2, ...]</answer>

Table 8: Prompt for extracting key clues from the input transcript.

998 Here is the text thinking process of how to deduce the exact location from the input image:
 999 {text_content}

1000 Ignore the caption and watermark. Based on the thinking process and input image, create
 1001 a comprehensive list of key steps.

1002 Do not include any clues that are not mentioned in the text description.

1003 Do not repeat clues.

1004 Merge two clues if they are very similar.

1005 Focus on the most important clues that can help deduce the location.

1006 Format your response as a numbered list where each line starts with a number followed
 1007 by a period and space (e.g., “1. The first clue.”). Each key clue should be concise and
 1008 accurate.

- **Missed Visual Clues:** The model fails to perceive or correctly ground decisive image-based evidence. Typical patterns include ignoring text, domain suffixes, or landmarks; contradicting clear visual signals (e.g., misidentifying language scripts); or remaining vague despite the presence of highly specific localized features.
- **Overthinking:** The model reaches a plausible hypothesis but discards it due to reasoning instability. Indicators include unnecessarily speculative chains of thought, unresolved contradictions (e.g., conflicting driving sides), or excessive elaboration that degrades the final answer quality compared to earlier intermediate steps.
- **Incomplete Search:** The model attempts to use external tools but fails in execution. Common failures include generating generic queries based on misinterpreted clues, hallucinating confirmation from irrelevant search results, or terminating the search process prematurely while uncertainties remain.

1023 As results shown in Table 12, Gemini-2.5-pro and o3 (high) exhibit strong visual grounding, missing
 1024 the fewest visual clues (35.16% and 43.04% respectively). However, they are hampered by search
 1025 alignment errors (38–55%), where the model correctly identifies visual features but fails to translate
 them into effective search queries. Conversely, open-weight models such as Skywork-R1V3 and

Figure 6: Failed image samples. They either have direct text to indicate the country or process relatively limited visual informative clues.

GLM-4.5V suffer from a high rate of "Overthinking" ($\approx 35\%$), where the model generates excessive reasoning steps that drift away from the ground truth constraints. This suggests that while these models have strong raw generation capabilities, they lack the reasoning stability of close-source counterparts.

E CASE STUDY

To better understand VLMs performance, we provide a detailed case study for `WhereCountry` and `WhereStreet`.

E.1 WHERECOUNTRY

We present a GPT4o case study in Table 13 where GPT4o utilizes its internal knowledge, leading to the correct final answer, but a wrong answer when accessing the web.

Table 9: Geolocation accuracy by model.

