
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOREGRESSIVE ACTION SEQUENCE LEARNING
FOR ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models have demonstrated remarkable success in natural language
processing. In this work, we design a simple yet effective autoregressive architec-
ture for robotic manipulation tasks. We propose the Chunking Causal Transformer
(CCT), which extends the next-single-token prediction of causal transformers to
support multi-token prediction in a single pass. Further, we design a novel atten-
tion interleaving strategy that allows CCT to be trained efficiently with teacher-
forcing. Based on CCT, we propose the Autoregressive Policy (ARP) model,
which learns to generate action sequences autoregressively. We find that action
sequence learning enables better leverage of the underlying causal relationships
in robotic tasks. We evaluate ARP across diverse robotic manipulation environ-
ments, including Push-T, ALOHA, and RLBench, and show that it outperforms
the state-of-the-art methods in all tested environments, while being more efficient
in computation and parameter sizes. Video demonstrations, our source code and
the models of ARP are all included in the supplementary material.

1 INTRODUCTION

Autoregressive models are the basis of recent breakthroughs in natural language processing (Min
et al., 2023). These models predict the next token in a given sequence based on the previous tokens.
Autoregressive models are implemented with causal transformers, where each token attends only
to preceding ones, and they are trained with the single objective of maximizing the conditional
likelihood of each token. Despite their simplicity, autoregressive models such as GPTs (Mann et al.,
2020) are shown to demonstrate a reasoning ability that can capture causal dependencies (Prystawski
et al., 2024). In this work, we explore the design of a simple autoregressive architecture that can be
used for various robot manipulation tasks in diverse environments.

Decision Transformer (DT) and Trajectory Transformer (TT) are the pioneering approaches that use
autoregressive models to solve control tasks (Chen et al., 2021; Janner et al., 2021). These methods
learn to generate trajectories as (R1, s1, a1, . . . , RT , sT , aT ), where Rt, st, at respectively denote
the reward-to-go (Tamar et al., 2016), the state, and the action at time-step t. In contrast, we propose
to predict only the future action sequence, and condition the prediction on the current state (or
observation). Action sequence learning is more attainable as an objective in robotics applications,
where the underlying reward functions are unknown or ill-defined, and observations, given as images
or point clouds, are high-dimensional and cannot be predicted accurately (Kroemer et al., 2021).
DT and TT are mainly used in tasks where low-dimensional state variables are fully observed. To
deal with uncertainty, our model generates a new action sequence after every k time-steps, using
an updated new observation and following the Model Predictive Control (MPC) approach. Action
sequence modeling also enables a better leverage of the underlying causal dependencies in robotic
tasks. Examples of such causal dependencies include: logical dependencies, where low-level actions
depend on high-level plans, spatial dependencies, where orientation depends on the end-effector’s
position, and temporal dependencies, where latter actions depend on earlier ones. We showcase the
action sequence designs of our real robot experiment, Push-T, ALOHA, and RLBench in Figure 3.

We propose the Chunking Causal Transformer (CCT), an auto-regressive model that is tailored for
robotic tasks. CCT extends the next-token predictions of causal transformer to support multi-token
predictions in a single pass. CCT predicts the future tokens, or a chunk of actions, from empty
tokens rather than from the original sequence, as illustrated in Figure A1. In doing so, CCT is more

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Autoregressive Policy Architecture. A sequence of past actions and a chunk of empty
tokens are concatenated and projected into embeddings. The empty tokens correspond to future ac-
tions, which are unknown and need to be predicted. These embeddings are fed into our Chunking
Causal Transformer (CCT) along with the vision features of the current observation. CCT alternates
between self-attention within the input embeddings and cross-attention with the vision features.
Self-attention is causal for the known input actions and bidirectional among the empty tokens. Dis-
tributions of future actions are decoded from the updated embeddings of the empty tokens.

efficient by requiring fewer inference passes and delivers stronger performance because grouping
actions in chunks is critical for robotic tasks that require high control frequency (Zhao et al., 2023).
Further, we design a novel attention interleaving strategy that allows CCT to be trained efficiently
with teacher-forcing, as shown in Figure 4. While action chunking has been previously introduced
in the Action Chunking Transformer (ACT) by Zhao et al. (2023), ACT is a one-step prediction
model. Instead, we employ action chunking for auto-regressive models. Our ablation studies show
that both auto-regression and action chunking are the key factors behind the strong performance of
the proposed model, as shown in Table 1 and Figure 7.

To summarize, our contributions are threefold. (1) We propose the Chunking Causal Transformer
(CCT), which extends the next-token prediction of causal transformer to multi-token prediction for
auto-regressive models. We also design a novel attention interleaving strategy that allows CCT to
be trained efficiently with teacher-forcing. (2) Based on our CCT, we present the Auto-regressive
Policy (ARP), a model that learns to generate action sequences auto-regressively for solving robotic
manipulation tasks. The ARP architecture is summarized in Figure 1. (3) We evaluate ARP across
Push-T (Chi et al., 2023), ALOHA (Zhao et al., 2023), and RLBench (James et al., 2020), three
environments with diverse manipulation tasks, as outlined in Figure 2. Our study shows that ARP
outperforms all environment-specific SoTAs, while being more efficient computationally and using
smaller parameter sizes, as summarized in Figure 5. In addition, we evaluate ARP with a real robot
on a challenging, contact-rich nut-tightening task, as shown in Figure 8.