Source	Model	Samples	Acc@1km	Acc@5km	Acc@10km	Acc@20km	Acc@50km	Acc@100km	Acc@200km	Thinking Score
BILI	gemini-2.5-pro	47	2.13%	23.40%	27.66%	40.43%	46.81%	48.94%	53.19%	0.436
	gemini-2.5-pro (search)	47	6.38%	17.02%	23.40%	34.04%	42.55%	44.68%	55.32%	0.483
	gemini-2.5-flash	47	0.00%	10.64%	23.40%	29.79%	36.17%	46.81%	55.32%	0.351
	gemini-2.5-flash (search)	47	2.13%	14.89%	17.02%	25.53%	36.17%	42.55%	48.94%	0.272
	o3 (high)	47	2.13%	17.02%	29.79%	34.04%	36.17%	40.43%	48.94%	0.425
	o3 (high, search)	47	2.13%	21.28%	31.91%	34.04%	38.30%	42.55%	51.06%	0.414
	o4-mini (high)	47	2.13%	10.64%	17.02%	21.28%	23.40%	31.91%	44.68%	0.401
	o4-mini (high, search)	43	2.33%	13.95%	18.60%	25.58%	30.23%	37.21%	44.19%	0.340
	gpt5 (high)	47	4.26%	19.15%	23.40%	34.04%	38.30%	40.43%	48.94%	0.249
	gpt-5 (high, search)	46	2.17%	21.74%	28.26%	30.43%	36.96%	41.30%	58.70%	0.275
	gpt4-o	46	0.00%	10.87%	21.74%	26.09%	28.26%	36.96%	52.17%	0.273
	gpt4-o (search)	47	0.00%	8.51%	21.28%	29.79%	40.43%	46.81%	55.32%	0.204
	claude4-sonnet	45	2.22%	6.67%	15.56%	22.22%	31.11%	35.56%	44.44%	0.149
	claude4-opus	46	2.17%	8.70%	15.22%	21.74%	32.61%	41.30%	47.83%	0.232
	skywork-r1v3	47	0.00%	2.13%	6.38%	17.02%	29.79%	38.30%	53.19%	0.192
	GLM-4.5V	47	2.13%	8.51%	17.02%	23.40%	29.79%	38.30%	51.06%	0.268
YT	gemini-2.5-pro	93	58.06%	73.12%	77.42%	80.65%	83.87%	86.02%	86.02%	0.814
	gemini-2.5-pro (search)	96	65.63%	73.96%	77.08%	80.21%	81.25%	83.33%	85.42%	0.803
	gemini-2.5-flash	96	46.88%	63.54%	67.71%	72.92%	77.08%	81.25%	86.46%	0.684
	gemini-2.5-flash (search)	96	57.29%	68.75%	70.83%	70.83%	73.96%	76.04%	81.25%	0.665
	o3 (high)	95	54.74%	70.53%	72.63%	73.68%	76.84%	76.84%	84.21%	0.686
	o3 (high, search)	96	55.21%	66.67%	68.75%	71.88%	71.88%	73.96%	73.96%	0.789
	o4-mini (high)	96	27.08%	44.79%	48.96%	55.21%	61.46%	63.54%	68.75%	0.652
	o4-mini (high, search)	93	52.69%	56.99%	60.22%	63.44%	65.59%	67.74%	70.97%	0.572
	gpt5 (high)	95	50.53%	68.42%	72.63%	72.63%	76.84%	76.84%	81.05%	0.521
	gpt-5 (high, search)	96	63.54%	72.92%	76.04%	76.04%	76.04%	76.04%	81.25%	0.354
	gpt4-o	95	46.32%	64.21%	68.42%	72.63%	75.79%	75.79%	82.11%	0.630
	gpt4-o (search)	95	47.37%	63.16%	68.42%	70.53%	75.79%	76.84%	81.05%	0.492
	claude4-sonnet	92	29.35%	43.48%	46.74%	52.17%	54.35%	57.61%	68.48%	0.491
	claude4-opus	89	39.33%	49.44%	51.69%	56.18%	61.80%	64.04%	70.79%	0.540
	skywork-r1v3	96	7.29%	15.63%	16.67%	21.88%	28.13%	33.33%	43.75%	0.495
	GLM-4.5V	95	18.95%	36.84%	42.11%	53.68%	61.05%	67.37%	70.53%	0.609

Table 10: Answer and thinking scores for VLMs on Bilibili and YouTube image source, with and without web search.

VLMs	Gemini-2.5-pro		Gemini-2.5-flash		o3 (high)		o4-mini (high)		GPT5 (high)		GPT4-o		Claude4-Sonnet		Claude4-Opus		Skywork-R1V3		GLM-4.5V	
	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web
<i>Bilibili</i>																				
Total Samples	141	141	141	141	141	141	141	135	141	141	138	141	141	141	141	136	140			
Answer Score	0.261	0.268	0.153	0.201	0.239	0.220	0.165	0.208	0.236	0.281	0.232	0.192	0.127	0.106	0.134	0.196				
Thinking Score	0.520	0.459	0.418	0.370	0.481	0.548	0.382	0.347	0.375	0.310	0.325	0.232	0.210	0.223	0.197	0.317				
<i>YouTube</i>																				
Total Samples	26	26	26	26	26	26	26	26	25	26	26	26	26	26	26	25	27			
Answer Score	0.796	0.847	0.616	0.724	0.797	0.901	0.612	0.674	0.789	0.756	0.719	0.710	0.383	0.508	0.332	0.568				
Thinking Score	0.762	0.742	0.636	0.644	0.646	0.675	0.644	0.606	0.499	0.315	0.685	0.509	0.468	0.522	0.511	0.663				

E.2 WHERE STREET

We first present two success cases using o4-mini with web (Table 14) and Gemini-2.5-pro without web (Table 15). Then, we present two failure cases for GLM-4.5-V (Table 16) and Gemini-2.5-pro with web (Table 17).

F BENCHMARK SAMPLES

Here, we show three samples from GeoChain (Table 18, 19, and 20). For GeoReasoner, the test set is not released⁶. Then, we show three samples from WhereStreet in Table 21, 22, and 23.

G DECLARATION OF AI TOOL USAGE

During the preparation of this manuscript, we used OpenAI’s GPT-5 model for minor language refinement and smoothing of the writing. The AI tool was not used for generating original content, conducting data analysis, or formulating core scientific ideas. All conceptual development, experimentation, and interpretation were conducted independently without reliance on AI tools.

⁶<https://github.com/lingli1996/GeoReasoner/issues/3>

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142

Table 11: Ablation on reasoning effort and web search.

1144	o3						o4-mini						GPT5					
	Low		Medium		High		Low		Medium		High		Low		Medium		High	
	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web	No Web	Web
<i>Bilibili</i>																		
Total Samples	139	141	141	141	141	141	140	140	141	141	141	135	141	138	141	141	141	141
Answer Score	0.257	0.235	0.262	0.268	0.239	0.220	0.197	0.152	0.175	0.198	0.165	0.208	0.261	0.254	0.233	0.265	0.236	0.281
Thinking Score	0.496	0.461	0.455	0.496	0.481	0.548	0.414	0.381	0.390	0.376	0.382	0.347	0.304	0.092	0.319	0.232	0.375	0.310
<i>YouTube</i>																		
Total Samples	26	26	26	26	26	26	25	26	26	26	26	26	26	26	26	25	26	
Answer Score	0.843	0.772	0.739	0.797	0.797	0.901	0.627	0.636	0.654	0.729	0.612	0.674	0.769	0.819	0.831	0.699	0.789	0.756
Thinking Score	0.763	0.704	0.688	0.585	0.646	0.675	0.736	0.737	0.661	0.625	0.644	0.606	0.334	0.179	0.288	0.223	0.499	0.315

1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168

Table 12: Error analysis breakdown (%). We report the frequency of missed visual clues, overthinking, and search-related errors across different models.

1171	Model	Missed Visual	Overthinking	Incomplete/ Search
		Clues		
1174	o4-mini (search, high)	52.19	1.35	49.49
1175	o3 (high)	43.04	2.91	38.51
1176	Gemini-2.5-pro	37.10	0.97	54.84
1177	Gemini-2.5-pro (search)	35.16	2.90	54.52
1178	GLM-4.5V	63.43	34.95	7.44
1179	Skywork-R1V3	76.97	35.86	48.68

1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199

1200 Table 13: Case Study for WhereCountry: GPT-4o without web access scrutinizes tree types and
 1201 fencing style to narrow to Chile.

1202

1203 **User**

1204 **Question:** Look at this image and determine which country it was taken in. Think first, then
 1205 choose from the following options: [Argentina, Chile, Bolivia, Peru].

1206 **Ground Truth Answer:** Chile

1217

1218 **GPT-4o (no web)**

1219 This image showcases a countryside landscape with flat terrain, scattered vegetation, and dusty roads.
 1220 The environment is characteristic of regions in South America, but notably it resembles parts of south-
 1221 ern Chile. The tree types and fencing style suggest a rural area typical of Chilean farmland rather than
 1222 the more elevated terrains of Bolivia, Peru, or northern Argentina. **Final answer: Chile**

1223

1224

1225 **GPT-4o (with web)**

1226 The landscape appears to be flat and dry, typical of areas found in Argentina and Chile. The road is un-
 1227 paved, and there are open fields and sparse trees, which can be found in the Pampas region of Argentina
 1228 or certain areas of Chile. However, without distinctive architectural or signage clues, determining the
 1229 exact country can be challenging. The prevalence of this type of landscape in Argentina suggests it
 might be from there. **Final answer: Argentina**

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242
1243
1244
1245
1246
1247

Table 14: Case Study for WhereStreet with o4-mini (web).