2 RELATED WORK

Learning robotic manipulation from demonstrations. Imitation learning enables robots to learn
to perform tasks demonstrated by experts (Zare et al., 2024). Recently, various methods have been
developed for manipulation learning with different task constraints and control modalities. Notably,
Chi et al. (2023) proposed the Diffusion Policy (DP) method for solving the Push-T task. Zhao et al.
(2023) proposed the Action Chunking Transformer (ACT) for bi-manual manipulation tasks in the
ALOHA environment. Goyal et al. (2024) proposed RVT-2 for language-conditioned tasks in the
RLBench environment (James et al., 2020). We outline these environments and the corresponding
state-of-the-art (SoTA) solutions in Figure 2 and Figure 6, respectively. In contrast, our proposed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the simulation environments. We evaluate our technique on Push-T,
ALOHA, and RLBench, three task suites with significantly different properties and requirements.
Push-T (Chi et al., 2023) is a task that requires many steps to complete (long horizon) and where the
same sub-goals can be reached in various ways (multi-modality). ALOHA (Zhao et al., 2023) has a
high-dimensional action space (14 joints of two robot arms), a high control frequency (50Hz), and
a short time limit (8 seconds). RLBench (James et al., 2020) has only the gripper pose as an action
but contains 18 different language-conditioned tasks.

auto-regressive policy is a universal architecture that outperforms each environment-specific SoTA
on Push-T, ALOHA, and RLBench.

Sequence models for control tasks. In addition to the Decision Transformer (DT) and the Trajec-
tory Transformer (TT), recent works such as OpenVLA (Kim et al., 2024) and ManipLLM (Li et al.,
2024) have looked into fine-tuning a large language model (LLM) such as LLaMA (Li et al., 2024)
to directly include target end-effector poses within text-based responses. Despite their impressive
results, these approaches are limited to low-frequency control tasks that rely on end-effector way-
points (Kim et al., 2024). Moreover, the reliance on resource-intensive LLMs leads to large com-
putational overhead, even for tasks that could be addressed with lightweight models. Without these
constraints, our auto-regressive policy outperforms SoTAs in multiple environments while being
more efficient in MACs (number of multiply-accumulate operations) and parameter sizes.

Hierarchical policies. Planning actions on multiple levels of abstraction is an important ability (Pa-
teria et al., 2021). Existing methods generally separate the designs of low-level and high-level
policies, and uses different modules for the different levels of abstraction (Le et al., 2018; Pateria
et al., 2021; Belkhale et al., 2023; 2024; Chen et al., 2024b). This complicated procedure prohibits a
wider application. In contrast, our auto-regressive policy predicts a sequence of actions of different
levels of abstraction by using a single model.

3 METHOD

In this section, we present the Auto-regressive Policy (ARP), which predicts actions using the
Chunking Causal Transformer (CCT). The architecture is summarized in Figure 1.

Action sequence design. Unlike natural language, robot actions lack a universal vocabulary. As
shown in Figure 2, different robot tasks may require drastically different types of actions. We there-
fore propose to represent actions as structured sequences that follow a format that is pre-defined for
each family of tasks. Figure 3 showcases the formats of the action sequences generated in our real
robot experiment, Push-T, ALOHA, and RLBench tasks.

Action embedding and decoding. Language models map each word to a continuous vector called
word embedding. The word embeddings of the input sentences are fed into a causal transformer.
The distribution of the next word is decoded from the output embedding of the last word with a
linear layer. Figure A2 and A3 illustrate our embedding and decoding methods for robot actions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Learned Action Sequences. In Push-T, our model predicts a sequence of high-level
waypoints, followed by a sequence of low-level positions that connect the waypoints together and
form in the pushing trajectory, analogous to hierarchical planning (Hafner et al., 2022). In ALOHA,
we predict the joint values and then the end-effector waypoints conditioned on the joint values, a
process akin to forward kinematics (Kucuk & Bingul, 2006). We bypass the waypoint generation
during inference. In RLBench, we predict the target end-effector’s position first, then the gripper
rotation and state in that position. For our real robot experiment, we define a set of primitive actions,
as detailed in section 4.3. We predict the action type and then the continuous values of that action.

Discrete actions are embedded by a table lookup on a weight matrix and decoded into a categorical
distribution with a linear layer, similar to words in language modeling. Continuous actions are
embedded with a linear layer and decoded into the parameters of a Gaussian mixture distribution
with another linear layer. Actions that are defined as pixel coordinates are embedded by retrieving
the point-wise features at the coordinates on a visual feature map. The output spatial distribution is
obtained by multiplying the output embedding with the visual feature map, and converting the result
into a 2-d heatmap with the up-sampling operator from RAFT (Teed & Deng, 2020).

Chunking causal transformer. Figure A1 illustrates the essential difference between a causal
transformer and our CCT. A causal transformer modifies the token embedding with causal attention
so that the last token becomes the next token. Our CCT modifies the token embedding with causal
attention for the known tokens ai (past actions) and bidirectional attention for the empty tokens ei
(future actions). The empty tokens become the next tokens. This allows the prediction of multiple
next tokens at once in a single forward pass by adding empty tokens. The advantages are two-fold:
(1) A better accuracy is achieved because error accumulation is reduced when actions are grouped
in chunks and executed as one unit (Zhao et al., 2023). (2) A better efficiency is achieved with fewer
forward passes because each forward pass predicts multiple tokens at once. We study the impacts
of action chunking in detail in Section 4. In ARP, CCT alternates between self-attention within the
input embeddings and cross-attention with vision features, as in Figure 1. We extract vision features
from a standard backbone identical to the ones used in SoTA methods, as detailed in section 4.

Train-time attention interleaving. During training, a causal transformer is taught to predict each
token in a given sequence by consuming all previous ground-truth tokens as input. This training
strategy is named teacher-forcing (Williams & Zipser, 1989). As shown in Figure 4, only a single
forward pass is required for training samples such as a1, a2, a3 → a4 (predict a4 from a1, a2, a3),
a1, a2 → a3, and a1 → a2. Causal transformers are therefore efficiently trained with teacher-
forcing. We follow this teacher-forcing strategy. However, training CCT yields separate forward
passes per chunk. For example, the prediction of a4 depends on a2, a3, as in a1, a2, a3, e4 → a4,
but a2, a3 need to be replaced with e2, e3 to predict them from a1, as in a1, e2, e3 → a2, a3. This
prohibits the use of a single forward pass for both a1, a2, a3, e4 → a4 and a1, e2, e3 → a2, a3. Note
ai denotes the i-th action and ei denotes the empty token for i-th action. This issue increases the
training cost and drastically complicates the training procedure.

To resolve this, we first divide the attention into three categories: (1) causal attention within the
known tokens, (2) bidirectional attention within the empty tokens, and (3) causal attention between
the empty and the known tokens, as marked in Figure 4. Figure A4 shows that the causal attention
within known tokens is computed repeatedly. We avoid this redundancy by precomputing the causal

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Training Chunking Causal Transformer (CCT) with Teacher-forcing. Causal trans-
formers are trained efficiently with only a single forward pass for all tokens in a given sequence.
However, suppose a2, a3 and a4 are in separate chunks, the CCT forward passes of predicting a2, a3
and a4 cannot be merged directly. Naively running separate passes significantly increases computa-
tion costs, as in Figure A4. With the proposed attention interleaving, we precompute and cache the
causal attention results for all known tokens a1, a2, a3. For the empty tokens e2, e3, e4, we combine
their bidirectional attention (lightgray) and the causal attention towards known tokens (green, blue).
Since all the computations related to the known tokens are cached, we can update all the empty
tokens in a single pass, regardless of the number of tokens. An example of attention interleaving is
provided in the Video/attention-interleaving-tour.mp4 in the supplementary.

Figure 5: Comparing our proposed Autoregressive Policy to the SoTA of each environment.
Our autoregressive policy (ARP) outperforms environment-specific SoTA and is more efficient in
MACs (number of multiply-accumulate operations) and parameter sizes. We report the results of
the transformer version of the diffusion policy because of its overall better performance. The RVT-
2 (Goyal et al., 2024) results are obtained without including timesteps in the input, similarly to ARP.
All MACs and parameter sizes are measured using THOP (Zhu).

attentions for all known tokens and caching the results. For the empty tokens, we combine their inner
bidirectional attention and the causal attention toward cached known tokens. This enables a single
forward pass of all tokens in three attention operations, regardless of the number of tokens. We name
this procedure attention interleaving. Figure A4 demonstrates the reduced MACs of training with
attention interleaving. We implement attention interleaving as an internal acceleration mechanism of
the transformer layer, which is transparent to other network modules. Note that attention interleaving
is only used during training and incurs no additional inference cost.

Inference. During the test rollouts, we extract vision tokens from the current observation and pro-
vide them as input to ARP, which then generates actions auto-regressively by sampling from the
decoded action distribution and appending the selected actions to the existing action sequence. This
process of generating and executing actions is repeated until episode termination (success, failure, or
reaching the time limit). Actions are generated according to the sequence formats shown in Figure 3
with pre-defined chunk sizes and target lengths per task. We provide additional implementation
details and hyper-parameter values in Section 4 and Appendix A.2.

4 EXPERIMENTS

In this section, we investigate how the Auto-regressive Policy (ARP) performs compared to the
existing methods that were designed specifically for each environment. In addition, we examine

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 6: Overview of SoTA solutions on Push-T, ALOHA, and RLBench. Diffusion Policy
(DP) (Chi et al., 2023) iteratively subtracts Gaussian noises from noisy actions. The transformer
network predicts the Guassian noise at each step. Action Chunking Transformer (ACT) (Zhao et al.,
2023) is a VAE architecture that predicts actions directly from images and Gaussian noises. RVT-
2 (Goyal et al., 2024) is a hybrid and more complex model, but it is trained directly with behavior
cloning and it does not require a generative framework such as diffusion or VAE.

whether auto-regression and action chunking are the primary contributors to the performance gains
and evaluate how well existing methods perform across different environments. Further, we verify
ARP on a challenging nut-tightening task with a real robot. Finally, we demonstrate that ARP can
estimate the likelihood of robot actions and predict actions based on human inputs. All of our source
code and the pre-trained models are included in the supplementary material and will be publicly
released upon acceptance. A single-file implementation of our auto-regressive policy can be found
at Code/arp.py in the supplementary material.

4.1 COMPARISON WITH STATE-OF-THE-ART

Setup. We compare the auto-regressive policy (ARP) against the SoTA solutions in Push-T,
ALOHA, and RLBench environments. Push-T is a single task. ALOHA consists of two tasks: in-
sertion and cube transfer. RLBench includes 18 tasks, each with multiple language variants. These
environments are illustrated in Figure 2 and Figure A5. For Push-T and ALOHA, we train a separate
policy for each task. For RLBench, a single policy is trained for all 18 tasks. In Push-T, the policy
observes the last two 96× 96 RGB frames, and predicts a window of future 2-d pointer positions as
actions. In ALOHA, the policy observes the current 480 × 640 RGB frame and predicts a window
of future 14-dimensional joint positions. In RLBench, the policy observes four RGBD 128 × 128
images and predicts the next target end-effector pose and gripper states. Existing SoTA techniques
in these environments are outlined in Figure 6. We use the same vision backbones as the SoTA
solutions to extract vision tokens, namely ResNet50 (He et al., 2016) for Push-T and ALOHA, and
Multi-View Transformer (Goyal et al., 2023) for RLBench. We use the same training data, number
of episodes, optimizer configuration, and evaluation frequency as the SoTA solutions. We detail
the full list of hyper-parameters, such as the number of layers, sequence lengths, chunk sizes, and
optimizer setups in Appendix A.2. Success rates for Push-T and RLBench are averaged over three
independent runs. ALOHA’s results are averaged over five runs.