1248
1249

System: You are a geolocation analyst. Given an image, a **HINT**, and an **ANSWER_TYPE**, do the following:

1250
1251
1252
1253
1254
1255
1256
1257

1. Extract concrete visual evidence (e.g., signage text/language, road markings, license-plate style, driving side, architecture, vegetation/biome, terrain, rail features, utility furniture).
2. Reason via a coarse → fine funnel (country → region → city → street) and commit to *one* location at the requested granularity.
3. Use Google Search tool if needed.

1258
1259
1260
1261

If a finer granularity is requested, you *must* choose a plausible candidate at that level rather than stopping early. If uncertain, still pick the single best candidate matching the **ANSWER_TYPE**. Respond in English. Provide detailed reasoning between the `<think> </think>` tags and the final answer between the `<answer> </answer>` tags.

1262

User

1263
1264

Question: Where was this image taken based on visual clues and the provided hint?

Hint: None.

1265
1266

Answer type: street

1267
1268

Ground-truth answer: Chimney Rock at Chimney Rock State Park, Asheville, North Carolina, USA

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

1283

o4-mini (web) Response We see the distinctive 315-foot granite monolith topped by an American flag and the adjacent visitor parking lot. This is Chimney Rock at Chimney Rock State Park, accessible via Main Street in Chimney Rock Village just off NC-9. The attraction's own information gives a primary GPS approach point as 665 Main Street, Chimney Rock, NC, with coordinates approximately 35.432799, -82.250260. The official state parks site also lists the park office location at 743 Chimney Rock Park Road (35.4327, -82.2502), but the temporary bridge entrance and main lot seen in the photo correspond to the Main Street address and the more precise coordinates.

1284

Final answer: **665 Main Street, Chimney Rock, NC 28720, USA** (35.432799, -82.250260)

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

Table 15: Case Study for WhereStreet with Gemini-2.5-pro (no web).

1310

1311

1312

System: You are a geolocation analyst. Given an image, a **HINT**, and an **ANSWER_TYPE**, do the following:

1313

1314

1315

1316

1317

1318

1319

1. Extract concrete visual evidence (e.g., signage text/language, road markings, license-plate style, driving side, architecture, vegetation/biome, terrain, rail features, utility furniture).
2. Reason via a coarse → fine funnel (country → region → city → street) and commit to *one* location at the requested granularity.
3. Use Google Search tool if needed.

1320

1321

1322

1323

If a finer granularity is requested, you *must* choose a plausible candidate at that level rather than stopping early. If uncertain, still pick the single best candidate matching the ANSWER-TYPE. Respond in English. Provide detailed reasoning between the <think> </think> tags and the final answer between the <answer> </answer> tags.

1324

User

1325

Question: Where was this image taken based on visual clues and the provided hint?

1326

Hint: The image is taken in China.

1327

Answer type: county

1328

Ground-truth answer: Meilan District, Haikou City, Hainan, China

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350
1351
1352
1353
1354

1355 Table 15: Case Study for WhereStreet with Gemini-2.5-pro (no web) (continued).

1356
1357

1358 Gemini-2.5-pro (no web) Response

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

1. Initial Analysis of the Image & Hint:

- The image is an aerial photograph taken from an airplane window.
- The HINT states the location is in China.
- A timestamp in the bottom-left corner reads “2023/07/11 07:35”.
- A prominent feature is the airplane’s winglet, which is red with a golden/yellow swirling pattern. This is the distinctive livery of Hainan Airlines (海南航空).
- The landscape below is a coastal region with a long, straight, sandy coastline on the right side of the image.
- Inland, there is a mix of urban development, green areas, and numerous rectangular, water-filled plots characteristic of aquaculture farms (fish or shrimp ponds).
- In the middle-ground to background, a large airport with at least two parallel runways is visible.
- Beyond the airport, a large, dense urban area (a major city) stretches across the horizon.
- Given the timestamp (07:35 in July), the lighting suggests the sun is in the east. The scene appears to be illuminated from the right and slightly behind the plane, indicating the aircraft is likely flying in a generally northerly or westerly direction.