Results. Figure 5 shows that our auto-regressive policy (ARP) outperforms environment-specific
SoTAs while being more computationally efficient. Table A4 compares the per-task success rates of
our ARP and RVT-2 (Goyal et al., 2024). In addition, we report the result of ARP+, which shares the
same network definition with ARP but has more layers. The MACs / parameter sizes of RVT-2, ARP,
ARP+ are 72.1M/57.1G, 71.9M/56.2G, and 73.8M/57.4G, respectively. Notably, ARP+ achieves an
average success rate of 86% with a minor increase in computational cost. Note that the success rate
of RVT-2 was originally reported as 81.6%. But this was achieved by using a logical time-step as an
extra input, which indicates task progress (sub-task milestone). Many existing works have followed
this convention (Shridhar et al., 2023; Goyal et al., 2023). However, this information is unavailable
in real applications. Thus, we train all our RLBench models without the input time-step.

4.2 ANALYSIS

Does the performance gain come from auto-regression? Our action sequence design incorporates
additional inputs for Push-T and ALOHA, as shown in Figure 3. These inputs are automatically
extracted from the demonstration trajectories. In Push-T, the high-level waypoints are simply uni-
formly sampled down from the low-level trajectories and then discretized. In ALOHA, the pixel
coordinates of the end-effector are computed from the joint values with the robot’s forward kine-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Auto Regression versus One-step Prediction and SoTA. The baseline refers to the SoTA
(Diffusion Policy for Push-T and ACT for ALOHA). Auto Regression is our proposed approach,
where actions are generated auto-regressively. One-step prediction shares the same implementation
and training data as the proposed approach but generates the entire action sequence in a single step.

Generation Mode Push-T ALOHA

Cube Transfer Insertion

Baseline 78.8 80.8 20.8
Auto Regression 87.1 94 24.8

One-step Prediction 77.6 81.2 21.2

Table 2: Evaluation of existing methods on various environments. ACT, a VAE-based method,
performs competitively across all environments, whereas Diffusion Policy struggles in ALOHA and
RLBench. While we believe stronger diffusion-based architectures can be developed in the future,
our results suggest that simpler architectures tend to be more robust across diverse tasks.

Method PushT ALOHA RLBench
Cube Transfer Insertion

Diffusion Policy 78.8 10 1.6 -
ACT 77.5 80.8 20.8 69.8
ARP (Ours) 87.1 94 24.8 81.2

matics and the camera parameters. It is possible that the performance gain of ARP originates from
this extra information instead of our proposed auto-regression architecture.

Table 1 compares the success rates of auto-regression and one-step prediction in Push-T and
ALOHA. Both share the same implementation, with one-step prediction generating the entire se-
quence at once by setting the CCT chunk size to the full sequence length. The baseline refers to the
diffusion policy for Push-T and ACT for ALOHA. The results clearly show that auto-regression is
the key factor behind the better performance. Our intuition can be explained through an example:
imagine task B is difficult, but solving task A first, followed by solving task B|A (task B given the
result of task A), is much easier. An auto-regressive model follows this sequential process, solving
task A first and then leveraging the result to make task B more feasible. In contrast, a one-step
model attempts to predict both tasks simultaneously, treating A and B as independent problems.
While the one-step model may solve task A implicitly as part of solving task B, it does not explic-
itly take advantage of the problem structure and is therefore prone to shortcuts. This phenomenon
has been explored in more depth for NLP tasks by Prystawski et al. (2024).

Do existing methods work in different environments? Table 2 shows how existing methods per-
form in different environments. When testing in a new environment, we keep the same architecture
but adapt the vision backbone and optimizer to the environment’s established setup. RVT-2 was not
implemented for Push-T and ALOHA, as it is designed for sparse waypoint predictions, which are
incompatible with the high-frequency actions required in these tasks. We did not implement the
diffusion policy for RLBench, as it refines actions from gaussian noise, which conflicts with the
common practice in RLBench of predicting actions in discrete spaces. While 3D Diffuser Actor (Ke
et al., 2024) reports competitive results on RLBench, it uses a completely different architecture.

Table 2 reveals that ACT, a VAE-based method, performs competitively across all environments,
whereas the diffusion policy struggles to deliver meaningful performance in ALOHA. This outcome
is surprising, given the recent popularity of diffusion-based techniques. While we believe a strong
diffusion architecture, like 3D Diffuser Actor on RLBench, could be developed for ALOHA, this
suggests that simpler architectures could be more robust across a wider range of tasks and environ-
ments. Our auto-regressive policy is trained with a single objective: to maximize the conditional
likelihood of each action in a sequence. We believe this simplicity contributes to its robust perfor-
mance across diverse environments.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Impact of chunk size on performance. Our results suggest that the optimal chunk size
depends on both the task and the action sequence design. Therefore, the ability of our chunking
causal transformer to flexibly adjust chunk sizes is essential for maximizing performance.

Figure 8: Real robot experiment. Our ARP learns to adaptively select high-level commands and
generate low-level action values, including position adjustment after unsuccessful insertion. In doing
so, we achieve a success rate of 8/10 in this nut-screwing task that requires a precise tool alignment.
The bolt’s position (blue) and nut’s height (yellow) are randomized at every episode.

Does action chunking improve performance? Instead of predicting only the next token, our
chunking causal transformer (CCT) is able to predict multiple next tokens, that is, a chunk of ac-
tions. Figure 7 illustrates the relationship between chunk size and success rate. The first plot shows
that larger chunks significantly improve policy performance, a trend also observed by ACT (Zhao
et al., 2023). This advantage of chunking actions seems generalizable to high-frequency control
in short-horizon tasks. Interestingly, while larger chunk sizes for joint positions improve perfor-
mance, one-shot predictions, where both end-effector waypoints and joint positions are predicted
simultaneously, yield inferior results, as in Table 1.

The second plot indicates that for Push-T, policy performance is largely insensitive to the chunk size
of low-level trajectories because the standard deviation of the success rate ranges between 1 and 2.
In this case, a moderate chunk size can be a better choice, given the common practice of executing
only the first few predicted actions and then rerunning the policy, a test-time technique reduces error
accumulation. This technique benefits from a moderate chunk size through early termination of
autoregressive generation without sacrificing performance or computational efficiency.

In the third plot, we explore a different action sequence format for Push-T, where we remove high-
level waypoints and flatten the trajectories into a vector, as detailed in Figure A6. This design
yields a completely different trend, with the policy performing well only when the chunk size is
1. The fourth plot shows that increasing the chunk size for high-level waypoints improves policy
performance. These findings demonstrate that the optimal chunk size depends on both the task and
the action sequence format. As a result, CCT’s ability to flexibly adjust chunk sizes is essential for
maximizing performance. Currently, chunk sizes are manually specified for each task, but a more
principled approach to adaptively adjusting chunk size would be ideal, as discussed in section 5.

4.3 REAL ROBOT EXPERIMENT

Setup. We evaluate ARP on a challenging tight nut-screwing task using a real robot, which requires
precise alignment between the nut and wrench with a tolerance of 2mm, as shown in Figure 8. In
each episode, the bolt (blue) is randomly placed on a 20×20 cm2 table, while the height of the nut
(yellow) is randomized along the 6cm tall bolt. The orientations of both the bolt and nut are also

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 9: Trajectory Likelihood Estimation. ARP generally assigns higher likelihoods to effec-
tive trajectories over futile ones, and demonstrates its understanding of action multi-modality as in
subfigure (b). The likelihood inference ability of ARP can help identify model weaknesses and find
defective demonstrations. All trajectories are human-drawn and are not part of the training set.

randomized per episode. We define three primitive actions: reach, adjust, and bolt. At each step, our
ARP predicts a high-level command to select the action and then generates corresponding low-level
action values. For example, ARP first predicts the reach command and an insertion pose. Next, the
robot attempts to insert the wrench. After every unsuccessful attempt, the policy predicts the adjust-
ment direction to adjust the wrench’s position and reattempt insertion. Once the insertion succeeds,
the policy switches to the screw command and predicts a dense trajectory to follow in order to rotate
the end-effector around the wrench. All commands are automatically predicted by the autonomous
model instead of being manually specified. An impedance controller stops unsuccessful insertions
based on force feedback. We deploy this model on a Kuka LBR iiwa robot. We use 480 × 640
RBG-D observations from a single RealSense D415 camera. We use MVT as the vision backbone.
To simplify the task, we assume the wrench is already grasped by the robot in a pre-defined position.
An episode is considered successful if a screw action is completed after no more than three attempts
to align the wrench on the nut. We trained ARP using 70 demonstrations collected from an expert
policy. The expert policy uses Foundation Pose (Örnek et al., 2023) to estimate insertion pose, with
human operators providing fine-grained adjustments.

Results. Figure 8 shows that ARP screws nuts successfully in 8 out of 10 episodes, while the
expert policy only has 3 successes out of 10 without human interventions. Most episodes succeeded
without any adjustments because we used the adjusted successful insertion pose as the label for the
reach command during training. To test ARP’s adaptive adjustment ability, we add a uniform noise
ranging from -5mm and 5mm along the normal plane of the insertion pose. Despite the added noise,
our ARP still succeeds in 6 out of 10 trials, with an average number of 1.6 adjustments per trial.

4.4 QUALITATIVE VISUALIZATION

We showcase all the evaluation tasks in Figure A5. Video demonstrations of ARP in simulation and
in the real world are available in the file Video/demo.mp4 in the supplementary material. In this
section, we show two key advantages of ARP: (1) estimating the likelihood of given robot actions,
(2) and predicting actions conditioned on human input.

Likelihood inference. To generate the next token an, an auto-regressive model estimates the con-
ditional probability P (an|a1, ..., an−1). Using the product rule, the model can estimate the joint
probability P (a1, ..., an) =

∏n
i=2 P (ai|a1, . . . , ai−1)P (a1) for any given sequences, a capability

that more advanced generative frameworks such as VAE and diffusion lack. Figure 9 shows for dif-
ferent trajectories the likelihood estimated by ARP. All these trajectories are human demonstrations.
ARP generally assigns higher likelihoods to effective trajectories and lower likelihoods to futile
ones. For instance, in sub-figure (b), ARP assigns high likelihoods to two symmetrical trajecto-
ries around the T object, demonstrating its understanding of action multi-modality. However, some
likelihood assignments are less intuitive. For example, trajectories ➊, ➍, and ➏ receive moderately
high likelihoods, yet they may not bring the T-shape object closer to the green target, at least not
better than the low-likelihood trajectories ➋ and ➌. ➎ marks two similar trajectories, yet they have
different likelihoods. We believe that this type of likelihood inference can help identify the model’s
weaknesses and eliminate defective demonstrations from the training data.