2. Coarse-to-Fine Geolocation Funnel:

- **Country:** China (confirmed directly by the hint).
- **Province/Region:** The combination of:
 - Hainan Airlines as the carrier,
 - a tropical/subtropical coastal environment,
 - extensive aquaculture ponds near the coast, and a major city with a large airport

1380

1381
1382
1383

strongly points toward Hainan Province. Hainan Airlines’ primary hub is Haikou Meilan International Airport (HAK) in Haikou, the provincial capital. Sanya, on the south coast, is another major city with an airport (SYX).

1384

- **City Candidates (Haikou vs. Sanya):**
 - Haikou is on the north coast of Hainan Island. Haikou Meilan International Airport (HAK) is located southeast of the main urban core and about 15 km inland from the northern coast.
 - Sanya is on the south coast. Sanya Phoenix International Airport (SYX) is located directly adjacent to the coastline, west of the main city.
 - The image shows the airport significantly inland from the coast, with a large city even farther inland. This layout is much more consistent with Haikou than with Sanya. In Sanya, the airport sits right on the coast.

1391

- **Flight-Path Hypothesis (Haikou):**
 - Consider an approach to Haikou Meilan International Airport (HAK) from the east or southeast for a westerly/northwesterly landing.
 - In such a scenario, the coastline of the Qiongzhou Strait would lie to the right (north), the airport would be ahead and slightly to the left (southwest), and the main urban area of Haikou would appear farther inland to the left (west).
 - This arrangement matches the spatial configuration in the image: long coastline on the right, aquaculture belt inland, airport in the mid-ground, and dense city on the horizon.

1399
1400
1401
1402
1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

1417 Table 15: Case Study for WhereStreet with Gemini-2.5-pro (web) (continued).

1418
1419
1420

Gemini-2.5-pro (web) Response

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

3. Pinpointing the Location (County / District Level):

- The requested ANSWER_TYPE is `county`. In the Chinese administrative system, for major cities, an urban “District” (区, qū) is effectively a county-level unit (equivalent to a “County” (县, xiān)).
- The area under the aircraft — including Haikou Meilan International Airport and the coastal plain to its northeast — belongs to Meilan District (美兰区) of Haikou City.
- Satellite imagery of Haikou Meilan International Airport (HAK) confirms that it has two parallel runways, matching the airport visible in the photograph.
- The coastline east/northeast of Haikou within Meilan District forms a long, sandy shore, consistent with the straight beach line on the right side of the image.
- Between the coast and the airport, especially around towns such as Yanfeng (演丰镇), there are extensive aquaculture ponds. This pattern of rectangular, water-filled plots coincides with what is seen in the aerial photograph.
- The dense urban area in the background corresponds to the main city of Haikou, while newer high-rise developments closer to the coast align with development zones such as Guilinyang (桂林洋).

4. Conclusion:

- All available visual evidence — airline livery (Hainan Airlines), coastal geography, aquaculture layout, airport configuration, and urban morphology — consistently points to the coastal area of Meilan District in Haikou, Hainan Province.
- The airplane is likely on approach to Haikou Meilan International Airport (HAK), flying roughly northwest along the coast of the Qiongzhou Strait.
- Therefore, at the requested county-level granularity, the best and most consistent location is Meilan District.

1443
1444 **Final answer: Meilan District (美兰区), Haikou, Hainan Province, China**

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458

1459

1460

1461 Table 16: Case Study for WhereStreet with GLM-4.5-V (no web). In the response, the model
 1462 has proposed the assumption of the correct final answer, but self-reject it.
 1463

1464

1465

1466

System: You are a geolocation analyst. Given an image, a **HINT**, and an **ANSWER_TYPE**,
 do the following:

1467

1468

1469

1470

1471

1. Extract concrete visual evidence (e.g., signage text/language, road markings, license-plate style, driving side, architecture, vegetation/biome, terrain, rail features, utility furniture).
2. Reason via a coarse → fine funnel (country → region → city → street) and commit to *one* location at the requested granularity.