Prediction with human guidance. Auto-regressive models generate future tokens conditioned on
the previous sequence. In Figure 10, we illustrate examples of trajectories of ARP (blue) in Push-
T, predicted conditionally on human-drawn initial trajectories (red). The first row (green) shows
predictions under correct guidance, where the intention is to complete the task successfully. The

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 10: Trajectory Prediction based on Human Guidance. We show predicted trajectories of
ARP (blue), conditioned on human-drawn trajectories (red). The correct guidance is given with the
intention of completing the task, and the wrong guidance is aimed at failing the task. ARP performs
as expected under correct guidance. Under wrong guidance, ARP recovers from failure in subfigure
(g), avoids further mistakes in subfigure (h), and amplifies the errors in subfigure (e) and (f), which
reflects out-of-distribution behavior, as the training set consists only of successful demonstrations.

second row (pink) is based on a wrong guidance with the intention of failing the task. ARP completes
the trajectory correctly given a correct initial part. Given a wrong initiation, sub-figure (g) shows
ARP’s recovery from failure by correcting its initial trajectory. In sub-figures (e) and (f), however,
ARP amplifies the initial error by pushing further in the wrong direction. This behavior likely reflects
ARP’s out-of-distribution response, as the training set consists only of successful demonstrations.

5 DISCUSSION

We have shown that ARP is a strong and universal architecture that can be trained to perform diverse
manipulation tasks. In the following, we discuss its limitations and potential future directions.

Learning to plan. Planning is a key ability of intelligent agents. It requires the agent to reason
not only about its actions but also their impacts on its environment (Garrett et al., 2021). Motivated
by the reasoning capacity of auto-regressive models in NLP, a promising direction is to incorporate
planning into ARP. One possible solution is to predict sequences of both states and actions. States
in robotics are typically high-dimensional, such as images or point clouds. Therefore, it would be
desirable to predict only key states instead of generating every frame in the future. To solve this
problem, ARP can be extended to generate future states by using recent hybrid architectures of
auto-regression and diffusion, such as Diffusion Forcing (Chen et al., 2024a),

Interactive robot learning. Human-Robot collaboration improves efficiency by allowing the robot
to recover from its errors (Mukherjee et al., 2022; Liu et al., 2023). One possible future direction is
to integrate active learning techniques into ARP to learn from immediate human feedback. The auto-
regressive mechanism naturally supports conditioning action prediction on human input. Moreover,
ARP can estimate the likelihood of action sequences. Likelihood is a common measure for iden-
tifying the most informative samples in active learning (Taylor et al., 2021). This can be used, for
example, to prioritize demonstrations of tasks where the robot encounters more difficulties.

Adaptive action sequence learning. Despite ARP’s impressive performance, it still requires a man-
ual design of action sequence formats and chunk sizes for each environment. Developing a general
approach to automatically determine the optimal chunk size would not only improve ARP’s per-
formance, but also deepen our understanding of the action chunking techniques for robot imitation
learning in general. We discuss when and why action chunking matters in Appendix A.3. Addi-
tionally, unlike natural language, robot actions lack a universal vocabulary. A promising direction is
to design a universal robot action language that is applicable across multiple environments, which
would reduce the cost of defining new actions, unify training datasets, and improve generalization.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Hydra: Hybrid robot actions for imitation learning.
In Conference on Robot Learning, pp. 2113–2133. PMLR, 2023.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. arXiv
preprint arXiv:2403.01823, 2024.

Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. arXiv preprint
arXiv:2407.01392, 2024a.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. arXiv preprint arXiv:2401.02644, 2024b.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4(1):265–293, 2021.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. arXiv preprint arXiv:2306.14896, 2023.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise
manipulation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. Advances in Neural Information Processing Systems, 35:26091–26104, 2022.

Elad Hazan, Sham M. Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration, 2019. URL https://arxiv.org/abs/1812.02690.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. Journal of machine learning research, 22(30):1–82,
2021.

Serdar Kucuk and Zafer Bingul. Robot kinematics: Forward and inverse kinematics. INTECH Open
Access Publisher London, UK, 2006.

11

https://arxiv.org/abs/1812.02690


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, Yisong Yue, and Hal Daumé III. Hierarchi-
cal imitation and reinforcement learning. In International conference on machine learning, pp.
2917–2926. PMLR, 2018.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang,
Jiaming Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-
centric robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18061–18070, 2024.

Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-An Cheng.
Interactive robot learning from verbal correction. arXiv preprint arXiv:2310.17555, 2023.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sas-
try, A Askell, S Agarwal, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1, 2020.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1–40, 2023.

Debasmita Mukherjee, Kashish Gupta, Li Hsin Chang, and Homayoun Najjaran. A survey of robot
learning strategies for human-robot collaboration in industrial settings. Robotics and Computer-
Integrated Manufacturing, 73:102231, 2022.

Evin Pınar Örnek, Yann Labbé, Bugra Tekin, Lingni Ma, Cem Keskin, Christian Forster, and Tomas
Hodan. Foundpose: Unseen object pose estimation with foundation features. arXiv preprint
arXiv:2311.18809, 2023.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems, 36, 2024.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning, 2011. URL https://arxiv.org/abs/
1011.0686.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Learning the variance of the reward-to-go. Journal
of Machine Learning Research, 17(13):1–36, 2016.

Annalisa T Taylor, Thomas A Berrueta, and Todd D Murphey. Active learning in robotics: A review
of control principles. Mechatronics, 77:102576, 2021.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, 1989. doi: 10.1162/neco.1989.1.2.270.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Ligeng Zhu. Lyken17/pytorch-opcounter: Count the macs / flops of your pytorch model. https:
//github.com/Lyken17/pytorch-OpCounter. (Accessed on 09/16/2024).

12

https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CODE AND PRETRAINED MODELS

The source code of our auto-regressive policy is included in the supplementary folder Code. Please
check Code/README.md for instructions on installation, dataset setup, and downloading pre-
trained models from an anonymous server.

A.2 HYPER-PARAMETERS AND IMPLEMENTATION DETAILS

In this section, we provide a full list of hyper-parameters in Table A1, Table A2, and Table A3 for
Push-T, ALOHA, and RLBench, respectively, along with comments on selected hyper-parameters
to provide additional implementation details.

Model. The mlp size denotes the hidden feature dimension of the MLP network within the standard
multi-head attention operation. The number of latents refers to the number of Gaussians for the
Gaussian mixture distribution used to decode continuous actions. The backbone denotes the network
used to extract the vision features. We use the ResNet50 for Push-T and ALOHA, and Multi-View
Transformer (MVT) (Goyal et al., 2023) for RLBench, identical to the ones used in Diffusion Policy,
ACT, and RVT2.

Action Sequence. The horizon refers to the number of actions predicted at each step, while the num-
ber of action steps indicates how many actions are actually executed, with the remainder discarded.
We adopt the same horizon and action steps as state-of-the-art methods. In Push-T, the chunk size
for both high- and low-level actions matches the horizon, meaning all high-level points are predicted
in one chunk, followed by all low-level points. Yet, interestingly, as shown in Table 1, combining
these two chunks into a single-step prediction degrades performance. For RLBench, which uses the
next key end-effector pose as the control interface, there is no need for high-frequency actions, so
neither the horizon nor action steps apply. Instead, low-level robot movements are generated using
RLBench’s built-in RRT planner. We use a chunk size of 2 for binary gripper states and a chunk
size of 1 for end-effector positions and rotations. For example, ARP first predicts the roll, followed
by pitch and yaw of the rotation Euler angle. We follow the strategy of RVT-2 to predict coarse
positions and then refine them by zooming into the images (with updated vision features) to obtain
more accurate positions. The end-effector positions are predicted in 2-d, and the 3-d positions are
derived from the 2-d coordinates of each viewpoint.

Train& Eval. The observation 2 × 96 × 96 × 3 represents 2 frames of RGB images, each with
a resolution of 96x96 pixels. For RLBench, the observation 4 × 128 × 128 × 4 refers to RGBD
images (with one depth channel) at 128x128 resolution, captured from 4 cameras. In ALOHA, the
maximum evaluation steps of 400 and control frequency of 50Hz indicate an evaluation time limit
of 8 seconds. LAMB refers to the large batch optimizer proposed by You et al. (2019). We use
the same number of training steps, evaluation frequency, optimizer, learning rate, and learning rate
scheduler as used by the SoTA solutions.

A.3 DISCUSSION ON ACTION CHUNKING

Action chunking has a clear downside – when predicting multiple actions at a time, the agent doesn’t
receive information about what state was observed after the first action. This means that the agent
is operating with less information than if a single-step prediction was used. At the same time, in a
MDP the state is guaranteed to be a sufficient statistic for the optimal policy. Given this information,
why should action chucking be useful?

We propose two main reasons. First, as has been explored in other imitation learning works, using
expert data means that the dataset often lacks information on how to recover from errors, which
means that predictions grow worse over time. Using longer action chunks effectively shortens the
time horizon. However, we find that action chunking still has noticeable benefits even when the state
is well-covered, such as in the Push-T environment. Additionally, this problem becomes less severe
as the dataset grows – when the prediction error goes to zero, so does the effect of error recovery
Ross et al. (2011).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table A1: Hyperparameters used in our experiments on Push-T.
Hyperparameter Value
Model

number of layers 30
embedding size 64
mlp size 256
number of latents (gmm) 4
backbone RN50

Action Sequence

horizon (low-level) 16
horizon (high-level) 4
number of action steps 8
chunk size (low-level) 16
chunk size (high-level) 4

Train & Eval

observation RGB 2× 96× 96× 3
control frequency 10
maximum evaluation steps 300
train epochs 2000
eval frequency 50
batch size 128
learning rate 0.0001
learning rate scheduler cosine with restart
optimizer AdamW

The second and perhaps stronger explanation is that if the demonstrations are non-Markov, the
Markov policy that maximizes single-step accuracy is *not necessarily the optimal policy*. This is
true even even if the demonstration policies are optimal, and even in the limit as data and model
capacity become infinite. This is because the state occupancy measure is not convex with respect
to the policy, so linear combinations of policies can lead to state distributions that are not linear
combinations of the demonstration state distributions (Hazan et al., 2019). This can be address
either by learning a non-Markov policy, or by learning a Markov policy that imitates the desired
state distribution rather than the demonstrations.