1472

1473

1474

1475

If a finer granularity is requested, you *must* choose a plausible candidate at that level rather than stopping early. If uncertain, still pick the single best candidate matching the **ANSWER_TYPE**. Respond in English. Provide detailed reasoning between the `<think> </think>` tags and the final answer between the `<answer> </answer>` tags.

1476

User

1477

Question: Where was this image taken based on visual clues and the provided hint?

1478

Hint: This image is likely taken in China.

1479

Answer type: City

1480

Ground-truth answer: Dalian City, Liaoning, China.

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

GLM-4.5-V (no web) Response

1491

`<think>` Got it, let's try to figure out the city here. First, the image is taken from an airplane, so we're looking at an aerial view. The hint says it's likely in China. Let's think about Chinese cities with distinctive water bodies or coastlines. The image shows a large body of water with a city on the other side. Maybe a bay or a strait? Wait, the timestamp is 2022.12.06 11:45. Let's think about Chinese cities that have such a landscape. Maybe Xiamen? Because Xiamen has a bay with islands, like Gulangyu Island. Or maybe Qingdao? But Xiamen's geography is more like a bay with a city on the mainland and islands. Wait, the image shows a large water body with a city spread out. **Another possibility is Dalian, but Dalian's coastline is different.** Wait, maybe it's Xiamen. Let me check: Xiamen is in Fujian province, and it has Xiamen Bay, with the city on the mainland and islands like Gulangyu. The aerial view might show that. Since the hint says China, and we need a city, Xiamen is a plausible candidate. I think that's the best guess here.`</think> <|begin_of_box|><thinking>`

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

Table 17: Case Study for WhereStreet with Gemini-2.5-pro (web).

System: You are a geolocation analyst. Given an image, a **HINT**, and an **ANSWER_TYPE**, do the following:

1. Extract concrete visual evidence (e.g., signage text/language, road markings, license-plate style, driving side, architecture, vegetation/biome, terrain, rail features, utility furniture).
2. Reason via a coarse → fine funnel (country → region → city → street) and commit to *one* location at the requested granularity.
3. Use Google Search tool if needed.

If a finer granularity is requested, you *must* choose a plausible candidate at that level rather than stopping early. If uncertain, still pick the single best candidate matching the ANSWER-TYPE. Respond in English. Provide detailed reasoning between the `<think> </think>` tags and the final answer between the `<answer> </answer>` tags.

User

Question: Where was this image taken based on visual clues and the provided hint?

Hint: The photograph was taken in the mid-1950s in Northern Europe or south of the UK.

Answer type: Latitude & Longitude

Ground-truth answer: 50.7999, -0.5425

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

Gemini-2.5-pro (web) Response

1572

1. Initial Analysis of Visual Evidence:

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Table 17: Case Study for WhereStreet with Gemini-2.5-pro (web) (continued).

2. Deconstruction of the HINT:

- The HINT states the photo was taken in the mid-1950s. This aligns with the style of the photograph and the clothing.
- The location is given as Northern Europe or south of the UK. This narrows the search area to the coastlines of the North Sea and the English Channel. Countries to consider include the UK (south coast), France (north coast), Belgium, the Netherlands, and possibly Germany or Denmark.

3. Coarse-to-Fine Geolocation Strategy:

- **Country Level:** The combination of a very wide, flat, sandy beach and a long, man-made seawall/promenade (dijk or esplanade) is highly characteristic of the Belgian and Dutch coasts. While southern UK and northern France have promenades, the continuous, uniform nature seen here is particularly emblematic of the Belgian coastline, which is almost entirely lined with such a structure to protect the low-lying land.
- **City/Region Level:** I will focus on major seaside resorts along the Belgian and Dutch coasts from the 1950s. Key candidates include Ostend (Oostende), Blankenberge, and Knokke in Belgium, and Scheveningen or Zandvoort in the Netherlands. The structure in the photo appears to be a concrete wall with a simple metal railing. I will use search queries to find historical photos of these locations to compare the promenades.
- **Street/Specific Location Level:** By comparing the promenade's architecture and any visible background buildings, I will attempt to pinpoint a specific city and then a segment of the beach.

4. Execution of Search and Verification:

- I will perform Google searches using terms like “Ostend beach 1950s”, “Blankenberge Zeedijk 1950s”, “Scheveningen pier 1950s”, and “Belgian coast promenade vintage photo”.
- Numerous historical photos of the beach at Ostend, Belgium, show a scene identical in character to the provided image: a vast expanse of sand, crowds with deckchairs, and the long Albert I-Promenade in the background. The style of the simple railing seen in the image is consistent with historical photos of the Ostend seawall from that period.
- Reverse image searches and further specific searches for “Oostende strand 1955” confirm that this photograph is widely identified as being taken on the beach at Ostend, Belgium.
- To find the coordinates, I need to identify a plausible spot on this long beach. The beach at Ostend is called the “Groot Strand.” It stretches along the Albert I-Promenade. A very central and popular spot for beachgoers would be in front of the main landmark, the Casino Kursaal. The faint outlines of buildings in the background are consistent with the general appearance of the hotel and apartment facades along this promenade.
- Therefore, I will select a point on the sand of the Groot Strand, facing the Casino Kursaal, as the most probable location for this photograph. The coordinates of the Casino Kursaal are approximately 51.2320° N, 2.9115° E. The photo would have been taken from the beach, looking towards the casino.

1620
1621
1622

1623 Table 17: Case Study for WhereStreet with Gemini-2.5-pro (web) (continued).

1624

1625

1626

Gemini-2.5-pro (web) Response

1627

1. Final Coordinate Selection:

1628

1629

1630

1631

1632

Final answer: 51.2325° N, 2.9108° E

1633

1634

1635

1636

1637

1638

1639

1640

1641

Table 18: Example QA instance from GeoChain (Mapillary key: E-f1B3K6E-Z-GSW_xI-rSw).

1642

1643

1644

1645

1646

1647

1648

1649

1650

Field	Value
Key	E-f1B3K6E-Z-GSW_xI-rSw
City	Moscow
Country	Russian Federation
Latitude, Longitude	55.6464, 37.7250
Locatability score	0.462

1651

1652

Rank	Diff.	Question	Answer
1	Easy	Do you see any boats or ships?	No
2	Easy	Do you see one or more of the following vehicles: Bus, Truck, Car, Van, Motorbike, Minibike, Bicycle?	Yes
3	Easy	Can you see any traffic lights?	Yes
4	Easy	Can you see any flag?	No
5	Easy	Would you say this location is near the Equator?	No
6	Easy	Does this location seem to be close to the Poles?	No
7	Easy	Is this place located in the Northern Hemisphere?	Yes
8	Easy	Which continent best describes where this location is?	Europe
9	Medium	What side of the road do vehicles drive on here?	Right
10	Medium	What country is this place located in?	Russian Federation
11	Medium	Is this place near coast?	No
12	Medium	Does this location appear to be an island?	No
13	Easy	Is this place located in a desert region?	No
14	Easy	Does this location seem to be in a mountainous or hilly region?	No
15	Medium	What is the most likely climate type for this location?	Continental
16	Easy	Does this place look like a big city?	Yes
17	Medium	Would you classify this place as a small town?	No
18	Hard	What language(s) are most likely spoken at this place?	Russian
19	Hard	Can you name the state or province this place belongs to?	Moscow
20	Hard	What is the name of the city, town, or village seen here?	Moscow
21	Hard	Based on everything observed, what are the latitude and longitude coordinates of this place? Please give a tuple of float coordinates (lat, lon).	55.6464, 37.7250

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

Table 19: Example QA instance from GeoChain (Mapillary key: 91TncS0AZRczU-PCGI4vQg).