Figure A1: Causal Transformer versus Chunking Causal Transformer. Causal transformer
prepends the input sequence with a “start” token [s] and modifies the token embedding with causal
attention so that the last token a3 becomes the next token a4. Chunking Causal Transformer (CCT)
appends the input sequence with a chunk of empty tokens, for example, e4, e5. CCT modifies the to-
ken embedding with causal attention for the known tokens a1, a2, a3 and bidirectional attention for
the empty tokens e4, e5. The empty tokens e4, e5 become the next tokens a4, a5. CCT can predict
multiple next tokens by having more empty tokens.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table A2: Hyperparameters used in our experiments on ALOHA
Hyperparameter Value
Model

number of layers 4
embedding size 512
mlp size 2048
number of latents (gmm) 1
backbone RN50

Action Sequence

horizon (joints) 100
horizon (waypoints) 10
number of action steps 100
chunk size (joints) 100
chunk size (waypoints) 1

Train & Eval

observation RGB 1× 480× 640× 3
control frequency 50
maximum evaluation steps 400
train steps 100000
eval frequency 10000
batch size 8
learning rate 1.00e-5
learning rate scheduler none
optimizer AdamW

Table A3: Hyperparameters used in our experiments on RLBench.
Hyperparameter Value
Model

number of layers 8
embedding size 128
mlp size 512
backbone MVT

Action Sequence

chunk size mix of 2 and 1

Train & Eval

observation RGBD 4× 128× 128× 4
maximum evaluation steps 25
train epochs 80000
eval frequency 10000
batch size 96
learning rate 1.25e-5
learning rate scheduler cosine
optimizer LAMB

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure A2: Embeddings for Discrete, Continuous, and Pixel-coordinate Actions. Discrete ac-
tions are embedded by a simple table lookup on a weight matrix. Continuous actions are embedded
with a linear layer. Pixel-coordinate actions are embedded by retrieving the point-wise features at
the coordinates on the visual feature maps.

Figure A3: Decoders for Discrete, Continuous, and Pixel-coordinate Actions. For discrete ac-
tions, we decode the action embeddings into a categorical distribution with a linear layer followed
by a softmax operation. For continuous actions, we decode the embeddings into the parameters of a
Gaussian mixture distribution with a linear layer. For the pixel-coordinate actions, we multiply the
embedding with a visual feature map or a weight tensor, and convert the result into a 2-d heatmap.

Figure A4: Naive Training versus Training with Attention Interleaving. The left figure demon-
strates that the causal attention within a1, a2 is computed twice, when inputs are a1, a2, e3, e4 and
a1, a2, a3, a4, e5, e6. This redundancy can be reduced by precomputing the causal attention of all
known tokens and caching the results. In doing so, the MACs are reduced from

∑N
n=1(nK)2 to

2(NK)2 + NK2, where N , K are chunk number and chunk size. For simplicity, we count the
MACs as the number of attention entries. In addition to the reduced MACs, we find that having
a single forward pass for all tokens yields a much cleaner training procedure, a benefit that is not
quantified by the raw number of multiply-accumulate operations.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure A5: Demonstrations of all tasks in Push-T, ALOHA, and RLBench. We provide visual-
izations of key frames from a single episode of Push-T and ALOHA, with the frame order indicated
at the bottom right. For RLBench, we visualize one language variant for each task. RLBench
features over 100 task variants specified through natural language commands (James et al., 2020),
such as "open [pos] drawer" where pos is selected from top, middle, bottom, and
"stack [num] [color] blocks", where num ranges from 2, 3, 4, and color is cho-
sen from a palette of 20 colors.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table A4: Performance on RLBench. We report the success rate for each task, and measure
the average success rate and rank across all tasks. ARP+ shares the same network definition with
ARP but has more layers. The MACs / parameter sizes of RVT-2, ARP, ARP+ are 72.1M/57.1G,
71.9M/56.2G, and 73.8M/57.4G, respectively. ARP performs comparably or outperforms RVT-2 on
all tasks. Notably, ARP+ achieves a 97.3% success rate on the challenging peg insertion task.

Method Avg. Avg. Close Drag Insert Meat off Open Place Place Push

Success Rank Jar Stick Peg Grill Drawer Cups Wine Buttons

RVT2 77.0 2.22 100.0 90.7 30.7 96.0 89.3 18.7 89.3 88.0
ARP (Ours) 81.2 1.89 100.0 86.7 42.7 96.0 90.7 49.3 92.0 100.0
ARP+ (Ours) 86.0 1.61 96.0 100.0 97.3 97.3 88.0 49.3 94.7 100.0

Put in Put in Put in Screw Slide Sort Stack Stack Sweep to Turn
Cupboard Drawer Safe Bulb Block Shape Blocks Cups Dustpan Tap

RVT2 60.0 100.0 98.7 90.7 88.0 42.7 61.3 60.0 93.3 89.3
ARP (Ours) 69.3 100.0 97.3 85.3 98.7 34.7 52.0 76.0 90.7 100.0
ARP+ (Ours) 74.7 98.7 86.7 89.3 93.3 46.7 62.7 81.3 98.7 93.3

Figure A6: Flattened Action Sequence for Push-T. Based on the action sequence in Figure 3, we
remove the high-level waypoints and flatten the 2D coordinates into a single vector. For example, a
trajectory of (x1, y1), (x2, y2), (x3, y3) is transformed into vector (x1, y1, x2, y2, x3, y3). The policy
is trained to predict first the x-coordinate of the initial point, then the y-coordinate, followed by the
x- and y-coordinates of subsequent points.

18


	Introduction
	Related Work
	Method
	Experiments
	Comparison with State-of-the-Art
	Analysis
	Real Robot Experiment
	Qualitative Visualization

	Discussion
	Appendix
	Code and Pretrained Models
	Hyper-parameters and Implementation Details
	Discussion on Action Chunking