Field	Value
Key	91TncS0AZRczU-PCGI4vQg
City	Berlin
Country	Germany
Latitude, Longitude	52.6003, 13.4591
Locatability score	0.598

Rank	Diff.	Question	Answer
1698	1	Easy Do you see any boats or ships?	No
1699	2	Easy Do you see one or more of the following vehicles: Bus, Truck, Car, Van, Motorbike, Minibike, Bicycle?	Yes
1700	3	Easy Can you see any traffic lights?	No
1701	4	Easy Can you see any flag?	No
1702	5	Easy Would you say this location is near the Equator?	No
1703	6	Easy Does this location seem to be close to the Poles?	No
1704	7	Easy Is this place located in the Northern Hemisphere?	Yes
1705	8	Easy Which continent best describes where this location is?	Europe
1706	9	Medium What side of the road do vehicles drive on here?	Right
1707	10	Medium What country is this place located in?	Germany
1708	11	Medium Is this place near coast?	No
1709	12	Medium Does this location appear to be an island?	No
1710	13	Easy Is this place located in a desert region?	No
1711	14	Easy Does this location seem to be in a mountainous or hilly region?	No
1712	15	Medium What is the most likely climate type for this location?	Temperate
1713	16	Easy Does this place look like a big city?	Yes
1714	17	Medium Would you classify this place as a small town?	No
1715	18	Hard What language(s) are most likely spoken at this place?	German
1716	19	Hard Can you name the state or province this place belongs to?	Berlin
1717	20	Hard What is the name of the city, town, or village seen here?	Berlin
1718	21	Hard Based on everything observed, what are the latitude and longitude coordinates of this place? Please give a tuple of float coordinates (lat, lon).	52.6003, 13.4591

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728
1729

1730 Table 20: Example QA instance from GeoChain (Mapillary key: w1S0t-1Yqc5cfhDWop2Beg).

Field	Value
Key	w1S0t-1Yqc5cfhDWop2Beg
City	Budapest
Country	Hungary
Latitude, Longitude	47.5091, 19.0166
Locatability score	0.472

Rank	Diff.	Question	Answer
1	Easy	Do you see any boats or ships?	No
2	Easy	Do you see one or more of the following vehicles: Bus, Truck, Car, Van, Motorbike, Minibike, Bicycle?	Yes
3	Easy	Can you see any traffic lights?	No
4	Easy	Can you see any flag?	No
5	Easy	Would you say this location is near the Equator?	No
6	Easy	Does this location seem to be close to the Poles?	No
7	Easy	Is this place located in the Northern Hemisphere?	Yes
8	Easy	Which continent best describes where this location is?	Europe
9	Medium	What side of the road do vehicles drive on here?	Right
10	Medium	What country is this place located in?	Hungary
11	Medium	Is this place near coast?	No
12	Medium	Does this location appear to be an island?	No
13	Easy	Is this place located in a desert region?	No
14	Easy	Does this location seem to be in a mountainous or hilly region?	No
15	Medium	What is the most likely climate type for this location?	Continental
16	Easy	Does this place look like a big city?	Yes
17	Medium	Would you classify this place as a small town?	No
18	Hard	What language(s) are most likely spoken at this place?	Hungarian
19	Hard	Can you name the state or province this place belongs to?	Budapest
20	Hard	What is the name of the city, town, or village seen here?	Budapest
21	Hard	Based on everything observed, what are the latitude and longitude coordinates of this place? Please give a tuple of float coordinates (lat, lon).	47.5091, 19.0166

1759

1760

1761

1762

1763

1764

Table 21: Example from WhereStreet.

1775

1776

1777

1778

1779

1780

1781

1782
1783
1784
1785
1786
1787
1788
1789

Table 22: Example from WhereStreet.

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

Field	Value
Answer type	latitude & longitude
Coordinates	-34.8460, -54.6329
Key clues	<ul style="list-style-type: none"> Lighthouse and Uruguay flag in the photograph. The lighthouse's features, including the round windows.
Hint	No additional hint is provided for this sample.

1820

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 23: Example from WhereStreet.

Field	Value
Answer type	city
City (ground truth)	Changji Hui Autonomous Prefecture, Xinjiang Uyghur Autonomous Region, China
Key clues	<ul style="list-style-type: none"> The presence of snow and bare deciduous trees. A distinctive European-style building with multiple red, pointed roof. A sign on a lamppost with the number 1054 is identified as a "lamppost police reporting number".
Hint	This image is taken in China.